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Symplectic coordinates on PSL3pRq-Hitchin
components
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Abstract: Goldman parametrizes the PSL3pRq-Hitchin compo-
nent of a closed oriented hyperbolic surface of genus g by 16g ´ 16
parameters. Among them, 10g ´ 10 coordinates are canonical. We
prove that the PSL3pRq-Hitchin component equipped with the
Atiyah-Bott-Goldman symplectic form admits a global Darboux
coordinate system such that the half of its coordinates are canon-
ical Goldman coordinates. To this end, we show a version of the
action-angle principle and the Zocca-type decomposition formula
for the symplectic form of H. Kim and Guruprasad-Huebschmann-
Jeffrey-Weinstein given to symplectic leaves of the Hitchin compo-
nent.
Keywords: Hitchin component, Goldman coordinates, Darboux
coordinates.

1. Introduction

1.1. History and motivation

Let Σ be a closed oriented surface of genus at least 2. The Teichmüller space
T pΣq is the space of discrete faithful representations of π1pΣq into the Lie
group PSL2pRq modulo conjugation. It is one of connected components of the
space of representations

X pπ1pΣq,PSL2pRqq “ X2pπ1pΣqq :“ Hompπ1pΣq,PSL2pRqq{PSL2pRq.

By replacing 2 in PSL2pRq with a general natural number n, we can obtain the
space Xnpπ1pΣqq :“ X pπ1pΣq,PSLnpRqq. Observe that T pΣq can be naturally
embedded into Xnpπ1pΣqq as Fuchsian representations, that is, by definition,
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representations of the form ιn ˝ ρ where ρ P T pΣq and ιn : PSL2pRq Ñ

PSLnpRq the unique irreducible representation of PSL2pRq into PSLnpRq.
Then one may expect that a connected component containing a Fuchsian rep-
resentation resembles the Teichmüller space. The first answer to this guess
is given by Hitchin [18] in 1992. Indeed he shows that any component con-
taining a Fuchsian representation is diffeomorphic to the pn2 ´ 1qp2g ´ 2q

dimensional cell. We call a connected component of Xnpπ1pΣqq containing a
Fuchsian representation the PSLnpRq-Hitchin component.

Besides Hitchin’s result, it is known that the Hitchin component HitnpΣq

enjoys a lot of properties that the classical Teichmüller space has. Labourie
[23], for instance, gives a dynamical characterization of HitnpΣq and shows
that each Hitchin representation is discrete and faithful.

There are many known global parametrizations of the Teichmüller space.
Because HitnpΣq is also a cell, we may expect the existence of global co-
ordinate system for HitnpΣq. For the Hitchin component Hit3pΣq, Goldman
[15] finds such a global coordinate system. However Goldman’s argument
cannot be directly applied to general HitnpΣq cases because construction of
Goldman coordinates essentially relies on the fact that Hit3pΣq represents
the deformation space of convex projective structures on the surface Σ. See
Choi-Goldman [9]. A uniform parametrization scheme for general HitnpΣq is
obtained by Bonahon-Dreyer [4]. Their method is based on Fock-Goncharov’s
theory [11] or, Thurston’s construction of shearing coordinates. Later Gold-
man’s parameters are extended to HitnpΣq by Zhang [36]. In Hit3pΣq Goldman
coordinates and Bonahon-Dreyer’s are related and the explicit coordinates
transformation is given by Bonahon and I. Kim [6].

It is well-known that the Teichmüller space T pΣq carries the natural sym-
plectic structure called the Weil-Petersson form ωWP . As a symplectic man-
ifold, the Teichmüller space pT pΣq, ωWP q has been studied by many mathe-
maticians. One of the remarkable results is due to Wolpert [35] which states
that the Fenchel-Nielsen coordinates are Darboux coordinates, namely,

ωWP “

3g´3
ÿ

i“1
d�i ^ dθi.

