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Symplectic coordinates on PSL3(R)-Hitchin
components

SUHYOUNG CHOI*, HONGTAEK JUNG*, AND HONG CHAN KiM

Abstract: Goldman parametrizes the PSLs(R)-Hitchin compo-
nent of a closed oriented hyperbolic surface of genus g by 16g — 16
parameters. Among them, 10g — 10 coordinates are canonical. We
prove that the PSLs(R)-Hitchin component equipped with the
Atiyah-Bott-Goldman symplectic form admits a global Darboux
coordinate system such that the half of its coordinates are canon-
ical Goldman coordinates. To this end, we show a version of the
action-angle principle and the Zocca-type decomposition formula
for the symplectic form of H. Kim and Guruprasad-Huebschmann-
Jeffrey-Weinstein given to symplectic leaves of the Hitchin compo-
nent.
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1. Introduction
1.1. History and motivation

Let X be a closed oriented surface of genus at least 2. The Teichmiiller space
T(X) is the space of discrete faithful representations of m1(X) into the Lie
group PSLy(R) modulo conjugation. It is one of connected components of the
space of representations

X (m1(2), PSLy(R)) = Xa(m1(E)) := Hom(r (L), PSLy(R))/PSLy(R).

By replacing 2 in PSLy(R) with a general natural number n, we can obtain the
space Xy, (m1(X)) := X(m(X), PSL,(R)). Observe that 7 (%) can be naturally
embedded into X,,(m1(2)) as Fuchsian representations, that is, by definition,
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representations of the form ¢, o p where p € T(X) and ¢, : PSLy(R) —
PSL,,(R) the unique irreducible representation of PSLo(R) into PSL,(R).
Then one may expect that a connected component containing a Fuchsian rep-
resentation resembles the Teichmiiller space. The first answer to this guess
is given by Hitchin [18] in 1992. Indeed he shows that any component con-
taining a Fuchsian representation is diffeomorphic to the (n? — 1)(2g — 2)
dimensional cell. We call a connected component of &, (71(X)) containing a
Fuchsian representation the PSL,, (R)-Hitchin component.

Besides Hitchin’s result, it is known that the Hitchin component Hit,, (3)
enjoys a lot of properties that the classical Teichmiiller space has. Labourie
[23], for instance, gives a dynamical characterization of Hit, (¥) and shows
that each Hitchin representation is discrete and faithful.

There are many known global parametrizations of the Teichmiiller space.
Because Hit,(X) is also a cell, we may expect the existence of global co-
ordinate system for Hit, (X). For the Hitchin component Hit3(¥), Goldman
[15] finds such a global coordinate system. However Goldman’s argument
cannot be directly applied to general Hit, (3) cases because construction of
Goldman coordinates essentially relies on the fact that Hits3(X) represents
the deformation space of convex projective structures on the surface . See
Choi-Goldman [9]. A uniform parametrization scheme for general Hit,, (X) is
obtained by Bonahon-Dreyer [4]. Their method is based on Fock-Goncharov’s
theory [11] or, Thurston’s construction of shearing coordinates. Later Gold-
man’s parameters are extended to Hit,,(X) by Zhang [36]. In Hit3(X) Goldman
coordinates and Bonahon-Dreyer’s are related and the explicit coordinates
transformation is given by Bonahon and I. Kim [6].

It is well-known that the Teichmiiller space 7 (X) carries the natural sym-
plectic structure called the Weil-Petersson form wyp. As a symplectic man-
ifold, the Teichmiiller space (7 (X),wwp) has been studied by many mathe-
maticians. One of the remarkable results is due to Wolpert [35] which states
that the Fenchel-Nielsen coordinates are Darboux coordinates, namely,

39—3

wwp = Y, dl; A db;.

=1

Hit,, (X) also carries a symplectic form as the classical Teichmiiller space does.
Indeed Goldman [13] extends the Weil-Petersson symplectic form on 7 (%)
into the Atiyah-Bott-Goldman symplectic form wg on Hit,(X). Now, it is
natural to ask whether there is any global Darboux coordinate system with
respect to wg, analogues to the Fenchel-Nielsen coordinates.
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For the Hitchin component Hitz(X), the third author H. Kim [22] claims
that the Goldman coordinates [15] are indeed Darboux coordinates for weg.
H. Kim first studies Hit3(3) where 3 is a compact surface with boundary. Al-
though Hits(X) itself is not a symplectic manifold, it admits a foliation whose
leaves are of the form Hit (%), a subspace of Hits(X) whose holonomies of
boundary components are in prescribed conjugacy classes 4. H. Kim, as
well as Guruprasad-Huebschmann-Jeffrey-Weinstein [17], show that each leaf
Hitg?(E) can be given a symplectic form wl%. When ¥ is a pants P, the space
Hit;?(P) can be parametrized by Goldman’s coordinates s and ¢. H. Kim
shows that Goldman’s (s,t) parameters on Hit?(P) form Darboux coordi-
nates with respect to w¥. After then H. Kim tries to glue various Hit‘?(P) as
Goldman does in [15]. In the smooth category, this gluing process is relatively
easy. In the symplectic category, however, it is more technical and his proof
misses crucial intermediate steps. One goal of this paper is to fill the missing
links and make the proof of H. Kim [22] more complete and clear.

The missing parts of [22] is the following. First, H. Kim does not compute

0 0 o 0 0 0 0o 0

1 - - - -
( ) wG(58k7 061)7 WG(58k7 aml)7 wG(atk7 5€1), a‘nd WG(ﬁtk-7 amZ

).

These terms may not be vanishing. If these are not zero, we cannot claim that
the Goldman coordinates are symplectic. Moreover this affects on the proof
of Proposition 6.2 of [22]. Because we do not know whether p*dsj and p*dty
are zero or not, there might be extra terms in equations (37) and (38) of [22]
involving % and %. Because we do not know that (1) vanish, we cannot

conclude that wg(a%, %) = wG(aimiv aij) = 0 as in Proposition 6.2 of [22].
Secondly, the definition of twisting parameters f;, 6; is not clearly given in
[22]. These are affine parameters and we have to specify the origin to get the
well defined coordinates. In fact, the values of (1) depend on this choice.

Recently, Sun-Zhang [31] and Sun-Wienhard-Zhang [30] construct Dar-
boux coordinates for the PSL,,(R)-Hitchin components. They define the no-
tion of (7, J)-parallel flows associated to a choice of triangulation 7 and
bridge system J. They show that every (7, J)-parallel flows are Hamiltonian
and they give a symplectic trivialization of the tangent bundle of Hit,,(3).
They also find explicit forms of (7, J)-parallel flows by modifying Bonahon-
Dreyer coordinates.

1.2. Statements of results

Our first result is, roughly speaking, that the symplectic manifold
(Hit;? (%), w¥) can be decomposed into a product of simpler symplectic man-
ifolds.
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Let ¥ be a compact oriented surface with negative Euler characteristic
and possibly with boundary. By an essential simple closed curve, we mean
an embedded circle in ¥ that is not homotopic to a point nor a boundary
component. Let £ be an essential simple closed curve. Given a path n from
a base point p to a point in &, we write £ to denote the loop 1 * & * n~1
at p, where = is the concatenation. We sometimes regard £ as an element of
71(2, p) up to conjugation by considering £" for some implicitly chosen path
n from p to a point in £. We abuse the notation {(£) to denote the subgroup
of w1 (3, p) generated by &" when we do not care about particular choice of
an element in its conjugacy class.

Throughout this paper, G denotes the Lie group PSL,(R) and g its Lie
algebra sl,(R). If we have a representation p : m(X) — G, g becomes a
m1(X)-module g, via the action Ad,,)(X), v € m(X), X € g. We sometimes
write this action simply - X if its meaning is clear from the context. If there
is no chance of confusion, we omit the subscript p and simply write g instead
of g,.

We denote by X (m1(2), PSL,(R)) = X, (71(X)) the space of representa-
tions. Although X, (71(X)) itself is a singular space it contains, as an open
set, a smooth manifold

Xn(m(X)) := {p € Hom(m(X), G) | p is irreducible and Zg(p) = {1}}/G

where
Za(p) = {g€ Glgp()g~" = p(7) for all v € m(5)}.

We mostly focus on the smooth manifold X, (71 (%)) because X, (71(X)) con-
tains Hit,, (¥) as a connected component.
Suppose that 3 has boundary components say (y,-- -, (p. Let

B ={(C,B1), -, (G, Bv)}

be a set of pairs each of which consists of a boundary component and a
conjugacy class of a purely loxodromic element with positive eigenvalues.
Then we can define the following subspace of X, (71(%)):

X/ (m(E) = {[p] € Bu(m1(S) | p(Gi) € Bivi = 1,2,--- b},

We may define similarly Hit?(%). ?f(m(Z)) and Hit”(X) are interesting
because they admit a natural symplectic form w¥. See Theorem 3.3.5 or
22, 17].



Symplectic coordinates on PSL3(R)-Hitchin components 1325

Let C = {&,-++,&n} be a family of mutually disjoint, non-isotopic es-
sential simple closed curves. If we subtract these curves from X, we get a
collection of subsurfaces 1, - -+, ;. We assume that ¥; are all of hyperbolic

type.
Define

Hit”? (2, %) = {[p] € HitZ?(2) | p(&) e Ciy i = 1,2,--- ,m}

where € = {(&1,C1), -+, (§m, Cm)} is a family of pairs each of which consists
of an element of C and the conjugacy class of a purely loxodromic element with
positive eigenvalues. We know that there is a Hamiltonian R™"~D_action on
Hit” (%) and the moment map of this action takes Hit” (2, %) as a level set
over a regular value (see Goldman [14]).

Now we consider the quotient ¢ : Hit” (%, %) — Hit?(%,€)/R™"1.
The restriction map ® = (:5,,,- -+, %, ) identifies this quotient space with an
open subspace of the product space Hit”' (%) x --- x Hit? (%;) where

B; = {(&, B) | € is a component of 0%; and (tx,(€), B) € B U €}

The quotient ¢ is not only topological but also symplectic in the following
sense: ¢ pushes forward the symplectic form w¥ and induces the symplec-
tic form @¥ on the quotient space. On the other hand the product space
Hit? () x - - - x Hit? (%) carries the symplectic form wi' @ - - ®wy'. Now
we can state our first main theorem. We remark that the theorem holds for
general n.

Theorem 1.2.1. Let ¥ be a compact oriented hyperbolic surface. Then the
map ® is a symplectic diffeomorphism from Hit?(E,%)/Rm(”*l) onto
Hit? () x --- x Hit?(%)).

For the precise statement, see Theorem 4.5.7.

Theorem 1.2.1 decomposes & into a sum of symplectic forms and allows
us to obtain some information about the symplectic structure on Hit” (%, %)
by studying smaller symplectic manifolds individually. We apply Theorem
1.2.1 to the case when X is closed and X;’s come from a pants decomposition.

Let X be a closed oriented hyperbolic surface. Take a pants decomposition
of . That is a choice of a maximal collection of mutually disjoint, non-isotopic
essential simple closed oriented curves {1, -+ ,€34—3}. Goldman [15] proves
that Hit3(2) can be parametrized by 169 — 16 global parameters which can
be classified into three types

e internal parameters (s;, t;) parametrize Hity (P;) for each pants P;.
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e length parameters (¢;, m;) are positive numbers associated to each &;.
o twist-bulge parameters (u;,v;) are dual of the length parameters.

Internal and length parameters are canonical because they can be directly
read off from the projective geometry without making any further artificial
choices. Whereas twist-bulge parameters u;, v; are rather ambiguous. These
(u;,v;) coordinates measure the amount of twist-bulge along a curve &; with
respect to a certain origin and there is no canonical choice of such a reference
point. To remove this ambiguity, we use the relationship between Goldman
coordinates and Bonahon-Dreyer coordinates [6].

After we obtain the well-defined Goldman coordinates, we prove that a
canonical part of Goldman coordinates

(1,7 ,Sag—2, 01, m1, -+, l39-3,M3g—3)
can be completed to a global Darboux coordinate system. A version of the
action-angle principle (Theorem 3.4.5) is essentially used to prove the result.

Theorem 1.2.2. Let ¥ be a closed oriented surface with genus g > 1. There
is a smooth R3978 _valued function

(§1a o 7§29727 Elamla o ,£3g737m3g73)

on (Hits(X),wa) such that
(S1,7 -+ ,Sag—2, 1, m1 -+ ,l3g_3,M39-3,51, - ,Sog—2, 1,1, , 393, M3g3)

becomes a global Darbouz coordinate system.

Recently, Casella-Tate-Tillmann [8] shows that the Goldman bracket and
Fock-Goncharov bracket of PSL3(R) character variety of an open surface co-
incide on the trace algebra. Their results may cooperate with ours to give a
further generalization of Theorem 1.2.2.

1.3. About the proofs

We first prove a variant of the action-angle principle. Suppose that we are
given a Lagrangian fiber bundle f : M?" — B over a connected open sub-
set B of R™ such that H?(B;R) = 0. Under certain conditions, the bundle
map f = (f1,---, fn) has complementary coordinates g = (g1, , gn) such
that (f,g) forms a global Darboux coordinate system (Theorem 3.4.5). In-
deed if the bundle map f has a global Lagrangian section, then we can find
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complementary coordinate functions (Lemma 3.4.1). So it is enough to prove
the existence of a global Lagrangian section under the given conditions. We
borrow the idea of Duistermaat [10] to show this. We prove that one can find
a Lagrangian section locally (Lemma 3.4.3) and then, using sheaf cohomol-
ogy theory, we show that the obstruction for gluing local Lagrangian sections
vanishes.

Then we prove the decomposition theorem. We prove Theorem 1.2.1 by
induction on the number of cutting curves and we eventually end up with the
situation where we cut the surface by a single simple closed curve. There are
two cases depending on whether the curve separates the surface or not. We
prove the decomposition formulas for each of these cases.

To this end, we first decompose the tangent space of the Hitchin compo-
nent. It can be done by means of the Mayer-Vietoris sequence which is known
for the cohomology of group systems [3]. We construct a similar sequence for
the parabolic cohomology.

Suppose that & is a separating essential simple closed curve in ¥, so that
Y\¢ = X1 U X We choose sets of pairs, called frame (Definition 2.1.4),
B =1{(C1,B1), -, (&, Bp)} and € = {(&,C)} as in the previous subsection.
The Mayer-Vietoris sequence tells us that the natural inclusion map ty, :
m(2;) — m (%), i = 1,2 induces a homomorphism between tangent spaces

(L§)1>L;2) : T[p] Hitf(z, cg) — [

Hit” (2,) @ T Hit 7?2 (3,)

pOLZl] POLZZ]

whose kernel is spanned by the tangent vectors along the twist flows. Given
two vectors «, 8 € Ty, Hit” (%, %), we prove in Theorem 4.3.1 that

by b
When ¢ is non-separating, ¥\¢ = ¥y, we have a similar homomorphism

13+ T Hit) (2, %) = Tjpory, 1 Hit7 (S0)
induced from vy, : m(29) — 71 (X) whose kernel is again spanned by the

twist flows. Then, we show in Theorem 4.4.1 that

(3) w%((a, 5) = OJ?(O (l’éoa’ L§05)~

In fact, (2) and (3) hold under weaker assumptions on [p]. See Theorem 4.3.1
and Theorem 4.4.1 for precise statements.

