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Frobenius’ theta function and Arakelov invariants in
genus three
Robin de Jong

Abstract: We give explicit formulas for the Kawazumi-Zhang in-
variant and Faltings delta-invariant of a compact and connected
Riemann surface of genus three. The formulas are in terms of two
integrals over the associated jacobian, one integral involving the
standard Riemann theta function, and another involving a theta
function particular to genus three that was discovered by Frobe-
nius. We review part of Frobenius’ work on his theta function and
connect our results with a formula due to Bloch, Hain and Bost
describing the archimedean height pairing of Ceresa cycles in genus
three.
Keywords: Faltings delta-invariant, Kawazumi-Zhang invariant,
theta function.

1. Introduction

1.1. Motivation and background

Let X be a compact and connected Riemann surface of positive genus g.
Associated to X one has an invariant ϕ(X) as defined by Kawazumi [26,
25] and Zhang [32], and an invariant δ(X) as defined by Faltings [12]. The
invariants ϕ(X) and δ(X) can be expressed in terms of the spectral theory
of the Laplacian for the Arakelov metric on X, and play a key role in the
arithmetic intersection theory of curves over number fields [12, 32].

More specifically, the Kawazumi-Zhang invariant occurs as an archimede-
an contribution in a formula that relates the self-intersection of the rela-
tive dualizing sheaf of a stable arithmetic surface with the height of Gross-
Schoen cycles [32, Theorem 1.3.1], and the Faltings delta-invariant occurs as
an archimedean contribution in a (Noether type) formula that relates the
self-intersection of the relative dualizing sheaf with the stable Faltings height
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[12, Theorem 6]. Both invariants can be seen as natural real-valued functions
on the moduli space Mg of compact Riemann surfaces of genus g.

As such they have attracted attention in string theory. For example, re-
cently it was shown that the integral of the Kawazumi-Zhang invariant ϕ
in genus two against the volume form of the Siegel metric over the moduli
space M2 appears in the low energy expansion of the two-loop four-graviton
amplitude [9]. This connection has inspired a detailed study of its asymptotic
behavior in the low energy (or tropical) limit [9, 10, 11]. It was shown in [11]
that the invariant ϕ in genus two is an eigenfunction with eigenvalue 5 of
the Laplace-Beltrami operator on M2. With this, the value of the two-loop
D6R4 interaction could be calculated rigorously, and was verified to be in
agreement with the value of the interaction that was predicted by S-duality
and supersymmetry.

Given their canonical nature, and their appearance in formulas for various
intrinsic heights related to curves over number fields, it is natural to ask for
formulas for ϕ(X) and for δ(X) that are as concrete as possible. A natural
viewpoint is to try to obtain explicit formulas in purely classical terms related
to a period matrix of X, in particular, theta functions, and integrals over the
jacobian of such.

In genus one, such an explicit formula for δ(X) was exhibited already
by Faltings [12, Section 7], featuring the classical discriminant modular form
Δ(τ) of weight 12 and level one (the invariant ϕ(X) vanishes in this case).
Explicit formulas of the type described were given in genus two by Bost [3] for
the delta-invariant, and by the author [21] for the Kawazumi-Zhang invariant.
In [30] both invariants in genus two are written in terms of certain theta lifts
of weak Jacobi forms in genus one. Wilms [31] has extended the formulae
from [3, 12, 21] to hyperelliptic Riemann surfaces X of arbitrary genus (cf.
[31, Theorem 4.8]).

1.2. Aim of this paper

The aim of the present paper is to extend the above results to the case where
the genus of X is equal to three. Our main result is Theorem A. The formulas
for ϕ(X) and δ(X) given there feature integrals, over the jacobian, of (a) the
classical Riemann theta function θ, and (b) a beautiful second order theta
function φ that was discovered and studied by Frobenius [13]. It would be
interesting to see whether our explicit formulas may be brought to bear on
the study of three-loop superstring amplitudes, or can be used to calculate
the height of Gross-Schoen cycles explicitly in genus three.
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Part of our paper consists in a review of some of Frobenius’ work on
his theta function φ. Among other things we will see that, in modern terms,
Frobenius’ theta function determines a Siegel-Jacobi form of weight eight,
index one and full level over the universal complex abelian threefold (cf. Sec-
tion 4.5). Further, Frobenius’ theta function φ can be written down as an ex-
plicit linear combination of squares of theta functions with characteristics (cf.
Theorem 4.3). Finally, the restriction of φ to the universal jacobian in genus
three defines the universal difference surface over M3 (cf. Theorem 4.5).

We refer to [7, 15, 14] for other modern accounts of Frobenius’ theta
function. In each of loc. cit. the discussion is based on a connection with
the well-known Schottky-Igusa modular form in genus four, which Frobenius
discusses at the very end of his article. Our approach here will be somewhat
different and based on the earlier sections of [13].

1.3. Main result

Let X be a compact Riemann surface of genus three, and let J be the jacobian
of X. We refer to Sections 2.3 and 4.3 for definitions of the theta functions
θ and φ on (the universal covering of) J . The functions θ and φ give rise
to canonical normalized theta functions ‖θ‖ : J → R and ‖φ‖ : J → R, cf.
Section 5.3. Let μ be the Haar measure on J , normalized to give J unit
volume. We then have well-defined integrals

(1) log ‖H‖(X) =
∫
J

log ‖θ‖μ , log ‖K‖(X) =
∫
J

log ‖φ‖μ ,

with values in R. Both log ‖H‖ and log ‖K‖ can be viewed as real-valued
functions on the moduli space M3.

Theorem A. Let X be a compact and connected Riemann surface of genus
three. Let ϕ(X) be the Kawazumi-Zhang invariant of X, and let δ(X) be the
Faltings delta-invariant of X. One has

ϕ(X) = −2
3 log ‖K‖(X) + 32

3 log ‖H‖(X) + 8 log 2 ,(2)

δ(X) = −4
3 log ‖K‖(X) − 8

3 log ‖H‖(X) − 24 log(2π) + 16 log 2 .(3)

We note that the invariant log ‖H‖(X) is defined in any genus g ≥ 1,
whereas the invariant log ‖K‖(X) is special to genus three. The invariant
log ‖H‖(X) was first introduced and studied by Bost [3] and Bost, Mestre



1390 Robin de Jong

and Moret-Bailly [5] in genus two. Wilms [31, Theorem 1.1] has shown in any
genus g ≥ 1 the fundamental formula

(4) δ(X) = −24 log ‖H‖(X) + 2ϕ(X) − 8g log(2π) .

Wilms’ result (4) immediately shows that the two identities (2) and (3) in
Theorem A are equivalent.

1.4. Hain-Reed beta-invariant

Let g ≥ 3 be an integer. The Hain-Reed invariant β is a designated element of
the space C0(Mg,R)/R of continuous real-valued functions modulo constants
on Mg, defined and studied by Hain and Reed in [19]. We refer to Section 8.1
for a brief discussion. In loc. cit., an explicit formula for β was announced in
the case g = 3 in terms of the Siegel modular form χ18 and a certain integral.
However, as far as we can see, this formula has not been published since.

As was shown by the author [22], the invariant β admits a simple expres-
sion in terms of ϕ and δ. We conclude using Theorem A that we may write
the invariant β in genus three explicitly in terms of the two integrals log ‖K‖
and log ‖H‖. More precisely, we have the following. Let X be a compact and
connected Riemann surface of genus g. We then set, following [32, Section 1.4]
and [22, Definition 1.2],

(5) λ(X) = g − 1
6(2g + 1)ϕ(X) + 1

12δ(X) − g

3 log(2π) .

Here ϕ(X) and δ(X) are the Kawazumi-Zhang and Faltings delta-invariant of
X as before. By [22, Theorem 1.4] the function (8g + 4)λ is a representative
of the Hain-Reed invariant β on Mg. Specializing to the case g = 3 one finds
that 4

3ϕ(X)+ 7
3δ(X) is a representative of the Hain-Reed invariant β on M3.

From the identities (2) and (3) we may then deduce the following.

Theorem B. Let M3 denote the moduli space of compact Riemann surfaces
of genus three. The function −4 log ‖K‖ + 8 log ‖H‖ is a representative in
C0(M3,R) of the Hain-Reed invariant β on M3.

