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Berkovich log discrepancies in positive characteristic
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Abstract: We introduce and study a log discrepancy function
on the space of semivaluations centered on an integral noethe-
rian scheme of positive characteristic. Our definition shares many
properties with the analogue in characteristic zero; we prove that
if log resolutions exist in positive characteristic, then our definition
agrees with previous approaches to log discrepancies of semivalua-
tions that use these resolutions. We then apply this log discrepancy
to a variety of topics in singularity theory over fields of positive
characteristic. Strong F -regularity and sharp F -purity of Cartier
subalgebras are detected using positivity and non-negativity of log
discrepancies of semivaluations, just as Kawamata log terminal
and log canonical singularities are defined using divisorial log dis-
crepancies, making precise a long-standing heuristic. We prove, in
positive characteristic, several theorems of Jonsson and Mustaţă
in characteristic zero regarding log canonical thresholds of graded
sequences of ideals. Along the way, we give a valuation-theoretic
proof that asymptotic multiplier ideals are coherent on strongly
F -regular schemes.
Keywords: Log discrepancy, Berkovich spaces, multiplier ideals,
graded sequences of ideals.
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1. Introduction

One of the fundamental ways to study singularities of normal varieties of
dimension at least 3 is through the log discrepancies of real valuations on
the variety. Log discrepancies were discovered by Mori’s school in the 1980s
as part of the development of the minimal model program; they have since
found applications across algebraic geometry and commutative algebra.

During the 1990s and early 2000s, researchers began to realize deep con-
nections between classes of singularities defined using log discrepancies and
resolutions of singularities (e.g.: rational, log canonical, and Kawamata log
terminal) and singularities appearing in tight closure (e.g.: F-rational, F-pure,
and F-regular, resp.) [24, 39, 40, 51, 26, 27]. The groundbreaking connection
was made by Hara and Watanabe in [26], where the authors showed that
splittings of the Frobenius morphism on normal Q-Gorenstein varieties can
be converted into divisors giving log canonical pairs. We build on this connec-
tion, extending many of their ideas to the setting of normal F -finite schemes,
and beyond.

1.1. Log discrepancies

Let X be a normal variety over an algebraically closed field k. Log discrep-
ancies were classically defined only for divisorial valuations, meaning those
of the form c ordE for a real number c > 0 and a prime divisor E ⊂ Y on a
normal variety with a proper birational morphism π : Y → X.

Extending the log discrepancy function to the space ValX of valuations
centered on X goes back at least to Favre and Jonsson’s Valuative Tree, [23],
for smooth complex surfaces, where they called it thinness. Numerous groups
of authors developed the theory more generally in higher dimensions and
on singular varieties [18, 30, 8, 9, 7]. The approach taken depends on using
resolutions of singularities to find subspaces of ValX that have simple, cone-
like structures, and so is presently unavailable in dimensions greater than
three in positive characteristics.

The goals of this paper are to extend log discrepancies to ValX in char-
acteristic p > 0 making systematic use of p−e-linear maps, and to show that
this is a good extension by demonstrating that a number of properties enjoyed
by log-resolution-based extensions to ValX are also enjoyed by our definition.
In fact, we prove that the two approaches yield the same log discrepancy
function should one have log resolutions (e.g. for surfaces, or 3-dimensional
varieties over a perfect field [14, 15]); see 4.7. This is our main theorem,
and should be compared with Mauri, Mazzon, and Stevenson’s comparison of
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log discrepancies in characteristic zero with Temkin’s canonical metrics, and
Temkin’s comparison with Mustaţă and Nicaise’s weight metrics [37, 52, 41].
It is interesting to observe that Brezner and Temkin’s different function for a
finite morphism between Berkovich curves is closely related to our definition
when applied to the Frobenius morphism (if this is finite) [11].

1.2. Statement of results

By a pair (X,Δ) we mean X is a normal variety over an algebraically closed
field and Δ ≥ 0 is a Q-Weil divisor on X. The starting point for this article
is the following observation, due to Cascini, Mustaţă, and Schwede, shared
with the present author in private correspondence.

Proposition 1.1 (4.1). Let (X,Δ) be a pair over a field with characteristic
p > 0. Assume (1 − pe)(KX + Δ) is an integral Cartier divisor for some
e > 0, and let ψΔ : OX((pe − 1)Δ) → OX be the associated p−e-linear map.
For every divisor E over X, one has

A(X,Δ)(E) = sup{(pe − 1)−1ordE(f) : f ∈ k(X), ψΔ(f) = 1}.

This expression is quite similar to the definition of AX(E) in the ap-
proaches to log discrepancies on non-Q-Gorenstein varieties [18, 8]. We model
our definition of log discrepancy on this proposition, incorporating also a
supremum over e ≥ 1 with (1 − pe)(KX + Δ) Cartier. The main result of
this paper is that this extension to arbitrary valuations matches Jonsson and
Mustaţă’s in the presence of log resolutions.

Main Theorem (4.7). Let (X,Δ) be a pair over a field with characteristic
p > 0. Suppose (1 − pe)(KX + Δ) is an integral Cartier divisor for some
e > 0, and suppose log resolutions exist for varieties over k of dimension
dim(X). For valuations v ∈ ValX , denote by A(X,Δ)(v) the log discrepancy
defined as in [30], and by A(v; CX · Δ) our log discrepancy from Section 3.
Then A(X,Δ)(v) = A(v; CX · Δ) for all v ∈ ValX .

This theorem proves that our approach is the “correct” definition of log
discrepancies on ValX , cf. [37, 41, 52, 11]. Because of this theorem, for the
rest of this introduction we write AX for the quantity that would be written
A(−; CX) in the notation of §3.

As one might hope, we can extend Hara and Watanabe’s result that Q-
Gorenstein normal varieties that are F -pure (resp. F -regular) are log canon-
ical (resp. Kawamata log terminal; klt). We no longer need the normal nor
Q-Gorenstein assumptions, understanding log canonical (resp. klt) to mean
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AX(E) ≥ 0 (resp. > 0) for all divisors E over X. In fact, we can say much
more using our approach. The new tool is our extension of log discrepancies
to the space X� of semivaluations on X, a compactification of ValX common
to non-archimedean geometry.

Theorem A (5.3, 5.4, cf. [26, Theorem 3.3]). Let X be an F -finite integral
scheme.

1. If X is F -pure, then X is log canonical.
2. If X is F -regular, then X is klt.
3. Conversely, if AX(ξ) ≥ 0 (resp. > 0) for all ξ ∈ X� besides the trivial

valuation on X, then X is F -pure (resp. F -regular).

A consequence of the third statement is that the F -pure centers of a
sharply F -pure variety are identified as those points whose minimal �-log
discrepancy is zero, cf. 5.2 and §6.

One of the most important properties of the extension of log discrepan-
cies to ValX in characteristic zero is lower-semicontinuity; we prove that our
extension also has this property in 6.4. As a corollary, we generalize a result
of Ambro over C: the minimal (�-)log discrepancy is lower-semicontinuous,
for any Cartier subalgebra on an integral scheme X of characteristic p > 0, if
we consider X with the constructible topology; cf. 6.17 and [2, Theorem
2.2].

In many ways, the similarities between our log discrepancies and the char-
acteristic zero analogues amount to this shared lower-semicontinuity. As a
demonstration of this assertion, we prove, in the new setting of regular F -
finite schemes, the main theorems from [30] regarding valuations computing
the log canonical threshold lct(X, a�) of a multiplicatively graded sequence of
ideals. For simplicity, we state our results for a fixed smooth variety X over
an algebraically closed field k in this introduction.

Let a� be a graded sequence of ideals on X. We write J (X, at�) for the
sheaf of ideals whose sections over an affine open U = Spec(R) ⊆ X are those
f ∈ R satisfying

v(f) + AX(v) − (t/m) v(am) > 0

for all v ∈ ValU and all m � 1. This ideal is well-known (in characteristic
zero) as the asymptotic multiplier ideal of (X, at�). These are coherent when-
ever a log resolution exists for all pairs (X, a

t/m
m ), being defined in this case as

the pushforward of a certain invertible sheaf on any log resolution of (X, a
t/m
m )

for m � 0 divisible enough [20, Definition 1.4], cf. [35, Lemma 11.1.1]. Lack-
ing resolutions in positive characteristics, it was unknown if these ideals were
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coherent, and a reasonable expectation would be that a proof of coherence
would require a sufficient theory of resolutions of singularities. A significant
result of this paper is a purely valuative proof that multiplier ideals are co-
herent on strongly F -regular schemes, e.g. smooth varieties.

Theorem B (7.7). Let X be a smooth variety of characteristic p. The asymp-
totic multiplier ideal sheaf J (X, at�) is coherent for any graded sequence of
ideals a� on X and t ∈ [0,∞).

The main technical statement one needs in this proof is 7.6, which iden-
tifies a compact subset of ValX that is large enough to define these multiplier
ideals and minimize the infima in log canonical thresholds. A number of sub-
sets like this are known in the literature, cf. [30, Proposition 5.9] and [8,
Lemma 3.4, Theorem 3.1]. If one has such a statement, it is reasonable to
expect that our proof of 7.7 may be adapted to that setting; see 7.8.

Once we have 7.7, we can adapt the argument of Jonsson and Mustaţă,
with technical modifications, extending the following results to positive char-
acteristics.

Theorem C (7.16; cf [30], Theorem A). Let X be a smooth variety of
characteristic p, and let a� be a graded sequence of ideals on X. Suppose
λ = lct(a�) < ∞. For any generic point x of an irreducible component of
V(J (X, aλ�)) there exists a valuation with center x computing lct(a�), i.e.
such that λ = AX(v)/v(a�).

These computing valuations are obtained here and in [30] using a com-
pactness argument, and their properties (e.g. Abhyankar) do not seem to be
revealed from the proof. Jonsson and Mustaţă conjecture that these valuations
must be quasi-monomial, a condition equivalent to Abhyankar for excellent
schemes in characteristic zero. We state the analogous conjectures here using
Abhyankar valuations, all of which are locally quasi-monomial [31].

Conjecture (7.17; cf. [30], Conjecture B). Let X be a smooth variety of
characteristic p, and let a� be a graded sequence of ideals on X such that
lct(a�) < ∞.

• Weak version: some Abhyankar valuation computes lctB(a�).
• Strong version: any valuation computing lctB(a�) is Abhyankar.

Following [30], we reduce this conjecture to what is hopefully a more
approachable form on affine spaces.

Conjecture (7.18; cf. [30], Conjecture C). Let X = An
k , with Fp ⊂ k = k,

and let a� be a graded sequence of ideals on X with lct(a�) < ∞, vanishing
only at a closed point x ∈ X.
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• Weak version: some Abhyankar valuation centered at x computes
lct(a�).

• Strong version: any valuation of transcendence degree 0 over An
k , cen-

tered at x, and computing lct(a�) must be Abhyankar.

Theorem D (7.23; cf. [30], Theorem D). If 7.18 holds for all n ≤ d, then
7.17 holds for all X with dim(X) ≤ d.

1.3. Structure of the paper

Section 2 introduces notation and some background. In Section 3, we define
our log discrepancy for Cartier subalgebras of integral schemes in characteris-
tic p > 0, and prove some essential (but elementary) properties. In Section 4,
we undertake the proof of our main theorem, starting with Cascini, Mustaţă,
and Schwede’s proof of their result. Section 5 is a brief study of the relation-
ship between our log discrepancies, F -purity, and strong F -regularity; here
we generalize Hara and Watanabe’s result. We prove in Section 6 that log
discrepancies are lower-semicontinuous on X�, and use this to deduce con-
structible lower-semicontinuity of the minimal log discrepancy on any integral
scheme of positive characteristic. In Section 7, we extend to positive charac-
teristics the aforementioned theorems of Jonsson and Mutaţă; we prove along
the way that asymptotic multiplier ideals are coherent sheaves on strongly
F -regular schemes.

2. Notation and background

Let us first establish conventions, and gather definitions, used throughout the
paper.

2.1. Conventions

The following basic terminology is used throughout this article.

1. The letter p will always denote a positive prime number. We usually
add p > 0 for emphasis.

2. A ring always has a multiplicative identity in this paper. Except for
Cartier subalgebras, all rings are commutative.

3. The group of units of a (commutative) ring R is denoted R×.
4. By a scheme we (almost) always mean a separated, noetherian, and

excellent scheme; in particular, all schemes considered here are quasi-
compact. The sole exception is that we may consider Spec(V ) for a
valuation ring V ; we will be explicit about this exception. A point of a
scheme refers to any (not necessarily closed) point.
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5. A variety over a field k is an integral scheme of finite type over k.
6. The reduction of a Q-Weil divisor D =

∑m
i=1 riDi, where the Di are

distinct prime divisors (on some normal scheme), is Dred =
∑m

i=1 Di.
7. By an OX-module we mean a quasi-coherent sheaf of OX -modules. An

ideal of OX is a quasi-coherent OX -submodule of OX .
8. If I ⊂ OX is an ideal on X, we denote by V(I) the closed subscheme of

X with structure sheaf OX/I.
9. Neighborhoods of a point in a topological space are open neighborhoods.

10. Valuation rings V are all rank-one, meaning the Krull dimension of V
is one. Equivalently, the value group Frac(V )×/V × can be taken to be
a subgroup of (R,+) [10]. Valuations take value +∞ on 0.

11. If X is a scheme and Z ⊆ X is an integral subscheme with generic point
x, we denote by OX,Z or OX,x the local ring at x, and κ(Z) or κ(x) the
residue field OX,x/px.

12. For local sections f ∈ OX,x, we write f(x) for the residue of f in κ(x).
13. If F and G are two OX -modules, we denote by HomX(F ,G) the OX -

module (U 
→ HomU (F|U ,G|U )).
14. If X is a scheme of characteristic p > 0, and I ⊆ OX is an ideal, then

we define the ideal I [pe] generated by pe-th powers of sections of I.
15. To avoid constantly passing between points and the associated sheaves

of ideals, we will often make statements like “Let m ∈ X be a point. . . ”
understanding schemes to have underlying topological spaces consisting
of the set of prime ideal subsheaves of OX (that is, X ∼= Spec(OX)).

2.2. Arithmetic on the extended real line

We will often need the standard extension of arithmetic operations on R to
R±∞ = R ∪ {+∞,−∞}, where +∞ and −∞ satisfy −∞ < r < +∞ for
every r ∈ R. The following expressions are undefined:

(±∞) + (∓∞), (±∞) − (±∞), 0 · (±∞), (±∞) · 0.

We otherwise set

1. r · (±∞) = ±∞ if r > 0,
2. r · (±∞) = ∓∞ if r < 0,
3. r + (±∞) = ±∞.

Many technicalities in our definitions in sections 3 and 6 arise from the need
to avoid the undefined expressions above.
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2.3. SNC divisors

A core concept is that of an snc divisor on a regular scheme, short for sim-
ple normal crossings (support), a global version of partial regular systems of
parameters. Such divisors play a key role in the definition of quasi-monomial
valuations and the construction of retraction morphisms used to define log
discrepancies of arbitrary valuations.

Definition 2.1 (SNC divisor). Let Y be a regular scheme, and let D1, . . . , DN

be prime divisors on Y . We say the Q-divisor D =
∑N

1 riDi, ri ∈ Q, is an
snc divisor if:

1. Each Di is a regular scheme.
2. For each y ∈ Y , let Di1 , . . . , Dis be those Di that contain y. Suppose

Dij corresponds to the prime (fij ) ⊂ OY,y. Then fi1 , . . . , fis form part
of a regular system of parameters for OY,y.

2.4. Log resolutions and geometric log discrepancies

We briefly review the definition of log resolutions, and log discrepancies in the
classical sense, which we will call geometric log discrepancies to distinguish
them a priori from the ones defined in 3. In the more general setting of F -
finite schemes, we prefer the language of Cartier subalgebras to that of pairs.

For this subsection, let k be an algebraically closed field. We start with
several standard definitions in birational geometry, taking [32, Notation 0.4]
as our primary source (see also [35, Ch. 9] for a simpler setting).

Definition 2.2 (Pair, log Q-Gorenstein). A pair (X,Δ) is the data of a
normal variety X over k and an effective Q-Weil divisor Δ on X. Fixing
a canonical class KX , we say (X,Δ) is log Q-Gorenstein if there exists an
integer m > 0 such that m(KX + Δ) is an integral Cartier divisor. The least
such m is the Cartier index of KX + Δ.

Definition 2.3 (Strict transform). Let (X,Δ) be a pair, and π : Y → X a
proper birational morphism from a normal variety Y that is a isomorphism
between open subsets U ⊆ X and V ⊆ Y , where X \ U has codimension
at least 2. Suppose Δ =

∑
i riΔi with Δi prime divisors on X. The strict

transform of Δ on Y , denoted here π−1
∗ (Δ), is the divisor

∑
i riΔ̃i whose prime

components Δ̃i are the (topological) closures of Δi ∩ U in Y , identifying U

and V via π.
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Definition 2.4 (Log resolution). Let (X,Δ) be a pair. A log resolution of
(X,Δ) is a proper birational morphism π : Y → X, from a smooth variety
Y , whose exceptional locus E ⊂ Y is a divisor, and E + π−1

∗ (Δ)red is snc.

Definition 2.5 (Geometric log discrepancy). Let (X,Δ) be a log Q-Goren-
stein pair on a normal variety over k with canonical class KX . Suppose Y is a
normal variety with a proper birational morphism π : Y → X, let E ⊂ Y be
a prime divisor, and let KY be the canonical class on Y with π∗KY = KX .
Define a Q-Weil divisor ΔY on Y via

KY + ΔY = π∗(KX + Δ).

The geometric log discrepancy of (X,Δ) on E is

A(X,Δ)(E) = 1 − ordE(ΔY ).

Here, by ordE(ΔY ) we mean the coefficient on E in ΔY .

It is well-known that A(X,Δ) depends only on the valuation ordE on the
fraction field k(X) and not the variety Y on which we have realized E as a
prime divisor, see e.g. [32]. In characteristic p > 0, this will also follow from
Cascini, Mustaţă, and Schwede’s result, 1.1.

2.5. Cartier subalgebras, sharp F-purity, and strong F-regularity

Our central organizational objects for birational geometry in positive charac-
teristics are the Cartier subalgebras defined by Schwede [48] and Blickle [4].
These can be thought of as a positive characteristic variant of pairs or triples
(X,Δ, at�), though they can be much more general. These are the primary
objects of study from Section 3 onwards.