We prove (2) and (3) by using the Fox calculus. The key point, which
stems from Zocca [37], is that we can decompose a relative fundamental class
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(Lemma 3.3.4) into a sum of relative fundamental classes of subsurfaces to-
gether with some extra terms. Roughly writing [X] = [X1] + [X2] + extra
for the separating case and [X] = [¥g] + extra for the non-separating case.
Then we choose a nice representative in the given cohomology class in such
a way that all the extra terms vanish. Applying the decomposition formulas
inductively, we can prove Theorem 1.2.1.

Lemma 5.2.5 implies that the map F : Hit3(X) — R®~® assigning to each
[p] the coordinates

(s1(lp]), -+ s sag-2([p]), Ca([p]), malp]), -+, lag—5([p]), mag—3([p]))

is a Lagrangian fiber bundle. Then we show that F' satisfies all the condi-
tions of Theorem 3.4.5. Therefore Theorem 1.2.2 follows as a consequence of
Theorem 3.4.5.

2. The space of representations and Hitchin components

In this section, we review basic facts on Hitchin components for compact sur-
face with or without boundary. To describe their tangent spaces, we introduce
the group cohomology and the parabolic group cohomology which represent
the tangent spaces of Hit,(3) and Hit” () respectively.

2.1. Definitions and properties

Let X denote a closed oriented hyperbolic surface. Throughout this paper,
the Lie group G always denotes PSL,(R) and g the Lie algebra sl,(R) of
PSL,(R). Let

X(m1(), PSLy(R)) = X, (m1 (X)) := Hom(m1 (), PSL,(R))/PSL, (R)

be the space of representations. We sometimes consider the GIT quotient
instead of the usual one. However do not have to distinguish them because
these two quotients coincide on a subspace X, (71(%)) defined below and we
focus only on X, (71(X)) throughout this paper.

Definition 2.1.1. A Hitchin component Hit,,(3) is a connected component
of X(m(X),PSL,(R)) that contains a Fuchsian representation.

When n = 2, Hity(X) coincides with the usual Teichmiller space. It is
known that the Teicumiller space is homeomorphic to the cell of dimension
6g — 6 where g is the genus of X. Similar result holds for Hitchin components.
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Indeed Hitchin [18] himself shows that Hit, () is homeomorphic to the cell
of dimension (n? — 1) - (29 — 2).

Now suppose that ¥ is a compact hyperbolic surface possibly with bound-
ary. We can naturally generalize the notion of Hitchin components for such a
non-closed surface.

Definition 2.1.2 (Labourie-McShane [25]). Let ¥ be a compact oriented hy-
perbolic surface. p € Hom(m1(2), PSL,(R)) is said to be a Hitchin representa-
tion if p can be continuously deformed into a Fuchsian representation in such
a way that the holonomies of boundary components are purely lozodromic (i.e.,
it is diagonalizable and all eigenvalues are distinct positive real numbers) in
the course of the deformation. A connected component of

{[p] € Xn(m1(X)) | p is a Hitchin representation}

is denoted by the same notation Hit, (X).

Suppose that X is a hyperbolic incompressible subsurface of a closed hy-
perbolic surface X. Given [p] € Hit,,(X), its restriction p|, (5,) to the subgroup
m1(X0) is also in Hit,(Xg). See Theorem 9.1 of Labourie-McShane [25].

The space X, (m (X)) contains an open subspace, the space of ‘good’ rep-
resentations

Xn(m1 (X)) := Homg (71 (2),G)/G

where
Hom,(m (2), G) := {p € Hom(m(X2), G) | p is irreducible and Zg(p) = {1}}.

If G = PSL(n,C), Hom,(m(X), G) is the set of good representations in the
sense of [29] and [20] and is contained in the set of stable representations.

Suppose that p € Hom(m(X), G) is given. Let X € sl,(R) be an Ad,-
invariant element. Then exp X is in Zg(p). So by definition of X, (1 (X)),
we have exp X = 1 or, equivalently, X = 0. It follows that g, has no non-
trivial Ad, invariant element. Therefore Homg (71 (X), G) is a smooth man-
ifold. Moreover, it is proven by Johnson-Millson [20] that the G-action on
Homyg(m1(X),G) is proper and free. Consequently the quotient space
X, (71 (X)) is also a smooth manifold.

Hitchin representations for a compact surface have many interesting prop-
erties. We summarize them as the following lemma, which is implicitly used
several times throughout this paper.

Lemma 2.1.3. Let ¥ be a compact oriented hyperbolic surface. Let [p] €
Hit,, (2).
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o p is faithful, irreducible and discrete.

e For each nontrivial v € w1 (X), p(7y) can be lifted to a purely loxodromic
element with positive eigenvalues.

e The centralizer of p, Zg(p), is trivial.

In particular Hit,,(X) is a subspace of X,(m1(X)).

Proof. First assume that ¥ is closed. Then first two statements are noth-
ing but Proposition 3.4 of Labourie [23]. For the second statement, see also
Lemma 9 of Bonahon-Dreyer [4].

Suppose that > has a nonempty boundary component. We consider the
Hitchin double p. It is known that p is in the Hitchin _component Hit,, (Z)
of the double 3 of . See Corollary 9.2.2.4 of [25]. As 3 is closed, we know
that p is discrete, faithful and p(v) is purely loxodromic for any nontrivial
element 7. It follows that the p has the same properties.

We now show that p is irreducible. By Theorem 9.1 of [25], p is a positive
representation. Therefore by Lemma 5.12 of Guichard-Wienhard [16], p is
irreducible.

For the third statement, we lift p to p : m(2) — SL,(R). Such a lift
exists (see, for instance, section 3.1 of Bonahon-Dreyer [5]). Suppose that X
is in the center of p(m(X)). Since p(7) is purely loxodromic, we observe that
X must be diagonalizable. Therefore, Schur’s lemma is applied so we can
conclude that X must be a scalar. O

Let us introduce a nice submanifold of Hit,, (X) which is essential for our
discussion.

Definition 2.1.4. Let ¥ be compact oriented hyperbolic surface with bound-
ary components {C1,---,(p}. By a boundary frame, we mean a collection
= {(¢1,B1), -+, (Cp, Bp)} of pairs each of which consists of a boundary
component and a conjugacy class of purely lozodromic element in G with pos-
itive eigenvalues. Given a boundary frame 9B, we define the following space

Hit, (2) = {[p] € Hit,(2)| p(G) € By fori=1,2,--- b},

We also define ff(m(il)) < X, (m1(X)) in the same fashion.

Let C = {&,--+ ,&m} be a collection of pairwise disjoint, non-isotopic
essential simple closed curves. A C-frame is a family € = {(&,Ch), -,
(&m, Cm)} of pairs each of which consists of & and a conjugacy class of purely
lozodromic element in G with positive eigenvalues. Given a C-frame €, define

Hit”Z(2,€) = {[p] € Hit‘@(Z) |p(&)eCi,i=1,2,---,m}, and
X (m(%).€) = {[p] € X, (m(2)) | p(€) € Cr, i = 1,2, ,m}.
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To be more precise, we should understand (; (and &;) as a loop at the
base point p of 7 (X, p) by choosing a path from p to a point in ¢; (and &;).
However since we are dealing with the conjugacy classes, we may ignore such
a technicality.

We observe that Hit,(X) = |JHit?(X) where the union runs over all
possible choice of boundary frames. This foliation plays the key role in the
study of Poisson geometry of Hit, (X).

2.2. Group cohomology

Cohomology of groups is a model for the tangent spaces of X, (71 (X)). In this
subsection we review a definition of group cohomology and its properties.
Let " be a finitely presented group. Given a representation p : I' — G,
we denote by g, the I'module g under the action Ad,. If the action is clear
from the context, we omit the subscript p and simply write g instead of g,.
By a resolution over I', we mean any projective resolution of M = R or Z

'—>R2—>R1—>R0—>M—>O

where M is regarded as a trivial MI-module. Then the group cohomology
H(T; V') with coefficient in a MT'-module V' is the cohomology of the complex
Homp (R« (T"), V). Recall that the (co)homology does not depend on the choice
of projective resolutions. We refer to Chapter 6 of Weibel [33] for general
discussion on group cohomology. Our major concern is the case where M = R

and V = g,.
We mostly use the normalized bar resolution (F4(T'),dr) throughout this
paper. Recall that Fy(T') is a free I-module on symbols [z1|zs| - - - |2,] where

x1,- - ,xq € I'\{1}. The differentials are given by

qg—1
dr: [wifea| - 2] = aafwal - ag] + ) (=) Tar] - aiwiva] - ]
i=1

+ (=1l - wg]
with convention [zi|---[1|---|z,] = 0. When its meaning is clear from the
context, we simply write (Fy,d) instead of (F.(I'),dr). By taking the
Homr(—, g) functor, we get the chain complex C*(T'; g) = Homr(F;, g) with

differentials given by dr(u) := uwodp. The group of 1-cocycles and 1-cobound-
aries are denoted by

Z'(T;g) :={ue C'(I;g) | dr(u) = 0}
B'(I';g) == {or(X) € C'(I';9) | X € C°(T )}



1332 Suhyoung Choi et al.

Observe that C°(T';g) = g. Under this identification, we have §p(X)(g) =
g-X —X. We also know that if u € Z1(T'; g), then u([zy]) = u([z])+z-u([y]).

Now we give a relative version of group cohomology. We follow Trotter’s
paper [32] (see also [17, section 1]). A group system is, by definition, a pair
(T',8) of a finitely presented group I' and a collection S = {I'y,--- ,I',,} of
its finitely presented subgroups I'y, -« , ['y,.

Definition 2.2.1. Let M = R or Z. An auxiliary resolution (R, A%) over
the group system (I, S), or simply (I',S)-resolution, consists of

o R., a resolution over I'

o Al a resolution over I;

o A, =@, MT ®ur, Al is a direct summand of Ry.

Since A, is a direct summand of R, we can form a short exact sequence
of chain complexes

(4) 0— Ay —> Ry —> R, /Ax — 0.

For a given Imodule g, = g, we apply the Homp(—, g) functor on this exact
sequence. Then we get the long exact sequence

- — HUT,S;9) —» HY(T';g) —> HI(S;9) > H™HT, S59) — -+ .

Note that H?(S;g,) = @ H(I's; g, )-

Definition 2.2.2. The parabolic cohomology of I' of degree q with coefficient
ing,, H..(I',S;8,), is the image of HY(T',S; g,) in HY(T'; g,,). In other words

Hgar(r, S; gp) = Hq(r’ S; gp)/Hq_l(S§ gp)'

We are interested in the case where ¢ = 1 and I' = 71 (X). In the appendix,
we describe how to compute the (1st) parabolic cohomology by finding a
nice resolution over a group system (I',S). In terms of the normalized bar
resolution Fy(T'), elements of H, (T',S;g) can be represented by parabolic
cocycles

Zpe(L.8:9) := {a e Z'(Is9) | o (@) € B' (D 9), i = 1,2, m)

where LI# is the restriction defined at the end of this subsection.

Remark 2.2.3. Consider a group system (I',S’), 8" = {T'},--- , T}, which
is conjugate to (I',S) in the sense that for each i = 1,2,--- 'm there is a
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gi € T such that T, = g;T";g;'. Then the parabolic cohomology H...(T,S'9)

is the same as HY, (T, S; g) because 17 (o) € B'(T';; g) if and only z'fﬁ;:g,l(a) €
BY(T';; 9). In other words, the parabolic cohomology H{, (T, S; g) depends only
on the conjugacy class of I';. So in regard of parabolic cohomology, we define
a group system as a pair of group I' and a family of conjugacy classes of
subgroups 'y, -+ Iy, of T'.

We finish this subsection by introducing the restriction map. Let F,(I") be
the normalized bar resolution over I'. Suppose that we are given a subgroup
trr : Y — T. Then we have a natural chain map L#/ : Homp(F(I"),9) —
Homp (RT'®gr Fy(I), g). Since Homp (RIT Qg Fy (I), g) = Homp (F.(I7), g)
as chain complexes of R-vector spaces, this inclusion induces a homomorphism
ik - HY(T, g) — HY(I",g) which we denote by i}, [a] = [L#/(oz)] where [a] €
HY(T,g). Similarly, if (I",S’) is a group subsystem of (I, S), we have the
natural restriction map H}, (', S;g) — HL, (I",S'; g).

2.3. Tangent spaces of X, (m1(XZ))

It is well-know that the tangent space of X, (m1(X)) at each point [p] €
X, (m1 (X)) can be identified with H'(m(X); g,). See for example [34], [13],
[17], [29] and [24]. Since Hit,,(¥) is a component of X, (71(X)) (Lemma 2.1.3),
we can say that the tangent space of Hit,(X) at [p] is H(m1(X); g,)-

As in the closed surface case, we have a nice description of local geometry
for Hit (). Guruprasad-Huebschmann-Jeffrey-Weinstein [17] shows that the
tangent space of Hit? () at [p] € Hit” (%) can be identified with the parabolic
group cohomology

T, (11(2) = b (m1(2), G0+ <G} 0p).

More generally, we show the following in the appendix, Proposition A.0.2.

Proposition 2.3.1. Let ¥ be a compact oriented hyperbolic surface possibly
with boundary components {C1,- -+, G} Let {&1,- -, &m} be mutually disjoint,

non-isotopic essential simple closed curves. At each [p] € ?Z (m(X%),%),

T[p]?f(ﬂ-l(z)> %) = H;ar(ﬂ-l(z)7 {<£1>7 o 7<§m>; <C1>7 T 7<<b>}7 gp)
where p is a representative of the class [p].

Recall, by Remark 2.2.3, that particular choices of a subgroups (¢;) and
{¢;» within their conjugacy classes are not important.
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3. Aspects of symplectic geometry

In this section, we collect elements of symplectic geometry related to our dis-
cussion. We review the construction of the Atiyah-Bott-Goldman symplectic
form on Hit, () as well as the symplectic form of H. Kim on Hit? ().

The key part of this section is subsection 3.4 where we prove a variant
of the action-angle principle (Theorem 3.4.5) that allows us to find global
Darboux coordinates under certain conditions.

3.1. Definitions and properties

A symplectic manifold is a smooth manifold M with a non-degenerate closed
2-form w. Given a smooth function f € C*®(M), the Hamiltonian vector field
associated to f is characterized by a unique vector field X; such that

wXp, V) =df(Y)=Yf
for every vector field Y. Since dw = 0, we have
Lxw=dixw+ txdw = dexw

where £ denotes the Lie derivative. Hence a vector field X preserves w if and
only if the induced 1-form txw = w(X, —) is closed. In particular, Lx,w = 0.
It follows that the flow U* associated to the vector field Xy is a symplecto-
morphism for each ¢t € R whenever W' is defined.

Suppose that we have a symplectic manifold (M, w). By defining the Pois-
son bracket of smooth functions f, g € C*(M) by {f, g} = w(Xy,X,), we can
turn M into a Poisson manifold.