1.5. Structure of the paper

In Section 2 we review some basic definitions concerning characteristics and
theta functions. In Section 3 we discuss moduli of abelian varieties and in par-
ticular review the notions of Siegel modular forms and Siegel-Jacobi forms.
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In Section 4 we introduce Frobenius’ theta function and discuss some of its
properties, following Frobenius’ paper [13]. In Section 5 we introduce several
canonical hermitian metrics and differential forms on moduli of abelian vari-
eties, as well as canonically normalized real-analytic versions of Siegel mod-
ular and Siegel-Jacobi forms. In Section 6 we review some identities between
canonical differential forms on various moduli spaces of curves. In Section 7
we specialize to genus three and prove Theorem A. Finally in Section 8 we
connect our findings with a formula due to Bloch, Hain and Bost describing
the archimedean height pairing of Ceresa cycles in genus three.

2. Theta functions

The purpose of this preliminary section is to review some fundamentals con-
cerning characteristics and theta functions. A basic reference for this section
is [29, Chapter II]. We view all vectors as column vectors. Let g ≥ 1 be an
integer.

2.1. Characteristics

An element (a′, a′′) ∈ 1
2Z

g × 1
2Z

g is called a characteristic in degree g. We
call two characteristics distinct when they are distinct modulo Zg × Zg, and
sometimes we refer to a characteristic as being the residue class of a charac-
teristic modulo Z

g × Z
g. For characteristics a = (a′, a′′) and b = (b′, b′′) we

define the signs

(a) = exp(4πita′a′′) , (a, b) = exp(4πita′′b′) ,

and
((a, b)) = (a, b)(b, a) = exp(4πi(ta′b′′ − tb′a′′)) .

These signs only depend on the classes of a, b modulo Z
g × Z

g.
The natural group operation on characteristics is usually written in a

multiplicative manner to safe space. Following this convention we have for
example

((a, b)) = (a)(b)(ab) ,
as is easily verified. We put

(((a, b, c))) = (a)(b)(c)(abc) = (bc)(ca)(ab) = ((b, c))((c, a))((a, b)) .

A set of three distinct characteristics a, b, c is called syzygetic if (((a, b, c))) =
+1, and azygetic if (((a, b, c))) = −1.
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Lemma 2.1. Let g ≥ 1 be an integer. Each non-zero characteristic in degree g
can be written in exactly 22g−2 ways as the difference of an odd and an even
characteristic.

This can be proven using affine geometry over F2. In Section 3.3 we give
a proof based on the geometry of the moduli space of curves.

2.2. Theta functions

Let Hg denote Siegel’s upper half space of degree g, that is the set of all
complex symmetric g-by-g matrices whose imaginary part is positive definite.
Let τ ∈ Hg. Then the abelian group Lτ = τZg +Z

g is a lattice in C
g, and the

complex torus Aτ = C
g/Lτ has a natural structure of principally polarized

complex abelian variety of dimension g.

Definition 2.2 (Theta functions). For m = (m′,m′′) ∈ Z
g × Z

g we put

em(z, τ) = exp(−πi tm′τm′ − 2πi tm′z) , z ∈ C
g .

Let � ∈ Z≥0. A holomorphic map f : Cg → C satisfying

(6) f(z + τm′ + m′′) = em(z, τ)� · f(z) , m = (m′,m′′) ∈ Z
g × Z

g , z ∈ C
g

is called a theta function of order � with respect to Lτ .

The set V�,τ of theta functions of order � with respect to Lτ is a complex
vector space of dimension �g, consisting entirely of even functions (cf. [29,
Proposition II.1.3]). When f ∈ V�,τ is a non-zero theta function, we see from
(6) that the divisor of zeroes of f on C

g is Lτ -periodic, and hence descends
to give a well-defined effective divisor on the abelian variety Aτ = C

g/Lτ .
We call τ ∈ Hg indecomposable if Aτ can not be written as the product of
principally polarized abelian varieties of smaller dimension, and decomposable
if τ is not indecomposable.

2.3. Theta functions with characteristic

Definition 2.3 (Theta function with characteristic). For τ ∈ Hg and a =
(a′, a′′) ∈ 1

2Z
g × 1

2Z
g we have the theta function with characteristic a given

by the infinite series

(7) θa(z, τ) =
∑
n∈Zg

exp(πit(n+a′)τ(n+a′)+2πit(n+a′)(z+a′′)) , z ∈ C
g .
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Each θa defines a holomorphic function on C
g. We just write θ(z, τ) in

the case a = 0. The function θa = θa(z, τ) is either odd or even as a function
of z, depending on whether (a) = −1 or (a) = +1. From the definition (7) one
readily shows that for m = (m′,m′′) ∈ Z

g × Z
g and a = (a′, a′′) ∈ 1

2Z
g × 1

2Z
g

we have a functional equation

(8) θa(z + τm′ + m′′, τ) =
√

((a,m)) · em(z, τ) · θa(z, τ) , z ∈ C
g ,

where
√

((a,m)) is the sign exp(2πi(ta′m′′ − tm′a′′)). We see that the divisor
of zeroes of the holomorphic function θa is Lτ -periodic, and hence descends
to give a well-defined effective divisor on the abelian variety Aτ = C

g/Lτ . We
put

(9) ηa(z, τ) = exp(−πita′τa′ − 2πita′(z + a′′)) .

Let θ(z, τ) be the theta function with zero characteristic. A small calculation
yields that

(10) θ(z + τa′ + a′′, τ) = θa(z, τ) · ηa(z, τ) .

Equation (10) shows that the divisors of the various θa on Aτ are translates of
one another by two-torsion points. We call a characteristic a vanishing (with
respect to τ) if θa(0, τ) = 0.

The functional equation (8) shows that, somewhat confusingly, θa is not
a theta function in the sense of Definition 2.2, unless a = 0. The function θ

is not identically zero and we see that V1,τ = C · θ. Each square of a θa is
a theta function of order two, however. Moreover we have that θ2

a = θ2
a+m

for m ∈ Z
g × Z

g, in other words the theta functions θ2
a are independent

of the choice of representative of a modulo Z
g × Z

g. It can be shown that
the squares θ2

a, where a runs over all characteristics, span the space V2,τ of
theta functions of order two (cf. [14, p. 618]). Frobenius’ theta function, to
be introduced in Section 4, will be a designated element of the space V2,τ , for
τ an indecomposable element of H3.

Let Θτ denote the divisor of the theta function θ(z, τ) with zero charac-
teristic on Aτ , and let � ∈ Z≥0. Then pullback along the canonical projection
C

g → Aτ yields an isomorphism Γ (Aτ ,OAτ (�Θτ ))
∼−→ V�,τ of C-vector spaces.

We have that Aτ is indecomposable if and only if the divisor Θτ of Aτ is ir-
reducible.
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3. Moduli of abelian varieties

Let q̃ : Ug → Hg denote the universal abelian variety over Hg, by which we
mean the family of complex tori over Hg whose fiber at τ ∈ Hg is given
by the abelian variety Aτ = C

g/Lτ . We note that Ug can be realized as the
quotient of the product space C

g × Hg by the action of Z
g × Z

g given by
(m′,m′′) · (z, τ) = (z + τm′ + m′′, τ). Let ΩUg/Hg

denote the sheaf of relative
1-forms of q̃. The Hodge bundle on Hg is the pushforward sheaf Ẽ = q̃∗ΩUg/Hg

.
This is a vector bundle of rank g on Hg. We denote its determinant by L̃.
The vector bundle Ẽ is globally trivialized by the frame (dz1, . . . , dzg), and
the determinant line bundle L̃ =

∧g Ẽ is globally trivialized by the frame
dz1 ∧ . . . ∧ dzg.

We write elements of the symplectic group Sp(2g,Z) as ( A B
C D ) where

A,B,C,D are g× g matrices. We have a left action of Sp(2g,Z) on Hg given
by putting

( A B
C D ) · τ = (Aτ + B)(Cτ + D)−1 .

As is well-known the quotient Ag = Sp(2g,Z) \Hg can be identified with the
moduli space of principally polarized abelian varieties. We write q : Xg → Ag

for the universal abelian variety over Ag. In this paper, all moduli spaces are
viewed as orbifolds, or more accurately, as stacks.

More generally, let Γ ⊆ Sp(2g,Z) be a finite index subgroup. Then AΓ
g =

Γ \ Hg can be viewed as the moduli space of principally polarized complex
abelian varieties of dimension g and level Γ . Let qΓ : X Γ

g → AΓ
g denote the

universal abelian variety over AΓ
g , and let ΩXΓ

g /AΓ
g

denote the sheaf of relative
1-forms of qΓ . We have a Hodge bundle EΓ = qΓ∗ ΩXΓ

g /AΓ
g

and associated
determinant line bundle LΓ =

∧g EΓ on AΓ
g . Both EΓ and LΓ are obtained

as quotients of their counterparts Ẽ and L̃ on Hg by a natural action of
the group Γ . We just write E and L in the case of the full level subgroup
Γ = Sp(2g,Z). As any EΓ or LΓ can be obtained by pullback from Ag we
often leave out the superscript Γ and just write E or L for the Hodge bundle
and its determinant on AΓ

g .

