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On exchange spectra of valued quivers and cluster
algebras
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Abstract: Inspirited by the importance of the spectral theory of
graphs, we introduce the spectral theory of the valued quiver of a
cluster algebra. Our aim is to characterize a cluster algebra via its
spectrum so as to use the spectral theory as a tool.

First, we give relations between exchange spectrum of valued
quivers and adjacency spectrum of their underlying valued graphs,
and between exchange spectra of valued quivers and their full val-
ued subquivers. The key point is to find some invariants from the
spectrum theory under mutations of cluster algebras, which is the
second part we discuss. We give two equivalent conditions for a
quiver Q without 3-cycles and its mutation to be cospectral. In
particular, we prove that Q and μk(Q) are cospectral if and only
if k is a sink or a source. Following this discussion, the so-called
cospectral subalgebras of cluster algebras are introduced. We study
bounds of exchange spectrum radii of quivers and give a charac-
terization of 2-maximal quivers via the classification of oriented
graphs of its mutation equivalence. Then as an application, we ob-
tain that the preprojective algebra of a quiver of Dynkin type is
representation-finite if and only if the quiver is 2-maximal.
Keywords: Cluster algebra, cluster quiver, skew-symmetrizable
matrix, spectrum, mutation.

1. Introduction

Cluster algebras were invented by Fomin and Zelevinsky in a series of papers
[10, 11, 3, 12] and are thought to be a spectacular advance in mathemat-
ics. There are many relations and applications between cluster algebras and
other important subjects, such as representations of quivers, combinatorics
and quiver gauge theories.
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In the theory of cluster algebras, two vital roles are exchange matrices and
mutations of them. Exchange matrices are assumed to be totally sign-skew-
symmetric matrices introduced by Fomin and Zelevinsky in [10]. An impor-
tant class of totally sign-skew-symmetric matrices consists of integer skew-
symmetrizable matrices and they can be associated a one-to-one correspon-
dence with valued quivers, which are simple oriented graphs without loops
together with a pair of integers (v(α)1, v(α)2) for each arrow α satisfying some
rules. Skew-symmetrizable matrices and their mutations play very important
roles in the study of cluster algebras, and many conjectures and problems are
usually worked out firstly in this case. In [12], Fomin and Zelevinsky conjec-
tured that the exchange graph of a cluster algebra depends only on its initial
exchange matrix, and it had been proved in the case of skew-symmetrizable
matrices. Therefore it is meaningful to study skew-symmetrizable matrices,
their corresponding valued quivers and mutations of them. Valued quivers
can be just regarded as valued oriented graphs and spectral graph theory is
one of the major method to study properties of graphs.

In general, to reveal the properties of a graph, we usually associate a graph
with some matrices and study these matrices via algebraic methods. In con-
trast, we can also make use of graph theory to study the properties of some
matrices and transformations of matrices. Moreover, spectral graph theory
also has universal applications in many areas, such as information science,
computer science, and communications. The most common matrices asso-
ciated to (oriented) graphs are adjacency matrices and Laplacian matrices.
There are lots of literature and results on spectral graph theory, especially
for unoriented graphs, see e.g [4, 8]. But there are not enough attentions
on spectral theory of oriented graphs. Recently, in [7] Chung considered the
Laplacians for oriented graphs and studied their spectra, and Bauer intro-
duced normalized Laplacians for weighted oriented graphs and investigated
the properties of their spectra in [2]. However, we are more interested in val-
ued quivers and their corresponding skew-symmetrizable matrices, hence we
shall develop a novel spectral theory for valued quivers in contrast to the
classical spectral graph theory. On one hand, it can be contributed to study
exchange matrices and their transformations. On the other hand, it supports
a new sight to study spectral graph theory.

In Section 2, we introduce the definition of exchange spectra for valued
cluster quivers and other elementary notations and concepts. In Section 3.1,
we first give the relation between exchange spectrum of a valued quiver and
adjacency spectrum of its underlying valued graph. Then in Section 3.2, we
give the relation between exchange spectra of a valued quiver and its full
valued subquivers. As a corollary, we claim that the exchange spectrum radius
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of a quiver is either larger than or equal to that of its full subquiver, see
Corollary 3.9.

The cospectral relation of two quivers given in Section 4 is important
for our study. Concretely, we give sufficient and necessary conditions for Q
without 3-cycles and μk(Q) to be cospectral as follows.

Theorem 4.5. Let Q be a quiver without 3-cycles and Q0 = {1, 2, . . . , n}.
Fix a vertex k ∈ Q0, B = B(Q) = (bij)n×n and μk(B) = WBW T , where W
satisfies the equality (1). The following statements are equivalent:

(i) Q and μk(Q) are cospectral;
(ii) k is either a sink or a source;

(iii) W =

⎡
⎢⎣Ik−1 εζ 0

0 −1 0
0 εθ In−k

⎤
⎥⎦, where ζ = (b1,k, b2,k, . . . , bk−1,k)T , θ =

(bk+1,k, bk+2,k, . . . , bn,k)T , and ε ∈ {0, 1}.

The other main result in this section gives the characterization of 2-
maximal connected quivers, as follows.

Theorem 4.14. Let Q be a connected quiver.
(i) The quiver Q is 2-maximal if and only if it is mutation equivalent to

an orientation of one of X2, A1, A2, A3, or A4, where X2 is a graph with two
vertices and two edges.

(ii) If the underlying graph of Q is one of Dynkin diagrams, then the
preprojective algebra Θ(Q) of Q is representation-finite if and only if Q is
2-maximal.

This article is organized as follows. In Section 2, some basic concepts
and definitions are given and we characterize acyclicity of valued quivers by
its adjacency spectrum. In Section 3, we investigate properties of spectra
of exchange matrices of valued quivers. Finally, in Section 4, we study how
mutations influence on exchange spectra of quivers.

2. Valued quivers and exchange matrices

2.1. Definitions and notations

We follow [1] for most basic concepts of quivers. A quiver is an oriented graph
described by a 4-tuple Q = (Q0, Q1, s, t), where Q0 is a set of vertices,
Q1 is a set of arrows, and s, t are two functions that map each arrow to
its source and target, respectively. We usually label the vertices by natural
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numbers. A path of length p is a sequence of p arrows α1α2 . . . αp satisfying
that s(αj+1) = t(αj), 1 � j � p − 1. For a path ω = α1α2 . . . αp, define
s(ω) = s(α1) and t(ω) = t(αp). A quiver Q is said to be finite if both Q0 and
Q1 are finite sets, write Q0 = {1, · · · , n}. In Q, if the multiplicities of arrows
are at most 1, then Q is said to be simply-laced. A sink is a vertex i ∈ Q0
satisfying that there is no arrow α ∈ Q1 such that s(α) = i and a source is a
vertex j ∈ Q0 satisfying that there is no arrow α ∈ Q1 such that t(α) = j.

A full subquiver Q′ of a quiver Q is a quiver Q′ = (Q′
0, Q

′
1, s

′, t′) satisfying
that Q′

0 ⊆ Q0, Q′
1 ⊆ Q1, s′ = s|Q′

1
, t′ = t|Q′

1
, and Q′

1 = {γ ∈ Q1 | s(γ), t(γ) ∈
Q′

0}.
The path algebra KQ of a quiver Q over an algebraically closed field

K is the K-vector space KQ whose basis consisting of all paths in Q with
multiplication · defined on two basis elements ω1, ω2 by

ω1 · ω2 =
{
ω1ω2, if s(ω2) = t(ω1);
0, otherwise.

The underlying graph of a quiver Q is got by forgetting all orientations
of arrows and is denoted by Q̄. We say a quiver Q to be connected if its
underlying graph is connected.