Let € M?" be any point of a symplectic manifold. Darbouz’s theorem
states that there is a coordinate neighborhood (U, (f1, -+, fa, 91, ,gn)) of
x such that w|y = > | df; A dg;. Such coordinates are called (local) Darboux
coordinates. Global Darboux coordinates are global coordinates

(f17"' 7fn7glv"' 7gn):M—>R2n

of M where w can be expressed as w = >, ; df; A dg;.

There is a particularly important symplectic manifold which arises nat-
urally from any manifold. Let M be any smooth n-manifold. The cotangent
bundle p : T*M — M has a canonical 1-form A.,, which is characterized by
the following property: 0*A\can = o for every 1-form o. If (U, (z1,-- ,zy))
is a local coordinate chart of M, then there are natural coordinates y; that
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parametrize each T, M, g € M, with respect to an ordered basis {dz1,- - - ,dz,}.
Then we observe that (p~*(U), (x1, - ,@n, Y1, ,Yn)) is a local coordinate
chart of T*M. With respect to this coordinates, Ac., can be written as
> yidr;. Define the 2-form wean by wean = —dAcan. Then (T*M, wean) is
a symplectic manifold of dimension 2n. Observe that that the Hamiltonian
flow on p~1(U) associated to each coordinate function z; is linear.

3.2. The Marsden-Weinstein quotient

Let (M,w) be a symplectic manifold. Suppose that a Lie group K acts on
M as symplectomorphisms. For each X in the Lie algebra £ of K we have
the fundamental vector field x given by (Exf)(z) = im0 f(exp(—tX) - z)
for x € M. This action is called weakly Hamiltonian if for each X € ¢, the
vector field £x is a Hamiltonian vector field. That is, for each X € &, there is a
smooth function Hx such that 1, w = dHx. The action is called Hamiltonian
if there is a Lie algebra homomorphism X — Hx from € to C* (M) such that
teyw = dHx. Here C*(M) is given the Lie algebra structure via the Poisson
bracket. The obstruction for a weakly Hamiltonian action to be Hamiltonian
stays in the Lie algebra cohomology H?(£;R). In particular, if H?(€;R) = 0,
every weakly Hamiltonian action of K becomes Hamiltonian.

Suppose that we have a Hamiltonian K-action. For each x € M there is
an element p(z) € € such that Hx(x) = (u(x), X) for all X € ¢ where (-, -)
is the canonical pairing between £* and £. The map p : z — pu(z) so defined
is called a moment map. Moment map is unique up to additive constant and
K-equivariant where £* is equipped with the coadjoint action.

If z € £* is a regular value of y and is a fixed point of a coadjoint action,
then p~1(2) is a K-invariant coisotropic submanifold. In this case, for each
x € p~Y(2), the symplectic complement {X € T, M |w(X,Z) = 0 for all Z €
Top~1(2)} of Tpu=t(2) is precisely the tangent space of the orbit space K - z.
Therefore we can hope that a new symplectic manifold may be constructed
by collapsing this ‘bad’ directions. That is the ideal of symplectic reduction
which we state as follow:

Theorem 3.2.1 (Symplectic reduction or Marsden-Weinstein quotient). Let
(M,w) be a symplectic manifold with a Hamiltonian action of a Lie group K.
Let 11 be the moment map. Suppose that z € ¥* is a fized point of the coadjoint
action and that it is a reqular value of p. If, in addition, K acts properly and
freely on p=1(2), then the quotient

noH(2)/ K
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18 a smooth manifold and carries the canonical symplectic structure & which
is uniquely determined by the property wl|,-1.y = (¢*Q)|,1(z) where q :
pt(2) = p=(2)/K is the quotient map.

One can find more details about symplectic reduction for example in
[27, 26, 7).

3.3. The Fox calculus and the Atiyah-Bott-Goldman symplectic
form

Motivated by Atiyah-Bott [1], Goldman [13] gives an algebraic construction
of the symplectic form on X, (7 (X)). This symplectic form is now called the
Atiyah-Bott-Goldman symplectic form which we denote by wg or simply wg
if the surface ¥ is understood from the context. The following theorem, one
of the main result of free differential calculus by Fox [12], is the key ingredient
of Goldman’s construction.

Theorem 3.3.1 (Fox [12]). Let T be a free group on free genemtors S1,°" 5 Sn.
Let ZI be the group ring. There is a collection of operators Tl VARECY/A R
=1,2,--- ,n having the following properties

e Given x,y € ZT,
dry  dy  Ox
o5~ a5 T as Y

where £(x) denotes the sum of coefficients of x.

0si 1 i=3j
[ ]

0sj |0 i#j
e For any x € ZT',

1+Zasz

Theorem 3.3.1 allows us to construct a non-trivial homology class in
Hy(m1(X);7Z). To do this we use the normalized bar resolution F.(I") over
. For our convenience, let us make the following convention: [a + b|z] =
[a|x] £ [blz] € Fa(T) for any a,b,x € T'\{1}. Now, choose a presentation

<l’1,yl,$27y27 e 7xgvyg | R>

for I' = m(X) where R = [ [%_, [, y;]. Then

2[[5% H i[{@yz

1=1

g
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represents a generator of Ho(I';Z) = 7Z by Proposition 3.9 of Goldman [13].
We call ¢y a fundamental cycle. The fundamental class of T' is the class [cx]
of ¢y in Hy(T;Z). If we use a different relation say R = hRh™! for some
h €T, then the fundamental class with respect to the new relation R’ reads

g g
OR OR
h—1|x; h—/\v;
% &l 2 el
which is homologues to the original fundamental cycle cy.

Theorem 3.3.2 (Goldman [13]). Let X be a closed oriented hyperbolic sur-
face. Then X, (') is a symplectic manifold with the symplectic form defined
at each point [p] € X, (T") by

we([al, [8]) = {a v B, ),
where [a],[B] € H'(T; g,).

The following Alexander-Whitney diagonal approximation theorem is use-
ful to find the explicit form of (o U 3, ¢x). See Lemma 4.5 of Huebschmann
[19].

From now on, we simply write a(g) instead of «([¢g]) when there is no
chance of confusion.

Lemma 3.3.3. Let a, B3 € ZY(T;g). For [z|y] € Fo(T), we have
(v B, [2lyl) = Tr(a(z)z - B(y))-

By virtue of Lemma 3.3.3, one can compute

o= =31 (a (E) ) - $1 (o

. )t

where () : RI' — RI" is the map induced from the inversion that sends a
generator [g] to [g~].

Suppose that ¥ has a boundary component. Then X, (7 (X)) is no longer
symplectic. However by controlling the boundary conjugacy classes, we get
a foliation each leaf of which is a symplectic manifold. See Theorem 2.2.1 of
Audin [2] for more details. To present the result, we need a relative version
of fundamental classes. Choose a path 7; from a base point p to a point in (;
in such a way that z; := (/" fits into a standard presentation

oR
Yi

(5) I'= Trl(zvp) = <I17y17x27y2a o 7xgvygvzlv' o 7Zb‘R>

where R = [[7_,[xi, i) H?‘:l j
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Lemma 3.3.4. Let

»=3 ([

: y’ﬂ ) i Hazj

I |
0y
be a (absolute) 2-chain in Fo(T)QRZ. There is an auziliary resolution (R, A)

over the group system (I', {{z;)}) with a chain equivalence F(I")QZ — R.QZ
such that the image of ¢ under the map

represents a generator of Ho(T',{{z;)};Z) = Z. We call [cx] a relative funda-
mental class of T.

We prove Lemma 3.3.4 in the appendix.
Note that if 3 is not closed, Ho(T'; Z) = 0 and that ¢y itself is not even a
2-cycle in the absolute chain complex F,(I') ® Z.

Theorem 3.3.5 (Guruprasad-Huebschmann-Jeffrey-Weinstein [17], H. Kim
[22]). Let 3 be a compact oriented hyperbolic surface possibly with boundary.
Let % be a boundary frame. Fix a presentation of (%) as in (5) and a

representation p such that [p] € ?f(F). Let [a],[B8] € HL (T, {{zi)}; 8,). We

par
choose, for each boundary component z;, an element X; € Homp(Fo({z;)), g) =

g such that L?;>Oé = 0,y Xi. Define wy to be

b
wi([a], [B]) = o U B ex) — Y Te(XiB(2))
i=1
where {a U [, ¢xy) is defined as in Lemma 3.5.3. Then wg is a closed, non-

degenerate 2-form and (?f(F), w3 becomes a symplectic manifold.

Remark 3.3.6. Unlike Theorem 3.3.2, the operation {a U B,¢x) in Theo-
rem 3.3.5 is defined only on the chain level and cannot descend to cohomology.
In fact, H. Kim [22] computes that for any X € C°(T;g) and B € Z*(T;g),

b
GrX U Bes) = > Te(XB(z)) # 0
i—1
Nevertheless, the whole expression wi-([], [B]) is a nice cohomological oper-

ation.
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Remark 3.3.7. The formula given in Lemma 8.4 of Guruprasad-Huebsch-
mann-Jeffrey- Weinstein [17] is incorrect. Since (with notation in [17]) {c,u v
vy is not antisymmetric, we have to replace {c,u L v) with 3({c,u U v) —
{e,v U uy). Then the formula of Lemma 8.4 of Guruprasad-Huebschmann-
Jeffrey-Weinstein [17] and Theorem 5.6 of H. Kim [22] are identical.

We state the relevant lemmas to prove Theorem 3.3.5.

Lemma 3.3.8 (H. Kim [22]). Suppose that X| € g is another element such

that L?;_>0z = 005X, fori=1,2,---b. Then

b b
(v Bes) = Y Tr(Xif(21) = v Bres) — Y Tr(X[B(=1)).

i=1 i=1
In particular, w¥ is well-defined in the chain level.

Proof. This lemma is also proven in H. Kim [22] but is not stated in an
explicit form. So we recall the proof here.

Suppose that there are two elements X; and X/ of g = C%({(z),g) such
that ¢/, ja = 60y Xi = 6., X]. Let ¥; = X; — X/ Then we have 4,.,,Y; = 0.
That is z; - Y; — Y; = 0. Since § € Z}, (T, {(z;)}; ), we can find Z; € g such
that B(z) = z; - Z; — Z;. Then we compute

Tr(Yi5(z:))

I
-

~
Il
—_

b
Z Tr((Xi — X;)B(z))

I
-

1=1
b
= Tr((5 Y- Y)Z) = 0.
i=1
Therefore, wy is independent of choice of X. O

Lemma 3.3.9. Suppose that a = 6rX for some X € C°(I';g). For any
6 € Zéar(r7 {<Zz>}7g), we have

b
{au Byeny = Y Te(XiB(z)) = 0.

i=1
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Likewise, for any a € Z}, (T, {{zi)}; 9), and § = orX,

b
{au Bres) = > Te(XiB(z)) =

i=1
Proof. See Proposition 5.4 of H. Kim [22]. O

In other words, w¥ is well-defined and descends to a pairing on parabolic
cohomology groups.

Lemma 3.3.10. For any [o],[8] € H.,.(T,{(z:)};9),

Moreover, if wi ([a],[8]) = 0 for all [a] € HL,.(T,{(z)}; 8), we have [5] = 0.
Proof. See Proposition 5.5 of H. Kim [22]. O

Therefore, wy is a nondegenerate 2-form on ff(F).

Then we have to show that w¥ is closed to conclude that it is indeed a
symplectic form. This is not a trivial result and can be proven by various ways.
See, for instance, H. Kim [22], Guruprasad-Huebschmann-Jeffrey-Weinstein
[17], and Karshon [21].

The expression of ¢y; depends on the choice of the relation R. We may
wonder the value of wg changes if we use another relation. The following
lemma shows that it is not the case.

Lemma 3.3.11. Let R = hRh™' for some h € T. Let ¢ be the relative
fundamental class defined as in Lemma 3.3.4 with respect to R'. Then {a U

B,es) = (L B, k) for all [a], [8] € Hi(T, {0} 0)-
Proof. Tt is straightforward to obtain
b
ﬂ ) ; [[ §ZJ

(2] B S

Since « is a cocycle, a (h,%) =« <§) + g ~a(h™!). Here we use the

convention (z +y)- X =z - X +y- X where z,y € I, X € g. By definition of
(v B, e5),

lau B,y =(auB,es)
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g b
+ Tr (a(h—l)g (Z (gi (x; —1) + Z—Z(yi - 1)) + Z g—j(zi — 1))) :

=1

By Theorem 3.3.1, we conclude that the second term is Tr(a(h™1)3(R—1))
0.

|

3.4. The existence of global Darboux coordinates

Now we prove series of results toward the existence of a global Darboux
coordinate system. Our main goal of this subsection is Theorem 3.4.5.

Lemma 3.4.1 (A variation of Theorem 18.12 of da Silva [7]). Let f =
(fi, 5 fn) : M®™ — B be a fiber bundle over a connected open subset B
of R™. Suppose that M is given a symplectic structure w such that each fiber
is a simply connected Lagrangian submanifold. Suppose moreover that the

Hamiltonian vector fields Xy, ,--- , Xy, are linearly independent at each point
i M and complete. Then the following hold:

e f: M — B becomes an affine bundle over B.

o If f : M — B admits a global Lagrangian section, then there is a
function g = (g1, ,gn) : M — R™ such that (f1, -, fn, 91, , 9n)
is a global Darbouz coordinate system.

Proof. Observe that Xy, ,--- Xy, are tangent to each fiber. For if Z is any
vector field that is tangent to a fiber, we have w(Xy,, Z) = dfi(Z) = Zf; = 0.
As each fiber is maximally isotropic, this means that each Xy, is also tangent
to a fiber.

Recall that w([Xy,, Xy ], Z) = Zw(Xy,,Xy,) for every vector field Z. Be-
cause the fibers are Lagrangian we have w(Xy,, Xy,) = 0. Hence [Xy, Xy ] =0
for all 4, j. It follows that the rule z — (Xy, [, - , Xy, |) defines a completely
integrable distribution. Since Xy, ,--- , Xy are linearly independent, the in-
tegral manifold is n-dimensional, and thus, is an open subset of each fiber.
Since each fiber is connected, the integral manifold must be the whole fiber.
This, together with the fact that Xy,’s are complete, yields that the Hamil-
tonian flows associated to fi,--- , f, induce an R™-action. Since the integral
manifold is the whole fiber, the action must be fiberwise transitive. Since each
fiber is simply connected and since the R"-action is transitive, we conclude
that the action is a free action and this gives an affine bundle structure on
f:M— B.

Let ¢ : B — M be a Lagrangian section. Since the action is free and
fiberwise tramsitive, for each x € M, there is a unique t, € R™ such that
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x =ty - o(f(z)). Define the smooth function g = (g1, ,9n) : M — R" by
g(z) = tq.