3.1. Siegel modular and Siegel-Jacobi forms

Assume from now on that g ≥ 2. Let k ∈ Z and let Γ ⊆ Sp(2g,Z) be a finite
index subgroup. A Siegel modular form of weight k and level Γ is a holomor-
phic section of the line bundle L⊗k on AΓ

g , or, equivalently, a holomorphic
function f : Hg → C such that for all ( A B

C D ) ∈ Γ the identity

f(( A B
C D ) · τ) = det(Cτ + D)k · f(τ) , τ ∈ Hg
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is satisfied. As above let qΓ : X Γ
g → AΓ

g denote the universal abelian variety
over AΓ

g . Let X Γ,∨
g denote the dual of the universal abelian variety over AΓ

g ,
and let λΓ : X Γ

g
∼−→ X Γ,∨

g be the universal principal polarization. Let PΓ

denote the canonically rigidified Poincaré line bundle on X Γ
g ×AΓ

g
X Γ,∨

g , and
write BΓ for the rigidified line bundle (id, λΓ )∗PΓ on X Γ

g . For each Γ we can
obtain BΓ by pullback from Xg and as a result we will usually leave out the
superscript Γ . The restriction of B to a given fiber of the structure map qΓ

represents twice the cohomology class of the given principal polarization.
Let k,m ∈ Z. A Siegel-Jacobi form of weight k, index m and level Γ is a

holomorphic section of the line bundle L⊗k ⊗ B⊗m over X Γ
g . When we only

ask for a meromorphic section, then we rather speak about a meromorphic
Siegel-Jacobi form. We extend the left action of Sp(2g,Z) on Hg to a left
action of (Zg × Z

g) � Sp(2g,Z) on C
g ×Hg by putting

( A B
C D ) · (z, τ) = (t(Cτ + D)−1z, (Aτ + B)(Cτ + D)−1) , ( A B

C D ) ∈ Sp(2g,Z),
(n′, n′′) · (z, τ) = (z + τn′ + n′′, τ) , (n′, n′′) ∈ Z

g × Z
g .

Using this action Siegel-Jacobi forms of weight k, index m and level Γ can
be identified with functions f(z, τ) holomorphic on C

g ×Hg such that

f(( A B
C D ) · (z, τ)) = det(Cτ + D)k · exp(2πim tz · (Cτ + D)−1 · C · z) f(z, τ) ,

f((n′, n′′) · (z, τ)) = en(z, τ)2m · f(z, τ) , (n′, n′′) ∈ Z
g × Z

g .

We see that when f(z, τ) is a Siegel-Jacobi form of index m the restriction of
f(z, τ) to C

g × {τ} is a theta function of order 2m with respect to Lτ .
By a slight abuse of language, we call a holomorphic function f(z, τ) a

Siegel-Jacobi form of weight k and index m if some power f⊗n is of weight
kn and index mn. With this convention, we have for every characteristic a in
degree g that the square θ2

a(z, τ) of the theta function with characteristic a
is a Siegel-Jacobi form of weight one and index one, cf. [29, Section II.5].

3.2. Moduli of curves

Let g ≥ 2 be an integer. We denote by Mg the moduli space of compact
Riemann surfaces of genus g, and by p : Jg → Mg the universal jacobian over
Mg. Recall that we view moduli spaces as stacks. We have a Torelli map
t : Mg → Ag that associates to every compact Riemann surface of genus g
its jacobian. The universal jacobian p : Jg → Mg is obtained by pulling back
the universal abelian variety q : Xg → Ag along the Torelli map. Let L denote
the determinant of the Hodge bundle on Ag, and B the line bundle (id, λ)∗P



1396 Robin de Jong

on Xg as in Section 3.1. By a slight abuse of notation we shall also denote by
L resp. B the pullback of these line bundles to Mg resp. Jg along the Torelli
map.

3.3. Differences of characteristics

Using the moduli space of curves one can give a nice proof of Lemma 2.1.
The proof we present here is due to Emre Sertöz. First of all we note that
the statement of the lemma is equivalent with the following statement: let
X be a compact connected Riemann surface of genus g. Then each non-zero
two-torsion point of the jacobian of X can be written in exactly 22g−2 ways
as the difference of an odd and an even spin bundle. Here by a spin bundle
we mean a line bundle whose square is a canonical line bundle. By the sign
of a spin bundle η on a compact Riemann surface X we mean the parity of
the dimension h0(X, η) of the vector space of global sections of η.

Now the equivalent statement can be shown as follows. We may assume
that g ≥ 2. As above let Mg denote the moduli space of compact Riemann
surfaces of genus g. Let S±

g denote the moduli space of pairs of spin bundles
(X, η1, η2) with η1 odd and η2 even, and let Jg[2]′ denote the two-torsion
substack of the universal jacobian over Mg, with the zero section excluded.
The forgetful maps of both S±

g and Jg[2]′ onto Mg are finite étale maps. As
the standard action of Sp(2g,Z) on F

2g
2 \ {0} is transitive, it follows from

considerations as in [8, Section 5.14] that the monodromy action on a fiber of
Jg[2]′ over Mg is transitive and hence that Jg[2]′ is connected. This allows
us to deduce that the difference map S±

g → Jg[2]′ is finite étale, in particular
surjective with constant degree. There are 2g−1(2g − 1) odd characteristics
in degree g, and 2g−1(2g + 1) even ones. Hence the degree of S±

g over Mg is
2g−1(2g−1)×2g−1(2g+1). As the degree of Jg[2]′ over Mg is 22g−1 it follows
that the degree of the difference map S±

g → Jg[2]′ is 22g−2. This finishes the
proof of Lemma 2.1.

4. Frobenius’ theta function

The purpose of this section is to define Frobenius’ theta function, and to
review some of its properties, following [13]. We start with a discussion of
fundamental systems in degree three. Using the notion of a fundamental sys-
tem we will then introduce the so-called “reduced values” in degree three. We
characterize Frobenius’ theta function in terms of these reduced values. We
then continue to discuss the connection with the difference surface, explicit
formulas, modular properties, and finish with a discussion of the hyperelliptic
case and the decomposable case.
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4.1. Fundamental systems

Let F be a set consisting of eight distinct theta characteristics in degree three.
We call F a fundamental system of characteristics if each subset of F consisting
of three characteristics is azygetic (cf. Section 2.1).

The following properties of fundamental systems are discussed in [13,
Section 2, pp. 44–46]. The translate of a fundamental system by a theta char-
acteristic is again a fundamental system. The set of translates of a given
fundamental system consists of 64 distinct systems, and is called a pencil of
fundamental systems. A fundamental system contains either three or seven
odd characteristics. In a pencil of fundamental systems there are eight funda-
mental systems that contain seven odd characteristics, and 56 systems that
contain three odd characteristics.

The sum of all eight characteristics in a fundamental system is denoted
by 2j. We have that 2j is an element of Z

3 × Z
3 and hence that j is a

characteristic. The sum of all odd characteristics in a fundamental system
is denoted by k. We have that k is an even characteristic, and that k is
an invariant modulo Z

3 × Z
3 through a pencil. Each even characteristic is

obtained exactly once from a pencil in this manner, and hence there exist
precisely 36 pencils of fundamental systems.

Let F be a fundamental system, and write as above k for the sum of all odd
characteristics of F. When {α, β} runs over all 28 two-element subsets of F,
the characteristics kαβ yield all odd theta characteristics, each of them once.
When {α, β, γ, δ} runs over all 70 four-element subsets of F, the characteristics
kαβγδ yield all even characteristics different from k, each of them twice. In
fact if F = {α, β, γ, δ, κ, λ, μ, ν} then kαβγδ ≡ kκλμν modulo Z

3 × Z
3.

Let F = {α, β, γ, δ, κ, λ, μ, ν} be a fundamental system, and set a = αβγδ.
Then the eight-element multi-set {αa, βa, γa, δa, κ, λ, μ, ν} is again a funda-
mental system, and the sum of the odd characteristics in it is equal to ka.
In this way each given fundamental system F can be canonically extended
to a complete system of representatives from all 36 pencils of fundamental
systems.