We follow the down-to-earth approach of p−e-linear maps in lieu of the
systematic use of pushforwards of sheaves under the Frobenius morphism.
For this subsection, X is an integral scheme of characteristic p > 0 with
function field L. The Frobenius morphism on X is denoted F : X → X;
this is the identity on the underlying topological space of X, and is the p-th
power morphism on the structure sheaf. Some authors call this the absolute
Frobenius morphism. We also have the e-th iterated Frobenius F e : X → X,
i.e. the pe-th power morphism on OX .

One of the starting points for studying singularities of rings in character-
istic p > 0 is Kunz’s celebrated 1969 result.

Theorem 2.6 ([33]). A Noetherian ring R of characteristic p > 0 is regular
if and only if it is flat over the subring Rp = {fp : f ∈ R}.
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Notable examples include polynomial rings k[x1, . . . , xn] and power series
rings k[[x1, . . . , xn]], where k is a field with [k : kp] < ∞, both of which are in
fact free over their rings of p-th powers. For example, if k is perfect, then a
basis for either of these rings over Rp is given by

{xa1
1 · · ·xann : 0 ≤ ai ≤ p− 1 for all 1 ≤ i ≤ n}.

Based on Kunz’s theorem, one studies and characterizes singularities of char-
acteristic p rings and schemes in terms of the existence of free Rp-summands

R = Rpf ⊕M

where M is an Rp-submodule of R. A summand is equivalent to an Rp-linear
mapping φ : R → Rp ⊂ R. If R is reduced, then Rp ∼= R as rings, sending
rp to r, so we can view φ as an additive map φ : R → R with the additional
property φ(apg) = a φ(g) for all a, g ∈ R. Such φ are called p−1-linear maps,
see (2.8).

Definition 2.7. We say X is F -finite if F e is a finite morphism for some,
equivalently any, e ≥ 1. When X = Spec(R) is affine, we will say R is F -finite.

Definition 2.8. A p−e-linear map on the function field L of X is an additive
function ψ : L → L with the property ψ(fpeg) = fψ(g) for all f, g ∈ L. If ψ
is a p−e-linear map with ψ(OX) ⊆ OX , then we say ψ is a p−e-linear map on
X.

Remark 2.9. We have chosen one of several approaches to p−e-linear maps;
let us briefly discuss the two other approaches, both for continuity with other
literature cited here, and because we need a few consequences of these alter-
native descriptions.

1. Writing F e : L → L for the Frobenius morphism, a p−e-linear map ψ is
none other than an L-linear map F e

∗L → L. Similarly, a p−e-linear map
on X is an OX -linear morphism F e

∗OX → OX .
2. If we view the Frobenius as the inclusion L ⊆ L1/pe , taking L1/pe to be

the ring of pe-th roots of elements of L in some fixed algebraic closure
of L, then a p−e-linear map becomes an L-linear mapping L1/pe → L.
Taking O1/pe

X to be the integral closure of OX in the constant sheaf on
X associated to L1/pe , p−e-linear maps on X are OX -linear morphisms
O1/pe

X → OX .

The consequences we will need occasionally are the following.
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1. Supposing X is F -finite, the sheaf of p−e-linear morphisms
HomX(F e

∗OX ,OX) is just (F e)!OX [28, Exercise III.6.10]. Consider an
affine open subset Spec(R) ⊆ X, p ∈ Spec(R), and let Spec(R′) →
Spec(R) be the completion morphism at p. Then

(1) R′ ⊗R HomR(F e
∗R,R) ∼= HomR′(F e

∗R
′, R′)

since R′ is faithfully flat and F e
∗R is finitely generated over R.

2. The dual HomL(L1/pe , L) has the structure of an L1/pe-vector space. If L
is an F -finite field, then dimL HomL(L1/pe , L) = dimL(L1/pe). This im-
plies HomL(L1/pe , L) is one-dimensional over L1/pe . In particular, given
two non-zero maps φ, ψ ∈ HomL(L1/pe , L) there exists a unique h ∈ L
such that φ = ψh1/pe . The right hand side of this equality will be written
ψ · h in this article, cf. (2.11).

To shorten notation throughout the article, we introduce the notation
(F e)!OX for the collection of p−e-linear maps on X. More generally, we write
(F e)!L for the collection of p−e-linear maps L → OX , where L is a rank-one
reflexive sheaf on X. The notation is chosen to accord with Grothendieck
duality in the F -finite case (cf. [28, Exercise III.6.10]). We develop what we
can without an F -finite assumption, so the endofunctor (F e)! on the derived
category of X may not even be defined, and the notation (F e)! is purely
formal.

Definition 2.10. The Cartier algebra of X is the graded sheaf

CX = ⊕e≥0(F e)!OX .

We will often use CX
e as a synonym for (F e)!OX .

Definition 2.11. The Cartier algebra of X is a sheaf of non-commutative
graded Fp-algebras on X via composition. Indeed, if ψi is p−ei-linear, i = 1, 2,
then ψ1 ◦ ψ2 is p−(e1+e2) linear:

(ψ1 ◦ ψ2)(fpe1+e2
g) = ψ1(fpe1ψ2(g)) = f ψ1(ψ2(g)).

To emphasize that we are thinking of ψ1 ◦ψ2 as the result of a graded multi-
plication (i.e. in CX

e1+e2), we write ψ1 · ψ2, or ψ2 if ψ1 = ψ = ψ2.
As a special case of this, where one ei = 0, we see that each CX

e has
distinct right and left structures as an OX -module. Working affine-locally on
Spec(R) ⊆ X, suppose ψ : R → R is p−e-linear, and let f ∈ R. Then f
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is p0-linear (i.e. R-linear), so both f · ψ and ψ · f are p−e-linear. They are,
however, not equal:

(f · ψ)(1) = f ψ(1) = ψ(fpe)

which is not ψ(f) = (ψ · f)(1), generally.

Example 2.12. Let us describe the Cartier algebra of a complete F -finite
regular local ring. We will need this description many times in the subsequent
sections.

By Cohen’s structure theorem, any complete ring containing a field is
isomorphic to one of the form R := k[[x1, . . . , xn]]. Since R is F -finite, any
quotient ring of R is also (using the classes of the same generators) so we
know k is F -finite.

Suppose {λi}[k:kp]
i=1 is a basis for k over kp, with λ1 = 1. Then R is F -finite,

and is free over Rp with basis

B = {λi(xa1
1 · · · xann ) : 0 ≤ aj ≤ p− 1, 1 ≤ i ≤ [k : kp]}.

It is well-known that CR is canonically generated, as a ring, by the pro-
jection Φ onto the (x1 · · · xn)p−1-basis element (see, e.g., [12, Chapter 1] or [5,
Example 3.0.5]). Thus, given any e > 0 and ψ ∈ CR

e , there exist rψ ∈ R such
that ψ = Φe · rψ. The map Φe is projection onto the (x1 · · · xn)pe−1-summand
of the free Rpe-module R.

Moreover, the elements in B also give a basis for L over Lp, so given any
element f ∈ L, we can uniquely write

f =
[k:kp]∑
i=1

n∑
j=1

p−1∑
aj=0

fp
(i,a1,...,an)λix

a1
1 · · · xann ,

with fp
(i,a1,...,an) ∈ Lp. It follows from L-linearity that Φ(f) = f(1,p−1,...,p−1).

We can also use this to describe CR for F -finite regular local rings (R,m).
Indeed, writing R̂ for the m-adic completion of R, we have seen in 2.9(1) that
CR̂ ∼= CR ⊗R R̂. Therefore, after fixing a regular system of parameters for R
we have a canonical choice of generator Φ for CR (as a ring).

This will be highly useful in the sequel, because it allows us to relate
p−e-linear maps on F -finite local rings (A, n) to rational sections of CR for
regular local rings R birational to A (obtained, e.g., by blowing-up points of
Spec(A) or via Knaf-Kuhlmann local monomializations). See §§3, 4, and 7
for many examples.
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Definition 2.13. A Cartier subalgebra on X is a quasi-coherent sheaf of
graded subrings D = ⊕e≥0De ⊆ CX . We ask that D0 = OX = CX

0 , which
implies De ⊆ CX

e is an OX -submodule under both module structures, cf.
2.11.

Definition 2.14. Given 0 �= ψ ∈ Γ(U, CX
e ), there is an associated Cartier

subalgebra {{ψ}} on U . This is non-zero only in degrees ne, n ≥ 0, and is the
OU -module ψn · OU in degree ne.

Definition 2.15 (cf. [29, 26, 45]). Suppose X is an F -finite integral scheme,
and D is a Cartier subalgebra on X.

1. We say D is sharply F -pure at x ∈ X if there exists ψ ∈ (De)x that is
surjective, as a function OX,x → OX,x, for some e ≥ 1. If CX is sharply
F -pure at x, then we say X is F -pure at x.

2. We say D is strongly F -regular at x ∈ X if the following condition is
satisfied. For all f ∈ OX,x non-zero, there exists e ≥ 1 and ψ ∈ (De)x
such that ψ(f) = 1. If CX is strongly F -regular at x, we say X is
F -regular at x.

If X is F -pure (or F -regular) at every x ∈ X, then we say X is F -pure (resp.,
F -regular).

Remark 2.16. Following a growing consenus among experts, we drop the
adjectives “sharply” and “strongly” from F -purity and F -regularity of F -
finite schemes.

Remark 2.17. There is a well-known, heuristic, correspondence between F -
pure and log canonical varieties, and F -regular and klt varieties. See, e.g.,
[26] and 5.3.

2.6. Divisors and p−e-linear maps

We now recall the close connection between p−e-linear maps and certain di-
visors on a normal variety X. The ideas present here go back at least to
Mehta-Ramanathan [38] and Ramanan-Ramanathan [43], though the most
direct origin of the technique is Hara and Watanabe’s [26, Lemma 3.4]. We
refer the reader also to [12, Ch. 1] and the excellent surveys [50, 5, 42].

Let X be a normal variety of dimension n over an algebraically closed
field k of characteristic p > 0; this implies X is F -finite. Let ωX be the
canonical bundle on X, the rank-one reflexive sheaf agreeing with ∧nΩX/k on
the smooth locus of X. Fix a line bundle L on X. Grothendieck duality for
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the Frobenius morphism F : X → X provides an isomorphism of reflexive,
coherent right OX -modules

(F e)!L ∼= L−1 ⊗ ω
⊗(1−pe)
X .

As a consequence, a globally defined p−e-linear map L → OX is equivalent,
up to a unit of Γ(X,OX), to an effective Cartier divisor D with

(2) OX(D) ∼= L−1 ⊗ ω
⊗(1−pe)
X .

Of course, D is unchanged if we multiply ψ (on the right) by a unit of
Γ(X,OX). If we set Δ = 1

pe−1D, and choose a canonical class KX on X,
then the isomorphism (2) can be re-formulated as saying: Δ is an effec-
tive Q-Weil divisor on X such that m(KX + Δ) is Cartier for some m
prime to p, i.e. (X,Δ) is a log-Q-Gorenstein pair, and the Cartier index of
KX + Δ is not divisible by p. The normalization by (pe − 1) is useful because
ψm ∈ (Fme)!L⊗(p(m−1)e+···+pe+1) has the same associated divisor as ψ for all
m ≥ 1.

Definition 2.18. Let Δ be an effective divisor on X, and assume KX + Δ
is Q-Cartier, with Cartier index not divisible by p. We define CX · Δ to be

⊕e (F e)!OX((pe − 1)Δ)

where e ≥ 0 ranges over values for which (pe − 1)(KX + Δ) is Cartier.

Lemma 2.19 (cf. [47, Lemma 2.8]). Let Δ be as in the previous definition.
Then CX · Δ is a Cartier subalgebra on X. If ψΔ any p−e-linear map on an
open subset U ⊆ X corresponding to a Cartier divisor (1− pe)(KX + Δ)∩U
then (F e)!OX((pe − 1)Δ)|U = {{ψΔ}}e = ψΔ · OU , see (2.14).

Proof. We refer the reader to [47] for the proof that CX · Δ is a Cartier
subalgebra. The second claim, that (F e)!OX((pe−1)Δ)|U = {{ψΔ}}e = ψΔ·OU

for any ψΔ ∈ Γ(U, CX) with divisor (1 − pe)(KX + Δ) ∩ U , is a re-statement
of the association of an invertible sheaf to a Cartier divisor [28, §II.6].

2.7. Berkovich spaces

Because we expect this article to be of interest to researchers unfamiliar with
constructions in non-archimedean geometry, we provide a summary of the
Berkovich space theory as we need it. We use Thuillier’s �-spaces ([53]) and
not the entire Berkovich analytification [3], because they are compact and
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their points are more closely tied to the birational geometry of a given (pos-
sibly non-proper) variety.

We provide sketches of proofs when the ideas involved are necessary for
later sections, deferring to [3] for more detailed developments of the follow-
ing material. When terminology is already developed in birational geometry
that conflicts with Berkovich’s terminology for these concepts, we use the
birational language.

Definition 2.20. Let X be a scheme over a field k. Recall that we assume
X is separated and noetherian.

1. A semivaluation on X is a pair ζ = (w, x) consisting of a point x ∈ X,
with closure Z = {x}, and a valuation w on κ(x) that is centered on
X, meaning w is non-negative on some local ring OZ,z ⊆ κ(x) = κ(Z),
z ∈ Z. If f ∈ OX,x, we define evf (ζ) = ζ(f) := w(f(x)) ∈ [0,∞]. Note
that being centered on X forces w(u) = 0 for every u ∈ k \ {0}, i.e. w
restricts to the trivial valuation on k.

2. We denote by X� the set of all semivaluations on X. The point x of
ζ = (w, x) ∈ X� is called the home of ζ (on X), and the home function
hX : X� → X is hX(ζ) = x. The home map is also commonly called
the kernel map, e.g., in [3].

3. If X is integral with generic point ηX , we define ValX to be h−1
X (ηX),

i.e. valuations on κ(X) having center on X.
4. Continuing with an integral X, the divisorial valuations are those v ∈

ValX whose value group, considered as a subgroup of (R,+), is dis-
crete in the usual topology of R. We denote the collection of divisorial
valuations by Xdiv.

5. The semivaluation ring of (w, x) ∈ X� is w−1[0,∞] ⊆ κ(x), denoted
throughout this article as Ow. Semivaluation rings of valuations are
called valuation rings.

6. For any ζ = (w, x) ∈ X�, there is a unique morphism iζ : Spec(Ow) →
X extending the natural map Spec(κ(x)) → X; here, Ow = w−1[0,∞]
is the semivaluation ring of ζ. The point cX(ζ) := iζ(mw) is called the
center of ζ on X (where mw ⊂ Ow is the maximal ideal). In the more
general setting of [3], cX(ζ) is called the reduction of ζ, denoted there
red(ζ).

7. We will write OX,c(ζ) for OX,cX(ζ). We follow a similar convention with
hX(ζ).

We put no finite type hypothesis on the scheme X above, so we can take
k = Q or Fp, and in some sense we are just using k to force X to have equal
characteristic.
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Remark 2.21. Integral subschemes of X and Xred are the same, and so
X� = (Xred)� as sets. Moreover, any nilpotent section f is sent to +∞ by all
ζ ∈ X� whose home is in an open subset where f is regular, so evf = ev0. It
will be clear from our construction that X� and (Xred)� agree as topological
spaces, too.

We now topologize the set X� to define the �-space of X.

Definition 2.22. Suppose X = Spec(R) is a reduced affine scheme. Consider

Spec(R)� ↪→
∏
f∈R

[0,∞] defined by ζ 
→
∏
f∈R

ζ(f).

Here [0,∞] has the topology making it homeomorphic to [0, 1]. We give
Spec(R)� the subspace topology via this injection. One checks easily that
the image of Spec(R)� is a closed subspace of this product space, so is com-
pact by Tychonoff’s theorem. The Hausdorff property is inherited.

Remark 2.23. It is equivalent to give the set Spec(R)� the weakest topology
such that evf is continuous for all f ∈ R.

The following lemma is well-known, see e.g. [3, Corollary 2.4.2], [30, Re-
mark 4.2]. We include a proof for convenience, and to illustrate the basics of
working with the center and home functions.

Lemma 2.24. For any affine X = Spec(R), hX : X� → X is continuous.
On the other hand, cX is anti-continuous, in the sense that if U ⊆ X is
Zariski open, c−1

X (U) ⊆ X� is closed.

Proof. We first check that h−1
X (V(I)) is closed for all proper ideals I ⊂ R. If

p = hX(ζ) ∈ V(I) then I ⊆ p. Thus ζ(I) = {+∞}. We conclude h−1
X (V(I)) =⋂

f∈I ev−1
f (+∞), which is closed by continuity.

Considering c−1
X (V(I)), note that f ∈ P , P ∈ Spec(R) if and only if

ζ(f) > 0 when cX(ζ) = P . Thus, c−1
X (V(I)) =

⋃
f∈I ev−1

f (0,∞], which is open
in X�.

Remark 2.25. Any ring homomorphism π : R → S induces a continuous
map π∗ : Spec(S)� → Spec(R)� by π∗(ζ)(f) = ζ(π(f)), f ∈ R. We see that
when π gives an open immersion, the subspace topology on (the compact
subset) π∗(Spec(S)�) agrees with the one defined directly on Spec(R)� as
above. We use this observation to define the �-space of an arbitrary (non-
affine) scheme.

Definition 2.26 (�-space of a scheme). Let X be a scheme over a field k,
and let U and V be two affine open subschemes of X. Since X is separated,
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U∩V is again affine, and the topology on (U∩V )� is identical to the subspace
topology induced from either U� or V �. Thus, there is a unique topology on
X� whose open subsets are those subsets U ⊂ X� such that U ∩ U� is open
in the topology from 2.22 for every affine open subscheme U ⊆ X.

Remark 2.27. The topology of X� is entirely determined by the topology of
U� as U ranges over affine subschemes U ⊂ X, and a finite affine open cover
{U1, . . . , Ut} of X leads to a finite cover of X� by the compact subsets U�

i .
Thus, cX remains anticontinuous and hX continuous for any X, since they
are so on U� for any affine open U ⊆ X.

Remark 2.28. As a word of caution, it is eminently not true that U� =
h−1
X (U) for open subsets U of X. Indeed: supposing that X is integral for

simplicity, the home of every valuation having center on X is the generic point
of X, and so ValX ⊆ h−1

X (U). However, not every valuation having center on
X necessarily has center on U . We do have U� = c−1

X (U) for U ⊆ X open,
and (X \ U)� = h−1

X (X \ U).

2.8. Retractions and Abhyankar valuations

We recall some of the basic numerics of valuations, and the construction of
monomialization retractions, in the setting of integral excellent schemes over
a field. We need this material for the proof of our main theorem (where the
more typical setting of varieties over algebraically closed fields suffices) and
also in the final section (developed in the general setting of strongly F -regular
F -finite schemes).