We claim that = — (f(x),g(z)) is a global Darboux coordinate system.
We first observe that (f, g) is regular and one-to-one. Hence (f, g) is a global
coordinate system. Moreover aifi = daa%i spans a Lagrangian subspace at
each point x of o(B). Then we compute

o 0 0

0
(o)

0
Zd(fioo')%
J

Com (1 0=
0x; 0 1#7
at each x € o(B). Now consider a general point x € M. We may assume that

x can be reached from o(f(x)) by the Hamiltonian flow ¥ associated to some
fi- That is x = ¥!(o(f(x))) for some t € R. Since W' preserves w, we have

0 0 0
or (el = (Babet® (b))
= (@) (Rl ¥ (o))

0 1 i=j
U(f(:v))’a_fj|a(f(r)) Vo ivj

Therefore (f, g) is a global Darboux coordinate system. O

= Wo(f(x)) <Xﬂ

Remark 3.4.2. Lemma 3.4.1, looks similar to the well-known action-angle
principle (see for example Theorem 18.12 of da Silva [7]). One difference
is that, in our result, the given “integral of motion” can be taken as action
coordinates without any modification. An additional condition, the existence
of a Lagrangian section, must be imposed to obtain this stronger conclusion.

Lemma 3.4.3. Let (M?",w) be a symplectic manifold and f = (f1, - , fn) :
M — B c R" be as in Lemma 3.4.1. Then each c € B has a neighborhood U
such that there is a symplectomorphism F : f=Y(U) — T*B which is also a
morphism of affine bundles.
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Proof. Note that, by the first assertion of Lemma 3.4.1, M is an affine bundle.

We first show that there is a neighborhood U of ¢ where a local Lagrangian
section o|y on U exists. For this we choose a neighborhood Vj of ¢ € B
where both M and T*B are trivialized. Let T : f~1(Vy) — Vo x R™ be a
trivialization.

Let z € f~!(c). Carathéodory-Jacobi-Lie theorem states that there is a
neighborhood Uy of z and function g = (g1, - , gn) such that (U, (f,g)) is
a local Darboux chart. We may assume that Uy = f~(Vp) and that T'(Up) =
U x I for some open box I of R™ and an open neighborhood U of ¢. So locally,
wly, = 2y dfi A dg;. Therefore, f : M — B admits a local Lagrangian
section over U := f(Uy) < Vp. Let o be this section.

Let z : U — z(U) be the zero section of T*B — B. Define a map
Fy:0(U) — z(U) by zo f. Observe that (T*B, wean) is a vector bundle with
fiber preserving the Hamiltonian R™-action acting fiberwise freely, linearly and
transitively. We also have the fiberwise free, transitive and linear Hamiltonian
R™-action on M. So, for each z € f~!(c), there is a unique t, € R™ such that
t, - o(c) = x. Extend Fy to the map F : (f~Y(U),o(U)) — (T*Bly, 2(U))
by F(z) = t, - 2(f(z)). Then F is clearly an affine bundle map. Lastly we
have to prove that F' is symplectomorphic. To this end, observe that F' is
symplectomorphic at each point of o(U). Let ® and ¥' be Hamiltonian flows
on each bundle corresponding to the same 1-dimensional subgroup of R™.
Then F o ®' = !, Since Hamiltonian flows preserve the symplectic form, we
conclude that F' is symplectomorphic. O

Assuming further that B has the trivial 2nd cohomology, we can prove
the existence of a global Lagrangian section. The proof is based on sheaf
cohomology theory and the idea of Duistermaat [10].

Proposition 3.4.4. Assume that B is connected and H*(B;R) = 0. Under
the assumptions of Lemma 3.4.3, f : M — B admits a global Lagrangian
section.

Proof. For each y € B, vector fields Xy ,---, Xy are tangent to the fiber
M, = f~'(y). We write Xy, (M,) for the vector field on M, induced by
Xy,. Let N be a vector bundle over B whose fiber over y is the R-vector
space spanned by Xy, (M), -+, Xy, (M,). Since d f; annihilates T, M, < T, M,
x € M,, there is a unique closed 1-form 7, on B such that f*n, = df;.
The assignment 7 : Xy ~— 7, induces the isomorphism of vector bundles
n: N — T*B in the obvious way.

Note that under the assumptions of Lemma 3.4.3, M has the structure of
affine bundle over B.
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Claim. Let o1 be a local Lagrangian section of the affine bundle M — B over
an open set U < B.

o [f oy is another local Lagrangian section over U, then o1 — o9 naturally
defines a local section of N — B. Moreover, n(oy — 02) is a closed
1-form on U.

e Conversely, let vy be a local section of N — B over U such that n(vy)
1s a closed 1-form. Then o1 + 7y is another Lagrangian local section of
M — B onU.

Proof of the Claim. It is clear that o1 — o9 is naturally a section of N since
for each y € B, there is a unique translation vector from oy (y) to o2(y).

Let y € B. Lemma 3.4.3 guarantees that we can find a neighborhood V" of y
such that there is a symplectomorphism F' : f~1(V) — T* B sending o1 (V) to
the zero section. By construction of F', we have F'(0q —02) = n(o1—02). Since
F is an affine bundle morphism, we know that n(o; — 02) = F(01) — F(02)
and that F'(01) and F'(03) are 1-forms on B. Since F' is a symplectomorphism
F(o1) and F(o9) are both closed 1-forms. Hence, (o1 — 02) = F(01) — F(02)
is also a closed 1-form. Thus, each point y € U has a neighborhood where
n(o1 — o2) is closed, which proves the first part of the claim.

If 7 is a local section of N such that n(v) is closed, then we have that
F(o1 +7) = n(o1 + ) is a closed 1-form so it is a local Lagrangian section
of T*B. Since F' is symplectomorphism, o1 + v must be a local Lagrangian
section. O

We can cover B by open sets {W;} such that the affine bundle M — B
is trivial over W; for each ¢ and that there is a local Lagrangian section o;
on each W;. We can further assume that each finite intersection of {W;} is
contractible. Observe, by the above claim, that the difference oy := 0; — 0 of
the sections on W; n W gives a (Cech) 1-cocycle {n(c;;)} of the sheaf Kerd!.
By the above claim again, the cohomology class in H!(B, Ker d!) represented
by {n(cij)} is the obstruction of finding a global Lagrangian section. We show
that this obstruction class vanishes.

Consider an exact sequence of sheaves

0—>R— Q% —Imd — 0.

Here, R denotes the constant sheaf and QY is the sheaf of smooth functions
on B. The above exact sequence induces the long exact sequence

-— HY(B,Q%) - HY(B,Imd’) — H*(B,R) — H*(B,Q%) — ---
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Observe that Kerd! = Im d° as sheaves. Moreover because QY is a soft sheaf,
it follows that

HY(B,0%) = H*(B,0%) = 0.
Therefore
HY(B,Kerd') = H'(B,Imd°) ~ H*(B,R) =~ H*(B;R) = 0.
Consequently, {n(o;;)} represents the trivial class so Proposition 3.4.4 fol-
lows. O

Finally, by putting all the above results together, one can deduce the
following theorem.

Theorem 3.4.5 (A variation of Duistermaat [10]). Let (M?", w) be a sym-
plectic manifold and f = (f1, -+, fn) : M* — B be a fiber bundle over a
connected open subset B of R™. Suppose:

e H*(B;R) =0,
e cach fiber is a simply connected Lagrangian submanifold, and
o the Hamiltonian vector fields Xy,,--- , Xy, are linearly independent at

each point in M and complete.

Then there is a function g = (g1, ,gn) : M — R™ such that

(f17"' 7fn7gla"' 7gn)

s a global Darbouz coordinate system.
4. Decomposition formulas

This section is devoted to the proof of our first main result, Theorem 1.2.1. As
mentioned in the introduction, we do induction on the number of curves. We
deal with the base cases by using the Fox calculus and cocycle computations.
Induction process is somewhat technical particularly when we try to cut the
surface by more than three curves. Suppose for instance that three curves
&1, & and &3 are positioned as in Figure 1. Then &1, & and &3 are all non-
separating in ¥. However {3 becomes separating seen as a curve in X\ (£ U &s).
On the other hand, & becomes separating if we subtract & and &3. Therefore
we get at least three different decompositions of 7 (¥) depending on the order
of cutting. To treat this technicality systematically, we borrow the notation
of graph of groups.
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We then present a (parabolic) group cohomology version of the Mayer-
Vietoris sequence to prove the decomposition formula for a single cutting.
This sequence decomposes the tangent space into one or two components
and our formulas show that the pairing w¥ is additive with respect to this
decomposition.

Figure 1: A set of curves that cuts a genus 2 surface into two pairs-of-pants.

4.1. Decomposition of fundamental groups

Let ¥ be a compact oriented hyperbolic surface of genus g with boundary

components (q,---,(. We denote by I' its fundamental group m(X). Let
{&,-- ,&n} be a collection of pairwise disjoint, non-isotopic essential simple
closed curves in ¥ that divide the surface into subsurfaces ¥q,--- ,%;. We

assume that each ¥; is hyperbolic.

Following Johnson-Millson [20], we can construct a tree 7 as follow. Let
D 3 — ¥ be the universal cover. The set of vertices V(T) consists of
connected components of f]\ U™, p71(&). Two vertices are joined by an edge
in E(T) if they are adjacent along some component of p~1(¢;). Observe that
each vertex corresponds to the universal cover of some ¥;. Johnson-Millson
show in [20, Lemma 5.3] that 7 is indeed a tree and admits a '-action without
inversion. Hence, we have the following theorem.

Theorem 4.1.1 (Johnson-Millson [20], see also Serre [28]). Let ¥ be a com-
pact oriented hyperbolic surface, {&1,- -+ ,&m} a collection of pairwise disjoint,
non-isotopic essential simple closed curves in 3 that divides the surface into
hyperbolic subsurfaces ¥y, -+ ;3. Then T := 71 (X) is isomorphic to the fun-
damental group m (I',G, D) of a graph of groups (I',G), G = T /T where D is
a choice of a maximal tree of G. We can label vertices of G by X1, , 3 and
edges by &1, ,&m. Choose a section j : D — T. Then the vertex group at
Y is I's, = Stabr(j(X;)) and the edge group at &; is I'¢, = Stabr(j(&)).

Observe that I'y;, is conjugate in I' to m;(X;) and that I'¢, is conjugate to
1 (&)
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Let us choose a base vertex of D and define a relation < on V(D) by
declaring that ¥; < 3; if and only if ¥; is nearer to the base vertex than ;.
It is clear that < is a partial order and the set V(D) becomes a poset. For
each vertex 3; we define the following subset

S(%0) = {%; e V(D) |9 < 5.

Each edge & € E(D) is given the orientation from the smaller vertex to
the larger one. If §; is not in F(D) we orient it arbitrary.

For each edge & and each v € I'¢;, denote by v~ the image of 7 in the
vertex group of the origin o(&;). Similarly v is the image of v in the vertex
group of the terminal t(&;). Therefore, for each &; € F(G),

I :={y"|velg}, and
Le={1"|vele}

are subgroups of I' = m(T', G, D).

For each § € E(G) and each v € T, we have v© = 4~ in the whole
group I'. If & is an edge of G but & ¢ E(D), then we have an additional
generator & with relation &+ (&) ™! = 4~ for each v € T'g, in I'. Note that
fzi corresponds to a loop transverse to &;.

Let p : I' = G be a representation. Since each vertex group ['y, injects
into I', p induces a representation pry : I's, — G for each vertex group. p
also induces a representation pe. : (&) — G for each edge & which is not in
E(D). In this way, we obtain a collection of representations pry : I's, = G
for each i =1,2,---,l and pes : (&) — G for each & € BE(G)\E(D).

Conversely, suppose that we are given a collection of representations pry, :
I's, > Gforeachi=1,2,--- land pet <§]i> — G foreach & € E(G)\E(D),
subject to relations

o If { € E(D) and if 3; = o(I'¢,) and 3; = t(I'¢, ) then for each v € T'¢,,
(6) prs,(77) = pry, (V7).

o If & ¢ E(D) and if 3; = o(&) and X; = t(&) then, for each v € I, ,
(7) pes (&) prs, (V) (&)~ = pry, (7).

Then there is a unique representation p : I' — G whose restrictions are
precisely prescribed representations.
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Figure 2: An example of decomposition. Curves in C are depicted by thin
lines. The edges of graph G are lines with an arrow. Its maximal tree D is
thickened.

4.2. The Mayer-Vietoris sequence

Before go further, we summarize the general settings that we consider in the
subsequent section.

e 3 is a compact oriented hyperbolic surface with boundary components
{Ciy- -, G} &, -, &m ) is a collection of pairwise disjoint, non-isotopic
essential simple closed curves in ¥ that divide the surface into hyper-
bolic subsurfaces 1, - - -, 3;. We stick to the notation I' = 71 (X) (which
is also isomorphic to 71 (I',G, D)), I's;,, -+ ,I's;, and I'g,, - - -, I'g,, of the
previous subsection.

e Denote by ¢y, the map ¥; — X, the extension of the inclusion ; — X
to the completion ¥; of ;. We sometimes use the same notation s, to
denote the induced homomorphism ¢py : 'y, — T

e Unless otherwise stated, [p] denotes an element in ??(F, %) such that
[prs, | € Tf’(le) for each i = 1,2,--- | where

B; = {(&, B)| € is a component of 0%; and (ux,(£), B) € B U €}

The Mayer-Vietoris sequence for cohomology of group system is proven
in [3]. Our version of the Mayer-Vietoris sequence is the following.

Proposition 4.2.1. Fiz a representation p in the class [p]. Let (I',S) be a
group system where I' = 71(3) and S = {Fg, e ,Fgm,«l}, <+ {Cpy}. Define
for each i = 1,2,--- 1, S; = {{{) < I'y, |¢ is a component of 0%;} so that
(T's,, Si) is a group subsystem of (I', S).
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o The sequence

m l
6 *
0— @HO(F;;Q) - H;ar(r’g;gﬂ) > @le)ar(FEiﬂSi;gprxi) — 0
i=1 i=1
1s exact.

e The connecting homomorphism § sends X € H°(I'¢;;g) to the tangent
cocycle of an algebraic bending by X along & and v* is induced from the
inclusions vy, = (I's,,Si) — (I',S) that is,

Hlal) = wyla] @ @5 [a]-

We do not prove the first statement at this moment because their proof has
no dependency on remaining parts of our paper. For the sake of completeness
however we give a proof in the appendix.

The second assertion regarding the map ¢ is shown in [20, Lemma 5.8].
Because we do need some details about the connecting homomorphism, we
give more descriptions here.