4.2. Reduced values

Let a = (a′, a′′) be a non-zero characteristic in degree three, and let τ ∈ H3.
Let k be a characteristic in degree three such that both k and ka are even.
Let F be a fundamental system with sum of all odd characteristics equal to
k and with decomposition F = {α, β, γ, δ, κ, λ, μ, ν} such that a = αβγδ. For
the existence of such a fundamental system we refer to Section 4.1.
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Let 2j be the sum of all eight characteristics in F. We recall that j is then
a characteristic. We put (cf. [13, eqn. (13) on p. 49])

(11) ha(τ) = (j, a)
∏

ε∈{κ,λ,μ,ν}
θkβγδε(0, τ)θkαγδε(0, τ)θkαβδε(0, τ)θkαβγε(0, τ) .

It follows from Section 4.1 that the 16 characteristics occurring in the prod-
uct are all even. By Lemma 2.1 each non-zero characteristic in degree three
can be written in exactly 16 ways as the difference of an even and an odd
characteristic. We conclude that the 16 characteristics occurring in the prod-
uct are exactly those 16 even characteristics that added to a yield an odd
characteristic.

A small verification shows that ha(τ) is independent of the choice of even
characteristic k, of fundamental system F, and of four-element subset α, β, γ, δ
of F. Moreover ha(τ) is invariant under replacing a by another representative
of its class modulo Z3×Z3. We conclude that ha(τ) is an invariant of the non-
zero two-torsion point τa′ + a′′ mod Lτ of the abelian threefold Aτ = C

3/Lτ .
We set h0(τ) to be equal to zero. From (11) we see that when viewed as a

function of τ ∈ H3 each ha(τ) is a Siegel modular form of weight eight on H3.
We call ha(τ) the reduced value at τ ∈ H3 determined by the characteristic a.

4.3. Frobenius’ theta function

For τ ∈ H3 we denote by Γ00,τ ⊂ V2,τ the linear subspace of V2,τ consisting of
functions with vanishing multiplicity ≥ 4 at the origin. When τ is indecom-
posable, the space Γ00,τ is one-dimensional, cf. [13, Section 3, p. 36], or [14,
Proposition 1.1]. The following result characterizes Frobenius’ theta function
φ = φ(z, τ) as an element of V2,τ .

Theorem 4.1. Assume that τ ∈ H3 is an indecomposable matrix. Then there
exists a unique element φ = φ(z, τ) in V2,τ such that φ lies in Γ00,τ , and such
that for all characteristics a ∈ 1

2Z
3 × 1

2Z
3 the identity

(12) φ(τa′ + a′′, τ) = ha(τ) η2
a(0, τ)

holds. Here ha(τ) denotes the reduced value (11) determined by a, and ηa(z, τ)
is the exponential factor (9). The theta function φ generates Γ00,τ as a C-
vector space.

Proof. In [13] Frobenius constructs an element φ of V2,τ that lies in Γ00,τ ,
and he shows that for that φ and for each a equation (12) is satisfied, cf.
[13, eqn. (9) on p. 47]. This proves the existence claim. Next we remark that
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there is at most one vanishing even theta characteristic in degree three. This
implies that there exist characteristics a such that ha(τ) does not vanish.
Note that ηa(0, τ) = exp(−πi ta′τa′ − 2πi ta′a′′) does not vanish either. As
Γ00,τ is one-dimensional, this proves uniqueness. It is now also clear that φ
generates Γ00,τ .

4.4. The difference surface

Let X be a compact and connected Riemann surface of genus three, and let
J be its jacobian. We have a natural difference map X × X → J given by
(x, y) �→ [x− y]. The difference surface of J , notation FX , is the pushforward
of the fundamental class of X×X along the difference map. As the difference
map is generically finite onto its image this gives a structure of Weil divisor,
and hence of Cartier divisor, on the cycle FX . Note that actually the difference
map is generically of degree two onto its image if X is hyperelliptic, and
generically an isomorphism onto its image if X is not hyperelliptic.

Let τ ∈ H3. We note that the matrix τ is indecomposable if and only if
the principally polarized abelian threefold Aτ is the jacobian of a compact
Riemann surface of genus three. The divisor of Frobenius’ theta function
has the following nice interpretation, cf. [13, eqns. (4) and (5) on p. 37], see
also [14, Proposition 2.1].

Theorem 4.2. Let τ ∈ H3 be an indecomposable matrix, and assume that Aτ

is the jacobian of the compact connected Riemann surface X of genus three.
The effective Cartier divisor determined by Frobenius’ theta function φ(z, τ)
on Aτ is equal to the difference surface FX in Aτ .

One beautiful aspect of Frobenius’ theta function φ(z, τ) is that the pro-
jectivized tangent cone of FX at the origin of Aτ coincides with the canonical
image of X inside P2, cf. [13, around eqn. (6) on p. 37] or [14, Proposition 2.6].

4.5. Modular properties

One may generate explicit formulas for Frobenius’ theta function φ(z, τ) by
writing down a basis of V2,τ and using (12) for sufficiently many characteris-
tics a. For example one could consider the squares of a suitable set of theta
functions with characteristic (cf. Section 2.3). This approach leads to the
following explicit formula, cf. [13, eqn. (15) on p. 49].

Theorem 4.3. Let τ ∈ H3 be an indecomposable matrix. Let F be a fun-
damental system of characteristics in degree three. Let k be the sum of the
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odd characteristics in F. Let b be any characteristic in degree three. Then the
identity

(13) θk(0, τ)2 φ(z, τ) =
∑
λ∈F

(kbλ, bλ)hbλ(τ) θkbλ(z, τ)2

holds in V2,τ .

Formula (13) gives insight in the modular properties of φ. Let I3 ⊂ H3
denote the open subset consisting of indecomposable matrices. Note that
the set I3 is Sp(6,Z)-invariant. Recall that each reduced value ha(τ) is a
Siegel modular form of weight eight. Inspection of (13) shows that Frobenius’
theta function φ(z, τ) transforms as a Siegel-Jacobi form of weight eight and
index one over C3 ×I3. As the locus of decomposable abelian threefolds is of
codimension two in H3, we may conclude the following.

Theorem 4.4. Frobenius’ theta function φ(z, τ) extends as a Siegel-Jacobi
form of weight eight and index one over C

3 ×H3.

In [13] many more explicit formulas for φ(z, τ) are discussed. We especially
would like to point to the discussion in [13, Section 14], where a connection
is made with the Schottky-Igusa modular form in genus four. This circle of
ideas is also the point of departure of the papers [7, 15, 14]. The discussion in
[7, 15, 14] shows that actually Frobenius’ theta function φ is a Siegel-Jacobi
form with respect to the full modular group Sp(6,Z).

Alternatively one can see this from the description of the zero locus of φ
given by Theorem 4.2. Let M3 denote the moduli space of compact Riemann
surfaces of genus three. Let p : J3 → M3 denote the universal jacobian over
M3, and let p1 : C3 → M3 denote the universal Riemann surface over M3.
We have a natural difference map δ : C3 ×M3 C3 → J3, which is proper. The
universal difference surface, notation F , is the pushforward of the fundamen-
tal class of C3 ×M3 C3 along the proper map δ. The map δ is generically an
isomorphism onto its image. We see that the cycle F has codimension one on
J3. As J3 is smooth, we have on F a natural structure of relative effective
Cartier divisor.

The quotient space Sp(6,Z) \ I3 is naturally identified with M3. The
quotient of C3 × I3 with respect to the natural (Z3 × Z

3) � Sp(6,Z)-action
is identified with the universal jacobian J3. Let L be the determinant of the
Hodge bundle on M3, and let B be the canonical rigidified line bundle on J3
as in Section 3.2.

Theorem 4.5. Frobenius’ theta function φ(z, τ) descends along the full mod-
ular (Z3 × Z

3) � Sp(6,Z)-action on C
3 × I3 to give a holomorphic section φ
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of the line bundle L⊗8 ⊗B on J3. The divisor of φ is the universal difference
surface F .

Proof. Write K = O(F ) for the line bundle determined by the relative effec-
tive Cartier divisor F on J3. By Theorem 4.2, in each fiber of the map p the
surface F is given by a theta function of order two. It follows that K and B are
fiberwise isomorphic. As the map p is proper and as Pic(M3) is generated by
the class of L (cf. [2, Theorem 1]) it follows that there exists e ∈ Z such that
K ∼= L⊗e⊗B, and hence that there exists a Siegel-Jacobi form φ′ of weight e,
index one and full level in degree three such that F = divφ′. Combining with
Theorem 4.4 we see that the quotient φ′/φ can be viewed as a meromorphic
Siegel modular form of weight e − 8 on I3 which has no zeroes or poles on
I3. Let Γ be the level of φ. Then Γ determines a finite cover MΓ

3 of M3 to
which φ′/φ descends. As L is ample on MΓ

3 and as MΓ
3 contains complete

curves it follows that e = 8 and φ′/φ is a constant. We find that φ is of full
level and that F = div φ as claimed.