Let X be an integral excellent scheme over a field k with function field
L, and v ∈ ValX . The value group of v is Γv = v(L×) ⊆ R. The rational rank
of v is ratrk(v) = dimQ(Γv ⊗ZQ). If (B,m) is a local subring of L dominated
by the valuation ring (Ov,mv), then (B/m) =: � ⊆ κ(v) := Ov/mv and we
set the transcendence degree of v over B to be tr.degB(v) = tr.deg(κ(v) | �).
When cX(v) = x, we define tr.degX(v) = tr.degOX,x

(v). The fundamental
estimate is Abhyankar’s inequality:

ratrk(v) + tr.degX(v) ≤ dim(OX,x).

Valuations achieving equality are called Abhyankar valuations. We refer the
reader to [54, Théorème 9.2] for this result in our generality here.

Definition 2.29. One easy way to obtain an Abhyankar valuation is via the
following construction, outlined more carefully in §3.1 of [30]. Let (R,m, κ) be
a regular local ring containing a field. For any regular system of parameters
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r1, . . . , rd for R, there is an isomorphism R̂ ∼= κ[[r1, . . . , rd]], and so we may
view f ∈ R ⊆ R̂ as having an expansion of the form f =

∑
u∈Nd

0
cur

u, where
r(u1,...,ud) = ru1

1 · · · rud

d and cu ∈ κ. Jonsson and Mustaţă prove in Proposition
3.1 of [30] that for any α = (α1, . . . , αd) ∈ Rd

≥0, there is a unique valuation
valα on R̂ such that valα(f) = min{∑d

j=1 αjuj : cu �= 0}; such valuations
are sometimes called Gauss or monomial valuations. Restricting valα to R
now gives an Abhyankar valuation v. After blowing-up appropriately, there
exists a regular local ring (R′,m′), dominating and birational to (R,m), with
Krull dimension dimQ(Qα1 + · · ·+Qαd) = ratrk(valα), on which v is centered
[30, Proposition 3.6(ii)]. Moreover, the residue field κ(v) must be an algebraic
extension of R′/m′, thanks to the dimension formula [36, Theorem 15.2] (using
that X is excellent); see the discussion at the beginning of [30, §3.2].

Definition 2.30 (Monomialization retraction, cf. [30]). Fix an snc divisor D
on a regular excellent scheme Y with a proper birational morphism π : Y →
X. Let v ∈ ValX with cY (v) = y, and suppose D∩Spec(OY,y) = div(z1 · · · zt),
with zi ∈ my; extend these to a generating set z1, . . . , zd for my. The my-
adic completion of OY,y is isomorphic to R̂ := κ(y)[[z1, . . . , zd]] by Cohen’s
structure theorem, and one has an inclusion ι : OY,y ↪→ R̂ sending zi to zi.
On R̂, we have the monomial valuation w with w(zi) = v(Di) for 1 ≤ i ≤ t
and w(zi) = 0 for t < i ≤ d. We define r(Y,D)(v) := ι∗(w) ∈ ValX .

Remark 2.31. Note that, by construction and super-additivity of valuations,
v(f) ≥ r(Y,D)(v)(f) for all f ∈ OY,y. Consequently, cY (v) ∈ {cY (r(Y,D)(v))}.

For regular excellent schemes over Q, every Abhyankar valuation is ob-
tained as the result of some monomialization retraction, induced from a
proper birational Y → X and some SNC divisor H on Y (see [20] and Propo-
sition 3.7 in [30]). If X is a variety and k has characteristic p > 0, Knaf
and Kuhlmann show in [31] that an Abhyankar valuation whose residue field
is separable over k admits a local monomialization over X, meaning that if
v is an Abhyankar valuation centered at x ∈ X, then there exists an open
neighborhood U ⊂ X of x, a proper birational morphism π : Y → U from a
regular variety Y , and an snc divisor D on Y , such that v = r(Y,D)(v).

3. Log discrepancies of Cartier subalgebras

This is the foundational section of this article; the subsequent sections are
applications of the ideas developed here.

Let X be an integral scheme of prime characteristic p > 0. We denote
the function field of X by L thoughout this section. Recall from Section 2.6
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that when X is a normal variety, there is essentially a bijection between log
Q-Gorenstein pairs (X,Δ) with (1 − pe)(KX + Δ) Cartier for some e > 0
and p−e-linear maps ψ on open sets U where (1 − pe)(KX + Δ) is principal,
furnished by an isomorphism (F e)!OX((pe − 1)Δ)|U ∼= {{ψ}}U .

Our primary goal is to define the log discrepancy of Cartier subalgebras
on X, with the fundamental definition being that of log discrepancies of p−e-
linear maps on the function field L of X. Much of this section goes through
without an assumption of F -finiteness; because this may be of interest, e.g.
for varieties over non-F -finite fields, we do what we can without assuming
X is F -finite. Of course, for many of our more precise results, we need this
assumption.

Definition 3.1. Let D be a Cartier subalgebra on X, and Z ⊆ X a closed
integral subscheme with ideal IZ ⊆ OX . We say that Z is uniformly D-
compatible if ψ(IZ,x) ⊆ IZ,x for each x ∈ X, e ≥ 1, and ψ ∈ (De)x. In this
case, each ψ induces a well-defined p−e-linear map on Z, which we denote by
ψ‖Z . The collection of all ψ‖Z give a Cartier subalgebra D‖Z on Z, which we
call the exceptional restriction. The usual restriction ⊕e≥0(OZ ⊗X De) is not
useful for us.

3.1. The definition of log discrepancy

Definition 3.2 (Log discrepancy of p−e-linear maps and Cartier subalge-
bras). We define the log discrepancy of p−e-linear maps and Cartier subalge-
bras at a semivaluation in four steps.

1. Suppose ψ is a p−e-linear map on L for some e ≥ 1, let 0 �= f ∈ L, and
v ∈ ValX . We define

(3) E(f, ψ, v) = v(f) − pev(ψ(f))
pe − 1 ∈ [−∞,∞).

Note that if ψ(f) is a unit of the valuation ring Ov, then E(f, ψ, v) =
(pe−1)−1v(f). The notation is meant to suggest the coefficient of KY −
π∗(KX + Δ) on divisors E ⊂ Y over a variety X, when Δ corresponds
to ψ via (2.6).
If g := ψ(f) is nonzero, then ψ(fg−pe) = g−1ψ(f) = 1 and v(fg−pe) =
v(f)−pev(g) = v(f)−pev(ψ(f)). Thus, given any f ∈ L with ψ(f) �= 0,
there is some other h ∈ L with E(h, ψ, v) = E(f, ψ, v) and ψ(h) = 1.
On the other hand, 3 allows us to consider the full range of values of
E(f, ψ, v), as f ranges over nonzero f ∈ L, by restricting to any subring
R ⊆ L with L = Frac(R).
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2. The log discrepancy of 0 �= ψ : L → L at v ∈ ValX is

A(v;ψ) = sup
f �=0,n≥1

E(f, ψn, v).

Note that, per the comment at the end of the previous item, we can
(and often do) restrict this supremum to those f �= 0 with ψn(f) = 1,
or E(f ;ψn, v) for f ∈ R for some fixed ring R with Frac(R) = L, e.g.
OX,x for x ∈ X, or valuation rings Ov.

3. Let D be a Cartier subalgebra on X. The log discrepancy of D at v ∈
ValX centered at x is

A(v;D) = sup
e≥1

(
sup

0�=ψ∈(De)x
A(v;ψ)

)
.

4. When ζ ∈ X� \ValX , we define E(f, ψ, ζ) for nonzero p−e-linear maps
ψ, when ζ(f) and ζ(ψ(f)) are not both +∞.

5. Let x ∈ X, with closure Z = {x} that is uniformly compatible with D.
We define

A(ζ;D) = A(ζ;D‖Z)
for every ζ ∈ ValZ = h−1

X (x) ⊆ X�. For ζ ∈ X� whose home is not
uniformly D-compatible, we set A(ζ;D) = +∞.

We immediately prove several very useful ways to simplify the calculation
of log discrepancies. 3.3 presents an important proof method we build on
several times in this section; this was inspired by (and our proof is a solution
to) [5, Exercise 4.11]. 3.4 is used constantly throughout the paper.

Proposition 3.3. Let v ∈ ValX , ψ : L → L, and f ∈ L, where both ψ and f
are nonzero. Suppose A(v;ψ) < ∞. Then

A(v;ψ · f) + (pe − 1)−1v(f) = A(v;ψ).

Here, ψ · f denotes the product in the Cartier algebra of Spec(L) (2.11).

Proof. Define fn = f (pne−1)/(pe−1) for all n ≥ 1. The following observations
are easy to check:

1. (ψ · f)n = ψn · fn.
2. ψn(h) = 1 if and only if

(ψ · f)n
(
f−1
n h

)
= 1.

3. E(h, ψn, v) = E(f−1
n h, ψn, v) + (pe − 1)−1v(f).
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Thus, there is a bijection between h ∈ L with ψn(h) = 1 and g ∈ L with
(ψ ·f)n(g) = 1 given by multiplication by fn. Considering then the definitions
of A(v;ψ·f) and A(v;ψ), and applying the third observation, gives the claimed
expression for A(v;ψ · f).

Proposition 3.4. Let D be a Cartier subalgebra on X and x ∈ X. Suppose
that Dx = {{ψ}}x ⊂ CX

x for some ψ ∈ (De)x, cf. (2.14). Then A(v;D) =
A(v;ψ) for every v ∈ ValX with cX(v) = x.

Proof. By definition, A(v;D) ≥ A(v;ψ). On the other hand, the assumption
Dx = {{ψ}}x implies (Dm)x = 0 unless m = ne, and any φ ∈ (Dne)x can be
written as ψn ·f for some f ∈ OX,x. Now (3.3) shows A(v;φ) = A(v;ψ)+(1−
pe)−1v(f). Thus, A(v;φ) ≤ A(v;ψ) since cX(v) = x, which implies v(f) ≥ 0.
Therefore, A(v;D) = A(v;ψ).

We now prove some easy consequences of (3.3), inspired by [5, Exercise
4.12], cf. [49, Lemma 4.9(i)]. The first, we attribute to Cascini, Mustaţă, and
Schwede, since the key claim in the middle of the proof was shared with the
author by Karl Schwede in private correspondence. 3.9 generalizes this result.

Corollary 3.5 (Cascini-Mustaţă-Schwede). Let v be a discrete valuation on
L whose associated valuation ring R is F -finite, and let � ∈ R be any gen-
erator for the maximal ideal. Let CR be the Cartier algebra of Spec(R). Then
A(v; CR) = v(�).

Proof. It is well-known that R is a free Rpe-module (of rank pe[L:Lp]) with a
basis containing �(pe−1), and that CR

e = Φe · R, where Φe is the p−e-linear
projection Φ : R → R onto �(pe−1). 3.4 proves A(v; CR) = A(v; Φ).

Because Φ(�(p−1)) = 1, A(v; Φ) ≥ v(�) = E(�,Φ, v). Now suppose
f ∈ R has Φe(f) = 1 and E(f,Φe, v) ≥ E(�,Φ, v). Write f = u�s, with
u ∈ R×, and s ≥ pe − 1. I claim that in fact s = pe − 1. More generally:

Claim. Define s′ = �p−e(s− pe + 1)�. Then Φe(�sR) = �s′R.

Proof of claim. The claim is clear when pe | (s − pe + 1): �(pe−1) is sent to 1
by Φe, and Φe is p−e-linear, so

Φe(�s) = Φe(�s−pe+1�(pe−1))
= �s′ .

More generally, for f ∈ R, we have

v(Φe(f�−npe))) = v(Φe(f)) − v(�n)

so �(n+1)pe−1R is the smallest ideal of R sent into �nR. �
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Finishing the proof, we see that if Φ(f) = 1, then s′ = 0. This is not the case
unless s = pe − 1.

Corollary 3.6 (cf. [49, Lemma 4.9(i)]). Suppose v is a discrete valuation
on L whose valuation ring R is F -finite. Let 0 �= ψi : L1/pei → L, i = 1, 2.
Suppose min{e1, e2} ≥ 1. Then

(4) (1 − ε)A(v;ψ1) + εA(v;ψ2) = A(v;ψ1 · ψ2)

where ε = (pe2 − 1)/(p(e1+e2) − 1).

We expect that when R is not F -finite A(v;ψ) = +∞ for every p−e-linear
map. This is true when X is a variety over a perfect field, see (3.7).

Proof. Suppose CR
1 = Φ ·R as in the last proof. Considering Φ, ψ1, and ψ2 as

elements of HomL(L1/pa , L) ∼= L1/pa , for a ∈ {1, e1, e2} (respectively), then
there exist hi ∈ L with Φei · hi = ψi for i = 1, 2, see 2.9(2). Now (3.3) and
(3.5) imply

A(v;ψi) = v(�) + 1
1 − pei

v(hi).

Additionally,

ψ1 · ψ2 = (Φe1 · h1) · (Φe2 · h2)
= Φe1+e2 · (hpe2

1 h2)

so another application of (3.3) gives the value

v(�) − A(v;ψ1 · ψ2) = 1
p(e1+e2) − 1

(pe2v(h1) + v(h2).

= (1 − ε)(v(�) − A(v;ψ1)) + ε(v(�) − A(v;ψ2))
= v(�) − (1 − ε)A(v;ψ1) − εA(v;ψ2).

Re-arranging the terms of these equations, we are left with (4).

Example 3.7. Datta and Smith carefully studied p−e-linear maps on val-
uation rings inside function fields [16, 17]. Among other things, they prove
that if a valuation ring in a function field is F -finite, then the associated
valuation must be an Abhyankar discrete valuation. Let us re-interpret their
results as statements about log discrepancies of non-Abhyankar discrete val-
uations.

Suppose v is a non-Abhyankar discrete valuation with value group equal
to Z on the function field L of some variety X over a perfect field, with
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valuation ring R, and let � ∈ R with v(�) = 1. Datta and Smith proved
that (F e)!R = 0 for all e ≥ 1 [16, Corollary 4.2.2 and Lemma 4.2.4], cf. [17,
Theorem 0.1]). I claim that this implies that A(v;ψ) = +∞ for any nonzero
p−e-linear map ψ : L → L. Indeed, the set of real numbers {v(ψ(r)) : r ∈
R,ψ(r) �= 0} must be unbounded below, for if ψ(r) ≥ −M = v(�−M ) for
all r ∈ R, then �Mψ gives a nonzero element of (F e)!R. Therefore, the set
{E(r, ψ, v) : r ∈ R} is unbounded above, so A(v;ψ) = +∞.

Proposition 3.8. Suppose (R,m, k) is a regular F -finite ring and v is a
valuation centered on m and monomial with respect to some regular system
of parameters x1, . . . , xn for R. Then A(v; CR) =

∑n
i=1 v(xi).

Proof. Since R is regular and F -finite, the Cohen structure theorem yields an
isomorphism R̂ ∼= k[[x1, . . . , xn]], with k an F -finite field. Recalling 2.9(1), and
letting v̂ be the m-adic extension of v to R̂, we see A(v; CR) = A(v̂; CR̂). Thus,
we have reduced to the case R = k[[x1, . . . , xn]] for an F -finite field k, and
v = valr for some r = (r1, . . . , rn) ∈ Rn

≥0, cf. (2.29). Recall our description
of CR from 2.12, and let Φ be the generator for CR that splits (x1 · · ·xn)p−1.
Applying 3.4, we see that

A(vr; CR) = A(vr; Φ) =
d∑

j=1
rj .

To see the rightmost equality, we can argue as in (3.5): localizing R at (xi)
gives an F -finite DVR, and we conclude that if Φ(f) = 1 then ordxi(f) = p−1
for all 1 ≤ i ≤ n.

Recall from the last paragraph of §2 that v ∈ ValX is called locally quasi-
monomial if there exists a neighborhood U of x = cX(v) and a proper bira-
tional morphism π : Y → U from a regular scheme such that v = r(Y,D)(v)
for some snc divisor D on Y .

Proposition 3.9. Suppose ψ is a p−e-linear map on an integral F -finite
scheme X. Suppose v ∈ ValX is locally quasi-monomial with center x, and
π : Y → U is a proper birational morphism for which v = r(Y,D)(v). Let
ψ = Φe

y ·h where Φy is a chosen algebra generator for CY
y near y = cY (v); see

(2.12) and (3.8). Then

A(v;ψ) = v(D) + v(h)
1 − pe

.

Proof. Applying 3.4, we see A(v; CY ) = A(v; Φy). Now applying 3.3 to ψ =
Φe

y · h, and 3.8 to OY,y, we see that A(v;ψ) = v(D) + (1 − pe)−1v(h).
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We will return to the previous proposition, giving more precise informa-
tion about divY (h) in 7.21 and 7.24 with added assumptions on X.

Proposition 3.10. Let D be a Cartier subalgebra on X, fix x ∈ X, and let
Z ⊆ X be a uniformly D-compatible subscheme passing through x. Denote
OX,x by R, and let p ∈ Spec(R) be the prime corresponding to Z. Then for
all ψ ∈ Dx,

A(ζ;ψ‖Z) = sup
n,f

{E(f, ψn, ζ) : ψn(f) ∈ R \ p}.

Proof. The condition ψn(f) ∈ R\p is equivalent to (ψ‖Z)n(f(p)) �= 0 ∈ κ(p),
thus also equivalent to ζ(ψn(f)) < ∞. The claimed expression for A(ζ;ψ‖Z) is
then just unwinding the definition of A(ζ;ψ‖Z), recalling that ζ(f) is defined
to be ζ(f(p)), see Convention 2.1(12).

Proposition 3.11. Let D be a Cartier subalgebra on X and suppose ζ ∈
X� has uniformly D-compatible home. Let x = cX(ζ), R = OX,x, and p =
hX(ζ) ∈ Spec(R).

1. For ψ ∈ (De)x,

A(ζ;ψ) = lim sup
n→∞

(
sup
f

{E(f, ψn, ζ) : f ∈ R,ψn(f) ∈ R \ p}
)
.

2. Similarly, we have an equality

A(ζ;D) = lim sup
e→∞

sup
ψ∈(De)x

A(ζ;ψ).

Proof. If we replace the limit supremum with supremum in the first state-
ment, then we are left with 3.10. Thus, it suffices to show that {E(f, ψn, ζ) :
f ∈ R,ψn(f) ∈ R\p} is contained in {E(f, ψnm, ζ) : f ∈ R,ψnm(f) ∈ R\p}
for all m ≥ 1. The key idea here is similar to the observations in the proof
of 3.3. Suppose f ∈ R has the property ψn(f) ∈ R \ p. I claim that for each
m ≥ 1, there is some fm ∈ R with ψnm(fm) ∈ R \ p and E(fm, ψnm, v) =
E(f, ψn, v).