A loop of a quiver is just an arrow γ such that s(γ) = t(γ), and a k-
cycle of a quiver is a path α1α2 . . . αk of length k such that s(α1) = t(αk).
A chordless k-cycle in a quiver is a k-cycle such that no two vertices of the
cycle are connected by an arrow that does not itself belong to the cycle.

A cluster quiver is a finite quiver without loops or 2-cycles. For any quiver
Q, the degree of any vertex is just its degree in the underlying graph Q̄, i. e.,
the number of edges incident with this vertex in Q̄.

A valued cluster quiver (Q, v) is a finite quiver Q without loops and at
most one arrow between any pair of vertices, together with a valuing map
v : Q1 → N2 satisfying that there is a map d : Q0 → N>0 and for each
arrow α : i → j in Q1, we have d(i)v(α)1 = d(j)v(α)2, where the value
v(α) = (v(α)1, v(α)2).

Throughout this paper, all (valued) quivers are always assumed to be
(valued) cluster quivers unless stated otherwise.

By a little abuse of notation, denote a valued quiver (Q, v) only by Q
and its underlying valued graph by Q̄. For any arrow α : i → j, the notation
(vij , vji) is used to replace (v(α)1, v(α)2).

If (Q, v) is a valued quiver, (Q′, v′) is called a full valued subquiver of Q
if Q′ is a full subquiver of Q and v′ = v|Q′

1
. Note that (Q′, v′) is also a valued

quiver.
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For a valued quiver (Q, v), if v(α)1 = 1 = v(α)2 for any arrow α ∈ Q1,
then we call Q a simple quiver. Dealing with simple quivers, we usually omit
the labels. Trivially, simple quivers are equivalent to simply-laced quivers. We
call Q a tree quiver if it is a simple quiver and Q̄ is a tree.

Throughout this paper, we use the notation [x]+ = max{x, 0}. Let
M = (mij)l×n be a real matrix, then [M ]+ = ( [mij ]+ )l×n is the non-negative
matrix defined component-wisely.

Definition 2.1. Let (Q, v) be a valued quiver with vertex set Q0 =
{1, 2, . . . , n}.

(1) The exchange matrix B(Q) = (bij)n×n of Q is the integer matrix defined
by the following rule: For 1 � i, j � n, bij = vij if there is an arrow
α : i → j, bij = −vij if there is an arrow β : j → i and otherwise
bij = 0.

(2) The matrix A(Q) = [B(Q) ]+ = ( [bij ]+ )n×n is called the adjacency
matrix of Q, and the matrix C(Q) = [B(Q) ]+ + [−B(Q) ]+ is called
the adjacency matrix of the underlying valued graph Q̄ of Q.

A square matrix M is symmetrizable (skew-symmetrizable, resp.) if there
exists a diagonal square integer matrix D with positive diagonal entries such
that DM is symmetric (skew-symmetric, resp.). Note that exchange matrices
of valued quivers are integer skew-symmetrizable matrices. Let B = (bij)n×n

be an integer skew-symmetrizable matrix, we can define a valued quiver
(Q(B), v) whose vertex set is {1, 2, . . . , n} as follows. There is an arrow
α : i → j in Q(B)1 whenever bij > 0 and v(α) = (|bij |, |bji|). It is clear
that there is a bijective correspondence between integer skew-symmetrizable
matrices and valued quivers. In particular, skew-symmetric matrices are skew-
symmetrizable. In this case, we can use quivers instead of valued quivers to
express integer skew-symmetric matrices. Indeed, if B = (bij)n×n is an in-
teger skew-symmetric matrix, we can construct a quiver Q such that Q0 =
{1, 2, . . . , n} and there shall be bij arrows from i to j whenever bij > 0 for
any i, j ∈ Q0. Then there is a bijective correspondence between integer skew-
symmetric matrices and quivers. Quivers can be considered as a special case
of valued quivers if for any quiver Q, we regard the multiplicity vα of each
arrow α as its value, that is, let v(α)1 = v(α)2 = vα for each arrow α. We will
emphatically discuss quivers in Section 4.

Remark 2.2. When we consider skew-symmetric matrices and its corre-
sponding quivers, the adjacency matrix defined above is the same as the defi-
nition of the adjacency matrices of (oriented) graphs in [13, 4].
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Since a full valued subquiver of a valued quiver is also a valued quiver, the
following relation between adjacency (exchange, resp.) matrices of a valued
quiver and its full valued subquivers is obvious.

Lemma 2.3. Let Q be a valued quiver. Then there is a bijection between prin-
cipal submatrices of A(Q) (B(Q), resp.) and full valued subquivers of Q. More
precisely, each principal submatrix of A(Q) (B(Q), resp.) is just the adja-
cency (exchange, resp.) matrix of its corresponding full valued subquiver in Q.

Clearly, for a valued quiver Q, B(Q) is an integer skew-symmetrizable
matrices and C(Q) is an integer symmetrizable matrix with respect to the
same positive definite diagonal matrix. The spectrum of A(Q) (B(Q), resp.)
is called the adjacency (exchange, resp.) spectrum of Q, and the characteristic
polynomial of A(Q) (B(Q), resp.) is called the adjacency (exchange, resp.)
polynomial of Q. Since B(Q) is similar to a real skew-symmetric matrix,
eigenvalues of B appear in complex conjugate pairs, and any eigenvalue of
B is either an imaginary number or zero. We usually denote the exchange
spectrum of Q by

Spec(B(Q)) =
[
λ1 λ2 . . . λm

n1 n2 . . . nm

]
,

where λ1, λ2, . . . , λm are all distinct eigenvalues of the matrix B(Q) such that
−λ1i < −λ2i < · · · < −λmi, and n1, n2, . . . , nm are the corresponding
multiplicities of them, where i =

√
−1. And −λmi is called the exchange

spectrum radius of the valued quiver Q and denoted by Radi(Q) = −λmi =
|λm|. Note that |λk| ≤ Radi(Q) for any k ∈ {1, 2, . . . , n}.

Let Q be a valued quiver and Q′
1, Q′

2, . . . , and Q′
s be its connected com-

ponents. Suppose that B, B1, B2, . . . , and Bs are exchange matrices of Q, Q′
1,

Q′
2, . . . , and Q′

s, respectively. Then it is clear that there exists a permutation
matrix P such that

PBP T =

⎡
⎢⎢⎢⎢⎣
B1

B2
. . .

Bs

⎤
⎥⎥⎥⎥⎦

Thus it is easy to see that

Spec(B) =
s⋃

i=1
Spec(Bi),

Radi(Q) = max {Radi(Q′
k) , k = 1, 2, . . . , s}.

So in general, we can assume that Q is connected.
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For an integer skew-symmetrizable matrix B = (bij)n×n and any k ∈
[1, n], in [10, 12], Fomin and Zelevinsky defined the mutation μk(B) = (b′ij)n×n

of B at k, which is given by the following formula

b′ij =
{
−bij , if i = k or j = k;
bij + sgn(bik)max{bikbkj , 0}, otherwise.

Note that μk(B) is still an integer skew-symmetrizable matrix. The cor-
responding mutation of valued quivers can be defined as follows.