HitnpΣq also carries a symplectic form as the classical Teichmüller space does.
Indeed Goldman [13] extends the Weil-Petersson symplectic form on T pΣq

into the Atiyah-Bott-Goldman symplectic form ωG on HitnpΣq. Now, it is
natural to ask whether there is any global Darboux coordinate system with
respect to ωG, analogues to the Fenchel-Nielsen coordinates.
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For the Hitchin component Hit3pΣq, the third author H. Kim [22] claims
that the Goldman coordinates [15] are indeed Darboux coordinates for ωG.
H. Kim first studies Hit3pΣq where Σ is a compact surface with boundary. Al-
though Hit3pΣq itself is not a symplectic manifold, it admits a foliation whose
leaves are of the form HitB3 pΣq, a subspace of Hit3pΣq whose holonomies of
boundary components are in prescribed conjugacy classes B. H. Kim, as
well as Guruprasad-Huebschmann-Jeffrey-Weinstein [17], show that each leaf
HitB3 pΣq can be given a symplectic form ωΣ

K . When Σ is a pants P , the space
HitB3 pP q can be parametrized by Goldman’s coordinates s and t. H. Kim
shows that Goldman’s ps, tq parameters on HitB3 pP q form Darboux coordi-
nates with respect to ωP

K . After then H. Kim tries to glue various HitB3 pP q as
Goldman does in [15]. In the smooth category, this gluing process is relatively
easy. In the symplectic category, however, it is more technical and his proof
misses crucial intermediate steps. One goal of this paper is to fill the missing
links and make the proof of H. Kim [22] more complete and clear.

The missing parts of [22] is the following. First, H. Kim does not compute

(1) ωGp
B

Bsk
,

B

B�i
q, ωGp

B

Bsk
,

B

Bmi
q, ωGp

B

Btk
,

B

B�i
q, and ωGp

B

Btk
,

B

Bmi
q.

These terms may not be vanishing. If these are not zero, we cannot claim that
the Goldman coordinates are symplectic. Moreover this affects on the proof
of Proposition 6.2 of [22]. Because we do not know whether ρ̂˚dsk and ρ̂˚dtk
are zero or not, there might be extra terms in equations (37) and (38) of [22]
involving B

Bsk
and B

Btk
. Because we do not know that (1) vanish, we cannot

conclude that ωGp
B

B�i
, B

B�j
q “ ωGp

B
Bmi

, B
Bmj

q “ 0 as in Proposition 6.2 of [22].
Secondly, the definition of twisting parameters βi, θi is not clearly given in
[22]. These are affine parameters and we have to specify the origin to get the
well defined coordinates. In fact, the values of (1) depend on this choice.

Recently, Sun-Zhang [31] and Sun-Wienhard-Zhang [30] construct Dar-
boux coordinates for the PSLnpRq-Hitchin components. They define the no-
tion of pT ,J q-parallel flows associated to a choice of triangulation T and
bridge system J . They show that every pT ,J q-parallel flows are Hamiltonian
and they give a symplectic trivialization of the tangent bundle of HitnpΣq.
They also find explicit forms of pT ,J q-parallel flows by modifying Bonahon-
Dreyer coordinates.

1.2. Statements of results

Our first result is, roughly speaking, that the symplectic manifold
pHitBn pΣq, ωΣ

Kq can be decomposed into a product of simpler symplectic man-
ifolds.
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Let Σ be a compact oriented surface with negative Euler characteristic
and possibly with boundary. By an essential simple closed curve, we mean
an embedded circle in Σ that is not homotopic to a point nor a boundary
component. Let ξ be an essential simple closed curve. Given a path η from
a base point p to a point in ξ, we write ξη to denote the loop η ˚ ξ ˚ η´1

at p, where ˚ is the concatenation. We sometimes regard ξ as an element of
π1pΣ, pq up to conjugation by considering ξη for some implicitly chosen path
η from p to a point in ξ. We abuse the notation xξy to denote the subgroup
of π1pΣ, pq generated by ξη when we do not care about particular choice of
an element in its conjugacy class.

Throughout this paper, G denotes the Lie group PSLnpRq and g its Lie
algebra slnpRq. If we have a representation ρ : π1pΣq Ñ G, g becomes a
π1pΣq-module gρ via the action AdρpγqpXq, γ P π1pΣq, X P g. We sometimes
write this action simply γ ¨X if its meaning is clear from the context. If there
is no chance of confusion, we omit the subscript ρ and simply write g instead
of gρ.

We denote by X pπ1pΣq,PSLnpRqq “ Xnpπ1pΣqq the space of representa-
tions. Although Xnpπ1pΣqq itself is a singular space it contains, as an open
set, a smooth manifold

X npπ1pΣqq :“ tρ P Hompπ1pΣq, Gq | ρ is irreducible and ZGpρq “ t1uu{G

where
ZGpρq “ tg P G | gρpγqg´1

“ ρpγq for all γ P π1pΣqu.

We mostly focus on the smooth manifold X npπ1pΣqq because X npπ1pΣqq con-
tains HitnpΣq as a connected component.