Localizing at p, we are looking for fm ∈ R so that ψnm(fm) is a unit
of Rp. By assumption, ψn(f) = u is a unit of Rp that is contained in R.
Thus, as a p−ne-linear map ψn : L → L, ψn(u−pne

f) = 1. Define gm =
(u−pne

f)(pnme−1)/(pne−1) and um = up
ne(pnme−1)/(pne−1); note ψnm(gm) =
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ψn(u−pne
f) = 1 for all m ≥ 1. Moreover, the idea for proving the first obser-

vation in the proof of (3.3) can be used to show

ψnm(umgm) = u

for each m. Set fm = umgm ∈ R. By construction, E(fm, ψnm, v) = E(gm,
ψnm, v), and also

v(gm)
pnme − 1 = v(f) − pnev(u)

pne − 1 .

The right-hand expression is precisely E(f, ψn, v). This proves that we can
find the claimed fm, and that the supremum over n in the definition of A(ζ;ψ)
is equal to the limit supremum over n.

For the second claim, about A(ζ;D), note that by definition (or the first
part of this proposition) A(v;ψ) = A(v;ψn) for all n. Thus, given ψ ∈ (De)x
we have ψn ∈ (Dne)x with the same log discrepancy, and A(ζ;D) can be
calculated as a limit supremum over e ≥ 1 instead of a supremum.

3.2. Multiplicatively and F -graded sequences of ideals

We now study how Cartier subalgebras can be twisted by sequences of ideals
with multiplicative structures, proving formulas similar to 3.3. Let N0 = Z ∩
[0,∞) and {ae : e ∈ N0} be a sequence of non-zero ideals on X. We say that
this collection is multiplicatively graded (or simply graded) if asat ⊆ as+t for
all s, t ∈ N0, and that this sequence is F -graded if a1 = OX and a

[pt]
s at ⊆ as+t

for all s, t ≥ 0. While it is standard to use the notation a• for both of these,
we have need to use these two concepts together and so we will always
interpret a• as an F -graded sequence and a� as a multiplicatively graded
sequence.

Interesting examples of (multiplicatively) graded sequences of ideals arise
as base ideals of tensor powers of a line bundle on X ([34, Def. 1.1.18]), and
symbolic powers of a fixed ideal. Another common source of graded sequences
of ideals, especially relevant here, are valuation ideals associated to valuations
v on X, defined as

as(v) = {f ∈ OX : v(f) ≥ s} for s ∈ N0.

We write a�(v) for this graded sequence.
The F -graded condition is precisely what is needed to make new Cartier

subalgebras from old as described below. Every Cartier subalgebra on a
Gorenstein scheme arises in this way, cf. [4, 6].
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Definition 3.12. Let D be a Cartier subalgebra, and a• an F -graded se-
quence, on X. We define a Cartier subalgebra D · a• ⊂ D by

D · a• = ⊕e≥0 (De · ae)
= ⊕e≥0

{∑
(φi · ai) : ai ∈ ae and φi ∈ De

}
.

A special case of interest is constructed from the data of a Cartier subalge-
bra D on X, an ideal a ⊆ OX , and a real number t ≥ 0. Setting ae = a
t(p

e−1)�,
we get an F -graded sequence a•. We define

D · at := D · a•.

These F -graded sequences seem to first appear in the theory of tight closure
with respect to an ideal [27], see also [45]. Their study was key to the devel-
opment of sharp F -purity, and Schwede’s approach to F -singularities of pairs
and triples [45, 46, 47, 48].

Finally, let a� be a graded sequence of ideals on X. For t ∈ [0,∞) we
define the Cartier subalgebra

D · at� =
∑
m≥1

D · at/mm .

For ζ ∈ X�, by definition (3.1) we have

A(ζ;D · at�) = sup
m≥1

A(ζ;D · at/mm ).

Suppose a ⊆ OX is an ideal sheaf on X, and ζ ∈ X� has center x. We
define

ζ(a) = min{ζ(f) : f ∈ ax}.

The following lemma allows us to evaluate semivaluations on sequences of
ideals in two ways. The existence of the limits for multiplicative graded se-
quences is well-known; the F -graded case is similar, but we provide a short
proof for completeness.

Lemma 3.13 (cf. [19, 30]). Let ζ ∈ X� and {ae}e∈N1 be a sequence of ideals
on X. If a• is F -graded, we have the limit

ζF (a•) := lim
e→∞

ζ(ae)
pe − 1 = inf

e≥1

ζ(ae)
pe − 1 .
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Similarly, if a� is a graded sequence, then

ζ(a�) := lim
e→∞

ζ(ae)
e

= inf
e≥1

ζ(ae)
e

.

Proof. Both cases are essentially an application of Fekete’s lemma; we refer
the reader to [30, Lemma 2.3] for the multiplicatively graded case. Since the
F -graded case is not precisely the situation of Fekete’s lemma, let us show
directly that {ζ(ae)/(pe−1)}∞e=1 is a non-increasing sequence, bounded below
by 0, so has a limit (maybe infinity) that agrees with the infimum.

Suppose that a• is F -graded. Note that a
[pt]
s at ⊆ as+t implies ζ(as+t) ≤

ptζ(as) + ζ(at). Therefore,

ζ(as+t)
ps+t − 1 ≤ ptζ(as)

ps+t − 1 + ζ(at)
ps+t − 1 ≤ ptζ(as)

pt(ps − 1) + ζ(at)
pt − 1 .

We conclude {ζ(ae)/(pe−1)}∞e=1 is a non-increasing sequence, bounded below
by 0, so its infimum is the limit.

We close this section by proving some statements analogous to 3.3, but
with Cartier subalgebras and F -graded sequences of ideals in place of single
p−e-linear maps and function field elements.

Lemma 3.14. Let D and R be Cartier subalgebras on X, and fix ζ ∈ X�

whose home is uniformly D-compatible.

1. Monotonicity: If D ⊆ R then A(ζ;D) ≤ A(ζ;R).
2. Conservation: Let a• be an F -graded sequence of ideals on X. If

ζF (a•), A(ζ;D), and A(ζ;D · a•) are all finite, then A(ζ;D) = A(ζ;D ·
a•) + ζF (a•).

Proof. Monotonicity follows directly from the definition; we therefore begin
with conservation. Towards this end, let x = hX(ζ) and Z = {x}. Then
D · a• ⊆ D implies that Z is uniformly compatible with D · a•. By passing
to a•OZ and D‖Z , and re-setting notation (replacing Z with X), we assume
ζ = v is a valuation, with valuation ring Ov ⊂ L. Furthermore, the definitions
of log discrepancy and ζF (a•) are local near the center z = cX(v) ∈ X, so we
restrict our attention to R := OX,x and write D for the stalk Dx. Since R is
noetherian, ae is finitely generated, and so aeOv is principally generated, say
by ge ∈ ae. Possible generators are characterized by v(ge) = v(ae).
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Let ψ ∈ De be nonzero. Then 3.3 tells us

A(v;ψn) − A(v;ψn · gne) = v(gne)
pne − 1

= v(ae)
pne − 1

so limn→∞A(v;ψn)−A(v;ψn · gne) = vF (a•). On the other hand, A(v;ψn) =
A(v;ψ) for all n (3.11), so

A(v;ψ) = vF (a•) + lim
n→∞

A(v;ψn · gne).

Since ψn · gne ∈ (D · a•)ne, applying 3.11(2) gives

A(v;ψ) ≤ vF (a•) + A(v;D · a•)

for all ψ ∈ De. Now taking a supremum over ψ ∈ (De)x, and e ≥ 1, shows
A(v;D) ≤ vF (a•) + A(v;D · a•).

We now establish the reversed inequality. By 3.13, it suffices to show that
for all ε > 0 there exists e > 0 such that

A(v;D · a•) + 1
pe − 1vF (ae) < A(v;D) + ε.

From the definition of A(v;D·a•), we know there exists e > 0, ψ ∈ (D·a•)e,x,
and f ∈ L such that ψ(f) = 1 and

(5) A(v;D · a•) − ε <
1

pe − 1v(f) = E(f, ψ, v).

By definition of D · a•, there exist ψ1, . . . ψn ∈ De,x and a1, . . . , an ∈ ae,x such
that

ψ(f) =
n∑
1

ψi(aif) = 1.

Let −c = min1≤i≤n{v(ψi(aif))} ≤ v(ψ(f)) = 0. By reindexing, we may
assume that −c = v(ψ1(a1b)) so that ψ1(ugp

e
a1f) = 1 for some unit u ∈ O×

v

and g = ψ1(a1f) ∈ Ov (note v(g) = c). Since a1 ∈ ae, it follows that v(ae) ≤
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v(a1), so

A(v;D · a•) − ε + 1
pe − 1v(ae) ≤ A(v;D · a•) − ε + 1

pe − 1v(a1)

< E(f, ψ, v) + 1
pe − 1v(a1)

≤ E(f, ψ, v) + 1
pe − 1v(a1) + pe

pe − 1cp
e

= E(ugpea1f ;ψ, v)
≤ A(v;D).

Here we are using (5), and c ≥ 0, between the first and second lines, and sec-
ond and third, respectively. Finally, we used that ψ1 ∈ De and ψ1(ugp

e
a1f) =

1, so E(ugpea1f, ψ1, v) ≤ A(v;D).

Remark 3.15. The assumption that ζF (a•), A(ζ;D), and A(ζ;D · a•) are
finite is essential. Indeed, for a fairly trivial counterexample without these
assumptions (which demonstrates the main trouble), we can take ζ = trivX ,
D = CX , and ae = 0 for e > 1. Then ζF (a•) = +∞, A(ζ;D) = 0, and
A(ζ;D · a•) = −∞.

Alternatively, suppose X is F -finite and regular, Z ⊂ X is a proper
integral subscheme of dimension at least one, let pZ be the associated prime
ideal sheaf, and set ae = (p[pe]

Z : pZ) for e > 1. Then pZ is compatible with
D = CX · a•, and D‖Z = CZ [24, Corollary to Lemma 1.6]. Let z ∈ Zreg

be a closed point, and let ζ = ordz be the valuation corresponding to the
exceptional fiber of Blz(Z) → Z. Then A(ζ;D) = A(ζ; CZ) = dim(Z) while
ζF (a•) = +∞ = A(ζ; CX).

We also have conservation for graded sequences. We return to studying
asymptotic invariants of graded sequences of ideals in §7.

Corollary 3.16. Let D be a Cartier subalgebra on X, t ∈ [0,∞), and ζ ∈ X�

whose home Z is D-compatible. Suppose a� ⊆ OX is a multiplicatively graded
sequence of ideals on X such that ζ(a�) < ∞. If A(ζ;D), A(ζ;D · at�), and
ζ(a�) are finite, then

A(ζ;D) = A(ζ;D · at�) + t ζ(a�).

Proof. We apply 3.14 to the sequence of Cartier subalgebras D · at/mm . By
definition, ζ(a
(t/m)(pe−1)�

m ) = �(t/m)(pe−1)�ζ(am), so ζF ({a
(t/m)(pe−1)�
m }e) =
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(t/m)ζ(am). Taking suprema over m ≥ 1 gives

A(ζ;D · at�) = sup
m≥1

A(ζ;D · at/mm )

= A(ζ;D) − tv(a�).

4. Proof of the main theorem

For this section, we fix a normal variety X over an algebraically closed field
k of characteristic p > 0. We also fix a canonical Weil divisor KX on X,
which fixes a canonical divisor KY on every normal variety Y with a proper
birational morphism π : Y → X by requiring π∗KY = KX . To state and
prove our main theorem, we review the construction of log discrepancies of
arbitrary valuations of log Q-Gorenstein pairs (X,Δ). But first, let us give
the proof of (1.1), using (3.5), a corollary of which is a description of A(v; CX)
similar to the theory of log discrepancies initiated in [18]. Recall the notation
CX · Δ from 2.18.

Proposition 4.1 (Cascini-Mustaţă-Schwede). Let (X,Δ) be a log Q-Goren-
stein pair, and assume the Cartier index of KX +Δ is not divisible by p. Then
A(X,Δ)(v) = A(v; CX · Δ) for every divisorial valuation v ∈ Xdiv.

Proof. We assert that the valuation ring R of v must be F -finite. Indeed,
every variety over a perfect field is F -finite. Since v is divisorial, there must
exist some prime divisor E on a normal variety Y with a proper birational
morphism π : Y → X, and C ∈ (0,∞), such that v = C ordE . Then OY,E

∼= R
is F -finite. Thus, (3.5) gives A(v; CY ) = A(v; CR) = C. If CR = {{ΦE}} (see
proof of 3.5), then the fact that CY

1
∼= ω

⊗(1−p)
Y implies ΦE must correspond

to a generator for ω⊗(1−p)
Y,E over R.

Now suppose (1−pe)(KX+Δ) is Cartier. The definitions of both A(X,Δ)(v)
and A(v; CX · Δ) are local near x = cX(v), so by restricting to some neigh-
borhood of x we may assume there is some ψΔ ∈ Γ(X, (F e)!OX((pe − 1)Δ))
corresponding to Δ as in (2.6); ψΔ is unique up to a unit of Γ(X,OX). Then
{{ψ}} ∼= (F e)!OX((pe − 1)Δ) (see 2.14 and 2.19).

We define ΔY as in Section 2.6: KY + ΔY = π∗(KX + Δ). Since (1 −
pe)(KX + Δ) is Cartier, so too is (1 − pe)(KY + ΔY ). Thus, in some neigh-
borhood V of the generic point of E there is some corresponding p−e-linear
map ψΔY

∈ Γ(V, (F e)!OY ((pe − 1)ΔY )). I claim that we can take ψΔY
= ψΔ.

Indeed, up to units, ψΔY
agrees with ψΔ on the dense open subset V ′ ⊆ V
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where π is an isomorphism. Normality of Y lets us shrink V and assume that
V is smooth, so (pe−1)ΔY is principal on V , say (pe−1)ΔY ∩V = divV (hΔ).
Letting KV = KY ∩ V , we then have

V ∩ (1 − pe)(KY + ΔY ) = (1 − pe)KV − divV (hΔ)

so ψΔ gives a generator of the line bundle

OV ((1 − pe)KV − divV (hΔ)) = hΔ · ω⊗(1−pe)
V .

Thus, ψΔ = Φe
E · hΔ via the OV -linear isomorphism ω

⊗(1−pe)
V

∼= (F e)!OV .
Applying (3.3) and (3.4) now gives

A(v; CX · Δ) = A(v;ψΔ)

= A(v; ΦE) − v(hΔ)
pe − 1

= C(1 − ordE(ΔY ))
= A(X,Δ)(v).

Corollary 4.2 (cf. [18, 8]). Let X be a normal variety over an algebraically
closed field k of characteristic p > 0. Then

A(v; CX) = supA(U,Δ)(v)

for every v ∈ Xdiv, where the supremum is over effective log-Q-Gorenstein
pairs (U,Δ) on neighborhoods U of cX(v) ∈ X such that the Cartier index of
KU + Δ is not divisible by p.

Proof. By definition, A(v; CX) is the supremum of A(v;ψ) over p−e-linear
maps ψ ∈ CX

x , where x = cX(v). Recall from 2.6 that there is a bijection
between such ψ (up to units of Γ(U,OX)) and log-Q-Gorenstein pairs (U,Δ)
for neighborhoods U of x on which ψ ∈ Γ(U, CX). Applying 2.19 to the
statement of 4.1, we have the claimed equality.

The remainder of this section builds on (4.1). We must first review and
extend the method of Jonsson and Mustaţă to our setting.
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4.1. Log smooth pairs and domination

A log smooth pair over X consists of a smooth variety Y with a proper bira-
tional morphism π : Y → X and a reduced snc divisor D =

∑
iDi on Y ; we

will say π : (Y,D) → X is a log smooth pair over X. We would like to follow
[30] in the construction of a partial order on log smooth pairs over X; since in
our setting X is not assumed to be Q-Gorenstein, we must handle boundary
divisors, so our definition becomes more involved. At the beginning of this
section, we have fixed a canonical class KY on each normal variety admitting
a proper birational morphism π : Y → X by requiring π∗KY = KX . This
choice of KY implies that it is supported on E + π−1

∗ (KX), where E is the
exceptional locus of π.

Definition 4.3. Fix a log Q-Gorenstein pair (X,Δ). We will say a log smooth
pair π : (Y,D) → X dominates (X,Δ), and write (Y,D) � (X,Δ), if π : Y →
X is a log resolution with the two properties below.

1. The support of π∗(KX + Δ) is contained in the support of KY + D.
2. The support of E + (π−1

∗ (Δ)) is contained in the support of D.

When (Y,D) � (X,Δ), we call π the domination morphism.

Following Jonsson and Mustaţă, we extend � to a partial order on log
smooth pairs over X as follows. If (Y ′, D′) and (Y,D) are two log smooth pairs
dominating (X,Δ), with domination morphisms π′ : Y ′ → X and π : Y → X,
we will write (Y ′, D′) � (Y,D) whenever π′ factors as π ◦ μ for a proper
birational morphism μ : Y ′ → Y , and μ∗D is supported on D′.

4.2. Comparison of retractions

For every log smooth pair (Y,D) over X, recall from 2.30 the retraction
morphism r(Y,D) : ValX → ValX . By definition, for any v ∈ ValX the image
r(Y,D)(v) is monomial with respect to D, meaning monomial on the completion
of OY,y after choosing a regular system of parameters at cY (v) = y ∈ Y as
in 2.30; if y is not in the support of D, then r(Y,D)(v) is the trivial valuation.
Since the image of r(Y,D) consists of precisely those valuations on X that
are quasi-monomial with respect to (Y,D), this image is denoted here by
QM(Y,D). Some authors further filter QM(Y,D) by the so-called strata of
D, but we do not need this level of precision and refer the interested reader
to Remark 3.4, and the paragraph immediately before it, in [30].
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Suppose D =
∑

iDi, with each Di a prime divisor on Y . Following [30,
Proposition/Definition 5.1], for (Y,D) � (X,Δ) and for v ∈ QM(Y,D) we
define

(6) A(X,Δ)(v) =
∑
i

v(Di)A(X,Δ)(Di).

The Proposition portion of Jonsson and Mustaţă’s (5.1) shows that this def-
inition is independent of (Y,D). Our first result towards agreement of our
log discrepancy with established approaches is that the expression (6) is the
value of A(v; CX ·Δ) for v ∈ QM(Y,D). The result, and proof, is quite similar
to (3.9).