Let a be a characteristic in 1
2Z

3 × 1
2Z

3. For future use we define the
meromorphic function

(14) fa(z, τ) = φ(z, τ)/θa(z, τ)2

on C
3 ×H3. As θ2

a is of weight one and index one (cf. Section 3.1) we see that
fa is a meromorphic Siegel-Jacobi form of weight seven and vanishing index.
Let τ ∈ H3 be an indecomposable matrix. Then fa(z, τ) is an Lτ -periodic
function on C

3. It follows that fa descends to give a meromorphic function
on Aτ . Write Θa for the divisor of θa and assume that Aτ is the jacobian of a
compact Riemann surface X of genus three. Then we see that div fa equals
the divisor FX − 2Θa.

4.6. The hyperelliptic case

Let τ ∈ H3, and assume that Aτ is the jacobian of a hyperelliptic Riemann
surface of genus three. Let k be the unique vanishing even theta characteristic
for τ , by which we mean the unique even characteristic k such that θk(0, τ) =
0. It is easily seen that the function θk(z, τ)2 is a non-zero element of Γ00,τ ,
and by Theorem 4.1 we find that fk(z, τ) = φ(z, τ)/θk(z, τ)2 is a non-zero
constant ψ(τ) independent of z. We would like to compute ψ(τ).

Let a be a non-zero characteristic in degree three. Then by (10) we note
that θk(τa′ + a′′, τ) vanishes if and only if θka(0, τ) vanishes if and only if ka
is odd. We conclude by (12) that ha(τ) vanishes if and only if ka is odd.
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Assume that ka is even. From (12) and (10) we obtain

(15) ψ(τ) = φ(τa′ + a′′, τ)/θk(τa′ + a′′, τ)2 = (k, a)ha(τ)/θka(0, τ)2 ,

cf. [13, p. 50]. We conclude that ψ(τ) transforms as a modular form of weight
seven on the locus D ⊂ H3 of hyperelliptic period matrices.

Following [27] we consider

(16) ξ(τ) =
∏

a : (a)=1,a 	=k

θa(0, τ)8 ,

the product of all non-vanishing even Thetanullwerte associated to τ , raised
to the eighth power. As follows from [27, Section 3] the function ξ = ξ(τ)
transforms as a modular form of weight 140 on D.

The modular forms ψ and ξ are connected in the following manner.

Proposition 4.6. The equality ψ140 = ξ7 holds on the hyperelliptic locus
D ⊂ H3.

Proof. We note that there are 35 non-zero characteristics a such that ka is
even. From (11) and (15) we compute

ψ(τ)140 =
∏

a : a 	=0,(ka)=1
θka(0, τ)−8 · ha(τ)4

=
∏

a : a 	=0,(ka)=1

⎛
⎝θka(0, τ)−8 ∏

b : (kb)=1,(kab)=−1
θkb(0, τ)4

⎞
⎠

= ξ(τ)−1 ·
∏

b : (kb)=1,b 	=0

∏
a : (ka)=1,(kab)=−1

θkb(0, τ)4 .

(17)

By Lemma 2.1 each non-zero characteristic in degree three is written in ex-
actly 16 ways as a difference of an odd and an even characteristic. Thus the
second product on the last line runs over 16 values of a. We deduce

(18) ψ(τ)140 = ξ(τ)−1 ·
∏

b : (kb)=1,b 	=0
θkb(0, τ)64 = ξ(τ)−1 · ξ(τ)8 = ξ(τ)7 ,

which was to be shown.

4.7. The decomposable case

In Theorem 4.5 we have seen that φ induces a holomorphic section of the line
bundle L⊗8⊗B over J3. It is natural to ask how φ behaves near the boundary
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of J3. Theorem 4.7 below gives a partial answer to this question. Since we
do not need the result in the rest of the paper, we only give a sketch of the
proof.

For any g ≥ 2 we let Mct
g denote the moduli space of stable curves of

genus g of compact type, i.e. of stable curves whose generalized jacobian is an
abelian variety. Let Δ ⊂ Mct

g denote the boundary of Mg in Mct
g . Then Δ

is a divisor in Mct
g .

Theorem 4.7. Let π : J3 → Mct
3 be the universal generalized jacobian over

Mct
3 and write E = π−1Δ. Frobenius’ theta function φ extends as a holomor-

phic section of the line bundle L⊗8 ⊗B over J3. It has vanishing multiplicity
two along E.

Proof. Let t : Mct
3 → A3 be the extended Torelli map, given by associating

to a stable curve of compact type its generalized jacobian. Then the universal
generalized jacobian π : J3 → Mct

3 is the pullback along t of the universal
abelian threefold over A3. The first statement is then clear from Theorems 4.4
and 4.5.

The vanishing multiplicity of φ along E can be computed by looking,
locally around a generic point of Δ, at the pullback of φ along a non-zero
two-torsion section. By Theorem 4.1 we see that the required vanishing mul-
tiplicity is that of the reduced value ha(τ) along Δ, where a is any non-zero
characteristic. We recall (cf. (11)) that ha is, up to a sign, the product of
16 Thetanullwerte, where the even characteristics occurring in the product
are exactly the even characteristics that added to a yield an odd characteris-
tic.

Now among all 36 even theta characteristics in degree three, there are
exactly six that split into an odd characteristic in degree two and an odd
characteristic in degree one. The six associated Thetanullwerte are precisely
the Thetanullwerte that vanish along Δ, and they all do so with multiplic-
ity one (cf. [20, p. 852]). A small verification shows that among the 16 even
characteristics associated to a given ha, there are exactly two that split into
an odd characteristic in degree two and an odd characteristic in degree one.
Hence each ha(τ) with a non-zero vanishes with multiplicity two along Δ.

Remark 4.8. It follows directly from Theorem 4.7 that the invariant log ‖K‖
from (1) behaves like 2 log |t| near Δ if t is a local equation for Δ. The invariant
log ‖H‖ on the other hand is locally bounded near every point of Δ. Using
the formulae in Theorem A we recover in genus three the asymptotic results
for ϕ and δ near Δ as given by [31, Proposition 6.3] in any genus.
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5. Arakelov geometry on moduli spaces of abelian varieties

The purpose of this section is to review some fundamentals from the Arakelov
geometry of the moduli space Ag of principally polarized complex abelian
varieties of dimension g. More precisely we will endow the line bundles L
and B as encountered in Section 3 with certain canonical smooth hermitian
metrics. This results into canonical normalized, real analytic versions of Siegel
modular forms resp. of Siegel-Jacobi forms. Let g ≥ 2 be an integer.

5.1. The Hodge metric

As in Section 3 let q̃ : Ug → Hg denote the universal abelian variety over Hg,
let ΩUg/Hg

denote the sheaf of relative 1-forms of q̃, let Ẽ = q̃∗ΩUg/Hg
be the

Hodge bundle on Hg, and L̃ its determinant. We define the Hodge metric
on Ẽ to be the smooth hermitian metric induced by the standard symplectic
form on the natural variation of Hodge structures underlying the local system
R1q̃∗ZUg on Hg. Recall that the line bundle L̃ has a standard global frame
dz1 ∧ . . . ∧ dzg. The induced metric ‖ · ‖Hdg on L̃ can be given explicitly by

(19) ‖dz1 ∧ . . . ∧ dzg‖Hdg(τ) = (det Im τ)1/2 , τ ∈ Hg .

We denote the curvature form of the hermitian line bundle (L̃, ‖ · ‖Hdg) by
ωHdg.

Let L denote the determinant of the Hodge bundle on Ag = Sp(2g,Z)\Hg.
By construction the Hodge metric ‖ · ‖Hdg on L̃ is Sp(2g,Z)-invariant. We
conclude that the Hodge metric descends to give a smooth hermitian metric
on the line bundle L. The resulting metric and curvature form will also be
denoted by ‖ · ‖Hdg resp. ωHdg.

5.2. Biextension metric

Let q : Xg → Ag denote the universal abelian variety over Ag, and let B =
(id, λ)∗P on Xg be the line bundle on Xg derived from the universal Poincaré
bundle, as in Section 3.1. Recall that the restriction of B to a fiber of q
represents twice the given principal polarization. Following [6, Proposition 2.8]
or [19, Proposition 6.4] the line bundle B carries a unique smooth hermitian
metric which restricts to the trivial metric along the given trivialisation of B
along the zero section, and has translation-invariant curvature form in each
fiber.
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The canonical metric on B can be made explicit as follows. First of all we
put

‖P‖(z, τ) = exp(−π t(Im z) · (Im τ)−1 · (Im z)) , (z, τ) ∈ C
g ×Hg .