Choose a representation p in the class [p]. Let { be an edge of G. Let
X e HO(FgO;g) where HO(FgO;g) = ker(Ad, —Id) < g. We introduce a flow
‘I’§<,5i0 in Hit,, () as follow. If &, is an edge in E(D) joining ¥, and ¥, with
¥, < Yy, define
(p(x) r €Ty, ¥; <X, or incomparable

(exptX)p(z)(exp—tX) zely, ¥; =X,
Plye (0)(@) = { (exptX)p(z)(exp—tX) x =&, o(&), t(&) € S(5,)
(expX)p(a) r=EF,0(6) € S(5,),tE

)¢5(5,)
L o(z)(exp —tX) =&, 6(&) € S(2g), 0(&k) ¢ S(T

a)

For each ¢, <I>§(75i0 (p) satisfies all relations in (6) and (7).
If &, is not in E(D), we define

pla)(exptX) ==&
p(x) otherwise

e (p)(x) = {

Again (IDtX@O (p) fulfills the relations in (6) and (7) for each ¢. Therefore, in

both cases, we get the flow of representations <I>tX7€i . Call this flow the alge-
braic bending by X along &;,. The last assertion of Proposition 4.2.1 states
that %@tX@_O =6(0,0,---,0,X,0,---,0) where X is in the HO(F&O;Q) com-
ponent of @, HO(Tg,; 9).
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4.3. The local decomposition formula: separating cases

Assume ¢ is separating so that X\¢ has two components 3q,¥s each of
which is hyperbolic. In view of Theorem 4.1.1, I is the fundamental group of
DIV

*—>—0

From Proposition 4.2.1, we have the short exact sequence

é
0— HT{:9) > Hy(T, S5 0)

(%, %)

H}})ar(FEHSl;g) @ Héar(FEwS?; g) —0

where, as before, S = {Fg, (1), -+ ,{G)} is a collection of subgroups of I" that
forms a group system (I',S) and S; = {{{) = I's;, | ¢ is a component of 03;}.
We also abbreviate the inclusion iry, : I's, = I' to vy,

Now we can state the decomposition formula.

Theorem 4.3.1. Let X be a compact oriented hyperbolic surface possibly with
boundary components {C1,--- ,(p} and £ an essential simple closed curve that
separates 3 into two hyperbolic subsurfaces ¥ and Xo. Let (I, S) be the group
system where T' = 7m(3) and S = {Fg,<§1>, -+ {G}. Choose a boundary

frame % and {&}-frame €. Let [p] € ?ZJ(F, %) be such that [pry, | € Tfl (T's,)
where

B; = {(¢,B) | is a component of 0%; and (i5,(¢), B) € B U €}

for each i = 1,2. Fiz a representation p in the class [p]. For [a],[B] €
H.,.(T,S:g,), we have

wit([a], [B]) = wi (5, [a], 63, [B]) + wig (5, [a], 3, [8]).-
We prove the following lemma first.

Lemma 4.3.2. Let S; = {({)| ¢ is a component of 0%}, i = 1,2. If i¥ [a] =
0 then there is a unique 1-cocycle oy € Z,,.(T', S; ) such that [a7] = [a] in
Héar(F,S; g) and that Li(&{) =01n Zrl)ar(F;:Q,Sg; g). Similarly, if 15 [a] =
then there is a unique 1-cocycle o such that [a3] = [a] and that Lé:l (a3)
i Zpar (U5, 815 9).

par

0
0

Proof. We prove the first case. Pick any representative of [a] say o} €
Z3 (L, 8;9). Since 1§, [a] = &, [a]] = 0, there is X € g such that Li(a’l) =
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dry, X. Let a1 = o) —drX. Then clearly [a7] satisfies the required properties.
For the uniqueness, suppose that there is another class o € Zéar(F, S; g) sat-
isfying the same properties. Then since [af] = [a1] in H}, (T, S; @), we have
of = a7 + orY for some Y € g. Applying Li, we have 0 = iépY = 0ry,Y
in Z,.(I's,,S2;9). By Lemma 2.1.3, Y = 0 and the uniqueness follows.

The second case can be achieved along the same lines. O

Proof of Theorem 4.3.1. We borrow the idea of Zocca [37]. We use the fol-
lowing presentations

Py, =i, Y11, 7 s Tlg Ylgis 21,050 > 2161 | T1)s
s, = @21, 92,1, s T2,00 Y2,g05 22,05 "7 5 22,0, | T2),
Te = (&) with £ = 219, & = 25, and
I'=m(X) ={@11, Y11, Tlg1s Ylgis 21,1, 5 Z1by
T215,Y2,15 52,99, Y2,907 22,15 """ 5 22,ba | r>

where relations are given by

gl
= xlmylu Zl,j 21,0
Jj=1

ba g2
o = 299 H 21,5 H $2,]7 y2,] s and
Jj=1

Jj=1

91 b1 b2 g2
r= | [ [[z15,014] H 2 | (1220 ) (] [[720 9241 ] -
7j=1 Jj=1 Jj=1 Jj=1

We decompose the relative fundamental cycle (Lemma 3.3.4) by splitting

the summation
N or N i or
X1 i 21,
1, E Y1, i EEy 1,

I or
== (]
‘ (%Li
2 or or 21 or
" 2 <Ha$2,i xzﬂ'ﬂ " |[ay2,i 92,1‘]D " Z; |:|:822,z’

=1
=1
x].,‘ ) A y]-, = y17
‘ ayl,i ’ ayl,i '

el = o
1a|| — axl,i

ZQ’ZI| .

Observe that

or
&Eu
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foreachi=1,2,---,¢g; and

or ol = 51‘1 .
&Zl,i 12 — (921,@' 1,2
for each i =1,2,---,b;. Thus

2 or or boroor
o :Z (Haxu o ﬂ [[@y 1i y“ﬂ) +Z1 H&z“

i=1
The last term [{aaz ‘ 2 OH is equal to [[zf,é|z1y0]].
On the other hand, we have

PN G
1,0 aZLO

2’170:|‘ .

[ or [ 81‘2
T2l = X2
_51327,‘ _8:1:271» ’
[ or [ 61‘2
Yo2i|| = Y2,i , and
_5yz,¢ ] _5y2,z‘
[ or [ 51‘2
—| 22| = || =22,
| 0z25] | 0205]

fori=1,2,---,go and j = 1,2,--- , by. Since the extra term [[ Orz

522 0

220]] =

[1|22,0] is 0, we get
ex = ox, + 3, — [2rgl200].

Now we first assume ¢ _[oq] = 0 and compute w ([a1], []). By Lemma

4.3.2, we can find a representative oy of [ay] such that Lia{ = 0. We use a7
to compute w¥ as follow

wi ([oa], [8]) = wi([a1], [8])
= (a1 v B s + a1 v b, C22> +{@ v B, [e1plz10D>

—ZTI“ Xllﬁ le ZTI‘XQZﬁ 221))

=1 i=1

where X;; € g is such that d.,, \X;; = z >6?I By the construction of a7,

we have (a7 U f,¢x,) = 0 and a7(z;p) = a( 20) = 0, for i = 1,2. Again,
by the construction of ay, we can choose Xy, to be 0 for all t = 1,2,--- , by.
Hence

wi([aa], [8]) = wi (18, [on], o, [8]) + Te(X B(210))
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where X € g is given by the property d.,, X = thl 0>&V1. Observe that

s o] = s o7 = 0. Therefore we can take X to be zero. This leads us to
(21,00 (z2,0)

wi([on], [8]) = wi (1%, [en], o3, [8])-

Similarly, if [az] € H), (T's,, S2; 9) is such that 3 [aa] = 0, we choose &
as before to get

wi([az], [8]) = wiZ (18, [a2], 3, [5])-

Now suppose that we are given a general [a] € H! (I',S;g). Since

par

H,.(T,S;g) = ker 1§, + ker ¥, (not direct), we can decompose [a] as a sum
[a] = [a1] + [az2] where [a1] € ker(§;, and [az] € ker ;. Then by linearity

we have

wit([a], [8]) = wi ([, [8]) + wi([az], [8])
Wi [8]) + @i (13, [az], &, [5])
)

[
=Wk (15 by, [a1], 5
+ w2 (13, [al, 3, [8)):

= wi (i3, [a], 43, [6]

It completes the proof of Theorem 4.3.1. O
4.4. The local decomposition formula: non-separating cases

Suppose that ¢ is non-separating such that ¥ := 3\¢ is hyperbolic. In this
case I is the fundamental group of ¥, Q§ and we have the exact sequence:

*

,S:g) 3 HL (I, So:g) — 0

par

0— H)(T{,9) —

par(

where § = {Fg,((ﬁ, Gt So = {{¢)| ¢ is a component of 034} so that
(I's55 So) is a group subsystem of (I', §). Note that the homomorphism try,

'y, — I' and ¢p+ - Fg—r — I'y, are abbreviated to ¢y, and t¢+ respectively.

The corresponding decomposition formula is the following:

Theorem 4.4.1. Let ¥ be a compact oriented hyperbolic surface and & a
non-separating essential simple closed curve such that 3y = Y\ is hyper-
bolic subsurface. Let (I',S) be a group system where T' = m(X) and S =
{Fg,<(1>, -+ {G}. Choose a boundary frame B and {£}-frame €. Let [p] €

Yf(l“,%) be such that [pry ] € ?fo(l“zo) where

Bo = {(¢,B) | is a component of 0Xg and (1,(¢), B) € B L €}.
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Fix a representation p in [p]. For [a],[8] € H.,.(I',S;g,), we have

par

wi (o, [8]) = wi (8, [al, 45, [8])-
As in the separating case, we start with proving the following:

Lemma 4.4.2. Let Sy = {{¢) = T's, | ¢ is a component of 030} There are

I-cocycles &, &' such that [a] = [&'] = [«] in H),,(T,S;g) and that o a =0,

Lé&’ =01n Zl(FZ;g) and Zl(Fg;g) respectively.

Proof. Choose any representative o/ of [a]. By the assumption, Llﬁ(o/ ) =
£

5FZX for some X € g. Let & = o/ —0rX so that &(Fg) = 0. The construction

of & is almost the same. O

Proof of Theorem 4.4.1. We use the following presentations

I'= <‘T13y17"' yLgy Ygy 215770 ,Zb+1a§J_|r>7
Te = (&) with £ = 241,67 Zb+12

and
S0 = <1:1,y1,~- yLgy Ygy 215 - ,Zb+2|ro>
where
g b
r=[241,§ H [z, y;] HZJ
j=1 j=1
and

@

b
ro = Zp4+12b+2 (H[%;w]) HZ]
j=1 j=1

Then, the relative fundamental cycle ¢y, can be written as

(BN AN

On the other hand, the relative fundamental cycle ¢y, is

g 81‘0 aro b+2 aro

i=1

).

=




Symplectic coordinates on PSL3(R)-Hitchin components 1355

Note that for each i =1,2,--- ;gand j =1,2,--- ,b, we have

PN Y E2 O T O £ T 08 T
ox;| " &cz " oy Yl = Oy Yil| - oz | 7l Loz

It follows that
- ﬂ Hﬁr . H |[ o : ﬂ |[ o B H
o afl 02p41 bl 0212 i

or
Cy —Cxy = ||[7—
By evaluating the right hand side, we get
_ 1 -1 i 1
¢ = ey — [2or1l2sr2] — [26418 21 2] + 26111671 — [20412042/€7 ]

02p11

By Lemma 4.4.2, we can find & and § such that [a] = [&] ([8] = [5],
respectively) and &(zp42) = 0 (B(zp+1) = 0, respectively). Now we have

~

wic([a], [8]) = wi (65, [8], 13, [B]) — Tr(@(2p41) 2611 - Bzb42))
+ Tr(&(2p+1) 2p41 - E(fL)) — Tr(0(2p412p+2) (2b+12p+2) 'E(fl))
+ Tr( X1 8(2041)) + Tr(Xpp2B(2042))

where X, 1 and Xp o are elements of g such that L?i.& = 51“&* Xpy1 and L?_& =

5rgXb+2- Since B(sz) = &(zp+2) = 0 the last two terms vanish.

We expand using 2p,0 = fizbfl (S

~

On the other hand, since &(zp42) = 0,
Mzp412042) (Zp412042) - BET) = @l241) (p412042) - BED).
Therefore, all terms except WI%O(LEO [a], 5, [3]) cancel each other. So we get

wiclal, [8]) = wi (%, [a], i, [B])

as desired. 0
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Combining Theorem 4.3.1 and Theorem 4.4.1, one gets the following gen-
eral local decomposition theorem.

Corollary 4.4.3. Let X be a compact oriented hyperbolic surface and let
{&1, -+ ,&n} be a collection of pairwise disjoint, non-isotopic essential sim-
ple closed curves in X that divide the surface into hyperbolic subsurfaces
Yq,-00, % Let (I,S) be a group system where T' = m(X) and § =
{rs, - ,Fgrm,<C1>, -+, {Gy}. Choose a boundary frame % and C-frame € .
Let [p] be an element in If(l“,%) such that [pry ]| € ?Zji(ng) for each
1=1,2,---,1 where

B; = {(¢,B) | is a component of 0%; and (15,(¢), B) € B U €}.

Fix a representative p of [p]. Then for any [o],[8] € H},. (T, S;9,), we have

par

l
wi ([, [8]) = Z wi (13, [a], &, 18D

Proof. We use induction on the number of curves in C. If C consists of a single
curve &, we are done by Theorem 4.3.1 or 4.4.1 depending on whether £ is
separating or not.

Suppose that a collection C = {&1,- -+ ,&n}, m > 1, is given where &, is
separating. Without loss of generality, we may assume that Y_ := ¥;u---0X,
and ¥4 := 3,11 U--- U X are two components of ¥\&,,. By virtue of Theo-
rem 4.1.1, we can identify I" with the fundamental group of graph of groups

Y-Em2i+. Let S = {(¢) = I'y, | { is a component of 0%4} so that (I's;, , S)

and (I's_, S_) become group subsystems of (I, {Fgm,<C1>, -+« {C»}). Then by
Theorem 4.3.1,

wit([a], [B]) = wi (1% _[al, & [B]) +wi' (i, [o], &, [B]),

where ¢5;, and ¢5; are the natural maps (I'y, ,Sy) — (I',S) and (I'y,_,S5-) —
(T, S) respectively. Observe that a collections of curves {{ € C | n X4 # &}
and {£€C|En Y # &} cut Xy and ¥_ into Xy, , %, and Spiq,-- -,
respectively. By the induction hypothesis, we have

wie ([0, 3 [B1) = 3 wit (5705 _[a], 56 [6)),
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and
!
P i — _
wig (68, [a, 5, [B) = D) wi (=4, [al, i, %%, [8))
1=p+1
where iy, : I'y, > I's,, @ =1,2,--- 1 are the natural inclusions. We observe

that iy, %15, = 5, Therefore, we obtain

l
— Wi ([l 3. 8)).

Now suppose that &, is non-separating. Let Xy := ¥\&,,. Then by Theo-
rem 4.1.1, I' is the fundamental group of a graph of groups ZOQ§m . By

Theorem 4.4.1, we have

wi([al, [8]) = wid (i3, [a], 15, [8])-

Here i5, is the injection from 'y, into I'. Since C\{{,,} divides X, into
Y1, -+, 2, by the induction hypothesis, we obtain

) _
Wi (85[0, 13, [8]) = D wi (i3,% 05, [0, i3, 05, [B])
=1

Since ig, "5, = 1%, we have

!
w% (15, [e], 5, [ Z 12< (5, [a], o5, [B])-

This completes the induction and Corollary 4.4.3 follows. 0
4.5. Global decomposition

As mentioned in the introduction, we can decompose 71(X) into 7 (%;)’s and
this decomposition allows us to construct the map

(8) Xy (I) = X, (Tsy) x - x X (T'yy)

induced from [p] — ([pry, |: [ors, ]+ [org, ])-
Recall that Theorem 9.1 of Labourie-McShane [25] shows that if [p] is

Hitchin, then so is each factor pry, . Therefore, if we restrict (8) to Hit” (2, %)
we get the map

(9) D - Hit’Z‘?(E,%) N Hit?l(Zl) X - X Hit;?l(Zl)
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where
B; = {(€,B) | € is a component of 0%; and (5, (£), B) € U €}.