Lemma 4.4. Let Δ ≥ 0 be a Q-Weil divisor on X such that (1−pe)(KX +Δ)
is Cartier for some e > 0. Suppose (Y,D) � (X,Δ) and v ∈ QM(Y,D). Then
A(X,Δ)(v) = A(v; CX · Δ).

Proof. Fix v ∈ QM(Y,D) and define x = cX(v), y = cY (v). Let π : Y → X
be the domination morphism. By assumption, π∗(KX + Δ) − KY = ΔY is
supported on D. Suppose ΔY =

∑t
i=1

bi
pe−1Di, where bi ∈ Z.

We work locally near the centers x = cX(v) and y = cY (v) so we can
associate p−e-linear maps to divisors. Since (1−pe)(KX +Δ) is Cartier, there
is a corresponding ψΔ ∈ (F e)!OX((pe−1)Δ)x; similarly, (1−pe)(KY +ΔY ) =
π∗((1 − pe)(KX + Δ)) corresponds to some ψΔY

∈ (F e)!OY ((pe − 1)ΔY )y.
Since these p−e-linear maps must agree on any dense open neighborhood of
y where π is an isomorphism, they must be OY,y-unit multiples of the same
map. Therefore,

A(v; CX · Δ) = A(v;ψΔ) = A(v;ψΔY
).

The first equality follows from 3.4 and the end of 2.19. The second follows
from ψΔ = ψΔY

.
Let f1, . . . , ft ∈ OY,y be such that Di = div(fi) in some neighborhood of

y. By re-numbering the Di if necessary, we can assume that f1, . . . , fs give
a regular system of parameters for OY,y (so for s < i ≤ t, the divisor Di

does not contain y). The monomials (fn1
1 · · · fns

s ), with 0 ≤ ni ≤ pe − 1, give
a free basis for OY,y over Ope

Y,y. The projection Φe
y onto the basis element

(f1 · · · fs)(p
e−1) gives a generator for CY

y over OY,y. Since y �∈ Di for s < i ≤ t,
we see that u := f

bs+1
s+1 · · · f bt

t is a unit in OY,y.
Recalling that ΔY =

∑t
1

bi
pe−1Di, there is a unit v ∈ O×

Y,y such that we
have

ψΔY
= Φe

y · (uvf b1
1 · · · f bs

s ).
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For example, v = 1 when the generator Φy is chosen to correspond to the
specific embedding ω

⊗(1−pe)
Y,y

∼= OY ((1− pe)KY )y ⊆ L furnished by our choice
of the Weil divisor KY .

Now using 3.9 and 3.3, we get

A(v;ψΔY
) = A(v; Φe

y) −
1

pe − 1

(
s∑

i=1
biv(fi)

)

=
(

s∑
i=1

v(fi)
)
− 1

pe − 1

(
s∑

i=1
biv(fi)

)

=
s∑

i=1
v(fi)

(
1 − bi

pe − 1

)

=
s∑

i=1
v(Di)(1 − ordDi(ΔY ))

=
s∑

i=1
v(Di)A(X,Δ)(Di)

= A(X,Δ)(v) by definition.

Lemma 4.5. Let (X,Δ) be a log Q-Gorenstein pair. Suppose (Y ′, D′) and
(Y,D) are log smooth pairs over X, and (Y ′, D′) � (Y,D) � (X,Δ). Then
for all v ∈ ValX ,

A(X,Δ)(r(Y,D)(v)) ≤ A(X,Δ)(r(Y ′,D′)(v)).

Proof. This follows from [30, Lemma 1.5(i)]. In their setting they work with
sheaves of special differentials, but the ideas in the proof of Lemma 1.5(i) are
equally applicable to the Kähler and canonical bundles of smooth varieties.
Note that the claimed inequalities are checked on the smooth varieties Y and
Y ′.

Corollary 4.6. With the notation as in the previous proposition,

A(r(Y,D)(v); CX · Δ) ≤ A(r(Y ′,D′)(v); CX · Δ).

4.3. Log discrepancies of arbitrary valuations

Assume for this subsection that log resolutions of Weil divisors on varieties bi-
rational to X exist, so that the collection of log smooth pairs (Y,D) � (X,Δ)
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is non-empty, and Abhyankar valuations admit global monomializations. Still
following Jonsson and Mustaţă, we define the log discrepancy of arbitrary
v ∈ ValX to be:

(7) A(X,Δ)(v) = sup
(Y,D)
(X,Δ)

A(X,Δ)(r(Y,D)(v)).

Note that this is well defined, thanks to (4.5). There are numerous reasons
to believe this is the correct extension of A(X,Δ) from Xdiv to all of ValX .
For example, this extension is the maximal lower-semicontinuous extension
of the log discrepancy on Xdiv. In characteristic zero, Mauri, Mazzon, and
Stevenson [37] recently proved that this definition coincides with Temkin’s
pluricanonical metric from [52]; their approach relates log discrepancies to the
weight metrics of Mustaţă and Nicaise [41], which give an analogous function
for discretely valued ground fields.

Our main theorem is that in the case log resolutions exist, defining
A(X,Δ)(v) for valuations v using (7) gives the same function on ValX as 3.2.

Theorem 4.7. Let (X,Δ) be a log Q-Gorenstein pair, and suppose that the
Cartier index of KX + Δ is not divisible by p. Suppose log resolutions exist
for Weil divisors on varieties birational to X. Then A(X,Δ)(v) = A(v; CX ·Δ)
for all v ∈ ValX .

Proof. Fix v ∈ ValX . Since r(Y,D)(v) ∈ QM(Y,D), 4.4 provides an equality
A(X,Δ)(r(Y,D)(v)) = A(r(Y,D)(v); CX · Δ) for every (Y,D) � (X,Δ).

All of our considerations are local near x = cX(v), so we restrict our
attention to R = OX,x, denoting by m = mx the maximal ideal of R. The
prime ideal p of R associated to cX(r(Y,D)(v)) ∈ X is contained in m for every
(Y,D) � (X,Δ).

Claim (�). For every (Y,D) � (X,Δ), there exists (Y ′, D′) � (Y,D) such
that cX(r(Y ′,D′)(v)) = m.

Proof of claim. Fix some (Y,D) � (X,Δ) with domination morphism π : Y →
X, and assume p = c(Y,D)(v) � m. Then we can choose f1 ∈ m\p; this element
is defined in some neighborhood U of m in X, and we define N to be the
scheme-theoretic closure of divU (f) in X, which is an effective Weil divisor.
Take (Y (1), D(1)) to be a log resolution of (X,Δ+N) dominating (Y,D); note
that such a log resolution exists by taking a log resolution μ : Y (1) → Y of
(Y,D + π−1

∗ (Δ + N)red). If μ(1) : Y (1) → X is the domination morphism,
then by definition the strict transform (μ(1))−1

∗ N is supported on D(1). In
particular, r(Y (1),D(1))(v)(f) > 0. Therefore,

p � cX(r(Y (1),D(1))(v)) ⊆ m.
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Call p1 = cX(r(Y (1),D(1))(v)). If there exists f (2) ∈ m \ p1, we repeat this ar-
gument with (Y (1), D(1)) in place of (Y,D), giving (Y (2), D(2)) � (Y (1), D(1))
and a new center p2 = cX(r(Y (2),D(2))(v)). Thus, we get a chain

p � p1 � p2 � · · ·m

with ∪ipi = m. Since X is noetherian, this chain must stabilize, meaning
pi = m for i � 0. Taking (Y ′, D′) = (Y (i), D(i)) gives the desired pair. �

If (Y,D) is a pair dominating (X,Δ) with cX(r(Y,D)(v)) = cX(v) = m, we
write (Y,D) � (X,Δ). Using (4.4), (4.5), and Claim (�) above, we see

A(X,Δ)(v) : = sup
(Y,D)
(X,Δ)

A(X,Δ)(r(Y,D)(v))

= sup
(Y,D)�(X,Δ)

A(X,Δ)(r(Y,D)(v))

= sup
(Y,D)�(X,Δ)

A(r(Y,D)(v); CX · Δ)

The Cartier subalgebra CX ·Δ is generated near m by a single p−e-linear
map ψ; see (2.6). 3.4 implies A(w; CX ·Δ) = A(w;ψ) for every w ∈ ValX with
cX(w) = m, so we would be done if we could show

(8) sup
(Y,D)�(X,Δ)

A(r(Y,D)(v);ψ) = A(v;ψ).

We cannot follow a definitional proof of this because the expressions
E(f, ψn, v) used to define A(v;ψ) are not necessarily non-decreasing along
retractions, i.e. do not satisfy an analogue of (4.5). We therefore proceed
by careful estimates of A(v;ψ), and by using ideas similar to those in the
proofs of (3.9) and (4.4). To simplify the notation going forward, call S the
supremum on the left in (8).

For any fixed f ∈ R, [30, Lemma 4.7] shows v(f) = r(Y,D)(f) whenever
(Y,D) gives a log resolution of (X, div(f)). Using ideas similar to those in
the proof of Claim (�), any log resolution for the closure Nf,n of the divisor
div(f) + div(ψn(f)) is dominated by some (Y,D) � (X,Δ). When (Y,D) �
(X,Δ) is a log resolution of Nf,n, we do have E(f, ψn, v) = E(f, ψn, r(Y,D)(v)).

Let ε > 0, and choose n ≥ 1 and f ∈ R so that

A(v;ψ) − ε < E(f, ψn, v).
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Suppose (Y,D) � (X,Δ) is also a log resolution of the Weil divisor Nf,n

defined in the previous paragraph. Then E(f, ψn, v) = E(f, ψn, r(Y,D)(v)) ≤
A(r(Y,D)(v);ψ), so

A(v;ψ) − ε < A(r(Y,D)(v);ψ) ≤ S.

Since this was true for all ε, we conclude A(v;ψ) ≤ S.
For the reversed inequality, we use (3.9). Let (Y,D) � (X,Δ) and w =

r(Y,D)(v). We prove A(w;ψ) ≤ A(v;ψ). Call η = cY (w), and y = cY (v).
If we number the components Di of D so that v(Di) > 0 if and only if
1 ≤ i ≤ s, then local equations f1, . . . , fs ∈ OY,η for D1, . . . , Ds (resp.)
generate the maximal ideal of OY,η. This generating set can be extended by
g1, . . . , gn−s ∈ OY,y to a set of generators for the maximal ideal of OY,y. Fix
the generator Φy for CY

y that projects onto (f1 · · · fsg1 · · · gn−s)(p−1). Then
ψ = Φe

y · h for some h ∈ L = κ(X). We have assumed (Y,D) gives a log
resolution for (X,Δ), so in particular π∗(KX + Δ) is snc and supported on
KY + D. This implies that, after possibly multiplying Φe

y on the right by a
unit u ∈ O×

Y,y, we have h =
∏s

i=1 f
ci
i for some ci ∈ Z. See the proof of (4.4)

for more details. 3.9 shows

A(w;ψ) = w(D) − w(h)
pe − 1 = v(D) − v(h)

pe − 1 =
(∑

i

v(Di)(pe − 1 − ci)
)
.

Suppose we can find f ∈L such that ψ(f) is a unit in OY,y and E(f, ψ, v)≥
A(w;ψ); from this it follows A(v;ψ) ≥ A(w;ψ). The choice for f is clear:
f = (

∏n−s
j=1 g

pe−1
j )(

∏s
i=1 f

pe−1−ci
i ). By construction,

ψ(f) = Φe
y(u(f1 · · · fsg1 · · · gn−s)(p

e−1)) ∈ O×
Y,y.

Recall that to get h to be monomial, we may have had to multiply Φe
y by

some u ∈ O×
Y,y, so ψ(f) may not be 1. We also see:

(pe − 1)E(f, ψ, v) =

⎛⎝n−s∑
j=1

(pe − 1)v(gi)

⎞⎠+

⎛⎝∑
j=1

(pe − 1 − cj)v(fi)

⎞⎠
≥ (pe − 1)A(w;ψ)

since v(gj) > 0 for all j. We conclude that (8) is true, which completes the
proof.
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5. Connections with F -singularities

In this section, we briefly explore the relationship between our log discrepan-
cies, sharp F -purity, and strong F -regularity. These results are of independent
interest, and are also important in Section 7 to prove, e.g., that asymptotic
multiplier ideals of graded sequences on strongly F -regular schemes are co-
herent.

We prove that sharply F -pure and strongly F -regular Cartier subalgebras
are characterized as non-negativity (resp. positivity) of log discrepancies on
�-spaces. This builds on the heuristic correspondence between sharply F -
pure and log canonical singularities (resp. strongly F -regular and klt). In
particular, our result greatly generalizes Hara and Watanabe’s theorem [26,
Theorem 3.3].

Throughout, we fix a Cartier subalgebra D ⊆ CX on an integral F -finite
scheme X. To avoid trivialities, we assume De �= 0 for some e > 0.

Definition 5.1. The splitting prime of D at x ∈ X is the ideal

P(Dx) = {f ∈ OX,x : ψ(f) ∈ m for all ψ ∈ (De)x, for all e ≥ 1 }.

Standard facts about P = P(Dx) include (see [1, 6]):

1. P �= OX if and only if D is sharply F -pure at x.
2. As suggested by the name, P is prime whenever it is proper.
3. When P is proper, no prime p ∈ Spec(R) with P � p can be Dx-

compatible. In particular, P = 0 if and only if D is strongly F -regular
at x.

4. The restriction Dx‖P is strongly F -regular if D is sharply F -pure at x.

Lemma 5.2. Let x ∈ X. Denote by mx the maximal ideal of OX,x and by
trivx the trivial valuation κ(x)× → {0}. There are three possible values for
A(trivx,D):

A(trivx,D) =

⎧⎪⎨⎪⎩
−∞ iff Dx is not sharply F -pure.
0 iff Dx is sharply F -pure and P(Dx) = mx.

+∞ iff Dx is sharply F -pure and P(Dx) �= mx.

Proof. Restricting our attention to R := OX,x, let us write D for Dx, X =
Spec(R), and x for the closed set {x} ⊂ X.

Suppose D is not sharply F -pure. Then no ψ ∈ De is surjective for e > 0,
so in particular ψ(mx) ⊆ mx. Thus, x is uniformly D-compatible, and ψ(R) ⊆
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mx for all ψ ∈ D>0 implies the exceptional restriction D‖x is zero. But then

A(trivx;D) = A(trivx; 0) = sup∅ = −∞.

If D is sharply F -pure and P(D) = mx, then x is again D-compatible. In
this case, one has non-zero elements of D‖x in positive degrees, correspond-
ing to surjective maps ψ ∈ De. If ψ‖x �= 0, then A(trivx;ψ‖x) = 0. Thus,
A(trivx;D) = sup{0} = 0.

In the last case, we see x is not uniformly D-compatible, and we defined
A(trivx;D) = +∞.

The center map admits a section triv : X → X�, sending x ∈ X to trivx.
Let us write Xtriv for the image of this map and trivX for the image of the
generic point of X. Let X�,∗ = X� \{trivX}, and Xtriv,∗ = Xtriv ∩X�,∗. Our
main theorem in this section is:

Theorem 5.3. Let X be an F -finite integral scheme, and let D be a Cartier
subalgebra on X. Then D is:

1. sharply F -pure if and only if A(ζ;D) ≥ 0 for all ζ ∈ X�.
2. strongly F -regular if and only if A(ζ;D) > 0 for all ζ ∈ X�,∗.

Moreover, it suffices to check these statements on Xtriv and Xtriv,∗, respec-
tively.

Proof. Sharp F -purity, and strong F -regularity, are conditions D must satisfy
at each point of X, and A(ζ;D) depends only on φ ∈ Dc(ζ). Therefore, we
assume X = Spec(R), R is local with maximal ideal m, and cX(ζ) = m.
Simplifying notation, let D = Dm.

Suppose first that D is sharply F -pure and let ψ ∈ De be surjective with
ψ(f) = 1. Then for all ζ ∈ c−1

X (m), we have

A(ζ;D) ≥ E(f, ψ, ζ) ≥ 0.

On the other hand, if D is not sharply F -pure, then (5.2) shows A(trivm;D) =
−∞, so A(ζ;D) < 0 for some ζ ∈ X�.

Suppose then D is strongly F -regular, and let ζ ∈ X�,∗ with cX(ζ) = m. If
hX(ζ) �= (0), then hX(ζ) is not uniformly D-compatible, and we have defined
A(ζ;D) = +∞ > 0. If hX(ζ) = (0), meaning ζ ∈ ValX , take f ∈ m and
ψ ∈ De with ψ(f) = 1. Then A(ζ;D) ≥ E(f, ψ, v) > 0. Contrapositively,
suppose D is not strongly F -regular. If D is not even sharply F -pure, then
the previous case shows A(trivm;D) = −∞ ≤ 0. We therefore assume D is
sharply F -pure. Then P(D) =: p is a nonzero prime ideal of R, and Dp is a
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sharply F -pure Cartier subalgebra on Rp with P(Dp) = pRp. We have seen
A(trivp;D) = 0.

To complete the proof, we note that in both cases, the points of Xtriv

gave semivaluations with negative (resp. non-positive) log discrepancy.

Corollary 5.4 (cf. [26]). Let X be an integral F -finite scheme.

1. If X is F -pure, then A(E; CX) ≥ 0 for all divisors E over X.
2. If X is F -regular, then A(E; CX) > 0 for all divisors E over X.

Question 5.4.1. Suppose D is sharply F -pure but not strongly F -regular at
x ∈ X. Does there exist a non-trivial ζ ∈ X� with cX(ζ) = x and A(ζ;D) =
0?
Question 5.4.2. What is the relationship between the F -signature s(Dx) [6]
and AX(ζ;D), for various ζ ∈ X� centered at x? Cf. [13, Theorem 3.1]; note
that the limit function in that theorem factors as

(1
2mld(R, f t)

)2.
6. Lower-semicontinuity

For this section, let X be an integral scheme of characteristic p > 0. We show
that A(−;D) is lower-semicontinuous on X� for any Cartier subalgebra D
on X. As a first application, we deduce that the minimal log discrepancy
function derived from log discrepancies on X� is lsc on X considered with
the constructible topology. In Section 7, we give our major applications
of lower-semicontinuity of A(−;D): coherence of asymptotic multiplier ideals,
and existence of valuations calculating log canonical thresholds, on regular F -
finite schemes.

Definition 6.1. Recall that a function f : Y → R±∞ = [−∞,∞] on a
topological space Y is lower-semicontinuous (lsc) at y0 ∈ Y if f(y0) = −∞
or one of the following equivalent conditions holds:

1. For every convergent net yα → y0, f(y0) ≤ lim infα f(yα).
2. For every ε > 0 there exists an open neighborhood U ⊆ Y of y0 such

that f(y0) − ε < f(y) for all y ∈ U ;
3. If we consider R±∞ with the topology whose open subsets are of the

form (a,∞], a ∈ R, and [−∞,∞], then f is continuous.