Now for the moment let’s fix τ ∈ Hg. Let � ∈ Z≥0 and let f ∈ V�,τ be a
theta function of order � with respect to Lτ (cf. Section 2.2). The defining
functional equation (6) implies that the real-valued function

(20) ‖f‖0(z) = ‖P‖(z, τ)� · |f(z)| , z ∈ C
g

is invariant under translations by the lattice Lτ . It follows that ‖f‖0 descends
to give a function on the abelian variety Aτ = C

g/Lτ . Write D = div f . The
map ‖f‖0 defines a smooth hermitian metric ‖ · ‖0 on OAτ (D) by setting
‖1‖0 = ‖f‖0 where 1 is the canonical global section 1 of OAτ (D).

Note that ‖f‖0(0) = |f |(0). It can be shown that (20) with � = 2 gives
a globally defined smooth hermitian metric ‖ · ‖0 on B which restricts to
the trivial metric along the given trivialisation along the zero section, and
which has translation-invariant curvature form in each fiber. We have thus
constructed the required metric on B explicitly.

Denote by 2ω0 the curvature form of the metric ‖ · ‖0. By (20) we can
write, locally in coordinates (z, τ) coming from C

g ×Hg,

(21) ω0 = ω0(z, τ) = ∂∂

πi
log ‖P‖(z, τ) = i ∂∂ t(Im z) · (Im τ)−1 · (Im z) ,

see also [6, Theorem 2.10].
The following proposition lists a number of useful properties of the 2-

form ω0.

Proposition 5.1. The 2-form ω0 vanishes along the zero section. On every
fiber of the universal abelian variety Xg → Ag the 2g-form ωg

0 restricts to the
Haar measure with total mass equal to g!. The (2g + 2)-form ωg+1

0 vanishes
identically on Xg.

Proof. The first statement is immediate from the defining properties of ‖ · ‖0.
Next, by definition the restriction of ω0 to a given fiber is translation-invariant.
It follows that the form ωg

0 restricts to a multiple of the Haar measure. As the
restriction of ω0 to a fiber is a de Rham representative of the given principal
polarization, and as the degree of a divisor representing a principal polariza-
tion is equal to g!, we find the second statement. Finally, let

√
Im τ denote

the unique positive definite square root of Im τ . Then
√

Im τ defines a real
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analytic function on Hg. From (21) we see that the coordinate transforma-
tion u = (

√
Im τ)−1z allows us to write ω0(u, τ) = i ∂∂ t(Im u) · (Im u) =

i
2
∑g

j=1 duj ∧ duj . In particular we can make ω0 to depend on only g holo-
morphic coordinates. This gives the vanishing of ωg+1

0 .

5.3. Normalized Siegel-Jacobi forms

Let k,m ∈ Z. From the metric ‖ · ‖0 on B and the Hodge metric ‖ · ‖Hdg on
L we obtain canonically induced hermitian metrics ‖ · ‖ on the line bundle
L⊗k ⊗B⊗m on Xg. In particular, if f(z, τ) is a Siegel-Jacobi form of weight k
and index m with respect to some finite index subgroup Γ of Sp(2g,Z) (cf.
Section 3) we obtain a normalized version ‖f‖(z, τ) of f(z, τ) by taking the
norm of f(z, τ) in the metric ‖ · ‖. Explicitly we have

‖f‖(z, τ) = ‖f‖0(z, τ) · ‖dz1 ∧ . . . ∧ dzg‖kHdg(τ)
= (det Im τ)k/2 · ‖f‖0(z, τ) , z ∈ C

g , τ ∈ Hg ,

where ‖f‖0(z, τ) is defined as in (20) with � = 2m. Here we have used (19).
We have that ‖f‖(z, τ) is (Zg×Zg)�Γ -invariant, and we obtain a well-defined
real valued function ‖f‖ on X Γ

g .

5.4. Normalized theta functions with characteristics

A particular case is furnished by the theta functions with characteristics (cf.
Section 2.3). Let a ∈ 1

2Z
g × 1

2Z
g be any characteristic in degree g. From

Section 3.1 we recall that θ2
a(z, τ) is a Siegel-Jacobi form of weight one and

index one. We define ‖θa‖(z, τ) to be the square root of the normalized theta
function ‖θ2

a‖(z, τ). From (10) it is straightforward to verify that one has an
equality

(22) ‖θa‖(z, τ) = ‖θ‖(z + τa′ + a′′, τ) , z ∈ C
g ,

which shows that the various functions ‖θa‖([z], τ) on Aτ are translates of
one another by two-torsion points. Here θ is the theta function with zero
characteristic in degree g.

Fix again a matrix τ ∈ Hg. One may view ‖θ‖ as giving a smooth hermi-
tian metric on OAτ (Θτ ) by setting ‖1‖ = ‖θ‖ where 1 is the canonical global
section of OAτ (Θτ ). Let μτ denote the Haar measure on Aτ normalized to
give Aτ total mass equal to one. Following [12, p. 401] or [31, Section 2.1],
the metric ‖ · ‖ on OAτ (Θτ ) is characterized among all smooth metrics on
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OAτ (Θτ ) by the following two properties: (a) the associated curvature form is
translation-invariant, and (b) the function ‖1‖2 integrates to 2−g/2 against μτ .

Definition 5.2. Let τ ∈ Hg and let a ∈ 1
2Z

g × 1
2Z

g be a characteristic in
degree g. Following [3, 5] we define

(23) log ‖H‖(Aτ ) =
∫
Aτ

log ‖θa‖μτ ,

where as above μτ is the Haar measure on Aτ normalized to give Aτ total
mass equal to one. As θa is not identically zero we see that log ‖H‖(Aτ )
is well-defined as a real number. By (22) the real number log ‖H‖(Aτ ) is
independent of the choice of a. As it turns out, the group Sp(2g,Z) acts
on the set of functions ‖θa‖. We deduce that log ‖H‖ is an invariant of the
isomorphism class of Aτ as a principally polarized complex abelian variety,
and hence we have a natural induced real-valued map log ‖H‖ : Ag → R. The
invariant log ‖H‖ coincides with the invariant called H in [31, Section 2.1].

6. Arakelov geometry on moduli spaces of curves

In our proof of Theorem A we will need a few identities involving canonical 2-
forms on the moduli space of compact Riemann surfaces, and related moduli
spaces, in the spirit of [24, 25, 26, 31]. The purpose of this section is to display
these identities, referring to loc. cit. for further details and proofs.

Let g ≥ 2 be an integer. As before we denote by Mg the moduli space
of compact Riemann surfaces of genus g. Let p1 : Cg → Mg be the universal
Riemann surface over Mg, and let p2 : C2

g → Mg be the universal self-product
of a Riemann surface over Mg. Thus Cg parametrizes pairs (X, x) where
X ∈ Mg and x ∈ X, and C2

g parametrizes triples (X, x, y) where X ∈ Mg

and x, y ∈ X. Let TCg/Mg
denote the relative tangent bundle of p : Cg → Mg,

let Δ denote the diagonal divisor of C2
g , and let O(Δ) denote the associated

line bundle on C2
g .

We obtain a canonical smooth hermitian metric ‖ · ‖ on O(Δ) by setting
log ‖1‖(X, x, y) = gX(x, y) for x �= y with gX the Arakelov-Green’s function
[1, 12] on X. Here 1 denotes the canonical holomorphic section of O(Δ). The
Poincaré residue gives a canonical isomorphism of line bundles TCg/Mg

∼−→
Δ∗O(Δ) on Cg. By this isomorphism the metric ‖ · ‖ induces a canonical
residual metric ‖ · ‖Ar on TCg/Mg

, called the Arakelov metric.
We let eA denote the curvature form of the smooth hermitian line bun-

dle TCg/Mg
over Cg, and we let h denote the curvature form of the smooth

hermitian line bundle O(Δ) on C2
g . We set eA1 =

∫
p1(eA)2. This is a 2-form
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on Mg. We denote by pi : C2
g → Cg for i = 1, 2 the projections on the first and

second coordinate, respectively. By [24, Proposition 6.2] we have for i = 1, 2
an equality

(24)
∫
pi

h2 = eA

of 2-forms on Cg. From (24) and the projection formula for fiber integration
one readily derives for each i, j = 1, 2 the identities

(25)
∫
p2
h2 p∗i e

A = eA1 ,

∫
p2
h p∗i e

A p∗je
A = eA1 ,

∫
p2

(p∗i eA)3 = 0 ,

and for i �= j,

(26)
∫
p2
p∗i e

A (p∗jeA)2 = (2 − 2g) eA1 .