Definition 2.4. Let (Q, v) be a valued quiver with vertex set Q0 =
{1, 2, . . . , n} and k ∈ Q0 be a fixed vertex. The mutation (Q′, v′) = μk(Q, v)
of (Q, v) at k is defined as follows:

(1) For every 2-paths i
(vik, vki)−−−−−→

α
k

(vkj , vjk)−−−−−→
β

j,

(i) if there exists an arrow j
(vji, vij)−−−−−→

γ
i, keep this arrow and v′(γ) =

(vji − vjkvki, vij − vikvkj) if vij > vikvkj; delete this arrow if vij =
vikvkj; delete this arrow, and add a new arrow γ′ : i → j and
v′(γ′) = (vikvkj − vij , vjkvki − vji) if vij < vikvkj;

(ii) if there exists an arrow i
(vij , vji)−−−−−→

γ
j, keep this arrow and v′(γ) =

(vikvkj + vij , vjkvki + vji);
(iii) if there are not any arrows between i and j, just add an arrow

ε : i → j and v′(ε) = (vikvkj , vjkvki).
(2) Reverse all arrows incident with k, and v′(αop) = (v(α)2, v(α)1) for

any arrow α incident with k, where αop is the opposite arrow of α;
(3) Keep other arrows and values unchanged.

It is obvious that vij = |bij | when bij �= 0. Furthermore, if there is an
arrow from i to j, then vij = bij and vji = −bji. Let μk(B) = (b′ij)n×n, then
b′ij = bij + sgn(bik)[bikbkj ]+ for i, j �= k. Therefore b′ij �= bij if and only if
bik > 0, bkj > 0 or bik < 0, bkj < 0 whenever i, j �= k. It can be seen that

B(μk(Q, v)) = μk(B(Q, v)).

Also, for either matrices or valued quivers, the mutation map μk is always
an involution, that is, μkμk(B) = B and μkμk(Q, v) = (Q, v).

Mutations of an integer skew-symmetrizable matrix can be written in
matrix form, see [3]. In particular, mutations of an integer skew-symmetric
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matrix is the same as a congruent transformation. Indeed, in the proof of [[3],
Lemma 3.2], let Bn×n be an integer skew-symmetric matrix and W = (wij)n×n

be a matrix of the following form

(1) W =

⎡
⎢⎣Ik−1 ξ 0

0 −1 0
0 η In−k

⎤
⎥⎦

and the two vectors ξ and η are given by ξ = ([b1,k]+, [b2,k]+, . . . , [bk−1,k]+)T
and η = ([bk+1,k]+, [bk+2,k]+, . . . , [bn,k]+)T , where Im denotes the identity ma-
trix of order m. It is easy to check that det(W ) = −1 and μk(B) = WBW T .

Two integer skew-symmetrizable matrices (respectively, valued quivers)
are said to be mutation equivalent if one can be obtained by a sequence of
mutations of the other. It is easy to see that this defines a equivalence relation.
The mutation class of Q consists of all valued quivers mutation equivalent to
Q and is usually denoted by Mut(Q). We use the notation Q ∼ Q′ (B ∼ B′,
resp.) to denote that Q and Q′ (B and B′, resp.) are mutation equivalent.

Let P be a semifield which is an abelian multiplicative group endowed with
an auxiliary addition ⊕ which is associative, commutative, and distributive
with respect to the multiplication in P. Let F be a field which is isomorphic
to the field of rational functions in n indeterminates with the coefficients from
the field of fractions of ZP. Following [12], a seed is a triple Σ = (x,y, B) such
that B = (bij)n×n is an integer skew-symmetrizable matrix, y = (y1, . . . , yn)
is an n-tuple of elements of P, and x = (x1, . . . , xn) is an n-tuple of a free
generating set of F . In [12], for k ∈ [1, n], (x′,y′, B′) = μk(x,y, B) is obtained
by the following rules:

(1) x′ = (x′1, . . . , x′n) is given by x′kxk = yk
∏

x
[bik ]+
i +

∏
x

[−bik ]+
i

yk⊕1 and x′i = xi
for i �= k;

(2) y′ = (y′1, . . . , y′n) is given by y′i = y−1
k for i = k; and otherwise y′i =

yiy
[bki]+
k (yk ⊕ 1)−bki ;

(3) B′ = μk(B).

Note that we can also use (x,y, Q(B)) instead of (x,y, B). For every seed
(x̃, ỹ, B̃) obtained from the seed Σ = (x,y, B) by a sequence of mutations,
we call x̃ a cluster and its elements are called cluster variables. The cluster
algebra A(Σ) of rank n associated to a seed Σ = (x,y, B) is the ZP-subalgebra
of F generated by all cluster variables. In this paper, we mainly focus on
mutations of quivers.
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2.2. A characterization of acyclic valued quivers

A valued quiver Q is called acyclic, if it has no k-cycles in Q for any k � 1. The
fact whether a valued quiver is acyclic will be influential for the corresponding
cluster algebra. Indeed, some important conjectures were proved to be true in
the case cluster algebras have acyclic valued quivers; otherwise, however, they
would face great difficult for affirmation. In this section, we give a criterion
of acyclicity. The following lemma is easy to see:

Lemma 2.5. Let Q be a valued quiver and A = A(Q) be its adjacency matrix.
Suppose π is a permutation of {1, 2, . . . , n}, and A′ = (a′ij), where a′ij =
aπ(i)π(j). If P is the corresponding permutation matrix of π, then PAP T = A′.
In particular, det(A) = det(A′).

Proposition 2.6. Let Q be a valued quiver. Then the following statements
are equivalent:

(i) Q is acyclic.
(ii) The principal minors of A(Q) are zeros.
(iii) The eigenvalues of A(Q) are zeros.

Proof. (i)⇒(ii): Since Q is a finite acyclic quiver, there exists a bijection
between Q0 and {1, 2, . . . , n} such that if we have an arrow j → i, then j < i.
Hence by the Lemma 2.5, there exists a permutation matrix P such that
PA(Q)P T = A′(Q), where A′(Q) is a strictly upper triangular matrix. The
principal minors of A′(Q) are zeros, so are the principal minors of A(Q).

(ii)⇒(i): Assume that Q is not acyclic, then there exists at least one cycle
in Q. Let Q′ be a full valued subquiver of Q such that Q′ has a cycle. We may,
without loss of generality, assume Q′ to be minimal with this property. Then
Q′ must be a chordless k-cycle. Suppose Q′

0 = {j1, j2, . . . , jk} with k � 3, and
there only exist arrows from js to js+1 (1 � s � k − 1) and from jk to j1. It
follows from the Lemma 2.5 that the adjacency matrix A(Q′) of Q′ is similar
to the matrix ⎡

⎢⎢⎢⎢⎢⎢⎣

0 c1 0 . . . 0 0
0 0 c2 . . . 0 0
...

...
...

...
...

0 0 0 . . . 0 ck−1
ck 0 0 . . . 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦
,

where ci equals to the first element v(αi)1 of v(αi), where αi is the arrow from
ji to ji+1 for 1 � i � k − 1, and ck equals the first element v(αk)1 of v(αk),
where αk is the arrow from jk to j1. Hence det(A(Q′)) = (−1)1+kc1 . . . ck �= 0.



1542 Fang Li and Siyang Liu

Then the principal minor of A(Q) indexed by {j1, j2, . . . , jk} is not zero, which
is a contradiction.

(ii) ⇒ (iii): Suppose that f(λ) = |λIn − A(Q)| = λn + a1λ
n−1 + · · · +

an−1λ + an. Since (−1)sas is the sum of all principal minors of order s, we
get f(λ) = λn, then (iii) holds.