Remark 6.2. Let us make some comments on topological notions used here.

1. Since X� is not generally first countable, we use nets and not sequences
for questions of convergence and compactness.
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2. If a topological space Y is not Hausdorff, there may be more than one
limit point of a convergent net. We write lim yβ for the set of limit
points of a convergent net yβ. In the case lim yβ consists of one point
y∗, per usual we write y∗ = lim yβ .

The following lemma is a technical generalization of a classical way of
producing a new lsc function from a given collection of lsc functions. The
author thanks Kevin Tucker for suggesting this approach, which leads to a
much simpler proof of lower-semicontinuity than the author’s original.

Lemma 6.3 (cf. [25], Proposition 7.11(c)). Let Y be a topological space and
let G be a sheaf of lsc functions on Y , meaning for every open subset V ⊆ Y ,
G(V ) is a (possibly empty) collection of R±∞-valued lsc functions defined on
V . Then a(y) := sup{g(y) : g ∈ Gy} is lsc.

Proof. The proof is very similar to one in [25]. We use definition 6.1(3).
Fix r ∈ R and (r,∞] ⊆ R±∞, and let G =

⊔
y : a(y)>r

Gy. Each g ∈ Gy ⊂ G

represents an equivalence class of lsc functions gU : U → R±∞ on open
subsets U containing y. If r < g(y), then r < gU (y) for each U and gU that
g represents, so g−1

U (r,∞] is a non-empty open subset of U (so also of X).
Write g ∼ (U, gU ) to mean g is the image of gU in Gy. I claim that

a−1(r,∞] = ∪g∈G ∪g∼(U,gU ) g−1
U (r,∞].

From this, it will follow that a−1(r,∞] is open.
If a(y) > r, then Gy ⊆ G and there exists some g ∈ Gy with g(y) > r.

Therefore, y ∈ g−1
U (r,∞] for any gU with g ∼ (U, gU ). On the other hand, if

y ∈ ∪g∈G ∪g∼(U,gU ) g
−1
U (r,∞], then y ∈ g−1

U (r,∞] for some (U, gU ) ∼ g ∈ Gy

and some U � y. Thus, r < gU (y) ≤ a(y), so y ∈ a−1(r,∞].

Theorem 6.4. For every Cartier subalgebra D on an integral scheme X of
positive characteristic, the log discrepancy A(−;D) is lsc on X�.

Proof. To make the notation for preimages of sets of R±∞ under A(−;D)
more sensible, let us simply write A(ζ) for A(ζ;D). We first reduce to the
affine case. Suppose {Ui = Spec(Ri)}Ni=1 is an affine open cover of X. We
then have a corresponding finite, compact cover {U�

i }Ni=1 of X�. Suppose
when we restrict A to each Ui, we have an lsc function. I claim this implies
A is lsc. Indeed, fix r ∈ R, and let Vi ⊂ U�

i be A|−1
U�

i
(r,∞], which is an open

subset of U�
i . Then V = ∪iVi is an open subset, since V ∩ U�

i = Vi is open
for all i. By definition, V = A−1(r,∞]. Thus, it suffices to check that A is
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lower-semicontinuous when X = Spec(R) is affine. Let D = ⊕eDe = Γ(X,D).
Each ψ ∈ De has globally defined log-discrepancy Aψ : X� → R±∞, and A is
built from these Aψ as in (6.3), taking G to be the constant sheaf associated
to (U 
→ �e{Aψ : ψ ∈ De}), where U ⊂ X� is an open subset. Therefore, it
suffices to fix 0 �= ψ ∈ De, for some e > 0, and prove Aψ is lsc.

Recall the notation evg : X� → [0,∞] for (ζ 
→ ζ(g)), g ∈ R. By defini-
tion of the topology on X� (2.22), all evg are continuous. Thus, ev−1

v (R) =
ev−1

g [0,∞) is an open subset of X�, and we can identify ev−1
g (R) as

h−1
X (Spec(Rg)). For any f ∈ R, the function E(f, ψ,−) is continuous on

ev−1
ψ(f)(R), taking values in (−∞,∞]: it is the sum of the continuous func-

tions 1
pe−1evf and −pe

pe−1evψ(f).
Applying (3.10), we see that for ζ ∈ X� with p = hX(ζ),

Aψ(ζ) = sup
n,f

{E(f, ψn, ζ) : ev−1
ψ(f)(R) � ζ}

We then apply (6.3) to the sheaf E of continuous functions

(9) Γ(U , E) = ∪n,f{E(f, ψn,−) : U ⊆ ev−1
ψn(f)(R)}

on an open subset U ⊆ X�, noting that each E(f, ψn,−) is continuous on
any open subset U for which U ⊆ ev−1

ψn(f)(R).

Remark 6.5. The sheaf E from (9) may have stalks Eζ that are empty: let
Z ⊂ X be the subset where D is not sharply F -pure; it is easy to see that
Z is closed. For any ζ ∈ h−1

X (Z), the stalk Eζ = ∅ since ζ(ψ(f)) = +∞ for
all f ∈ R. In this case, Aψ(ζ) = −∞. Thus, Aψ is automatically lsc on the
closed set h−1

X (Z) (recall hX is continuous).

Remark 6.6. If A(v;ψ) ∈ R for v ∈ ValX , and ε > 0, we can be more
precise, demonstrating a basic open subset U ⊆ ValX with A(v;ψ) − ε <
A(w;ψ) for all w ∈ U . Indeed, keeping notation from the proof, suppose
A(v;ψ) − ε/2 < E(f, ψn, ζ) for some f ∈ L with ψn(f) = 1. One can check
that U = {w ∈ ValX : |v(f)−w(f)| < (pen−1)ε/2} has the desired property.

6.1. D-spaces and minimal � log discrepancies

The remainder of this section is devoted to proving the minimal � log dis-
crepancy is lower-semicontinuous in the constructible topology of X. The key
ingredient is 6.15, which is also applicable to the log discrepancy in charac-
teristic zero on excellent regular schemes, or singular complex varieties. The
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resulting constructible lower-semicontinuity in characteristic zero greatly gen-
eralizes Ambro’s theorem for complex varieties [2, Theorem 2.2]. This section
is independent of the rest of the paper, and the D(X)-spaces introduced do
not come up again. The reader may safely skip to 7, if they like.

Definition 6.7. The constructible topology on X is the minimal topology
containing both Zariski open and Zariski closed subsets. This is equivalent to
the topology with basis consisting of finite unions of locally closed subsets.

Definition 6.8. We will say that w ∈ ValX is a Z-valuation if im(w) ⊆ Z;
denote this set by ValZX . The Z-semivaluations on X are the elements in the
closure of ValZX inside X�, which we denote D(X).

Remark 6.9. We define D(X) to be the closure of ValZX , rather than the set
of all ζ ∈ X� with image contained in Z, because we wish to approximate Z-
semivaluations by Z-valuations. Our interest in Z-valuations, as opposed to,
e.g., all divisorial or discrete valuations, stems from the uninteresting nature
of minimizing log discrepancies on Xdiv: log discrepancies are homogeneous
for the R>0 scaling action, meaning A(c ζ;D) = cA(ζ;D) for c ∈ (0,∞), so
the minimum of A(ζ;D) for ζ in some R>0-invariant subset S ⊆ X� (e.g.
Xdiv, or fibers of hX or cX) is either 0 or −∞.

Remark 6.10. A natural basis for the topology near a given ζ ∈ D(X) over
an open affine Spec(R) ⊆ X is given by finite intersections of sets of the form

ev−1
f,D(−ε + ζ(f), ζ(f) + ε) = {α ∈ D(Spec(R)) : |ζ(f) − α(f)| < ε}

or ev−1
f,D(ε,∞], where ε is a positive real number and f ∈ R; the first type of

set is used in the case ζ(f) < ∞ and the second when ζ(f) = ∞. An important
property of D(X) not shared by X� is that ev−1

f (a, b) = ∪n∈(a,b)∩Z≥0ev
−1
f (n).

Lemma 6.11. Let U ⊆ X be an open subscheme. Then D(U) = D(X)∩U�

Proof. First, note that for any open subscheme U ⊆ X we have U� = c−1
X (U),

and so in particular if U = Spec(R) is an affine open subscheme of X then
ValZU = ValZX ∩U�, as both sets are described as Z-valuations on the function
field L of X that are non-negative on R. Since U� is closed in X�, the closure
of ValZU in X� must be contained in U�, and so agrees with D(U). This implies
that D(U) ⊆ D(X) ∩ U�. For the reverse inclusion, let ζ ∈ D(X) ∩ U� and
let {vα} ⊂ ValZX be a convergent net with limit ζ. Since cX(ζ) ∈ U , we know
ζ(f) ≥ 0 for all f ∈ R, and so vα → ζ implies that there exists α0 such
that for α ≥ α0 we have vα(f) > −1. Since vα takes values only in Z, we
conclude that vα(f) ≥ 0 for all α ≥ α0 and f ∈ R, which is to say that
{vα}α≥α0 ⊂ ValZU , so ζ ∈ D(U).
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It seems much more difficult to determine if D(Y ) = D(X) ∩ Y � when
Y � X is a proper closed subscheme. In general, neither inclusion is clear to
the author.

Lemma 6.12. The center function cD = cX |D : D(X) → X is continuous.

Proof. We may assume X is affine, X = Spec(R). Let f ∈ R and ζ ∈ D(X).
Then cD(ζ) ∈ V(f) if and only if ζ(f) > 0. Since ζ ∈ D(X), im(ζ) ⊆ Z, and so
ζ(f) > 0 is equivalent to ζ(f) ≥ 1. Therefore, c−1

D (V(f)) = ev−1
f [1,∞]∩D(X)

is closed.

Lemma 6.13. For all x ∈ X, the fiber c−1
D (x) is closed and compact.

Proof. Let U = Spec(R) be an affine neighborhood of x and suppose x ∈
Spec(R) corresponds to the prime p ⊂ R. Since c−1

D (x) ⊆ D(U), we may
assume that X = Spec(R). Now, cX(ζ) = x for ζ ∈ D(X) if and only if
ζ(g) = 0 for all g ∈ R \ p and ζ(f) ≥ 1 for all f ∈ p. These are both closed
conditions.

Proposition 6.14. The image of a basic open subset of D(X) under cD =
cX |D(X) is a finite union of (Zariski) locally closed subsets, and cD induces
the constructible topology as its the quotient topology.

Proof. We assume that X = Spec(R) and that our basic open subset is of
the form U := ∩s

i=1

[
∪ti
j=1ev−1

fi
(ni,j)

]
for some fi ∈ R and ni,j ∈ Z≥0; the case

involving ev−1
fi

[n,∞] is very similar. Suppose α ∈ ev−1
fi

(n). The condition that
p = cD(α) is equivalent to p ∈ D(fi) := V(fi)c when n = 0, and p ∈ V(fi)
when n > 0. For each 1 ≤ i ≤ s, we re-number so that ni,j = 0 for 1 ≤ j ≤ t′i,
and ni,j > 0 for t′i < j ≤ ti. Then the image under cD is:

cD(U) =
s⋂

i=1

⎡⎣( t′i⋃
j=1

D(fi)
)⋃( ⋃

j>t′i

V(fi)
)
,

⎤⎦
which is a finite union of locally closed sets, proving our first claim.

One checks directly that the primage of cD(U) is a basic open subset
of D(X) (involving various ev−1

f (−1/2, 1/2) and ev−1
f (0,∞]). Therefore, the

quotient topology on X induced by cD is the constructible topology.

We use the following lemma to pass lsc functions from D(X) to X by
minimizing on fibers of cD. These semicontinuity results are typically deduced
for excellent schemes over Q using log resolutions (e.g. [2, Theorem 2.2]); such
results become special corollaries of our lemma.
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Lemma 6.15. Let f : Y → Z be a continuous surjective function between
topological spaces. Assume that Y is compact and Z is Hausdorff. Fixing
a : Y → R±∞, define a function on Z by

m(z) = inf
f(y)=z

a(y).

Then m is lsc on Z whenever a is lsc on Y .

Proof. If m(z) = −∞ then lower-semicontinuity is automatic at z, so we fix
z∗ ∈ Z with m(z∗) > −∞. Suppose there exists a convergent net zν → z∗,
indexed by a directed set N , with lim infν m(zν) < m(z∗). Then for some
fixed 0 < ε � 1, there exists ν0 ∈ N with the property that for every ν ≥ ν0,
there is some μ ≥ ν making

m(zμ) + ε < m(z∗).

We may therefore select, for each ν ≥ ν0, wν ∈ {zμ}μ≥ν with m(wν) < m(z∗);
note wν → z∗. Set N ′ = (ν ≥ ν0) ⊂ N . By construction, m(wν) + ε < m(z∗)
for all ν ∈ N ′.

By definition of m(wν) = inff(y)=wν
a(y), for each ν ∈ N ′ there must

exist yν ∈ Y with f(yν) = wν and a(yν) < m(wν) + ε < m(z∗). Compactness
of Y allows us to pass to a convergent subnet {yβ}β∈B of {yν}ν∈N ′ ; note
that {f(yβ)}B is a sub-net of {f(yν)}N ′ = {wν}N ′ , so z∗ ∈ limβ f(yβ). If
y∗ ∈ limβ yβ , then a(y∗) ≤ lim infB a(yβ) < m(z∗) because a is lsc on Y
(6.1(1)). This gives a contradiction:

m(z∗) ≤ a(y∗) ≤ lim inf
B

a(yβ) < m(z∗).

Therefore, m must be lsc on Z.

Definition 6.16. The minimal � log discrepancy of D at x ∈ X is defined
to be

mld�(x;D) = minA(ζ;D),
where we minimize over ζ ∈ D(X) with cD(ζ) = x. 6.13 and 6.4 implies this
minimum is achieved.

Note that if mld�(x;D) < ∞ then any ζ achieving this minimum must
have a D-compatible home Z.

Theorem 6.17 (cf. [2]). For any integral scheme X of characteristic p > 0,
mld�(−;D) : X → R±∞ is lsc in the constructible topology on X. Explicitly,
for any x ∈ X and ε > 0, there is a locally closed subset G ⊂ X containing x
such that mld�(x′;D) > mld�(x;D) − ε for all x′ ∈ G.
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Proof. The theorem follows directly from Theorem 6.15, since D(X) is com-
pact, XConstr is Hausdorff, cD : D(X) → XConstr is continuous, and A(−,D) :
X� → R±∞ is lsc (6.4).

Remark 6.18. Log discrepancies on ValX and X� are also lsc over fields
of characteristic zero, so the same proof recovers Ambro’s result over C, and
applies more generally [30, 8, 7].

Remark 6.19. It is a major open problem in the (characteristic zero) mini-
mal model program to determine if the (usual) minimal log discrepancy is lsc
in the Zariski topology on the set of closed points of a variety. Some results
in this direction are known for complex varieties, cf. [22, 21].

Another natural function to consider is the appropriate version of the log
canonical threshold of graded sequences of ideals with respect to strongly F -
regular Cartier subalgebras. Many of the proofs found in the final sections of
[30] can be adapted to our setting, and we devote §7 to this function.

7. Log canonical thresholds of graded sequences of ideals

Let us fix an integral, F -finite, strongly F -regular scheme X with fraction
field L. We note that F -finiteness implies excellence. We also fix a strongly
F -regular Cartier subalgebra D and a nonzero ideal q on X. Starting with
Subsection 7.3, we assume that X is regular. We skip these hypotheses when
stating most lemmas, but make them explicit in theorems and some defini-
tions for emphasis, clarity, and ease of reference. Denote by trivX the trivial
valuation L× → {0} and by Val∗X := ValX \ {trivX}.

In this final section, we study log canonical thresholds of graded sequences
of ideals in positive characteristics, proving the positive characteristic versions
of several theorems of Jonsson and Mustaţă along the way. We follow the
same general strategy as [30]. There are a number of points where we must
replace parts of their approach, especially those making use of log resolutions,
with arguments involving p−e-linear maps, and more topological arguments
involving valuation spaces. An interesting outcome of this approach is we give
the first proof that asymptotic multiplier ideals associated to multiplicatively
graded sequences are coherent sheaves of ideals on strongly F -regular schemes
(7.7). Our approach applies also to klt varities in characteristic zero, giving
an alternative to the usual description involving log resolutions; see (7.8).

Convention: Unless explicitly stated otherwise, all schemes in this sec-
tion are understood to have characteristic p > 0. Recall from §3.2 that we
write a� for (multiplicatively) graded sequences of ideals, and b• for an F -
graded sequence. All elements of a (multiplicatively/F -) graded sequence of
ideals are assumed to be nonzero.
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7.1. Log canonical thresholds of graded sequences

Any v ∈ Val∗X defines a graded sequence of ideals, denoted here by a�(v). On
an open affine chart Spec(R) ⊂ X containing cX(v), Γ(Spec(R), as(v)) is the
ideal

as(v) = {f ∈ R : v(f) ≥ s}; s ∈ N0.

If cX(v) �∈ Spec(R), we set Γ(Spec(R), as(v)) = R for all s ≥ 0.
Jonsson and Mustaţă prove the following statement showing that w(a�(v))

compares the values of w and v, asymptotically.

Lemma 7.1 (cf. Lemma 2.4 [30]). Let v ∈ Val∗X be nontrivial. Then

w(a�(v)) = inf w(b)
v(b)

for every w ∈ ValX , where b ranges over ideals on X such that v(b) > 0.

Recall from (3.12)

D · at� =
∑
m≥1

D · at/mm and A(ζ;D · at�) = sup
m

A(ζ;D · at/mm ).

We now introduce the central topic of study in this subsection, log canon-
ical thresholds of X,D, and a� with respect to the nonzero ideal q on X;
recall our standing assumptions on X, D, and a�.

Definition 7.2 (Log canonical threshold of graded sequence, cf. [30, 8]). Let
v ∈ Val∗X with v(a�) > 0 and A(v;D) < ∞. The log canonical threshold of a�
with respect to q, D, and v ∈ Val∗X is

lctq(v;D, a�) = A(v;D) + v(q)
v(a�)

.

When v(a�) = 0, or A(v;D) = +∞, we define lctq(v;D, a�) = +∞. The log
canonical threshold of a� with respect to q and D is

lctq(D, a�) = inf
v∈Val∗X

lctq(v;D, a�).