Proposition 4.5.1. Let ¥ be a compact oriented hyperbolic surface possibly
with boundary components {C1,- -+, G} and let {&1, -+, &n} be a collection of
pairwise disjoint, non-isotopic oriented essential simple closed curves in X
that divide the surface into hyperbolic subsurfaces ¥1,--- ,%;. We have the
following:

o Let (T, S) be a group system where ' = 71(X),

= LG G T TE )
and let
= {{{) = TI's, | ¢ is a compoment of 03;}.

Then we have identifications
T[ ]HItU@(E cg) par(F S gﬂ)

and
T Hit, (1) x - x Hit (%) 69 par(U5,: i3 8or,, -

e Under the above identifications, the differential d® fits into the Mayer-
Vietoris sequence

m — 1
O_)®HO(F517Q) par F S g _?@ par 178179)_)0
i=1 i=1
that is,

do([a]) = 3, [] @ - - @15, [a].

Proof. The first statement is already done in Proposition 2.3.1.

The second assertion follows from the definition of ® and Proposition
4.2.1. |

Lemma 4.5.2. Each fiber of ® is connected.
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Proof. We complete C to get a maximal geodesic lamination of > and con-
struct the Bonahon-Dreyer coordinates on Hit,(X) and on Hit,(%;) (see [4]
or Appendix B) with respect to this maximal lamination. In this coordinates,
Hit” (2, %) is the set

{[p] € Hitu () [1%(p) = 1%(po), 1(p) = % (o),
j=1,2,--- b, and k=1,2,--- ,m}

for some fixed reference point [po] € Hit” (%, %). Here € is defined by

€1 (g PO Paca (Y g
) <lg|Az(p(£))l’ 108 TN (0(©) )ER

where ¢ is a closed leaf or a boundary component and \;(g) is the ith largest
eigenvalue of g € G. Recall that each component of [ and I5 can be expressed
as a linear combination of triangle invariants and shear invariants. Moreover
one can express ® as

5=pr21X-~><prEL

where pry, denotes the projection onto the triangle invariants and shear
invariants associated to ideal triangles and (infinite or closed) leaves con-
tained in the interior of ;. It follows that the fiber of ® is spanned by the
shear invariants associated to closed leaves C. Therefore the fiber of @ is
connected. O

We now introduce a Hamiltonian R™"~Y_action that makes ® an affine
bundle over the base space Hit:l"? (2, %€)/R™"=1)_ Then we prove that the base
space Hit” (3, €)/R™"1 is the symplectic reduction.

Let Hyp™ be the set of purely loxodromic (or positive hyperbolic) ele-
ments in G = PSL,,(R). By an invariant function we mean a smooth function
f:Hyp" — Rsuch that f(ghg™') = f(h) forallh e Hyp™' and g € G. Given
an invariant function f, there associated another function F' : Hyp™ — g
characterized by the property that %|t:0f(g exptX) = Tr(F(g)X) for all
X € g. Observe that Ad,(F(h)) = F(ghg™").

Let f1,---, fn—1 be invariant functions such that

g f(9):=(fi(g),  , fa-1(9))

is injective and that {F1(g), F2(9), - - , F—1(g)} forms a basis of ker(Ad, —Id)
where g € Hyp+. To each oriented essential simple closed curve £, associate
a map fe: Hit” (%) — R*~! which is defined by fe(lpl) = f(p(&)).
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Given C = {&1,- -+ ,&n} a family of mutually disjoint, non-isotopic ori-
ented essential simple closed curves, let T¢, ;([p]) = [<I> F(p(e)), &( )], the al-

gebraic bending by Fj(p(&;)) along &. Then for (ti,--- e R~V where
t; = (t},-- ,t7"1) e R""!, we define the complete ﬂow

n—1 n—2 12
T [p]) = Ty 0 T 500 T 5 0 T 4 ([0))

The above formula is well-defined in the sense that it does not depend on the
order of compositions. Hence we obtain the R™"~1_action on Hit;?(Z) given
by

(b1, o t) - [p] = TE ) ([p]).

Recall that §(Fj(p(&;))) is the fundamental vector field of the unit vector
(seen as a Lie algebra element) in the direction of ¢ at [p].

Lemma 4.5.3. The R™"V_qction on Hit” (%, %) is free.

Proof. Choose a representative p of [p] and a base point ¥; of D. We observe
that, by construction of the R™"~_action, (t - p)lrs, = pry, on the vertex

group I'y, of the base vertex. Suppose that t - [p] = [p] for some t € R™"~ 1),
Then, by Lemma 2.1.3, t - p = p as representations. Now by induction and
the definition of the action we have t = 1. Therefore, the R™" D_action is
free. O

Lemma 4.5.4. Let
HA(T) = {p e Hom(T, G) | [o] € Hit? (¥)}.

The R™"=1 _qction on H?(T) is proper.
Proof. Define

H(Ts,) :={p € Hom(T'y,, G) | [p] € Hit,,(3;)}

for each i = 1,2,---,1. We know, by Lemma 2.1.3, that H#(T") and H(T's;,)
are subspaces of Homg(T', G) and Homg(T'y;,, G) respectively. Let C' be a com-
pact subset of HZ(T'). We know that the restriction map

iz, - HZ(D) - H(Ts,)
and

e HP(T) — Hom((6), @), & € E(9)\E(D),

J
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are continuous and equivariant with respect to the R™™D_action. Fix the
base vertex ¥ of D. Let

U :== {t e R |t .15 (C) n 1y, (C) # T,
Vii= {t e RVt 00(C) n0ee (C) # ).

Since ¢y, and t¢1 are equivariant,
J
! N
teR™™ V. CnC =By (\Uin [V
i=2 j=1

where N = |E(G)\E(D)|. We claim that (\\_, U; n ﬂj\rzl V; is compact. Since

(10) {te RV |t.CnC# @)

is closed, it follows that (10) is compact.
It is known that the G-action on Homg(I'y;,, G) is proper. See Proposition
1.1 of Johnson-Millson [20]. Hence, on each H(I'y,) € Hom,(I'y,, G), the set

D:={geGlgs,(C)g~" nix,(C) # T}
is compact. Suppose that £ is in E(D) and precedes ¥;. Let

E:={(t, - tn_1) e R" | exp(ti Fy(p(€)) + - + tu1Fu_1(p(€))) € D
for some p € C}.

Recall that the R"™! action on Hom,(I's;;, G) corresponding to the flow along
¢ is conjugation by exp(t1F1(p(§)) + -+ + tn—1Fn—1(p(§))), p € C. Hence we
have

{teR" 1t 1x,(C) Ny, (C) # P} E.
We claim that F is compact which also proves that
{teR" |t 15,(C) N g, (C) # &}

is compact. Consider the map &k : R"~! x C' — G given by

((t1, -+ s tu1), p) = exp(t1 F1(p(§)) + - + th—1Fn—1(p(§))).

This map is continuous. Moreover if W is an unbounded subset of R"~! then
so is k(W x C) where G is given the operator norm. Since C' is compact,
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the projection p; : R"™! x C' — R™! onto the first factor is a closed map.
Therefore, E = p1(k~(D)) is closed and bounded subset of R"! so F is
compact.

By induction on [, we have

l
ﬂUiCAQX"'XAlXRN(n_l)

=2

where each A; is a compact subspace of the subgroup R"~! of R™"=1) cor-
responding to the flow along an edge in D.
Now we claim that the set

B;:={teR"'|t- te+(C) n1e: (C) # D}

is compact. Recall that the R”~! action on te+(C) is the right multiplication
J

by exp(tiFi(p(&)) + -+ + th—1F1(p(&;))). Let A" be the set of diagonal
matrices with diagonal entries being sorted from the largest to smallest. Con-
sider the Cartan projection a : G — A" which is known to be continuous and
proper. We may assume that K - /,5]4.(0) =11(C)- K = Let (C) where K is a
maximal compact subgroup of G. Then we observe that

Fi={ge A 1e(C)g m1:(C) # 2)

is compact. Indeed if F' is not compact, there is an unbounded sequence
{g:} in A" such that ngl(C’)gi x> (C) #  for all 7. Then L (C) must be
unbounded, which contradicts the assumption that Lt (C) is compact. Since
a is proper, a }(F) = {g € G| ngL(C)g s (C) # I} is compact in G. Thus
Bj = pi (k' (a7 1(F))) is also closed and bounded. It follows that B; must be
compact.

Hence topologically, ﬂ§:2 U;n ﬂ;vzl Vj is a closed subspace of Ay x - -+ x
A; x By x --- x By. Since each A; and B; are compact, ﬂi:2 U; N ﬂ;vzl V; is
also compact. O

Lemma 4.5.5. The R™"V_qction on Hit” (%) is proper.
Proof. We show the following claim first.

Claim. Let p : HZ(I') — Hit?(X) be the projection, p(p) = [p]. There is
a section s : Hit?(X) — HZ(T) of p such that s(t - [p]) = t - s([p]) for all
t e R™(n—1),
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Proof of the Claim. We extend C to a maximal geodesic lamination on ¥ and
fix an ideal triangle T" contained in X1, the origin of the tree D. By Labourie-
McShane [25], there is an equivariant flag curve F, : 003 — Flag(R") for
each p e H?(T) where S is the universal cover of ¥. Fix also flags P, @ and
a line R such that (P,Q, R) is generic. Denote by p,q,r the three vertices
of a lift T' of T. Then for each [p] € Hit?() there is a unique p € HZ(T)
such that [p] = [p], Fs(p) = P, Fs(q) = Q and F3(r)M) = R. Let s :
Hit” (%) — ##(T') be the map defined by s([p]) = p. For any t € R™"~1),
we have (t - p)lry, = plry, . It follows that Fi.,(p) = P, Fe,(q) = @, and
Fep(r)M) = R. Hence t - p = s([t - p]) as desired. O

Let C be a compact subset of Hitff(E). To prove the properness, we let
C" = s(C). Since s is equivariant, we have

(teR™V|t.CnC# @)= {teR"MV|t.C"'~nC" # @}

The right hand side is compact by Lemma 4.5.4. Therefore, the R™("—1)

action is proper on Hit” (). O
Let u : Hit” () — R™"1) be the function defined by
(11) u([p]) = (fe(p)s- -+, fen (p))

and let L = image x1. 41 is the complete invariant of conjugacy classes of Hyp™.
Therefore, the value u(g) determines the conjugacy class in which g € Hyp™
is contained.

Theorem 4.5.6 (Generalization of Goldman [14]). Keep the assumption of
Proposition 4.5.1. For any boundary frame A, the R™"=Y) _action on Hit'ff(E)
is Hamiltonian whose moment map is given by (11). Each y € L is a regular
value of p and the action is proper on u~(y).

Proof. Theorem 4.3 of Goldman [14] states that when X is closed, the R™("~1)-
action on (Hit,, (X), wg) is weakly Hamiltonian. Since curves in C are pairwise
disjoint, non-isotopic, Theorem 3.5 of [14] implies that the Hamiltonian func-
tions [p] — fi(p(§;)) commute each other. Therefore this action is Hamilto-
nian.

Now we assume that ¥ has boundary. Let (I',S) be a group system where
I' =m(X) and S = {{(1)," - ,<Cb>,1“g, e ,an}. We first consider the co-
homological operation

H\I, S;0)® H'\(I; g) S HX(D,S;R) SR
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where the first arrow is the usual cup product and the second is the cap
product with a relative fundamental class [cx] € Hao(I', S;R). It descends to
the operation

I,S;9)®H,

par

(I',S;9) = R

par(

which is the same as the explicitly defined form w}. See Lemma 8.4 of [17].
Then as in the proof of Proposition 3.7 of [14], we can show that the Poincaré
dual of the cohomology element Xy, |, € par(f‘ S;9,) < H'(I';g,) is & ®
F;(p(&)) € Hi(I',S;g). This follows from the commutativity of following
diagram, absolute version of which appears in the proof of Proposition 3.7 of
[14]:

Nles]

(T, g) H,(T,S:q)
l \ ¥
NT, S 0)* <— H'(T, S g%)*

For the precise definition of each map, we refer to Goldman [14]. One can
also prove that, by exactly the same argument of Theorem 4.3 of [14], the
Poincaré dual of [%T] = §(Fj(p(&))) € H(T;g) is given by & ® Fj(p(&))
as well. This prove§ that the action is weakly Hamiltonian. To prove that
the action is Hamiltonian, we again use the fact that & are all disjoint which
implies that {fe,, fe,;} = 0 for all 4, j.

It remains to prove the properness of the action. But since =1 (y) is closed
in Hit?(E), the properness follows by Lemma 4.5.5. O

In particular, by virtue of Theorem 3.2.1, we can construct the Marsden-
Weinstein quotient

q:p ) — pt(y) /RO

We denote by &% the induced symplectic form on ;i ~1(y) SR,

Let € be the C-frame such that = '(y) = Hit” (2, %). As we mentioned
above the quotient space Hit” (2, €)/R™"~1) carries the symplectic form 673
On the other hand, the target of ®, Hit?' () x - - - x Hit (%), also admits

a symplectic form wfx{l ® D wfz(’.

Theorem 4.5.7. Let ¥ be a compact oriented hyperbolic surface possibly
with boundary components {(y,--- , G} and let {&1,--+ ,&m} be a collection
of pairwise disjoint, non-isotopic oriented essential simple closed curves in
Y that divide the surface into hyperbolic subsurfaces ¥4, ,%;. Let B and
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%€ be a boundary frame and C-frame respectively. Then ® in (9) induces the
natural map

@ : Hit? (2, %) /R™"Y - Hit?1 (2) x --- x Hit? (%))
where

B; = {(&,B) | € is a component of 0%; and (ix,(€), B) € B U €.
Moreover ® is a symplectic diffeomorphism onto
Hit? () x --- x HitZ1(5)).

Proof. Since R™™=1) acts as conjugation on each I's,, @ is well-defined.
We now prove that ® is symplectic. Since

Ty Hity! (2,6)/R™"D = dg(H),, (L, 83 9,)),

each element in T, Hit” (2, %) /R™™ 1 can be written as dg([a]) for some
[a] € H),.(T,S; g,). Moreover, by Proposition 4.5.1, we have

d(@ o g)([a]) = do([e]) = 5, [o] @ - D15, [0].
Therefore, it follows that

¥ (wi @ ®wy)(dglal, dg[B]) = D] wiF (1&, [al, 1%, [8]).

i=1

By Corollary 4.4.3, we have

l
Z wi (8, [a], &, [8]) = wi (o], [B])-

Since ¢*(@%) = wi on Tj, Hit”?(%,¢) = H.(
[3] were chosen in H!, (T',S; gp) it follows that

par

I',S;9,), and since [«] and

wi([o], [8]) = @k (dgla], dg[B]).