(iii) ⇒ (ii): We will prove any principal minor of the matrix A(Q) of order
k is zero by induction on k. In the cases of k = 1 and k = 2, the conclusion
follows from the definition of valued cluster quivers. Now we assume that
this conclusion holds for any m, where m � k − 1 � n. We consider the
case of m = k. Because the principal minors of A(Q) which has l rows and
l columns are zeros for each l ∈ [1, k − 1], Q has not any l-cycles for any
l ∈ [1, k − 1] and so are all of its full valued subquivers of order k. Let Q′ be
any full valued subquiver of order k. If the full valued subquiver Q′ is acyclic,
then the corresponding principal minor is zero. Otherwise Q′ has a cycle and
hence Q′ must be a chordless k-cycle. Similar to the proof in (ii)⇒(i), we
deduce that the corresponding principal minor has the sign (−1)k+1. Then
all of the nonzero principal minors of order k share the same sign. Because
the eigenvalues of A(Q) are zeros, the sum of all of principal minors of order
k is zero. Now it is obvious that any principal minor of the matrix A(Q) of
order k is zero. We finish the proof.

As the converse-negative result of Proposition 2.6, we have:

Corollary 2.7. Assume that Ai1i2...ik is a principal submatrix of A(Q) indexed
by i1, i2, . . . , ik. If detAi1i2...ik �= 0, then there exists a full subquiver Q′ of Q
which is a cycle such that Q′

0 ⊆ {i1, i2, . . . , ik}.

3. Spectra of exchange matrices

In this section, we discuss firstly the relations between exchange spectrum of
a valued quiver and adjacency spectrum of its underlying valued graph, and
secondly the relations between exchange spectrum of a valued quiver and that
of its full valued subquivers.

Let Q be a valued quiver, we now turn on the properties of the exchange
matrix B(Q). Since B(Q) is skew-symmetrizable, there is a diagonal matrix
D with positive diagonal entries such that DB(Q) is skew-symmetric. It is
easy to check that D 1

2B(Q)D− 1
2 is real, skew-symmetric and similar to B(Q).

We will use this property frequently and some well-known properties for real
skew-symmetric matrices are given as follows.

Lemma 3.1. Let B be a real skew-symmetric matrix of order n, then follow-
ing assertions hold:
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(i) det(B) ≥ 0. Moreover, if n is odd, then det(B) = 0.
(ii) The eigenvalues of B appear in complex conjugate pairs, and any eigen-

value of B is either an imaginary number or zero.
(iii) The sum of all the eigenvalues of B is zero, and equals the sum of all

the imaginary parts of the eigenvalues of B.
(iv) There exists an orthogonal matrix P such that

PBP T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0
. . .

0
B1

. . .
Bs

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
,

where Bk =
[

0 bk
−bk 0

]
, bk ∈ R, 1 � k � s, and P T is the transpose

of P .
(v) There exists an unitary matrix U such that UBU∗ is a diagonal matrix,

where U∗ is the conjugate transpose of U .

3.1. Relations between exchange spectrum and adjacency
spectrum

The largest eigenvalue of the adjacency matrix of an unoriented graph has
been studied well and this investigation is still active. It is also interesting to
consider the exchange spectrum radius of a valued quiver. Here we introduce
some notations for the sake of the following proofs. Let M = (mij)l×s and N =
(nij)l×s be two real matrices of the same size, we say M > N (M � N, resp.)
if mij > nij (mij � nij , resp.) for all 1 � i � l, 1 � j � s. For a real matrix
M = (mij)m×n, if mij > 0 (� 0, resp.) for any i ∈ [1,m], j ∈ [1, n], M is said
to be positive (nonnegative, resp.) and is denoted by M > 0 (M � 0, resp.).
And i =

√
−1.

Lemma 3.2 ([5], Theorem 3.6.2). The eigenvalues of the complex matrix
M = (mij)n×n of order n lie in the region of the complex plane determined
by the union of the n-closed discs

Ti = {x| |x−mii| ≤ ti}, i = 1, 2, . . . , n.

where ti =
∑n

j=1,j �=i |mij |, i = 1, 2, . . . , n.
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Proposition 3.3. Suppose that Q is a valued quiver with n = |Q0| and the
connected components Q′

1, Q′
2, . . . , Q′

s. Let B = B(Q) = (bij)n×n be the
exchange matrix of Q and C = C(Q) = (cij)n×n be the adjacency matrix of
the underlying valued graph Q̄. Let hi =

∑n
j=1 |bij | =

∑n
j=1 cij be the degree

of the vertex i ∈ Q0 and h = max{h1, h2, . . . , hn }. Then for the exchange
spectrum radius λ of Q and the adjacency spectrum radius μ of the valued
graph Q̄, the following is satisfied that

0 � λ � μ � h = r,

for rp = maxi∈(Q′
p)0

∑
j∈(Q′

p)0 |bij | , 1 � p � s, and r = max{ r1, r2, . . . , rs }.
Proof. 0 � λ and h = r are obvious by definitions.

μ � h is just a corollary of Lemma 3.2 by letting M = C(Q) in Lemma 3.2.
Let us show that the inequality λ � μ holds. Since B is a skew-symmet-

rizable matrix, there exists a diagonal matrix D = diag(d1, d2, . . . , dn) with
di > 0 for 1 � i � n such that DB is skew-symmetric. Then it is clear
that B′ = (b′ij) = D

1
2BD− 1

2 is skew-symmetric, C ′ = (c′ij) = D
1
2CD− 1

2 is
symmetric and c′ij = |b′ij | for any i, j ∈ [1, n]. Let x = (x1, x2, . . . , xn)T be
an eigenvector of B′ corresponding to λi, say, B′x = (λi)x. Thus for any
j ∈ [1, n], we have

λ|xj | = |λixj| = |
n∑

s=1
b′jsxs| �

n∑
s=1

|b′js||xs| =
n∑

s=1
c′js|xs|.

Let y = (|x1|, |x2|, . . . , |xn|)T , we get C ′y � λy � 0, and y � 0, y �= 0.
Therefore, λyT y � yTC ′y.

Now let z be an eigenvector of C ′ corresponding to μ. By the Rayleigh
theorem, we have

λ � yTC ′y

yT y
� zTC ′z

zT z
= μ.

Proposition 3.4. With the notations above, if λ = h, then there exists a full
valued subquiver Q′ of Q which is also a connected component of Q such that
hi =

∑
j∈(Q′)0 |bij | = h, for each vertex i ∈ (Q′)0.

Proof. Assume that hi is an eigenvalue of B(Q). If the set of arrows Q1 = ∅,
it is obvious. Now we assume that Q1 �= ∅ so that h �= 0. Let Q′

1, Q′
2, . . . ,

Q′
s be all connected components of the valued quiver Q and Bi = B(Q′

i) be
the exchange matrix of Q′

i for i = 1, 2, . . . , s. Then we have

Spec(B(Q)) =
s⋃

i=1
Spec(Bi).
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We may assume that hi is an eigenvalue of Bk for some k ∈ [1, s]. Without loss
of generality, we assume that (Q′

k)0 = {1, 2, . . . ,m}, m � 2, Bk = (bij)m×m,
and Ck = C(Q′

k) = (cij)m×m. Since h is the exchange spectrum radius of Q′
k,

it follows from Proposition 3.3 that h is the largest eigenvalue of Ck. It is also
clear that

Ck(1, 1, . . . , 1)T � h(1, 1, . . . , 1)T .

Since Q̄′
k is connected, the symmetrizable matrix Ck is irreducible and Ck � 0.

It follows from the Perron-Frobenius theorem that

Ck(1, 1, . . . , 1)T = h(1, 1, . . . , 1)T .

Now it is easy to see that the connected component Q′
k is what we need.

From Proposition 3.3, for any valued quiver, we know its exchange spec-
trum radius is not more than the adjacency spectrum radius of its underlying
valued graph. In particular, when its underlying graph is a tree, we can say
more.