Remark 7.3. If v ∈ Val∗X has A(v;D) < ∞ and 0 < v(a�), then (3.16)
implies

(10) lctq(v;D, a�) = sup{t ≥ 0 : v(q) + A(v;D · at�) > 0},
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which is equivalent to

(11) lctq(v;D, a�) = sup{t ≥ 0 : v(q) + A(v;D · at/mm ) > 0 for some m}.

These expressions are quite closely related to the expressions for log discrep-
ancies in terms of sub-canonical divisors in [18]. We note that (11) implies
that lctq(−;D, a�) is lower-semicontinuous on Val∗X .

Remark 7.4. In previous versions of this article, we introduced log canonical
thresholds with respect to semivaluations ζ ∈ X� with ζ(q) < ∞, taking (10)
for the defintion. We only treated this on Val∗X in any depth, and the extension
to X� we proposed was very technical, so have chosen to focus on Val∗X in
revisions.

7.2. Asymptotic multiplier ideals of Cartier subalgebras

We define sheaves of ideals J (D·at�) containing information about values, and
in particular minima, of A(−;D·at�). We model our definition on the valuation-
theoretic description of asymptotic multiplier ideals, see e.g. [35, 30, 8].

Definition 7.5 (Asymptotic multiplier ideal of (D · at�)). Consider X, D,
and a� as before. For t ∈ R≥0 and an affine open U = Spec(R) ⊆ X, the
asymptotic multiplier ideal of (D · at�) on U is

Γ(U,J (D · at�)) =
⋂

v∈Val∗U

{f ∈R : v(f) + A(v;D · at�) > 0}

=
⋂

v∈Val∗U

{f ∈R : v(f) + A(v;D · at/mm ) > 0 for some m ≥ 1}.

We now prove that this sheaf of abelian groups gives a coherent sheaf of
ideals. The following lemma is used to make compactness arguments several
times throughout this section. Compactness statements of this form are well-
known to experts, as is their usefulness when applying valuation spaces to
the study of multiplier ideals; cf. [30, Proposition 5.9] [8, Theorem 3.1(c)].
We choose to re-state the hypotheses on X and D, since this lemma is cited
frequently (and in the introduction).

Lemma 7.6 (cf. [30, 8]). Let X be an integral, F -finite, strongly F -regular
scheme, D a strongly F -regular Cartier subalgebra on X, and a �= 0 an ideal
on X. For any t ∈ [0,∞), the set

Vt := {ζ ∈ X� : ζ(a) = 1, A(ζ;D) ≤ t}

is a compact subset of Val∗X .
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Proof. This set is closed, since (a 
→ ζ(a)) is continuous on X� and A(−;D)
is lower-semicontinuous; thus, Vt is compact since X� is. Note also that Vt ⊆
Val∗X , since strong F -regularity of D implies A(ζ;D) = +∞ for every ζ ∈ X�

with hX(ζ) �= ηX , and ζ(a) = 1 implies that ζ �= trivX . Thus, Vt is a compact
subset of X� contained in Val∗X .

Theorem 7.7. Suppose X is an integral, F -finite, strongly F -regular scheme
and D is a strongly F -regular Cartier subalgebra on X. The multiplier ideal
J (D · at�) is a coherent sheaf for every graded sequence of ideals a� on X and
every t ∈ [0,∞).

Proof. Coherence is a property on each affine chart of X, so we reduce to
the case X = Spec(R), and only must check that the multiplier ideal is
preserved by localizing at a single element of R. If t < lct(X;D, a�) then the
multiplier ideals in question are OX , so we assume lct(X;D, a�) < ∞, and
t ≥ lct(X;D, a�).

I claim that it is enough to show the theorem when a� is a constant
sequence, meaning as = a for all s ≥ 1 and some fixed a ⊆ OX . To ease
notation in proving this claim, for localizations Rg of R we define J�(Rg) =
Γ(Spec(Rg),J (D·at�)) (resp. Jm(Rg) = Γ(Spec(Rg),J (D·at/mm )). If J (Rg)m =
J (R)mRg for all m ≥ 1, then

J (R)�Rg =
(∑

m

J (R)m

)
Rg =

∑
m

(J (R)mRg) =
∑
m

J (Rg)m = J (Rg)�.

Thus, we simplify the setting and notation, writing J (Rg) for the ideal
associated to E := D · at as above. We must prove that J (Rg) = J (R)Rg for
every g ∈ R. Of course, if g ∈

√
J (R), then Rg = J (R)Rg ⊆ J (Rg) ⊆ Rg

since J (−) is a sheaf on X. Thus, we fix g ∈ R \
√
J (R) and set U :=

Spec(Rg).
We wish to show that y �∈ J (R)Rg implies y �∈ J (Rg), and it is enough

to check this for y ∈ R. We do this by showing that there exists w ∈ Val∗X
such that w(g) = 0 and w(y) + A(w; E) ≤ 0, which implies w ∈ Val∗U and
y �∈ J (Rg). Since y �∈ J (R)Rg, we know that gn �∈ (J (R) : y) for any n ≥ 0,
so by definition for each n ≥ 0 there exists some wn ∈ Val∗X such that

(†n) wn(gny) + A(wn; E) ≤ 0.

Being a sum of a continuous and lower-semicontinuous function,

w 
→ (w(gny) + A(w; E)) : Val∗X → R ∪ {+∞}
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is also lower-semicontinuous. Thus, if we denote by Wn the set of all w ∈ Val∗X
satisfying (†n), each Wn is a closed subset of Val∗X . Because w ∈ Wn are
centered on X, w(gn−1y) ≤ w(gny), so Wn ⊆ Wn−1 for all n ≥ 1.

Note also that if w satisfies (†n) then so does β w for all β ∈ R>0, so
R>0 · Wn = Wn for each n. We assumed that D is strongly F -regular, so
A(w;D) > 0 for every w ∈ Val∗X . This implies that if w ∈ W0, then w(a) > 0:
indeed, by (†n) with n = 0, we have

(12) 0 < A(w;D) ≤ t w(a) − w(y) ≤ t w(a),

Therefore, there exists an R>0 multiple of w with w(a) = 1. Now considering
w ∈ W0 with w(a) = 1, (12) tells us A(w;D) ≤ t. It follows that Wn ∩ Vt is
non-empty for all n ≥ 0, where

Vt := {ζ ∈ X� : ζ(a) = 1, A(ζ;D) ≤ t} ⊆ Val∗X , as in (7.6).

Being the intersection of two non-empty compact sets, W̃n := Wn ∩ Vt is
also a non-empty compact subset of Val∗X . A descending chain of non-empty
compact subsets has non-empty intersection, hence there exists w∞ ∈ ∩nW̃n.
By construction, w∞ satisfies the inequalities (†n) for all n ≥ 1, which is
impossible if w∞(g) > 0. Thus, w∞(g) = 0, or equivalently cX(w∞) ∈ U .

Remark 7.8. As mentioned in the introduction, our argument above can be
used to prove that asymptotic multiplier ideals are coherent whenever one
has a statement such as 7.6.

For example, suppose X is a normal variety over C, or is regular and
excellent over Q. Take a graded sequence of ideals a� on X and suppose
N ⊆ X is a closed, proper subscheme containing the singular locus of X and
the support of a1 (hence of all as). We may reduce, as above, to the case that
all as = a ⊆ OX , and following that argument can produce the closed subsets
Wn. Then [30, Proposition 5.9] and [8, Theorem 3.1(iii)] prove

Vt = {v ∈ Val∗X : AX(v) ≤ t and v(IN ) = 1}

is a compact subset for all t, so 0 < v(a) ≤ v(IN ) implies that Wn∩Vt is non-
empty for all n. Thus, our argument above proves that J (X, at�) is coherent.
We remark, however, that this compactness requires simplicial decompositions
of ValX , in [30], and {v : v(IN ) = 1} in [8]. These are provided by log
resolutions.

Question 7.8.1. Suppose X is a connected normal klt variety of positive char-
acteristic, in the sense that A(ordE ; CX) > 0 for every divisor E ⊂ Y on
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a normal variety admitting a proper birational morphism Y → X. Are the
sets Vt ⊆ X� defined as in (7.6), with D = CX , contained in Val∗X? Note
that while Vt is always a compact subset of X�, by lower-semicontinuity of
A(−; CX), there are now uniformly CX -compatible subschemes when X is not
strongly F -regular.

7.3. The conjectures of Jonsson and Mustaţă

For the remainder of this section, we assume X is a regular F -finite
scheme. Suppose lctq(D, a�) < ∞. Our first goal is to prove that there ex-
ist valuations v ∈ Val∗X with lctq(v;D, a�) = lctq(D, a�); we say any such v
computes this lct. We then prove the implications between the conjectures
numbered 7.4 and 7.5 in [30] hold also in our setting. These theorems ulti-
mately reduce to affine-local considerations, and so we assume X = Spec(R).
To simplify notation, we write Jt for Γ(X,J (D · at�)).

If v ∈ Val∗X computes lctq(D, a�) =: λ < ∞, I claim cX(v) ∈ V(Jλ : q),
cf. the beginning of [30, §7]. Indeed, if v computes lctq(D, a�), then v(q) +
A(v;D · aλ�) = 0. Now consider f ∈ (Jλ : q). Since fq ⊆ Jλ, the definition of
Jλ forces (v(f) + 0) = (v(f) + v(q) + A(v;D · aλ�)) > 0. Therefore, v(f) > 0
and cX(v) ∈ V(Jλ : q).

The following lemmas allow us to pass Abhyankar valuations on an F -
finite regular scheme to an appropriate affine space via completion. The proofs
for these lemmas given in [30] are independent of characteristic.

Lemma 7.9 (cf. [30, Lemma 3.10]). Let m ∈ X and consider the completion
morphism X ′ = Spec(R′) → X, where R′ = ÔX,m. If v′ ∈ ValX′ is centered at
the closed point and v = v′|X , then κ(v) = κ(v′) and the value groups of v and
v′ are equal. In particular, tr.degX′(v′) = tr.degX(v) and ratrk(v′) = ratrk(v).

Lemma 7.10 (cf. [30, Lemma 3.11]). Let k ⊆ K be an algebraic field exten-
sion and φ : An

K → An
k the corresponding morphism of affine spaces. Suppose

that v′ is a valuation on K(x1, . . . , xn) with center 0 ∈ An
K , and let v be its

restriction to k(x1, . . . , xn). Then v is centered at 0 ∈ An
k , tr.degAn

K
(v′) =

tr.degAn
k
(v), and ratrk(v′) = ratrk(v).

Jonsson and Mustaţă prove the next lemma for the more general setting
of a regular morphism, but the only case we ever apply it to here is that
of completion of local rings of X, so content ourselves to prove it in this
case. In this subsection, we have assumed X is regular, hence Gorenstein,
so D ⊆ CX is equal to CX · b• for some F -graded sequence of ideals. Indeed,
CX
e

∼= HomR(F e
∗R,R) with its right R-module structure (i.e. the F e

∗R-module
structure) is a canonical module for R, thus isomorphic to R.
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Lemma 7.11. Let m ∈ X and let X ′ = Spec(R′) → X be the completion
morphism at m. Set a′� = {asR′}s≥1 and b′• = {beR′}e≥0, and extend D = CX ·
b• to D′ = CX′ ·b′•. Suppose λ := lctq(D, a�) < ∞. Let Hλ = J (X ′;D′ ·(a′�)λ).

1. For any v′ ∈ ValX′ and t ≥ 0, we have A(v′|R;D · at�) = A(v′;D′ · a′ t� ).
2. lctqR′(D′, a′�) ≥ λ with equality when m is a minimal prime of (Jλ : q).
3. If m is a minimal prime of (Jλ : q), then

√
(Jλ :R q)R′ =

√
(Hλ :R′ qR′).

Proof. We start with (1). Fix v′ ∈ ValX′ and let v = v′|R. By definition,
vF (b•) = v′F (b′•) and v(a�) = v′(a′�). Since X is F -finite and R′ is a faithfully
flat R-algebra, R′⊗R(CX)e ∼= (CX′)e for all e ≥ 1, see (1). A direct calculation,
using (3.16), shows that A(v;D · at�) = A(v′;D′ · a′ t� ).

Moving on to (2) and (3), we just proved lctqR′(v′;D′, a′�) = lctq(v′|R;D, a�)
for all v′ ∈ Val∗X′ . Taking infima over all v′ ∈ Val∗X′ and v ∈ ValX , we arrive
at the inequality claimed in (2).

Now assume m is a minimal prime of (Jλ : q), so
√

(Jλ : q)Rm = mRm.
Since R → R′ is flat,

(Jλ : q)R′ = (JλR
′ : qR′), hence

√
(JλR′ : qR′) = mR′.

Note also that JλR
′ ⊆ Hλ: if f ∈ Jλ, then v(f) + A(v;D · aλ�) > 0 for all

v ∈ Val∗X . In particular, this is true for all v of the form v′|R, v′ ∈ Val∗X′ , so
f ∈ Hλ. Therefore, to show equality of radicals, it suffices to prove 1 �∈ (Hλ :
qR′). This is easily seen to be equivalent to λ ≥ lctqR′(D′, (a′�)), so we reduce
to proving the equality of log canonical thresholds in (2).

The key observation is that any v ∈ ValX with cX(v) = m has an exten-
sion, by m-adic continuity, to v̂ ∈ ValX′ . A corollary is that (v′ 
→ v′|R) gives
a surjection

(ValX′ ∩ c−1
X′ (mR′)) → (ValX ∩ c−1

X (m)).

Since 1 �∈ (Jλ : q)Rm, and the radical of this colon is mRm, we know 1 ∈
(Jλ : q)Rp for all p � m. It must thus be the case that v(q)+A(v;D ·aλ�) ≤ 0
for some v ∈ ValX ∩ c−1

X (m). But then v̂(q) +A(v̂;D · aλ�) ≤ 0, where v̂ is the
continuous extension of v to R′. This implies 1 �∈ (Hλ : qR′).

Remark 7.12. Jonsson and Mustaţă show that in fact Ht = JtR
′ for all

t ≥ 0, but their proof uses that one can base change log resolutions (used to
compute Jt) along regular morphisms. Lacking this technique for computing
Jt, we do not know if this holds in our setting.

Theorem 7.13 (cf. [30, Theorem 7.8]). Let v ∈ Val∗X with A(v;D) < ∞.
The following assertions are equivalent:
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1. There exists a� on X such that v computes lctq(D, a�) < ∞.
2. For every w ∈ Val∗X with w(a) ≥ v(a) for every ideal a ⊂ OX , A(w;D)+

w(q) ≥ A(v;D) + v(q).
3. The valuation v computes lctq(D, a�(v)) < ∞.

Our proof is very similar to the one found in [30]. Notice, however, that
we do not have part (ii) of their theorem, since the multiplier ideals Jt are
not known to be subadditive. A proof of subadditivity in characteristic p >
0 would have to be quite different from the characteristic zero case, since
Kawamata-Viehweg Vanishing is used in the proof, which is known to be
false in positive characteristics, see [44, 55].

Proof. Certainly (3) implies (1). We prove (1) ⇒ (2) ⇒ (3). For the first impli-
cation, suppose v computes lctq(D, a�) < ∞, so that in particular v(a�) > 0.
If w(a) ≥ v(a) for all ideals a on X, then (7.1) shows w(a�) ≥ v(a�). Since v
minimizes lctq(−;D, a�), we know

A(w;D) + w(q)
w(a�)

≥ A(v;D) + v(q)
v(a�)

implying that
A(w;D) + w(q)
A(v;D) + v(q) ≥ w(a�)

v(a�)
≥ 1

proving (2).
Supposing (2) holds, we prove (3). We see from the definition that

v(a�(v)) = 1, and so assertion (3) is equivalent to proving

lctq(w;D, a�(v)) ≥ A(v;D) + v(q).

If w(a�(v)) = 0 then lctq(w;D, a�(v)) = +∞ and this is trivial. We therefore
assume w(a�(v)) > 0, in which case the desired inequality is

(∗) A(w;D) + w(q)
w(a�(v))

≥ A(v;D) + v(q).

The left hand side is invariant under R>0-scaling on w, and so we may as-
sume w(a�(v)) = 1. Since a�(v) is the sequence of valuation ideals for v,
if w(a�(v)) = 1 then w(a) ≥ v(a) for all ideals a. But then (∗) holds by
assumption (2).

Still following the approach of Jonsson and Mustaţă, we now prove that
we may modify a1 and q so that they are both locally primary to a chosen
minimal prime of (Jλ : q).
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Lemma 7.14. For s ∈ N1 and an ideal m on X, define

(13) cj =
j∑

i=0
aim

s(j−i)

and c� = {cj}j≥1. Then c� is a graded sequence, and v(c�) = min{v(a�), v(ms)}.
Proof. That c� is graded follows definitionally from the graded property of
a�.

Let us then prove v(c�) = min{v(a�), v(ms)}. Note that aj +msj ⊆ cj for
all j ≥ 1, so v(c�) ≤ min{v(a�), v(ms)} for all s and v ∈ ValX .

• If v(ms) ≤ v(a�), then −v(ai) ≤ −i v(ms) for all i ≥ 1. Therefore,

v(ms) = j v(ms) − v(ai) + v(ai)
j

≤ (j − i) v(ms) + v(ai)
j

.

We then see that

v(cj)
j

= min
0≤i≤j

{(j − i)v(ms) + v(ai)
j

}
= v(ms)

giving v(c�) = v(ms).
• If v(ms) > v(a�), then j v(ms) > v(aj) for all j ≥ j0 � 0. Now, for
n > 2j0 we have

v(an)
n

≤ v(aj) + v(an−j)
n

<
v(aj) + (n− j)v(ms)

n
< v(ms).

Therefore, v(c�) = v(a�), since

v(cn) = min
j
{v(aj), (n− j)v(ms)}

for all n.

Lemma 7.15 (cf. [30]). Assume lctq(D, a�) = λ < ∞ and let m be the generic
point of an irreducible component of V(Jλ : q). Defining c� as in (13) with
s � 0 gives lctq(D, a�) = lctq(D, c�). If v ∈ Val∗X computes lctq(D, c�), then
v computes lctq(D, a�).