Therefore, C;[E( = @*(w? PP wIE{’) as we wanted.
¢ is one-to-one. Indeed by Lemmas 4.5.2 and 4.5.3, R™"=1) acts on each
fiber of ® transitively and freely. Hence ®([p1]) = ®([p2]) if and only if [p]
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and [ps] are in the same fiber of ® if and only if there is a unique t € R”("—1)

such that t - [p1] = [p2]. Therefore, [p1] and [p2] represent the same element
in Hit” (2, €)/R™1),

We now show that @ is an open embedding. Observe that
§(@", H(T,; g)) is tangent to the orbits of the R™" V_action. Therefore
we have, by Proposition 4.5.1,

Ty Hity? (2, %) /R = dg(Hy,, (T, S: 9))

= (0, 858,)/0(D H (T 9))
=1
!
~ D H' (s, Siz9)-
i=1

Therefore, Proposition 4.5.1 shows that ® has the full rank and that
dim Hit? (2, €)/R™" Y = dim Hit? (31) x - - x Hit2(2)).

It follows that ® is an open embedding.
Finally, Bonahon-Dreyer [4] tells us how to construct the inverse of ®.
Therefore ® is surjective. O

5. Global Darboux coordinates on Hits(X)

In this section we prove Theorem 1.2.2.

We first review Goldman’s construction of a global parametrization on
Hit3(X) where X is a closed surface and then compute wg between some co-
ordinate vector fields. We then construct an R®~8-valued function and prove
that this function satisfies all the conditions of Theorem 3.4.5. Corollary 5.2.1
is essentially used in the proof.

Throughout this section, ¥ denotes a closed oriented hyperbolic surface
unless otherwise stated.

5.1. Review on the Goldman coordinates

Choi-Goldman [9] show that Hits(X) can be seen as the deformation space
of convex projective structures on the surface . It allows Goldman [15] to
construct global coordinates of Hit3(X) based on projective geometry. Let us
briefly summarize the construction of Goldman coordinates.

Take a maximal collection of disjoint, non-isotopic essential simple closed
curves C = {&1,- -+ ,&39—3} in X. This collection C cuts the surface into 2g — 2
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pants Pp,-- -, Py;—o. As mentioned in Lemma 2.1.3, if [p] € Hit,(X), then
each p(&;) is in Hyp™. Therefore, by giving an orientation to each &;, we can
associate the following invariants m; and ¢; to each oriented simple closed
curve &;:

() = 1o &L }
&(p)—lg4|A3(p(&))|, i(p) = 3log|Xa(p(&))l.

Here \; denotes the ith largest eigenvalue.
Recall that there is a Hamiltonian R%~6-action on Hit3(%) with moment
map p : Hitz(X) — (R%76)* given by

[p] = (La(p),m1(p), -, lag—3(p), m3g—3(p))-

Note that we identify (R%76)* with R%~° via the canonical inner product.
The quotient ¢ : Hitz(X) — Hitz(X)/R% 76 is an affine bundle. Recall also
that Hitz(X) is foliated by [, p~1(y). As each p~1(y) is invariant under
the R%~%-action, the quotient space Hit3(X)/R% =6 is also foliated by sym-
plectic manifolds of the form p~!(y)/R%~=6. We have seen that each leaf
w ( )/R%9=6 can be 1dent1ﬁed with the symplectic manifold of the form

H1t3 (Pl) S X H1t3 - *(Pyg—2) via the map @, in Theorem 4.5.7 where
B! are boundary frames corresponding to y.

Goldman [15] shows that each factor Hit?'(P;) is parametrized by two
coordinates (s,t). We can therefore parametrize the quotient Hits(X)/R696
by ¢;, m; coordinates together with interior coordinates s; and ¢; defined by

=logsopr;o®,, and t; :=logtopr;od,

where pr; is the projection onto ith factor of Hit?f (Py)x---x Hitfgg‘2 (Pag—2).

To complete our discussion, we have to parametrize the fiber of the affine
bundle ¢ : Hit3(X) — Hit3(X)/R%6. To this end, we need to specify the
origin of the affine bundle Hit3(X) — Hit3(X)/R% 6. We make the following
observation first:

Lemma 5.1.1. Let ([p1],--- ,[p2g—2]) € Hit}?f(Pl) X +ee X Hité%gg‘Q(ng_g)
be in the image of ®,. Then there is a unique [p] € p~'(y) < Hitz(2)
such that ®,(q([p])) = ([p1],- -+, [p2g—2]) and that o5 (&) = 0 for each i =
1,2,---,3g—3 and j = 1,2. Here af(fi) are shear invariants of & given in
(21) of Appendiz B.

Proof. We have to show the uniqueness of [p]. Suppose that there is another
[/] € Hity(%) such that O([]) = ([p1],- - , [pz-2]) and that o?'(&) —
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foralli=1,2,--- ,3g —3 and j = 1,2. Then we can find a non-zero vector
t € R%~6 such that t - [p'] = [p]. Due to Proposition 5.2 of Bonahon and I.
Kim [6], there is a block-diagonal matrix

D, 0 0

0 Dy 0 1 _3)
A= . D=

0 0 .0 (1 3

0 0 0 Dsg

such that At = (07(£1),05(%1),- -+, 07 (&39-3), 05 (£35—3))T = 0. Since A is
non-singular, t must be the null vector which is a contradiction. O

Therefore, we obtain a section s : Image®, — p~'(y) < Hits3(X) of
@, 0 ql,-1(y) by assigning to each ([p1],,[p2g—2]) in the image of ®,, the
unique [p] € Hit3(X) constructed in Lemma 5.1.1. Use the image of s as the
origins of the action to get the well-defined twist-bulge parameters u;, v; to
each &;. In summary, the global coordinates of Hits(X) are given by

{S1,t1,"‘ 75297271:2972761777117"' ;53973777%39—37%1,1)1,"' ;Usg—syvsg—:a}

where
s;,:=s;0q, and t;:=1t;04q.

We have to remark that these coordinates may not be compatible with the
symplectic form wg.

5.2. Proof of Theorem 1.2.2

In this subsection we give a proof of Theorem 1.2.2. We start with some
lemmas aiming to apply Theorem 3.4.5 at the end.
Recall that for a function f, we denote by X its Hamiltonian vector field.

Recall also that

0 0 0 0
a—Si :dﬁa—sz, and a_tz Zdﬁa—tl

foreach i =1,2,---,29 — 2.

Corollary 5.2.1 (See also [22]). Let 3 be a closed oriented hyperbolic surface.
For any section s : Image ® — Hit3(X) of ® o ¢ : Hit3(X) — Image ® and at
any point [p] € Hit,(X), we have:

2aN_ (2 a2 2,
e asi’ésj - e 8si’6tj - wa 8ti’0tj B
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GG
¢ 8si’8ti B ’

Remark 5.2.2. The first part of Corollary 5.2.1 is partially proven by H.
Kim, see Proposition 6.4 of [22]. He uses the mathematica to prove them. We
can obtain the same result and more without mathematica.

whenever 1 # j and

Proof. Enough to consider the case when P; and P; are adjacent.

Suppose that [p] € Hit, (X, %) for some €. Then ais,; = dsa%i and a%_ =
dﬁa% are tangent to Hit, (3, €). Observe that wy = wZ when X is closed and
that (¢*@c)|uit, (3,¢) = Walnit, (z%)- Theorem 4.5.7 yields

0 0
we (“a—sxdﬁa—s)

i (4(g09) 5 d(g09) j)

0 0 P; 0 0
(LFP 85, LFP s, ) + Wy <L1>Epj 05; iEp §SJ>

=

w

If ¢ # j, we have (f a% =7, % = 0 and the result follows.
Similarly,
0 0 0 0
ds—,ds— ) =Wk (d d =
wc( P aq) Wk ( (gos)5 - dlaos)5 )

o . o\ »p o , 0
;1? </’Fp 751 LFP ot ) +wg <L1{pja—&»blﬁpjgj>

:0’

0 E3 =0.

since i, 7 = U, 6t]
When ¢ = j, we argue in the same fashion:

o .0 N 0 J p( 0 0 _
wa (dﬁa—&,dﬁa—tl> = WK <d(qo5)6sz d(q 5)at ) WK (6_51’67) =-L

Here w (aa , a(;) = —1 is due to Theorem 5.8 of H. Kim [22]. O

Lemma 5.2.3. For each i = 1,2,---,2g — 2, the Hamiltonian vector field
X, is of the form
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for some smooth functions a; and b;.

Proof. The most generic form of the Hamiltonian vector field Xy, of s; is

2g9—2 2g—2 3g—3 3g—3
Zasja +Zatjat+2auja +Zav]a
39—3 39—3

+]Z: (l[]ﬁ‘i‘ Z amJ&
If we compute wg(Xs,, Xy, ), we get

wg(XSi,ng) = dSZ' <a) = aSi =0.

6uk 6uk

On the other hand,

2g—2 29—2 39—3 39—3
—wg(Xs,, Xy, ) = as;, — + ag; = + Ay, = + oy —
' ;1 0s; ;1 0t ;1 Ou, JZ{ 0vj

39—3 39—3
+ gz: agjagk gz: a %
J

"9 om,
Jj=1
= Gy, -

It follows that X, does not have % components, k= 1,2,---,3g — 3. Sim-

ilarly, since —we(Xs,, Xim,) = 0 = @, , we can conclude that Xg, does not

contain %k, k=1,2---,3g — 3 factors either. Thus,
2g—2 29—2 39—3 39—3
0 0 0 0
Hom Dy s & 2y gy 2y Gyt 2 gy

j=1 J j=1 J j=1 J j=1 J

We showed in Corollary 5.2.1 that

(£ i>_0 i o <i 2y [
Y\ 0s;’ Osy ’ “\ 0s;’ oty 0 ifjAk

Recall also that Xy, = ==, and X, vl_. Hence for any j and k,

oo (2 O e (O (O ()
¢ a’LLj’aSk e évj’ask e auj’étk e 6vj’atk -
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Combining these two results, we get

0 0o 0
1= wa <Xsi7 5_SZ> = ¢, WG <a_tza a_SL> = Qg;

and, whenever k is not equal to 1,

0 0 0
0=wg <Xsi) 8—Sk> = Qt,Wa (é’Tk’ 5—sk> = Aty -

Thus it follows that
1 ifk=1
ag,, =

0 ifk#i
In particular Xg, does not have % components for all k£ different from 1.

Finally by computing

6si 0
= = XS‘7 AL = Us
0= 2, —we < : atk> s

we can show that Xg, does not have % components for all k. O

Lemma 5.2.4. Fach vector field Xs,, 1 = 1,2,--- ,2g — 2, is complete.

Proof. From Lemma 5.2.3, X, is of the form

0 0 0

We investigate the coefficient functions a;, b;. Observe that

0 8si
we (Xswa—e) “o;

On the other hand

Therefore
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Similarly,

0 0s; 0o 0
Xz — ) =5 =wo (55— ) +b=
wa < ‘ (9m]> 8mj wa (6’51 6m]> + b] 0

b= e (2O
o wa (9ti’6mj '

is a Hamiltonian vector field as well as a coordinate vector

shows that

Since Xy, = %

field, we have

0o 0 0o 0 oa;
- 2 %) _x L )

which yields that functions ai,--- ,ass—3 do not depend on wq,--- , ugg—3.
Same argument using X, instead of X, shows that ai,---,a3;—3 do not
depend on the vy, - - -, v34_3 variables either. Similarly, by, -- , b3y—3 are func-

tions depending only on s;, t;, £; and m;.
The equation x(t) = X, (x(t)) for an integral curve reads

(12) B o, g1 22
dt; (¢
dt;(t)
14 =1
(14) &
de;(t
dm; (¢
du;(t
(7) G0 a0y, j=120 3-8
dv;(t
(18) “Cflt():bj, j=1,2,--- 3¢ 3.

A solution for equations (12)-(16) is

t; =t + const.

t; = const. ) =1,2,---,29—2,7 #1
(19) / ’ T

sj = const. j=12---,29—2

lj,mj=const. j=12,---,3g—3
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Having the fact that a; and b; are functions of s;, t;, ¢;, m; in mind, plug the
solution (19) into a; and b;. Then a; and b; become purely smooth functions
of the time ¢. It means that the equations (17), (18) have a solution for all .
Therefore the vector field X, for each i = 1,2,--- ,2¢g — 2 is complete. O

We define a function F : Hitz(X) — R3978 to be

F(lpl) = (s1(p), -+ s29-2(p), (a(p) - -+, lsg—3(p), ma(p), -+, msg—3(p))-

Lemma 5.2.5. For each x € Image F' = R¥78 the fiber F~1(x) is a simply
connected Lagrangian submanifold.

Proof. Tangent space at each point of F~1(z) is spanned by vectors
XSp o 7X52972a Xfla e 7X53g737 and X’mp o 7Xm3g,3~

By Corollary 5.2.1 and Lemma 5.2.3, F~!(z) is a Lagrangian submanifold.
By Lemma 5.2.4, Xg,, -+, Xs,, 5, Xpp, Xy o0, Xy, g, Xipyg,_5 are com-
muting complete vector fields tangent to each fiber F'~!(x). Thus, the Hamil-
tonian flows of sy, -+ ,S94—2,01,m1, -+ ,l34—3, M34—3 induce an R3~8_action
on F~1(z). By Lemma 5.2.3, this action is free and transitive on each fiber
F~Y(z). Therefore, each fiber is diffeomorphic to R®~8 which is simply con-
nected. O

Lemma 5.2.6. F is a fiber bundle over its image.

Proof. We have to show that the R ~®-action on Hit3(X) defined in the
proof of Lemma 5.2.5 is proper. We already shown that the actions induced
by Hamiltonian vector fields X,, and X,,,, are proper (Lemma 4.5.5). Therefore
it is sufficient to prove that Xg, induces the proper R-action for each . To
see this, we prove the following claim analogues to the claim in the proof of
Lemma 4.5.5. We have to prove this again because the section constructed in
the Lemma 4.5.5 is not equivariant with respect to the action induced by Xg;.

Claim. There is a section s : Hitg(X) — H(I') of the projection p : p — [p]
which is equivariant with respect to the R®~8-action.

Proof. F, : 0% — RP? be the equivariant hyperconvex Frenet curve for
p € H(I"). As before, we fix the base vertex 3; of D. ¥; can be decomposed
into two ideal triangles T, and 7_ as in section 4.2 of [15]. In the universal
cover, we fix a lift ﬁ of T, and T_ of T_ such that ﬁ and T_ are adjacent.

Let a, b, ¢ be three ideal vertices of ﬁ and let d be the remaining ideal vertex
of T_. Then there is a unique p € H(I') such that F,(a) = [1 : 0 : 0],
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Fo(b) = [0:1:0], Fp(c) = [0:0:1] and F,(d) = [2 : 2 : —1]. We
set s([p]) to be such a unique p. Then by construction of Goldman’s (s;, t;)
coordinates, we have (t - p)|ry, = plry, for any t € R%~®. This yields that
Fepla) = [1:0 : 0], Fep(d) = [0:1:0], Feplc) = [0 : 0 : 1], and
Fi.p(d) = [2:2: —1]. Hence we conclude that s(t - [p]) =t - s(p). O

Since 1 is a three holed sphere, we have a presentation
Iy, = {C1,Cy, C3[ C1C2C3 = 1).