Proposition 3.5. Let Q be a valued quiver with Q0 = n and its underlying
graph Q̄ be a tree. Assume that f(x) and g(x) are the exchange polynomial of
Q and the adjacency polynomial of the underlying valued graph Q̄ respectively,
that is, f(x) = |xIn−B(Q)|, g(x) = |xIn−C(Q)|. Then, for λ ∈ R, f(λi) = 0
if and only if g(λ) = 0. Moreover, it holds that

Spec(B(Q)) =
[
λ0i λ1i . . . λpi
n0 n1 . . . np

]

if and only if

Spec(C(Q)) =
[
λ0 λ1 . . . λp

n0 n1 . . . np

]
,

where λ0 < λ1 < · · · < λp, and n0 + n1 + · · · + np = n.

Proof. Note that B = B(Q) = (bij)n×n is skew-symmetrizable and C =
C(Q) = (cij)n×n is symmetrizable with the same diagonal matrix D, and
it is easy to see that |bij | = cij . We have D

1
2BD− 1

2 is skew-symmetric and
D

1
2CD− 1

2 is symmetric.
At first, we prove that det(B) = (−1)n

2 det(C).
Note that we have that

det(B) =
∑
π∈Sn

sgn(π)b1π1b2π2 . . . bnπn, det(C) =
∑
π∈Sn

sgn(π)c1π1c2π2 . . . cnπn,
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where Sn means the permutation group of {1, 2, . . . , n}. Because of the def-
inition of B, bij �= 0 if and only if the two vertices i and j are adjacent
in Q̄. In particular, if i = πi, then biπi = 0. If π is not the identity, then
π can be uniquely expressed to be a product of disjoint cycles of length at
least two. Let the cycle (spr . . . t) be a factor of length more than two of π,
then it corresponds to the factor bspbpr . . . bts of the term sgn(π)b1π1 . . . bnπn .
And bspbpr . . . bts �= 0 if and only if the pairs {s, p}, {p, r}, . . . , {t, s} are
adjacent pairs in Q̄. In this case, the induced subgraph of Q̄ determinded
by {s, p, r, . . . , t} admits a cycle of length more than two. But we know that
there are no k-cycles for k � 3 in Q̄. Thus if the term sgn(π)b1π1b2π2 . . . bnπn
does not vanish, π must be a product of disjoint cycles of length two. The
same statements hold for C.

If n = |Q0| is odd, then det(B) = 0 follows from Lemma 3.1(1) and
the fact that D

1
2BD− 1

2 is skew-symmetric. For any π ∈ Sn, if the term
sgn(π)c1π1c2π2 . . . cnπn �= 0, then it implies πi �= i for any i ∈ [1, n] and π
is a product of disjoint cycles of length two for Q̄ is a tree, which means it
is impossible for n = |Q0| to be odd. Thus, sgn(π)c1π1c2π2 . . . cnπn = 0 for
any π. Hence det(B) = 0 = det(C).

If n = |Q0| is even, it is easy to see that for π ∈ Sn, b1π1b2π2 . . . bnπn �= 0 if
and only if c1π1c2π2 . . . cnπn �= 0 and in this case, π is a product of disjoint cy-
cles of length two. Note that bijbji = −cijcji, we have sgn(π)b1π1b2π2 . . . bnπn =
(−1)n

2 sgn(π)c1π1c2π2 . . . cnπn. for any π ∈ Sn. Thus we prove that det(B) =
(−1)n

2 det(C).
Because the underlying graphs of full valued subquivers of Q do not have

l-cycles for l � 3 either, then for any full valued subquiver Q′ of Q of or-
der r, we have det(B(Q′)) = (−1) r

2 det(C(Q′)). By the relations between
coefficients of characteristic polynomials and principal minors, we have the
following statements.

When n is even, let n = 2m. Note that all principal minors of B of odd
orders are zeros, we may assume that

f(λ) = λ2m + v2λ
2m−2 + v4λ

2m−4 + · · · + v2m−2λ
2 + v2m,

where (−1)kvk is the sum of all of principal minors of B of order k. Then

g(λ) = λ2m + (−1)v2λ
2m−2 + (−1)2v4λ

2m−4 + · · · + (−1)mv2m.

It is easy to see that f(λi) = (−1)mg(λ).
When n is odd, let n = 2m + 1. Similarly, we may assume that

f(λ) = λ2m+1 + v2λ
2m−1 + v4λ

2m−3 + · · · + v2m−2λ
3 + v2mλ,
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and then

g(λ) = λ2m+1 + (−1)2v4λ
2m−3 + · · · + (−1)mv2mλ.

It is clear that f(λi) = i(−1)mg(λ).
Thus in all cases, we have that f(λi) = 0 if and only if g(λ) = 0.
Moreover, suppose that f(λ) = (λ2 + q1)(λ2 + q2) . . . (λ2 + qs)λn−2s for

0 < q1 � q2 � · · · � qs.
When n = 2m, we have

(−1)mg(λ) = f(λi) = (λ2 − q1)(λ2 − q2) . . . (λ2 − qs)λn−2s(−1)s(i)n−2s

= (λ2 − q1)(λ2 − q2) . . . (λ2 − qs)λn−2s(−1)m.

Thus, g(λ) = (λ2 − q1)(λ2 − q2) . . . (λ2 − qs)λn−2s.
When n = 2m + 1, we have

i(−1)mg(λ) = f(λi) = (λ2 − q1)(λ2 − q2) . . . (λ2 − qs)λn−2s(−1)s(i)n−2s

= (λ2 − q1)(λ2 − q2) . . . (λ2 − qs)λn−2s(−1)mi.

Thus, g(λ) = (λ2 − q1)(λ2 − q2) . . . (λ2 − qs)λn−2s.

So Spec(f) =
[
λ0i λ1i . . . λpi
n0 n1 . . . np

]
implies Spec(g) =

[
λ0 λ1 . . . λp

n0 n1 . . . np

]
.

The proof of the converse statement is similar.

A valued quiver (Q′, v′) is said to be obtained by re-orienting an arrow α
from a valued quiver (Q, v) if Q′

1 = {αop}⋃Q1 \ {α}, (v′(αop)1, v′(αop)2) =
(v(α)2, v(α)1) and v′(β) = v(β) for β ∈ Q1 \ {α}, where αop is the opposite
arrow of α. Re-orientations of a valued quiver by re-orienting a set of arrows
are defined step by step. Then we have the following corollary.

Corollary 3.6. Let T be a full valued subquiver of a connected valued quiver
Q such that:

(i) The underlying graph T̄ of T is a tree.
(ii) There is only one vertex x ∈ T0 connecting with the vertices in Q0 \T0.

Then all re-orientations of the valued quiver Q by re-orienting T and main-
taining T ′ unchanged share the same exchange polynomial, where T ′ is a full
valued subquiver of Q determined by Q0 \ T0. In particular, if the underlying
graph Q̄ of Q is a tree, then all re-orientations of Q share the same exchange
polynomial.
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Proof. Without loss of generality, we may suppose that T ′
0 = {1, 2, . . . ,m},

T0 = {m + 1,m + 2, . . . ,m + n} and x = m + 1. The exchange matrices of
T ′ and T \{x} are assumed to be Xm×m and Y(n−1)×(n−1), respectively. Then
the exchange matrix of Q will be the following form:

⎡
⎢⎣X −wT 0
α 0 β
0 −yT Y

⎤
⎥⎦ ,

where α = (α1, α2, . . . , αm), β = (β1, β2, . . . , βn−1), w = (w1, w2, . . . , wm),
and y = (y1, y2, . . . , yn−1). Assume that characteristic polynomials of X and
Y are X(λ) and Y (λ), respectively. Then the exchange polynomial of Q is

∣∣∣∣∣∣∣
λIm −X wT 0

−α λ −β
0 yT λIn−1 − Y

∣∣∣∣∣∣∣
= (α1w1X1(λ) + α2w2X2(λ) + · · · + αmwmXm(λ))Y (λ)

+ λX(λ)Y (λ) + [β1y1Y1(λ) + β2y2Y2(λ) + · · · + βn−1yn−1Yn−1(λ)]X(λ),

where Xk(λ) is the determinant of the principal submatrix of the matrix
λIm − X obtained by deleting the k-th row and k-th column, and Yj(λ) is
the determinant of the principal submatrix of λIn−1 − Y obtained by delet-
ing the j-th row and j-th column for any k ∈ [1,m], j ∈ [1, n − 1]. Re-
orientations of Q with T ′ unchanged will keep X(λ), X1(λ), . . . , Xm(λ),
α1w1, . . . , αmwm, β1y1, . . . , βn−1yn−1 unchanged. It only needs to show that
Y (λ), Y1(λ), . . . , Yn−1(λ) stay unchanged, and this follows immediately from
Proposition 3.5.