Proof. Note that
√

(Jλ : q)⊆m. First consider the special case m=
√

(Jλ : q)
and let n ∈ N1 such that mnq ⊆ Jλ. Define λ′ = lctmnq(D, a�) > λ, and
define c� using any s � 0 with n/s < (λ′ − λ). Fix 0 < ε � 1 with n/s <
(λ′(1 − ε) − λ).
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We denote by W the set of v ∈ Val∗X with lctq(v;D, a�) < ∞, and Wε ={
v ∈ W : lctq(v;D, a�) ≤ λ

1−ε

}
. Since mn ⊆ (Jλ : q) and v(Jλ : q) > 0, it

follows v(m) > 0. Therefore,

lctq(D, c�) = inf
v∈W

A(v;D) + v(q)
min{v(a�), v(ms)}

≤ inf
v∈Wε

A(v;D) + v(q)
min{v(a�), v(ms)}

= inf
v∈Wε

(
A(v;D) + v(q)

v(a�)
max

{
1, v(a�)

v(ms)

})
(14)

When v ∈ Wε we have

λ′ − lctq(v;D, a�) ≥
(1 − ε)λ′ − λ

1 − ε

> (1 − ε)λ′ − λ > n/s,

so in particular

(15) n

s
(λ′ − lctq(v;D, a�))−1

< 1.

Additionally,

λ′ − lctq(v;D, a�) ≤
n v(m)
v(a�)

= n v(ms)
s v(a�)

for all v ∈ W , so if v(m) > 0 we can re-arrange this estimate and apply (15):

(16) v(a�)
v(ms) ≤ n

s
(λ′ − lctq(v;D, a�))−1

< 1.

Thus, by applying (16) to (14) we have:

lctq(D, c�) ≤ inf
v∈Wε

(
A(v;D) + v(q)

v(a�)
max

{
1, v(a�)

v(ms)

})
= inf

v∈Wε

A(v;D) + v(q)
v(a�)

= lctq(D, a�).

We conclude lctq(D, c�) ≤ lctq(D, a�). The other inequality follows from
monotonicity, 3.14(1).
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Now treating the general case of m a minimal prime of (Jλ : q), we
complete X at m without changing the log canonical thresholds 7.11(2). After
completing,

√
(Jλ : q) = m, so we reduce to the previous case.

Finally, suppose v computes lctq(D, c�). Then

lctq(D, a�) = lctq(D, c�) = A(v;D) + v(q)
v(c�)

,

and from v(c�) ≤ v(a�) we get

lctq(D, a�) ≥
A(v;D) + v(q)

v(a�)
≥ lctq(D, a�).

Therefore, the inequalities are equalities, proving that v also computes
lctq(D, a�).

We are ready to prove the following existence result using essentially the
same method as Jonsson and Mustaţă.

Theorem 7.16 (cf. [30, Theorem 7.3]). Let λ = lctq(D, a�) < ∞. For any
generic point m of an irreducible component of V(Jλ : q) there exists a valu-
ation with center m computing lctq(D, a�).

Proof. Applying 7.11, we may assume (R,m) is local and m =
√

(Jλ : q).
Enlarging a� using the previous proposition, we also assume that ms ⊆ a1 for
some s � 0. Since λ < ∞, we can fix M ∈ R with λ < M , and lctq(D, a�) is
unchanged by considering only those v ∈ Val∗X such that v(a�) > 0 and

lctq(v;D, a�) = A(v;D) + v(q)
v(a�)

≤ M,

or equivalently
A(v;D) + v(q) ≤ M v(a�).

Because ms ⊆ a1, mst ⊆ at for all t ≥ 1, and we see 0 < v(a�) ≤ v(ms), i.e.
cX(v) = m. Then A(v;D) ≤ A(v;D) + v(q) ≤ Mv(a�) ≤ Mv(ms). Re-scaling
v if necessary, we may assume v(m) = 1, which now gives A(v;D) ≤ N := Ms.
Thus, v ∈ VN as defined in (7.6). We see that

lctq(D, a�) = inf
v∈VN

lctq(v;D, a�),



1522 Eric Canton

and lctq(−;D, a�) is lsc (11), so compactness yields v ∈ VN achieving this
minimum.

We do not get very much information about the valuation computing
lctq(D, a�) above. In analogy with the discrete valuation case, where
lctq(v;D, a�) = +∞ for non-divisorial discrete valuations on varieties (3.7),
one might expect these valuations to be Abhyankar. Jonsson and Mustaţă
conjecture exactly this, calling Abhyankar valuations quasi-monomial, since
their schemes are excellent over Q.

Conjecture 7.17 (cf. [30, Conjecture 7.4]). Suppose lctq(D, a�) = λ < ∞.

• Weak version: for any generic point m of an irreducible component
of V(Jλ : q) there exists a Abhyankar valuation v ∈ Val∗X computing
lctq(D, a�) with cX(v) = m.

• Strong version: any valuation computing lctq(D, a�) must be Ab-
hyankar.

Jonsson and Mustaţă reduce this conjecture to the (potentially) simpler
case of affine space.

Conjecture 7.18 (cf. [30, Conjecture 7.5]). Suppose X = An
k with n ≥ 1 and

k algebraically closed of characteristic p > 0. Suppose the graded sequence of
ideals a� vanishes only at a closed point x ∈ X, and lctq(D, a�) < ∞. Then:

• Weak version: there is a Abhyankar valuation v computing lctq(D, a�)
with cX(v) = x.

• Strong version: any valuation with transcendence degree 0 over k
computing lctq(D, a�) must be Abhyankar.

As expected from [30], 7.17 may be reduced to 7.18. To make reductions
as they do, we need their second “enlarging lemma.”

Lemma 7.19 (cf. [30, Proposition 7.15]). Suppose that λ = lctq(D, a�) < ∞
and let m ∈ X with ms ⊆ a1. If N > λs and r = q + mN then lctr(D, a�) =
λ. Furthermore, v ∈ Val∗X computes lctq(D, a�) if and only if v computes
lctr(D, a�).

Proof. As noted previously, q �⊆ Jλ but q ⊆ Jt for all t < λ. To prove
lctr(D, a�) = λ, it therefore suffices to show that mN ⊆ Jλ. This, of course,
follows from our choice of N > λs: we want to check that

(∗) v(mN ) + A(v;D, aλ�) > 0 for every valuation v ∈ Val∗X .
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If v(m) = 0, then 0 ≤ v(a�) ≤ v(ms) = 0 and A(v;D · aλ�) = A(v;D) > 0
by strong F -regularity, see (5.3). We therefore assume v(m) > 0. Rescaling v
does not change the truth of (∗), and so we assume v(m) = 1. Our assumed
inclusion ms ⊆ a1 gives λ v(a�) ≤ sλ < N . Now,

v(mN )+A(v;D, aλ�) = N+A(v;D, aλ�) = N+A(v;D)−λv(a�) > A(v;D) > 0.

We conclude that (∗) holds.
We now prove that v computes lctq(D, a�) if and only if it computes

lctr(D, a�). The inclusion q⊆ r implies that v(r)≤ v(q), so if λ = lctq(v;D, a�),
then

lctr(D, a�) = λ ≤ lctr(v;D, a�) = A(v;D) + v(r)
v(a�)

≤ A(v;D) + v(q)
v(a�)

= λ

and v also computes lctr(D, a�). To finish the proof, it suffices to prove that
v(q) = v(r) whenever lctr(v;D, a�) = λ. Recalling that v(a�) ≤ v(ms), we
have

v(m) ≥ v(a�)
s

= A(v;D) + v(r)
λs

>
v(r)
N

.

This implies that v(mN ) > v(r) = min{v(q), v(mN )} and completes the proof.

Lemma 7.20. Suppose X = An
k with k an F -finite field, let k ⊆ K be an

algebraic extension, and let An
K → An

k be the associated morphism. Extending
scalars, the Cartier subalgebra D, graded sequence of ideals a�, and ideal q on
An

k give D′, a′�, q
′ on An

K . For every valuation v′ ∈ Val(An
K) centered at 0 with

restriction v to An
κ, lctq(v;D, a�) = lctq′(v′;D′, a′�).

Proof. The proof is very similar to (7.11). Specifically, we know A(v;D) =
A(v′;D) and v(a�) = v′(a′�), so A(v;D · at�) = A(v′,D′ · (a′�)t) for all t ≥ 0. As
before, v(q) = v′(q′), so the log canonical thresholds are equal.

Lemma 7.21. Suppose (R,m) and (S, n) are regular F -finite rings, dim(R) ≥
2, and let π : Y = Spec(S) → X = Spec(R) be a birational morphism with
π(n) = m. Fix generators ΦR and ΦS for CX and CY , respectively, and suppose
ΦR = ΦS · hS/R for hS/R ∈ Frac(R). Then −divY (hS/R) ≥ 0.

Proof. Consider a prime divisor G on S. If π∗G �= 0, then ordG(hS/R) = 0
since ΦR is a unit multiple of ΦS at the generic point of G. Therefore, we may
assume π∗G = 0, and replace R and S with their localizations at the generic
points of the closure of π(G) and G, respectively. Then π factors through the
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blow-up of X at m, so A(ordG; CX) ≥ A(ordm; CX) = dim(R) ≥ 2. Applying
(3.8) to S,

A(ordG; ΦR) = A(ordG; ΦS · hS/R) = A(ordG; CY ) −
ordG(hS/R)

p− 1

= 1 −
ordG(hS/R)

p− 1 .

Putting this all together, −ordG(hS/R) ≥ (p− 1) = (p− 1)(2 − 1).

Remark 7.22. Lemma 7.21 generalizes the well-known effectivity of the rel-
ative canonical divisor for a proper birational morphism between smooth
varieties.

Theorem 7.23 (cf. [30, Theorem 7.5]). If the weak (resp. strong) version of
7.18 holds for every n ≤ N and D = CAn, then the weak (resp. strong) version
of 7.17 holds for all X with dim(X) ≤ N and D = CX .

Proof. Let us write lctq(X, a�) for simplicity.
We begin with the weak versions. Suppose λ = lctq(X, a�) < ∞ and let

m be a minimal prime of (Jλ : q). Applying Lemmas 7.15, 7.19, and 7.11, we
may assume R = k[[x1, . . . , xn]], m = (x1, . . . , xn), and that ms ⊂ a1∩q. Since
R is F -finite, k is also F -finite.

We now wish to apply 7.11 “in reverse” to reduce to the case of An
k
. Write

S = k[y1, . . . , yn], n = (y1, . . . , yn), and identify the n-adic completion of S
with R.

I claim that q and each ideal as of a� has a generating set contained in
S. For any g ∈ R there exists a sequence {gm}m≥1 ⊂ S with limm→∞ gm = g
in the m-adic topology of R. We have ms ⊆ q, so if g is a generator for q, and
gm − g ∈ ms for gm ∈ S, then we can replace g with gm without changing q.
Therefore, we can assume q is generated by elements of S. Similarly, ms ⊆ a1,
so mst ⊆ at for all t ≥ 1, and each ideal in a� has a generating set contained
in S.

Since q and a� are generated by elements of S, we can view all of these
ideals as being extended from q� ⊂ S and a�� on Spec(S) = An

k , where ns ⊆
q� ∩ a�1 still holds. Now 7.11 implies lctq(X, a�) = lctq�(An

k , a
�
�). Extending

scalars from k to k leaves this log canonical threshold unchanged (7.20), so we
are reduced to the setting of 7.18. We are thereby furnished with a Abhyankar
valuation v on An

k
, centered at 0 computing the log canonical threshold of

interest. Restricting v to S, then extending n-adically to R preserves the
Abhyankar property (cf. (7.9), (7.10)), so 7.17 holds in this case.
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We proceed to prove the implication between strong versions. Our strategy
will be similar, the crux being twice applying 7.11 to reduce to the case of
affine space. Suppose v ∈ Val∗X computes lctq(X, a�) = λ < ∞. We wish
to show that v is Abhyankar. If dimOX,cX(v) = 1, then lctq(v;X, a�) < ∞
implies A(v; CX , a�) < ∞ so v must be divisorial (3.7), hence Abhyankar.
Therefore, we may assume dimOX,cX(v) ≥ 2.

Applying 7.13, we assume that a� = a�(v), implying ms ⊆ a1 for all
s � 0. Now applying 7.19 we assume that mN ⊆ q for some N > λs. After
these replacements of q and a�, m is a minimal prime of (Jλ : q). Indeed,
(Jλ : q) ⊆ m by the same argument as before, and if p � m then ma �⊆ p for
any a > 0. This implies as = as(v) �⊆ p for any s, so if w ∈ ValX has center p
then w(a�) = 0, thus A(w; CX · aλ�) = A(w; CX) > 0 (5.3). We now reduce to
the case tr.degX(v) = 0.

The dimension formula [36, Theorem 15.6] implies that tr.degX(v) is the
maximum of dim(OX,m)−dim(OY,cY (v)) over all birational (but possibly non-
proper) morphisms Y → X, with Y a regular scheme on which v is centered;
fix some Y → X achieving this maximum. Localizing at the centers of v
on Y and X, setting R = OX,m and S = OY,cY (v), we assume π : Y → X
corresponds to a local, birational extension (R,m) ⊆ (S, n). Fixing generators
ΦR and ΦS for CX and CY , resp., we define hS/R as in (7.21); that lemma
implies g := h−1

S/R ∈ S since divY (g) ≥ 0 and S is normal. If we replace q ⊆ R

by q′ = q · OY (− 1
p−1divY (g)) ⊆ S, and write aS� for the graded sequence of

valuation ideals of v on S (an n-primary sequence, by construction of S), then
a direct calculation (using (3.3)) proves lctq′(CS ; aS� ) = lctq(CR; a�) = λ, and
v computes lctq′(CS ; aS� ); cf. [30, Corollary 1.8, Lemma 7.11].

Therefore, by replacing X with Y , q with q′, and a� with aS� , we may
assume tr.degX(v) = 0. We apply 7.11 with m = cX(v) and reduce to the case
X = Spec(κ[[x1, . . . , xd]]) with κ an F -finite field, v is a valuation centered at
the closed point of X, computing lctq(X, a�), and such that κ(v) is algebraic
over κ. Applying (7.11) again in reverse, followed by (7.20) to assume κ = κ,
we conclude v = v′|Y must be Abhyankar, so v′ is, too.

7.4. The monomial case

We now prove the strong form of 7.18 when each as is generated by monomials.
First, we need a complementary result to 4.6, which we can prove using a more
direct approach in this special setting.

Lemma 7.24. Suppose k is algebraically closed of characteristic p, X = An
k =

Spec(k[x1, . . . , xn]), and H = divX(x1 · · · xn). Then for all v ∈ Val∗X centered
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at m = (x1, . . . , xn), A(r(X,H)(v); CX) ≤ A(v; CX), with strict inequality when
r(X,H)(v) �= v.

Proof. If n = 1, then v = r(X,H)(v), so there is nothing to show. Let us then
assume n ≥ 2. Set w = r(X,H)(v).

Fixing the generator Φ for CX that projects onto (x1 · · · xn)p−1, using
3.4 we consider only A(v; Φ) and A(w; Φ). Setting φ = Φ · (x1 · · ·xn)p−1,
we see A(w;φ) = 0 using (3.3) and (3.8). Moreover, the Cartier subalgebra
{{φ}} ⊆ CX is sharply F -pure, so A(v;φ) ≥ 0. But w(H) = v(H), so using 3.3
again we see A(w; Φ) ≤ A(v; Φ).

Assume now v �= w, and let us show A(w; Φ) < A(v; Φ). Since w is
monomial on (X,H), there exists a log smooth pair π : (Y,D) � (X,H)
so that the local ring at y0 := cY (w) has dimension ratrk(w), and so that
y1 := cY (v) is contained in the closure Z of {y0} in Y . Such pairs exist over
arbitrary ground fields, cf. [30, Lemma 3.6(ii)], which is a stronger, but more
specialized, version of local monomialization (cf. [31]).

I claim v �= w implies cY (v) is not the generic point y0 of Z. We proceed by
contradiction. To see this, we note that ratrk(w) ≤ ratrk(v), since the value
group of w is contained in the value group of v. Supposing y1 := cY (v) = y0,
the residue field κ(y0) is a sub-field of κ(v) = Ov/mv (where Ov is the valua-
tion ring of v and mv is the maximal ideal), so tr.deg(κ(y0)/k) ≤ tr.degY (v).
But then Abhyankar’s inequality forces v to be Abhyankar, thus equal to w:

n = (ratrk(w) + tr.deg(κ(Z)/k)) ≤ ratrk(v) + tr.degY (v) ≤ n.

Since we are assuming v �= w, we thus conclude y1 �= y0.
Let z ∈ my1 \m2

y1 that is a unit in OY,y0 = OY,c(w), so the divisor divU (z)
is smooth in some neighborhood U of y1. Writing G for the closure of divU (z)
in Y , we can still define the retraction r(Y,H+G)(v) =: w′, since v ∈ Val∗U and
(H + G) ∩ U is snc on U . By construction,

(17) A(w; CY ) < A(w′; CY ),

and the same idea we used to show A(w; CX) ≤ A(v; CX) can be used to
conclude A(w′; CY ) ≤ A(v; CY ). To complete the proof, we must only study
the transformation of log discrepancies from X to Y . Let S = OY,c(v), R =
k[x1, . . . , xn]m, fix a generator ΦS for CS = CY

c(v), and define g = h−1
S/R via

Φ = ΦS · hS/R. By (7.21), g ∈ S (since S is normal). Moreover, divSpec(S)(g)
is supported on the exceptional divisor E of π, since it corresponds to the
relative canonical divisor KY/An = KY near y1. In particular, g is a monomial
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in some regular system of parameters for OY,y0 , hence w(g) = w′(g) = v(g).
Applying (3.3), which says

A(u; CX) = A(u; CY ) + u(g)
p− 1

for all u ∈ {w,w′, v}, to (17) now proves A(w; CX) < A(v; CX).

Proposition 7.25 (cf. [30], Proposition 8.1). Suppose k is algebraically closed
of characteristic p. Let a� be a graded sequence of monomial ideals on X =
An

k = Spec(k[x1, . . . , xn]), vanishing only at m = (x1, . . . , xn), and with
lct(CX , a�) < ∞. For any nonzero ideal q on X, there exists a monomial
valuation computing lctq(CX , a�), and any valuation computing lctq(CX , a�)
is monomial.

Proof. Let D = div(x1 · · · xn) and v ∈ Val∗X . If cX(v) �= m, then v(a�) = 0,
hence lctq(v; CX , a�) = +∞ by definition. Therefore, we restrict our attention
to v ∈ Val∗X ∩ c−1

X (m). The retraction v := r(X,H)(v) satisfies v(q) ≤ v(q) and
agrees with v on monomials in x1, . . . , xn, so v(a�) = v(a�). Applying (7.24),
we see

(18) lctq(v; CX , a�) = A(v; CX) + v(q)
v(a�)

≤ A(v; CX) + v(q)
v(a�)

= lctq(v; CX , a�)

for every ideal q, with strict inequality when v �= v. Thus we see (using 7.16)
there must be a monomial valuation computing lctq(CX , a�), and (18) shows
any computing valuation is monomial.
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