Write eK1 for the 2-form
∫
p2 h3 on Mg. Let ϕ : Mg → R be the Kawazumi-

Zhang invariant. By [32, Proposition 2.5.3] the function ϕ can be obtained as
the fiber integral

(27) ϕ =
∫
p2

log ‖1‖h2 ,

where we recall that log ‖1‖(X, x, y) = gX(x, y) is the Arakelov-Green’s func-
tion. This expression for ϕ readily gives the identity

(28) ∂∂

πi
ϕ = eK1 − eA1

of 2-forms on Mg, cf. [24, Proposition 5.3].
As before let q : Xg → Ag denote the universal abelian variety over Ag.

Denote by 2ω0 the curvature form of the canonical metric ‖ · ‖0 on the line
bundle B on Xg as in Section 5.2. Let ωHdg be the curvature form of the Hodge
metric on the determinant of the Hodge bundle L over Ag as in Section 5.1.
Let p : Jg → Mg denote the universal jacobian over Mg. The forms ω0 resp.
ωHdg pull back along the Torelli map to Jg resp. Mg. We denote the resulting
forms by the same symbols.

Let δ : C2
g → Jg be the difference map that sends a triple (X, x, y) to the

pair (X, [x− y]), where [x− y] is the class of the divisor x− y in the jacobian
of X. By identity (K3) in [24, Theorem 1.4] we have

(29) 2 δ∗ω0 = 2h− p∗1e
A − p∗2e

A .
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Via the Torelli map we can view the function log ‖H‖ discussed at the end of
Section 5.2 as a function on Mg. In [31, eqn. (5.19)] we find the equality

(30) ∂∂

πi
log ‖H‖ = 1

2 ωHdg −
1
8 eA1 + 1

12 eK1

of 2-forms on Mg.

7. Proof of Theorem A

In this section we specialize to the case where the genus is three.

7.1. Normalized Frobenius theta function

Denote by p : J3 → M3 the universal jacobian over M3. As we have seen
in Theorem 4.5 Frobenius’ theta function φ(z, τ) determines a holomorphic
section of the line bundle L⊗8 ⊗ B on J3. Its normalized version ‖φ‖ =
‖φ‖(z, τ) (cf. Section 5.3) is (Z3×Z

3)�Sp(6,Z)-invariant and hence descends
to give a well-defined real valued function on J3. The zero locus of ‖φ‖ is the
universal difference surface F .

Definition 7.1. Let τ ∈ H3. Assume that Aτ is the jacobian of a compact
Riemann surface X of genus three, and let μτ denote the Haar measure on
Aτ giving Aτ unit volume. We set

(31) log ‖K‖(X) =
∫
Aτ

log ‖φ‖μτ .

As ‖φ‖ does not vanish identically on Aτ this indeed defines a real-valued
invariant of the Riemann surface X. We may view log ‖K‖ as a function
on M3.

We have the following counterpart to (30) for the invariant log ‖K‖ in
genus three.

Theorem 7.2. Let log ‖K‖ be the invariant given in (31). We have an equal-
ity

(32) ∂∂

πi
log ‖K‖ = 8ωHdg −

1
2 eA1 − 1

6 eK1

of 2-forms on M3.
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Proof. Let F be the universal difference surface over M3. We recall from
Section 4.5 that F is an effective relative Cartier divisor over M3. Note that
the curvature form of the smooth hermitian line bundle L⊗8 ⊗ B is equal
to 2ω0 + 8ωHdg. The Poincaré-Lelong formula therefore gives an equality of
currents

∂∂

πi
log ‖φ‖ = 2ω0 + 8ωHdg − δF

on J3. By Proposition 5.1 the differential form 1
6ω

3
0 restricts to the Haar

measure of unit mass on each fiber of J3 over M3, and the differential form
ω4

0 vanishes. Starting from (31) we deduce, using that ω3
0 is ∂- and ∂-closed,

∂∂

πi
log ‖K‖ = 1

6
∂∂

πi

∫
p
log ‖φ‖ω3

0

= 1
6

∫
p

∂∂

πi
log ‖φ‖ω3

0

= 1
6

∫
p
(2ω0 + 8ωHdg − δF ) ω3

0

= 8ωHdg −
1
6

∫
p|F

ω3
0 .

(33)

Let p2 : C2
3 → M3 denote the projection map. The identities in (25), (26) and

(29) and the fact that the difference map δ is generically an isomorphism onto
its image allow us to compute

∫
p|F

ω3
0 = 1

8

∫
p2

(
2h− p∗1e

A − p∗2e
A
)3

= 1
8

∫
p2

(
8h3 − 12h2(p∗1eA + p∗2e

A) + 6h(p∗1eA + p∗2e
A)2

− (p∗1eA + p∗2e
A)3

)
= 3 eA1 + eK1 .

(34)

Combining (33) and (34) we obtain (32).

7.2. Proof of the main result

We can now prove Theorem A. By Wilms’ identity (4) it suffices to show (2).
First of all, a combination of (28), (30) and (32) yields that ∂∂ of left and
right hand side of (2) are equal as 2-forms on M3. As every pluriharmonic
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function on M3 is constant, cf. the proof of [31, Theorem 5.4.1], we will be
done once we show that formula (2) is correct for X a hyperelliptic Riemann
surface of genus three.

Let τ ∈ H3 and assume that Aτ is isomorphic as a principally polar-
ized abelian threefold to the jacobian J of a hyperelliptic Riemann surface
X. Let ξ(τ) be given by (16) and set ‖ξ‖(τ) = (det Im τ)70|ξ(τ)|. By [31,
Corollary 4.10] we have

(35) ϕ(X) = − 1
30 log ‖ξ‖(τ) + 28

3 log ‖H‖(X) + 8 log 2 .

Let k be the unique vanishing even characteristic associated to τ and consider
ψ(τ) = φ(z, τ)/θk(z, τ)2 as in Section 4.6. We set, for generic z ∈ C

3,

‖ψ‖(τ) = ‖φ‖(z, τ)/‖θk‖(z, τ)2

= (det Im τ)7/2|φ(z, τ)/θk(z, τ)2|
= (det Im τ)7/2|ψ(τ)| .

(36)

Combining Proposition 4.6, (23) and (36) we obtain that

(37) − log ‖ξ‖(τ) = −20 log ‖ψ‖(τ) = −20 log ‖K‖(X) + 40 log ‖H‖(X) .

Combining (35) and (37) we obtain (2) for the hyperelliptic Riemann sur-
face X.

8. A formula of Bloch, Hain and Bost revisited

Let X be a compact Riemann surface of positive genus. For n ∈ Z we denote
by PicnX the moduli space of linear equivalence classes of divisors of degree n
on X. In particular, the moduli space Pic0 X identifies with the jacobian of X.

For α ∈ Pic1 X we write Xα for the image of X in Pic0 X under the
Abel-Jacobi map x �→ [x − α]. Further we write Σα for the Ceresa cycle
Xα−[−1]∗Xα in Pic0 X. Let α, β ∈ Pic1 X. If the genus of X is equal to three,
and if the supports of the Ceresa cycles Σα and Σβ in Pic0 X are disjoint,
one has a natural associated archimedean height pairing 〈Σα, Σβ〉∞ ∈ R.

Around thirty years ago, Bloch asked to compute the archimedean height
pairing 〈Σα, Σβ〉∞ in the case where 4α is a canonical divisor class. Soon
after Bloch had asked his question he and Hain and independently also Bost
were able to carry out this computation. The results are contained in the
papers [4] and [16], which were published simultaneously. The approaches in
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the two papers [4] and [16] are however rather different. The aim of this final
section is to bridge the two approaches, by making reference to Theorem B
and to our study of Frobenius’ theta function φ as a Siegel-Jacobi form (cf.
Theorem 4.5). As this section contains no new results, we will be brief at
most points in our discussion and leave the details to the interested reader.

8.1. Hain-Reed invariant

We start by briefly recalling how the Hain-Reed invariant β is defined, refer-
ring to the papers [19, 18, 17, 23] for details on the various constructions.

Let g ≥ 3 be an integer. The first homology H of a compact Riemann
surface X of genus g defines a natural variation of polarized Hodge structures
H on Mg. The intersection form on H gives rise to an embedding H → ∧3

H,
and it can be shown that the cokernel L =

∧3
H/H is again naturally a

variation of polarized Hodge structures on Mg.
Let J (L) → Mg be the family of Griffiths intermediate jacobians as-

sociated to the variation L. Taking the Abel-Jacobi class of a Ceresa cycle
in the jacobian of X defines a normal function section ν : Mg → J (L) of
J (L) → Mg. Following [19] we may now consider a holomorphic line bundle
N on Mg obtained by pulling back, along the normal function section ν, a
standard line bundle P̂ on J (L) obtained from the Poincaré bundle associated
to the torus fibration J (L) and the given polarization of J (L).