For any orientation of a tree, we may get a tree quiver. Recall that an
induced subgraph (or say, a full subgraph) of a graph is a subgraph obtained
from the original graph by keeping an arbitrary subset of vertices together
with all the edges that have both endpoints in this subset. We have the
following results for (tree) quivers on exchange spectrum radii.

Corollary 3.7. The following assertions hold:

(1) Let Q be a tree quiver, then

(i) The exchange spectrum radius of Q is less than two if and only
if the underlying graph of Q is one of Dynkin diagrams (see Fig-
ure 1).
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Figure 1: Dynkin diagrams An, Dn, E6, E7, and E8.

Figure 2: Acyclic extended Dynkin diagrams D̂n, Ê6, Ê7, and Ê8.

(ii) The exchange spectrum radius of Q is 2 if and only if the underly-
ing graph of Q is one of the graphs D̂n (n � 4, with n+ 1 vertices
in it), Ê6, Ê7, or Ê8 (see Figure 2).

(iii) The exchange spectrum radius of Q is more than two if and only
if the underlying graph of Q contains D̂n (n � 4), Ê6, Ê7, or Ê8
as a proper induced subgraph.

(2) Let Q be an arbitrary quiver with exchange spectrum radius more than
two, then Q̄ either contains X2, Ân (n � 2), D̂n (n � 4), Ê6, Ê7, or
Ê8 as a proper induced subgraph, or contains Xn (n � 3) as an induced
subgraph, where Ân is a simple chordless (n + 1)-cycle, and Xn is a
graph with two vertices and n edges.
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Proof. (1) It follows from the Proposition 3.5 that the exchange spectrum
radius of a valued quiver equals to the adjacency spectrum radius of its un-
derlyling graph if its underlying graph is a tree. Then the conclusion follows
from results in [15] (refer also to Theorem 3.1.3 in [4]).

(2) This assertion follows from (1), Proposition 3.3 and results in [15].

Dynkin diagrams have appeared in many branches of mathematics, for
example, in the classification of finite type of cluster algebras, finite dimen-
sional associated algebras, and Lie algebras. It is also interesting to see they
can be associated with exchange matrices of valued quivers.

3.2. Exchange spectra of a valued quiver and full valued
subquivers

In this subsection, we make use of Cauchy’s interlacing theorem for symmetric
matrices to prove a similar result for skew-symmetrizable matrices, and we
use this result to compare the exchange radii of valued quivers and their full
valued subquivers.

Theorem 3.8. Let Q be a valued quiver with |Q0| = n and Q′ be a full valued
subquiver order n − 1 of Q. If the eigenvalues of B(Q) are λ1i, λ2i, . . . , λni
with λ1 � λ2 � · · · � λn and the eigenvalues of B(Q′) are γ2i, γ3i, . . . , γni
with γ2 � γ3 � · · · � γn, then λ1 � γ2 � λ2 � γ3 � λ3 � · · · � γn � λn.

Proof. Since B = B(Q) is a real skew-symmetrizable matrix and B′ = B(Q′)
is a principal submatrix of order n − 1 of B(Q), there exists a diagonal ma-
trix D with positive diagonal entries such that DB is skew-symmetric. It is
clear that B1 = D

1
2BD− 1

2 and B′
1 = D

1
2
1 B

′D
− 1

2
1 are skew-symmetric, where

D1 is the corresponding principal submatrix of D such that D1B
′ is skew-

symmetric. It is also obvious that there is a permutation matrix P such that

PB1P
T =

[
0 α∗

−α B′
1

]
,

where α∗ is the conjugate transpose of the vector α. Since B′
1 is a real skew-

symmetric matrix, there exists an unitary matrix T such that TB′
1T

∗ is a
diagonal matrix, i. e.,

TB′
1T

∗ =

⎡
⎢⎢⎢⎢⎣
γ2i

γ3i
. . .

γni

⎤
⎥⎥⎥⎥⎦ ,
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where T ∗ is the conjugate transpose of T . Now let a matrix H =
[
1 0
0 T

]
.

Then we have

HPB1P
TH∗ =

[
1 0
0 T

] [
0 α∗

−α B′
1

] [
1 0
0 T ∗

]

=
[

0 α∗T ∗

−Tα TB′
1T

∗

]
=

[
0 β∗

−β TB′
1T

∗

]
,

where β = Tα = (β2, β3, . . . , βn)T . Assume that the characteristic polynomial
of HPB1P

TH∗ is f(λ), then

f(λ) = |λIn −HPB1P
TH∗|

=
∣∣∣∣∣λ −β∗

β λIn−1 − TB′
1T

∗

∣∣∣∣∣

=

∣∣∣∣∣∣∣∣∣∣∣∣

λ −β̄2 −β̄3 . . . −β̄n
β2 λ− γ2i 0 . . . 0
β3 0 λ− γ3i . . . 0
...

...
... . . . ...

βn 0 0 . . . λ− γni

∣∣∣∣∣∣∣∣∣∣∣∣
.

Expanding the above determinant along the first row, we get

f(λ) = λ(λ− γ2i) . . . (λ− γni) +
n∑

k=2
|βk|2(λ− γ2i) . . . ̂(λ− γki) . . . (λ− γni),

where ̂(x− γk) means deleting this term. Thus it follows that

f(xi) =(xi) . . . (xi − γni) +
n∑

k=2
|βk|2(xi − γ2i) . . . ̂(xi − γki) . . . (xi − γni)

=inx . . . (x− γn) + in−2
n∑

k=2
|βk|2(x− γ2) . . . ̂(x− γk) . . . (x− γn)

=ing(x),

where g(x) = x(x−γ2) . . . (x−γn)−
∑n

k=2 |βk|2(x−γ2) . . . ̂(x− γk) . . . (x−γn).
It is easy to see that g(x) is the characteristic polynomial of the real symmetric
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matrix M defined as follows.

M =

⎡
⎢⎢⎢⎢⎣

0 |β2| . . . |βn|
|β2| γ2 . . . 0
...

... . . . ...
|βn| 0 . . . γn

⎤
⎥⎥⎥⎥⎦ .

Similar to the proof of Proposition 3.5, it is not difficult to see that the
eigenvalues of the matrix B are λ1i, λ2i, . . . , λni if and only if the eigenvalues
of the matrix M are λ1, λ2, . . . , λn. Recall that Cauchy’s interlacing theorem
for Hermitian matrices (see e.g. [[14], Theorem 4.3.17]) claims that if An×n is a
Hermitian matrix with eigenvalues s1 ≥ s2 ≥ · · · ≥ sn and A′

(n−1)×(n−1) is its
principal submatrix with eigenvalues t2 ≥ t3 ≥ · · · ≥ tn, then si ≤ ti ≤ si−1
for any i ∈ {2, 3, . . . , n}. Apply this result to M and its principal submatrix
indexed by {2, 3, . . . , n}, our proof is finished.