H. Kim [22] computes s([p])(C;) in terms of sj, t; coordinates. Now by
Lemma 5.2.3, it is enough to show that if t; — +00, then the corresponding
s([p]) is unbounded. When t; tends +0, we see that the (1,2) component of

s([p])(C1)

1

o1 (—3bc, +3loy +3lcy —2me, +2me, +2mey ) —s1+t)

diverges. Then t; tends to —o0, (2,1) component of s([p])(C1)

_mcy
(& 3

—t; (—e% (3t0, —3Loy +3Loy +2mo, —2me, +6mo, +12s1)

¢
1 Cs
e1z (73801 +3Lcy, +30cy —2me, +2me, +6meg — 1251) e - eMCs )

diverges. Therefore, the R®~8-action is proper on H(T'). To show that the
R89=8_action on Hit3(X) is proper, we lift a compact subset C of Hit3(2) to
a compact set s(C') and argue as in Lemma 4.5.5. O

Now we can prove Theorem 1.2.2. Let B be the image of the function
F : Hit3(X) — R¥ 8. According to section 1.8 of Goldman [15], B is diffeo-
morphic to R?9~2 x % and

R = {1, lag-3,ma, -+ ,mag3) € R x R¥ 73| |my| < 4;}

where Ry = {x € R|z > 0}. In particular, B is contractible. In addition to
this, due to Lemma 5.2.4, Lemma 5.2.5 and Lemma 5.2.6, we observe that
F : Hit3(X) — R3978 satisfies the conditions of Theorem 3.4.5. Therefore the
result follows from Theorem 3.4.5.

Appendix A. More details on group cohomology
This appendix is devoted to prove Propositions 4.2.1 and 2.3.1.

Let us recall our settings. ¥ is a compact hyperbolic surface with boundary
(1, ,C. We choose a collection of pairwise disjoint, non-isotopic essential
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simple closed curves &1, - -+ , &, that separate ¥ into subsurfaces ¥, -+, 3
each of which is hyperbolic. We use the notation in section 4.1 and section 4.2.
We denote by I's;, the conjugacy class of the subgroup 71 (%;) in 71 (X) and by
Fg the conjugacy class of m1(;) in Wl(E_). Let S={T¢,--- ,Fgm, 1)y G}
and S; = {{{)|( is a component of 0%;}, i = 1,2,--- ,l. Then (I'y,,S;) are
group subsystem of (I, S).

We give a CW-structure on ¥ as follows:

e Choose points pq,--- ,p; on the interior of each X1, , X, q1, " , ¢m
on &y, &n and g1, 5 @b o0 (1,0 -+, (p. They are 0-cells

e Fach & and (; is adjacent to at most two X;. If §; is adjacent to say X
and Y9, we connect ¢; to each p; and py by path 7, ; and 7; in ¥; and
Y9 respectively. Do the same thing for each ;. On each 3;, we choose
simple closed curves x;1,¥i1," ", Tig,Yig based at p; in such a way
that they are not intersecting and X,\(0%; v J; mi; v U, (i U vij)) s
a disk. TigyYig>Migs fl‘, Q are 1-cells

e 2-cells are disks corresponding to each ;.

We can check that this CW-structure has the following properties:

e The natural inclusions ¥; — ¥, & — ¥ and (; — X are cellular.

e Letp: > — ¥ be the universal cover. CW-structure of X lifts to a CW-
structure of 3. We observe that the natural inclusions p~1(%;) — % are
also cellular.

o U, p71(&) decomposes 3] into contractible regions. Each component
corresponds to the universal cover of YJ; for some 3.

Denote by C*(i) the cellular chain complex over R for 3 associated to
this CW-structure. We know that I' acts on cach Cy(X) as covering trans-
formations so that Cz(i) becomes a RI'-module. In fact, Cl(i) is a free RI'-
module. Since ¥ is contractible, the cellular chain complex C*(i) is exact.
The augmented complex Cy(3) — R is therefore a free resolution over I'.

As we did previously, I's, action on i turns Cl (i) into a complex of
RI'y,,-modules. Since i is also contractible, C*(i) — R is a free resolution
over I'y;,. Moreover, we see that RI'®C\ (i) =~ Cy(p~1(%)). Since 53, is again
a subcomplex of f), the natural inclusion induces a chain map (as R[-modules)

~

Ci(p~1(X;)) — Cx(X). Therefore, we get the natural surjective chain map

l ~
P Ca(p (i) = Cx(S) — 0.

i=1
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We do the same thing for T'¢,. If & connects o(§;) = X, and t(§) =
¥, we have a natural chain map from Cy(p~1(&)) to Ci(p™1(34)) and to
Cs(p~1(Zp)) both are induced by the inclusion. Then

(L#’ _L#) : C*(p_l(&)) — Ci (P_I(Ea)) @ C*(p_l(zb))

is also injective chain map. So we have the exact sequence of chain maps
m l
0= @D Clp™ (&) » D Cxlp™ (%))

i=1 i=1

Two maps fit into the exact sequence of complexes

—

0P C(p (&) = PCa(pH(T) = Cu(E) - 0
i=1

i=1

of RI'-modules. We apply Homr(—,g,) functor to compute the group co-
homology where g is a RI-module via the Adp action. Let C*(I';g) =
Homp(C4 (), g).

The natural map Homp (Cy(p~ (%)), g) — Homp,, (C*(Z), g) that sends
f to a homomorphism a — f(1 ® a) is an isomorphism of chain complexes
of R-vector spaces. Therefore the middle chain computes @2:1 Hi('y,, g).
Similarly, Homr(Ci(p~'(&)),9) = Homr,, (C(&), ) computes Hi(T¢,, g9).
This proves that the following sequence

m l

(20) OH(—DHO(F&;g)HH Iig) > @ H (Ts,;;9) > P H (Te8) — 0
1

i=1 i=1 1=

is exact.

To prove Theorem 4.2.1, we have to characterize the parabolic cohomology
in terms of cocycles. We state this as the following lemma.

Lemma A.0.1. Let

(I, S 9)

par

={f€Zl(F;9)!f()—Uforallfe@Cl (&) ®@C1 (6}

i=1 i=1
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Then

(I',S: 9)
par
'S8 = BiTg) 20,0, 5 g)

par

par(

Proof. We see that (Cy(2), @D, C(&) ® C4(G)) is an auxiliary resolution
over the group system (I', S). Now the lemma follows from the definition of
parabolic cohomology. O

It follows that the map

C—D par i,Si;g)_)@Hl(Ffi;g)
i=1

n (20) is trivial.

Suppose that an element ([o1],--- , [a7]) in @ Z},. (T, Si; 9) is given.
For each [o;], we define a parabolic cocycle @; € Z,,.(T', S; g) by

@i(r) =

{ai@) re Ci(pT(80)

0 otherwise

Then [a7] + .-+ + [a7] is an element of H!

par(T,S;9) which maps to
([a1], -+, [eu]). Thus

par F S g C—D par m’SZag)

is surjective.

Finally the exactness at H), (I',S;g) and @ H°(I'¢;; g) follow from the
exactness of (20) and the fact that the parabolic cohomology group is a sub-
group of the ordinary cohomology.

Proposition A.0.2. Let [p] € ?f(l“,%). We have

T[p] (F (f) par(l“ S; gp)

Proof. We use the discrete connection model to describe the space of repre-
sentations. Namely, we see the 1-skeleton ©() of ¥ as an oriented graph and
consider a discrete flat connection over the graph, which is the rule that as-
signs to each oriented edge an element of G in such a way that the holonomy

around each 2-cell is trivial.
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To be more precise, write the boundary frame as & = {((1,B1), -,
(¢p, Bp)} and the C-frame as € = {(&1,C1), -+, ({m, Cm)}. We define

= {p eGP (&), p(En), p(C). . 0(Gh)
are fixed elements in G so that p(&) € Cy, p(G) € Bi}.

The gauge group G is the subset of G=® given by

{9€G™ | gy € Za(p(&)), and gq,., € Za(p())}-

We have the gauge action A : G x € — € which is given by

Alg,p)(7) = gy, p(M) ;"

where v_ and 74 denote the initial and terminal vertex of the edge ~ respec-
tively. See Labourie [24] for more details.

In this setting 7?@,‘5) is an open subset of € n R7!(e) modulo the
gauge group action where R : GEED) o G s the holonomy around each
2-cell.

Let

Co(L,S;g) = {f € C'(Ig) |6f € par(F S;9)},
Crar(L,S59) = {f € CM(Ty9) | f(&) =
b
for all £ € @01(2971(&)) @ E_B Ci(p~'(G))}, and
C2.(T,S;g) = C*(T; g).

par

We have the following commutative diagram

€O (1,85 9) —4= CL.(D, S;8) —2= C2,.(T, S; g)

par par par

S )

T.G o T,¢ T T.G'

where R, is induced from the right translation by p~! and dA denotes the
map that sends a tangent vector to its fundamental Vector field. It is then
clear from Lemma A.0.1, that the tangent space is H,, (I',S; g). O

par
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Lemma A.0.3. Let

o= 3 (1] [2E]) + 12 o)

be a (absolute) 2-chain in Fo(T) ® Z. Let (Ry, AL) be an auziliary resolution
over the group system (I, S) constructed in the proof of Lemma A.0.1. Choose
a chain equivalence F (') ® Z — Ry ® Z. Then the image of ¢x, under the
map

represents a generator of Ho(I',S;7Z) = 7.

Proof. Let (v € T\{1} |11 - 72 = 7172) be a ‘tautological’ presentation for T'
and let X be a presentation complex for this presentation. Let X be a K(T',1)
space obtained by attaching appropriate cells to Xy. Observe that the cellular
chain complex of X corresponds to the normalized bar resolution F,(I") over
I'. The chain equivalence Fy(I') ® Z — R, ® Z is given by the homotopy
equivalence between K(I',1) spaces X and X. This chain equivalence sends
¢y to the sum of all 2-cells of . Certainly its image in (R2/A2) ®Z represents
the generator of Ho(I', S;Z). O

Appendix B. Review on the Bonahon-Dreyer coordinates

In this appendix, we review Bonahon-Dreyer’s parametrization of Hit,, (3).
Complete discussion on this coordinates can be found in their original paper
[4]. See also [6] for the relationship between coordinates of Bonahon-Dreyer
and that of Goldman.

For the remaining of this appendix, we assume that > is a closed oriented
surface of genus g > 1. We identify the universal cover 3 of ¥ with the
Poincaré disk H? with the ideal boundary 8OO§ homeomorphic to the circle.

To parametrize Hit, (), we have to fix some topological data

e We equip ¥ with an auxiliary hyperbolic metric and take a maximal
geodesic lamination A on X.

e We give an arbitrary orientation on each leaf.

e To each closed leaf, we choose a “short” transverse arc intersecting the
leaf exactly once.

Observe that since A is maximal, ¥\A consists of 4g — 4 triangles 77,75 - - - |
T4g_4.
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The starting point of this parametrization is the following characterization
theorem due to Labourie.

Theorem B.0.1 (Labourie [23]). A representation p : m(X) — PSL,(R) is
Hitchin if and only if there is a p-equivariant flag curve F, : 003 — Flag(R™)
such that ]:,gl) : é’ooi — PR" is hyperconvex and Frenet.

Therefore if p € Hit, (X) is given, each point of (?ooi is decorated by a flag.
We define three types of invariants associated to each ideal triangle, bi-infinite
leaf and closed leaf.

U1

U3 V2

Figure 3: The local configuration of ;.

For each ideal triangle Ty, we consider its lift @ in the universal cover.
Let vy, v9,v3 be ideal vertices of Ty in clockwise cyclic order as in Figure 3.
Then by Fock-Goncharov [11], F,(v1) =: A, F,(ve) =: B, and F,(v3) =: C'is
a positive triple in the sense that the following triangle invariants

77 k(Lo v1) i=log T; 1 (A, B, C),
775k (Te,v2) :=log Ty j 1 (B,C, A), and
Tﬁj,k(Tg, vsg) :=logT; ; x(C, A, B)

for each 4, j, k > 0 with i + j + k = n are well-defined. Here,

Al+1) o BU) A k=1

A1 A~ BO A ki)~

A(Z) A B(Jﬁl) A C(k+1) A(ifl) A B(]+1) A C(k)
(

A0 A BG) A 0G0 A6 A BG-D A )

B
,TZ‘J"k(A,B,C) = B

These invariants 7/; . (Ty,v1), 77, (T, v2), and 77; ;. (Ty, v3) are subject to the

1,5,k 1,5,k
following rotation condition

T Tesv1) = 70 (Tov) = 4, 5 (Te, v3).
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U4

vL Ty, 47 Tg VR

Figure 4: The local configuration near .

Consider an infinite leaf -, and its lift ;. There are two ideal triangles
Ty, and Tr sharing the edge 4. In the universal cover, it looks like Figure 4.
Again, by Fock-Goncharov [11], F,(vy) =: E, Fy(v-) =: F, Fy(vg) = Y
and F,(vg) =: X is a positive quadruple in the sense that the following shear
invariants of the infinite leaf 7,

of(ve) :==1log D;(E,F,X,Y), i=12,---,n—1
are well-defined where

EG@) A pla=1-i) . x (1)  p-1) \ pr—i) . y(Q)

DiE,F,X,Y) =~ o vy @ X oD  Fo) XD
U+
v, VR VUL
v_

Figure 5: The local configuration near ¢;. Note that there are two possibilities.

Lastly we consider a closed leaf ¢y. For each ¢, there are infinite leaves
that spiral to it. In the universal cover, we have configurations as in Figure 5.
We use small transverse arc, which is one of our topological data, to choose
two ideal triangles Tp, and T on each side of ¢. Let vy, be the ideal vertex
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of ﬁ-: which is farthest from ¢. We choose v in the same fashion. Then
Fovy) =2 E, Fy(v-) =1 F, Fy(vg) =Y and F,(vr) =: X is again positive
quadruple of flags which allows us to compute the following shear invariants
of the closed leaf c;:

(21) of(cy) :==1log D;(E,F, X,Y)

fori=1,2,--- ,n—1.

These three types of parameters defined above are not free and must sat-
isfy certain relations so called closed leaf equalities, closed leaf inequalities and
rotation conditions. Bonahon and Dreyer argue that they the only relations
among the parameters defined above.

Theorem B.0.2 (Bonahon-Dreyer [4]). The rule B that assigns to each [p] €
Hit,,(X) the invariants 775, (T, vq), of (ve), and of (c¢) is an analytic injective
map from Hit,, (X) onto the interior of a convex polytope defined by a collection

of linear equations and inequalities.

Remark B.0.3. Suppose that X is a hyperbolic surface with boundary. We
apply the above technique to the Hitchin double p of p € Hit, (). This allows
us to construct the Bonahon-Dreyer coordinates for the Hitchin component
Hit,,(X) of the compact hyperbolic surface X.
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