Let L denote the determinant of the Hodge bundle on Mg (cf. Sec-
tion 3.2). It follows from a result of Morita [28, (5.8)], see also [18, Theorem 7],
that the line bundle N = ν∗P̂ on Mg is isomorphic with L⊗(8g+4). We call a
Hain-Reed isomorphism any choice of isomorphism L⊗(8g+4) ∼−→ N . As every
invertible holomorphic function on Mg is constant we see that a Hain-Reed
isomorphism is unique up to multiplication by constants.

As is explained in loc. cit., the line bundle P̂ carries a canonical smooth
hermitian metric, and by pullback along ν this defines a natural smooth
hermitian metric on N . On the other hand, we can equip the line bundle L
with its Hodge metric, cf. Section 5.1. Taking the logarithm of the norm, with
respect to the two given metrics on L and N , of any Hain-Reed isomorphism
L⊗(8g+4) ∼−→ N yields a well-defined class β ∈ C0(Mg,R)/R. This class β is
called the Hain-Reed invariant in genus g.

We recall that Theorem B expresses the invariant β in the case g = 3 in
terms of the invariants log ‖K‖ and log ‖H‖. We will apply Theorem B in
Section 8.4. In Section 8.3 we will see an explicit construction of a Hain-Reed
isomorphism L⊗28 ∼−→ N over M3 using Frobenius’ theta function φ.
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8.2. Ceresa cycles and their height pairing in genus three

Let X be a compact Riemann surface of genus three. Let Θ ⊂ Pic2 X be the
locus of effective divisor classes, and let FX ⊂ Pic0 X be the difference surface
as in Section 4.4. We recall that both Θ and FX are effective Cartier divisors.

Let α, β ∈ Pic1 X and assume that 4α is canonical. Let Θ2α ⊂ Pic0 X be
the translate of Θ ⊂ Pic2 X by the semi-canonical divisor 2α. It is not hard
to see that the supports of Σα and Σβ are disjoint whenever α+ β /∈ |Θ| and
α− β /∈ |FX |, or equivalently whenever α− β /∈ |Θ2α| ∪ |FX |.

Following Bloch’s original idea [16] we consider the moduli space M̃ of
pairs (X,α) where X is a compact Riemann surface of genus three and α ∈
Pic1 X is a divisor class such that 4α is canonical. Let p̃ : J̃ → M̃ denote the
universal jacobian over M̃. We may view J̃ as the moduli space of triples
(X,α,D) where (X,α) ∈ M̃ and D is an element of Pic0 X. We naturally
have a universal symmetric theta divisor Θ0 and a universal difference surface
F on J̃ , both of which are effective relative Cartier divisors.

Let M be the moduli space of compact Riemann surfaces of genus three.
We have a natural forgetful map M̃ → M. Let L denote the determinant
of the Hodge bundle on M, endowed with the Hodge metric, and N the
Hain-Reed line bundle on M as discussed in Section 8.1, endowed with its
canonical hermitian metric. By a slight abuse of notation we shall also denote
by L resp. N the pullbacks of the hermitian line bundles L resp. N to M̃ and
to J̃ . Let J1 → M be the family of intermediate jacobians of the universal
jacobian threefold p : J → M, and let P1 → J1 ×M J1 be the canonical
biextension line bundle over J1×MJ1, endowed with its canonical hermitian
metric, as in [16, Section 1.1].

We denote by σ : J̃ → J1 ×M J1 the map over M given by sending
a triple (X,α,D) to the pair consisting of the Abel-Jacobi classes of the
Ceresa cycles Σα resp. ΣαD in the intermediate jacobian J1(X). Write Bσ

for the hermitian line bundle σ∗P1 on J̃ . We denote its canonical metric by
‖·‖biext. The line bundle Bσ admits a canonical meromorphic section B given,
in the fiber of Bσ over a triple (X,α,D), by the canonical biextension mixed
Hodge structure associated to the cycles Σα and ΣαD in Pic0 X. Following
[16, Definition 3.3.3] the archimedean height pairing 〈Σα, ΣαD〉∞ for a triple
(X,α,D) ∈ J̃ is given by the formula

(38) 〈Σα, ΣαD〉∞ = log ‖B‖biext(X,α,D) .
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8.3. Connection with Frobenius’ theta function

By construction the meromorphic section B is regular and non-vanishing
whenever the cycles Σα and ΣαD have disjoint support. If X is fixed we have
that Σα and ΣαD have disjoint support whenever D /∈ |Θ2α| ∪ |FX |. We
conclude that the support of divB on J̃ is equal to |Θ0|∪ |F |. A more precise
analysis, cf. [16, Section 4.3], yields the equality

(39) divB = 2 (F − 2Θ0)

of divisors on J̃ .
Let a be a characteristic in degree three. Let θa be the theta function with

characteristic a and let φ be Frobenius’ theta function. As in Section 4.5 we
set fa = φ/θ2

a. We recall that fa transforms as a meromorphic Siegel-Jacobi
form of weight seven and vanishing index. For a suitable choice of a and of
uniformization of J̃ we may view fa as a meromorphic section of the line
bundle L⊗7 on J̃ , with divisor

(40) div fa = F − 2Θ0 .

Combining (39) and (40) we conclude that there exists an isomorphism of
holomorphic line bundles χ : L⊗14 ∼−→ Bσ over J̃ that identifies the mero-
morphic section f⊗2

a with the meromorphic section B. We see that via the
isomorphism χ we have a natural interpretation of the Siegel-Jacobi form f⊗2

a

as a biextension variation of mixed Hodge structures associated to the Ceresa
cycle in genus three.

An application of [23, Proposition 7.3] shows that the hermitian line bun-
dle B⊗2

σ is canonically isometric with the Hain-Reed line bundle N . We thus
obtain a canonical isomorphism of line bundles χ⊗2 : L⊗28 ∼−→ N on J̃ . This
isomorphism can be descended to M, and yields there an explicit Hain-Reed
isomorphism.

8.4. Applying Theorem B

Denote by ‖χ‖ : J̃ → R the norm of the isomorphism χ. Let ‖fa‖ be the
norm of fa in the Hodge metric. Then clearly we have

(41) log ‖χ‖ = log ‖B‖biext − 2 log ‖fa‖

as generalized functions on J̃ . The norm ‖χ‖ likewise descends to M, and
we see that 2 log ‖χ‖, when viewed as a function on M, is a representative of
the Hain-Reed invariant β.
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Applying Theorem B we conclude that there exists a constant c such that

(42) log ‖χ‖ = −2
∫
p̃
log ‖φ‖μ + 4

∫
p̃
log ‖θa‖μ + c

as functions on M̃. As ‖fa‖ = ‖φ‖/‖θa‖2 we may rewrite (42) as

(43) log ‖χ‖ = −2
∫
p̃
log ‖fa‖μ + c .

Combining (41) and (43) we obtain

(44) log ‖B‖biext = 2 log ‖fa‖ − 2
∫
p̃
log ‖fa‖μ + c ,

as generalized functions on J̃ , which can be rewritten as

(45) log ‖B‖biext = 2 log |fa| − 2
∫
p̃
log |fa|μ + c .

It follows from our work in Section 4.6 that when X is hyperelliptic, and α is
a Weierstrass point on X, so that 2α is the class of the hyperelliptic pencil on
X, the divisors FX and 2Θ2α coincide and the function fa on the associated
jacobian is constant.

We find that the right hand side of (45) is equal to c over the locus of
triples (X,α,D) where X is hyperelliptic and α is a Weierstrass point. Now
the left hand side of (45) vanishes identically over this locus, as the Ceresa
cycle Σα vanishes identically if α is a Weierstrass point. We deduce that c = 0
and that we have an equality

(46) log ‖B‖biext = 2 log |fa| − 2
∫
p̃
log |fa|μ

of generalized functions on J̃ . Combining (38) and (46) we conclude that for
X a compact Riemann surface of genus three, for α ∈ Pic1 X such that 4α is
canonical and for D ∈ Pic0 X arbitrary we have

(47) 〈Σα, ΣαD〉∞ = 2 log |fa|(D) − 2
∫

Pic0 X
log |fa|μ

for a suitable characteristic a. This recovers formula (4.3) from Bost’s arti-
cle [4].
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