Corollary 3.9. Let Q be a valued quiver with |Q0| = n and Q′ be a full valued
subquiver of order m (< n) of Q. Suppose that the eigenvalues of B(Q) are
λ1i, λ2i, . . . , λni with λ1 � λ2 � · · · � λn, and the eigenvalues of B(Q′) are
γ1i, γ2i, . . . , γmi with γ1 � γ2 � · · · � γm. Then λj � γj � λn−m+j for
j = 1, 2, . . . ,m.

In particular, the exchange spectrum radius of Q is either larger than or
equal to that of Q′.

Proof. Because the exchange matrix of the full valued subquiver Q′ is a prin-
cipal submatrix of the exchange matrix of Q, the conclusion follows from
iterated applications of Theorem 3.8.

4. Mutation invariant of spectrum of a cluster quiver

In this section, we study mutation invariants of skew-symmetric matrices and
quivers under the meaning of spectrum.

As a special case of Definition 2.4, mutation of quivers can be equivalently
defined as follows.

Definition 4.1 ([16]). Let Q be a quiver and k ∈ Q0 be a fixed vertex. The
mutation μk(Q) of Q at k is defined as follows:

(1) For every 2-path i → k → j, add a new arrow i → j;
(2) Reverse all arrows incident with k;
(3) Delete a maximal collection of 2-cycles from those created in (1).

Note that parallel arrows are considered as different arrows in the first
step in Definition 4.1.
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Figure 3: An example.

4.1. Cospectral relationship of quivers and seeds

Two quivers Q and Q′ are called cospectral if they share the same exchange
polynomial. Two mutation equivalent seeds Σ = (x,y, Q) and Σ′ = (x′,y′, Q′)
are said to be cospectral if Q and Q′ are cospectral. In this case, we call clusters
x and x′ cospectral and denoted by x ∼c x′.

Firstly, we consider the condition for quivers to be cospectral in a muta-
tion class.

Lemma 4.2. Let Q be a quiver and B is its exchange matrix. If k ∈ Q0 is a
sink or source, then the quivers Q and μk(Q) are cospectral.

Proof. If k ∈ Q0 is a sink or source, there are no 2-paths of the form i →
k → j, μk(Q) is obtained from Q just by reversing all arrows incident with
k. Then the exchange matrix of μk(Q) is given by

μk(B) = JkBJk,

where Jk is the diagonal matrix obtained from the identity matrix by replacing
the (k, k)-entry by −1. Obviously, the quivers Q and μk(Q) are cospectral.

The following example shows that in general, the converse of Lemma 4.2
is not true.

Example 4.3. Let us consider the quiver in Figure 3(a): Mutating at vertex
2, we get a quiver in Figure 3(b). It is obvious that μ2(Q) and Q have the
same exchange polynomial, see Remark 4.13. However the vertex 2 is neither
a sink nor a source.

If we consider quivers without 3-cycles, we have a better result. To prove
the desired result, we need the following lemma.
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Lemma 4.4. Let B(Q) = (bij)n×n be the exchange matrix of a quiver Q.
The exchange polynomial of Q is f(λ) = |λIn −B(Q)| = λn + b1λ

n−1 + · · ·+
bn−1λ + bn, then

(i) b2k−1 = 0, 1 ≤ k ≤ n+1
2 , k ∈ Z; (ii) b2 =

∑
i<j b

2
ij =

∑
j<i b

2
ij.

In particular, if Q is a simply-laced quiver, then b2 equals to the number of
arrows in Q.

Proof. Since the coefficient bk of the characteristic polynomial equals to the
sum of all principal minors of order k multiplying by (−1)k, by Lemma 3.1,
the determinants of skew-symmetric matrices of odd orders are zeros, then
(i) is true. The principal minor of order two must be of the form

∣∣∣∣∣ 0 bij
−bij 0

∣∣∣∣∣ ,
where 1 � i < j � n. Then (ii) is also true. For a simply-laced quiver, the
nonzero principal minors of order two must be

∣∣∣∣∣ 0 1
−1 0

∣∣∣∣∣ or

∣∣∣∣∣0 −1
1 0

∣∣∣∣∣ .
And there is a bijection between the nonzero principal minors of order two
and arrows in Q1. Then the last statement follows.

Let Q be a quiver and B = B(Q). Given the matrix W at k satisfying
the equality (1), we have μk(B) = WBW T .

Theorem 4.5. Let Q be a quiver without 3-cycles and Q0 = {1, 2, . . . , n}.
Fix a vertex k ∈ Q0, B = B(Q) = (bij)n×n and μk(B) = WBW T , where W
satisfies the equality (1). The following statements are equivalent:

(i) Q and μk(Q) are cospectral;
(ii) k is either a sink or a source;

(iii) W =

⎡
⎢⎣Ik−1 εζ 0

0 −1 0
0 εθ In−k

⎤
⎥⎦, where ζ = (b1,k, b2,k, . . . , bk−1,k)T , θ =

(bk+1,k, bk+2,k, . . . , bn,k)T , and ε ∈ {0, 1}.

Proof. (i)⇒(ii): Suppose that Q and μk(Q) share the same exchange poly-
nomial, but k is neither a sink nor a source in Q. Since Q does not have
3-cycles, by the definition of mutation of quivers, when we mutate Q at k,
the multiplicities of arrows between any two vertices either increase or keep
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intact. And because k is not a sink or source, there precisely exists some ar-
row whose multiplicity increases. Then the sum of all of principal minors of
order two will changed after mutating at k, thus by Lemma 4.4 the exchange
polynomial will changed, which is a contradiction.

(ii)⇒(i): It follows from Lemma 4.2.
(ii)⇔(iii): k ∈ Q0 is a source if and only if bik � 0 for any i ∈ Q0; and

k is a sink if and only if bjk � 0 for any j ∈ Q0. Then it follows through
comparing the definition of W in (1) and (iii).

The following conjecture asserts that cospectral quivers form a finite con-
nected subgraph of the exchange graph (see [12]), and one of them can be
obtained by mutation at sinks and sources from the other.

Conjecture 4.6. Let Q be a quiver. Then Q′, Q′′ ∈ Mut(Q) are cospec-
tral if and only if there exists a quiver R ∈ Mut(Q) such that Q′ and R

are isomorphic and Q′′ can be obtained from R by mutation at sinks and
sources.

For any seed Σ = (x,y, Q) with Q a quiver, let S(Σ) =
⋃

x′
∼cx x′. We call

the subalgebra of the cluster algebra A(Σ) generated by S(Σ) a cospectral
subalgebra corresponding to Σ, written as Ac(Σ). If A(Σ) = Ac(Σ), we say
this cluster algebra A(Σ) to be a cospectral cluster algebra.

Clearly, 0 �= ZP[x] � Ac(Σ) � A(Σ) � F .
Let M(Σ) denote the set of all seeds mutation equivalent to the seed Σ.

Cospectral relation ∼c for seeds in M(Σ) is an equivalence relation whose
equivalence class for a seed Σ′ is denoted by [Σ′], then we have A(Σ) =∑

[Σ′]∈M(Σ)/∼c
Ac(Σ′) as ZP-algebras.

Example 4.7. Some examples of cospectral subalgebra are given as follows.

(i) Let Σ = (x,y, Q) be a seed and Q is a quiver whose underlying graph
is A3. Then any quiver in Mut(Q) is either an oriented 3-cycle or a
quiver whose underlying graph is A3 (see Lemma 4.11). Since all ori-
entations of A3 are cospectral (see Corollary 3.6) and exchange ma-
trices of oriented 3-cycles are similar for they differ by a permuta-
tion, there are exactly two cospectral equivalence classes in M(Σ). Let
Σ′ = (x′,y′, Q′) be a seed in M(Σ) such that Q′ is a 3-cycle, then we
have A(Σ) = Ac(Σ) + Ac(Σ′) as ZP-algebras.

(ii) Any cluster algebra of rank two associated with a seed whose matrix is
skew-symmetric is a cospectral cluster algebra.
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4.2. Bounds of exchange spectrum radii of quivers

In the rest of this section, we consider the bounds of exchange spectrum radii
of all quivers in a mutation class. Recall that Fomin and Zelevinsky introduced
2-finite matrices to study finite type classification of cluster algebras, see
[11]. For our purposes, we just consider skew-symmetric matrices. For an
integer skew-symmetric matrices B, B is said to be 2-finite if any matrix
B′ = (b′ij)n×n mutation equivalent to B satisfies that |b′ijb′ji| � 3 for any
i, j ∈ [1, n]. Equivalently, any quiver Q′ mutation equivalent to the quiver
Q(B) is simply-laced.

Definition 4.8. A valued quiver Q is called r-maximal (r > 0) if any quiver
Q′ mutation equivalent to Q has exchange spectrum radius no more than r.

Note that a quiver is r-maximal if and only if so are all of its connected
components. It follows from Corollary 3.9 that any full subquiver of a r-
maximal quiver is r-maximal and any quiver contains a full subquiver which
is not r-maximal is not r-maximal.

The following lemmas are well-known.

Lemma 4.9 ([11]). All orientations of An (respectively, Dn, E6, E7, or E8)
are mutation equivalent.

By Lemma 4.9, we use Mut(An) to denote the mutation class of any
quivers whose underlying graphs are An.

Lemma 4.10 ([11]). Any 2-finite connected quiver is mutation equivalent to
an orientation of a Dynkin diagram.

Lemma 4.11 ([6]). Let Mut(Ap) be the mutation class of Ap. Then the class
consists of connected quivers satisfying that:

(i) All nontrivial cycles are oriented 3-cycles.
(ii) The degree of any vertex is less than five.
(iii) If a vertex has degree four, then two of its adjacent arrows belong to one

3-cycle, and the other two belong to another 3-cycle.
(iv) If a vertex has degree three, then two of its adjacent arrows belong to a

3-cycle, and the third arrow does not belong to any 3-cycle.

Note that a cycle in the first condition means a cycle in the underlying
graph, not passing through the same vertex twice.

The following lemma is a simple observation for the case of quivers whose
underlying graphs contain no 4-cycles.
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Lemma 4.12. Let B(Q) be the exchange matrix of a simply-laced quiver Q

with |Q0| � 4. If the underlying graph Q̄ of Q contains no 4-cycles, then the
sum of all principal minors of B(Q) of order four equals to the number of
pairs of disadjacent arrows (i.e., without common vertices).

Proof. The principal minor of B(Q) of order four equals to the determinant
of the exchange matrix of its corresponding full subquiver. Let us compute
the determinant of the exchange matrix R = (rij)4×4 of a full subquiver Q′

of order four. Write det(R) =
∑

π sgn(π)r1π1r2π2r3π3r4π4.
Since the underlying graph Q̄ of Q contains no 4-cycles, so does the un-

derlying graph of Q′. If the term sgn(π)r1π1r2π2r3π3r4π4 is not zero, π must be
a composition of two disjoint 2-cycles and sgn(π)r1π1r2π2r3π3r4π4 = 1. Since
each nonzero term corresponds to a pair of disadjacent arrows in a full sub-
quiver of order 4 in Q, thus the sum of all principal minors of B(Q) of order
four equals to the number of pairs of disadjacent arrows in Q.

Remark 4.13. Let Q be a quiver of order 4, and the underlying graph of
Q contains no 4-cycles. It is easy to see the determinant of B(Q) does not
depend on the orientations of Q̄ from the proof of Lemma 4.12. Therefore
its exchange polynomial just depends on its underlying graph. Since it follows
from Lemma 4.4, the exchange polynomial of any valued quiver of order 3
does not depend on the orientations, then it is easy to compute the exchange
polynomials of quivers of order less than 5.

We recall preprojective algebras following from [9]. Let Q be a quiver and
Q̃ be a quiver obtained from Q by adjoining an arrow σ(α) : j → i for each
arrow α : j → i. The preprojective algebra Θ(Q) of Q is the quotient of the
path algebra of Q̃ modulo the ideal generated by the elements

∑
t(β)=i

σ(β)β, i ∈ Q̃0.

Then we have the following result.

Theorem 4.14. Let Q be a connected quiver.
(i) The quiver Q is 2-maximal if and only if it is mutation equivalent to

an orientation of one of X2, A1, A2, A3, or A4, where X2 is a graph with two
vertices and two edges.

(ii) If the underlying graph of Q is one of Dynkin diagrams, then the
preprojective algebra Θ(Q) of Q is representation-finite if and only if Q is
2-maximal.
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Figure 4: The underlying graphs in Mut(A4).

Figure 5: The number beside an edge means the multiplicity of the edge.

Proof. (i) By Lemma 4.11, the underlying graph of any quiver Q′ ∈ Mut(A4)
must be one of graphs in Figure 4. These two underlying graphs do not have
4-cycles, we may compute the exchange radii by using any orientation of them
by Lemma 4.12 and Remark 4.13. In any case, it is not difficult to know the
exchange spectrum radius is not more than two.

Let Q be a connected 2-maximal quiver. The multiplicities of arrows must
be less than three, otherwise there will be a full subquiver whose exchange
spectrum radius is more than two. If there exist arrows, whose multiplicities
equal to two in Q and Q̄, is not X2, then there exists a full subquiver of Q
whose underlying graph is one of the five graphs in Figure 5. In any case, the
exchange spectrum radius of this full valued subquiver is more than 2. Thus
Q must be mutation equivalent to an orientation of X2.

Now we suppose that Q is a simply-laced 2-maximal quiver. Since Q is
2-maximal and connected, any quiver Q′ ∼ Q must be a simply-laced quiver.
Hence Q is 2-finite. By Lemma 4.10, Q is mutation equivalent to an orientation
of one of Dinkin diagrams. Since all orientations of a Dynkin diagram are
mutation equivalent and share the same exchange polynomial by Lemma 4.9
and Corollary 3.6, respectively. Let us consider the quiver Q4 in Figure 6(a)
whose underlying graph is D4. The exchange spectrum radius of μ1(Q4) (see
Figure 6(b)) is

√
5 which is more than two. Since Dn (n ≥ 4), E6, E7, and E8

contains D4 as an induced subgraph, it follows that Q cannot be mutation
equivalent to any orientation of one of Dn (n ≥ 4), E6, E7, or E8.
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Figure 6: Q4 and μ1(Q4).

Figure 7: Q5 and μ2μ4(Q5).

Finally we consider the quiver Q5 in Figure 7(a) whose underlying graph
is A5. Mutate the quiver at the vertex 2 after mutating at the vertex 4, we
get a quiver μ2μ4(Q5) (see Figure 7(b)) whose exchange spectrum radius is√

5. In summary, we prove the conclusion.
(ii) It follows from [9] that Θ(Q) is representation-finite if and only if Q̄

is of type A1, A2, A3 or A4. Thus the conclusion follows from (i).

Note that since quivers in this paper are not allowed to have 2-cycles, the
orientation of X2 in Theorem 4.14 is just the Kronecker quiver.
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