Suppose that Σ has boundary components say ζ1, ¨ ¨ ¨ , ζb. Let

B “ tpζ1, B1q, ¨ ¨ ¨ , pζb, Bbqu

be a set of pairs each of which consists of a boundary component and a
conjugacy class of a purely loxodromic element with positive eigenvalues.
Then we can define the following subspace of X npπ1pΣqq:

XB
n pπ1pΣqq “ trρs P X npπ1pΣqq | ρpζiq P Bi, i “ 1, 2, ¨ ¨ ¨ , bu.

We may define similarly HitBn pΣq. XB
n pπ1pΣqq and HitBn pΣq are interesting

because they admit a natural symplectic form ωΣ
K . See Theorem 3.3.5 or

[22, 17].
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Let C “ tξ1, ¨ ¨ ¨ , ξmu be a family of mutually disjoint, non-isotopic es-
sential simple closed curves. If we subtract these curves from Σ, we get a
collection of subsurfaces Σ1, ¨ ¨ ¨ ,Σl. We assume that Σi are all of hyperbolic
type.

Define

HitBn pΣ,C q “ trρs P HitBn pΣq | ρpξiq P Ci, i “ 1, 2, ¨ ¨ ¨ ,mu

where C “ tpξ1, C1q, ¨ ¨ ¨ , pξm, Cmqu is a family of pairs each of which consists
of an element of C and the conjugacy class of a purely loxodromic element with
positive eigenvalues. We know that there is a Hamiltonian R

mpn´1q-action on
HitBn pΣq and the moment map of this action takes HitBn pΣ,C q as a level set
over a regular value (see Goldman [14]).

Now we consider the quotient q : HitBn pΣ,C q Ñ HitBn pΣ,C q{Rmpn´1q.
The restriction map Φ “ pι˚Σ1

, ¨ ¨ ¨ , ι˚Σl
q identifies this quotient space with an

open subspace of the product space HitB1
n pΣ1q ˆ ¨ ¨ ¨ ˆ HitBl

n pΣlq where

Bi “ tpξ, Bq | ξ is a component of BΣi and pιΣipξq, Bq P B Y C u.

The quotient q is not only topological but also symplectic in the following
sense: q pushes forward the symplectic form ωΣ

K and induces the symplec-
tic form rωΣ

K on the quotient space. On the other hand the product space
HitB1

n pΣ1q ˆ ¨ ¨ ¨ ˆ HitBl
n pΣlq carries the symplectic form ωΣ1

K ‘ ¨ ¨ ¨ ‘ωΣl
K . Now

we can state our first main theorem. We remark that the theorem holds for
general n.

Theorem 1.2.1. Let Σ be a compact oriented hyperbolic surface. Then the
map Φ is a symplectic diffeomorphism from HitBn pΣ,C q{Rmpn´1q onto
HitB1

n pΣ1q ˆ ¨ ¨ ¨ ˆ HitBl
n pΣlq.

For the precise statement, see Theorem 4.5.7.
Theorem 1.2.1 decomposes rωΣ

K into a sum of symplectic forms and allows
us to obtain some information about the symplectic structure on HitBn pΣ,C q

by studying smaller symplectic manifolds individually. We apply Theorem
1.2.1 to the case when Σ is closed and Σi’s come from a pants decomposition.

Let Σ be a closed oriented hyperbolic surface. Take a pants decomposition
of Σ. That is a choice of a maximal collection of mutually disjoint, non-isotopic
essential simple closed oriented curves tξ1, ¨ ¨ ¨ , ξ3g´3u. Goldman [15] proves
that Hit3pΣq can be parametrized by 16g ´ 16 global parameters which can
be classified into three types

• internal parameters psi, tiq parametrize HitB3 pPiq for each pants Pi.
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• length parameters p�i,miq are positive numbers associated to each ξi.
• twist-bulge parameters pui, viq are dual of the length parameters.

Internal and length parameters are canonical because they can be directly
read off from the projective geometry without making any further artificial
choices. Whereas twist-bulge parameters ui, vi are rather ambiguous. These
pui, viq coordinates measure the amount of twist-bulge along a curve ξi with
respect to a certain origin and there is no canonical choice of such a reference
point. To remove this ambiguity, we use the relationship between Goldman
coordinates and Bonahon-Dreyer coordinates [6].

After we obtain the well-defined Goldman coordinates, we prove that a
canonical part of Goldman coordinates

ps1, ¨ ¨ ¨ , s2g´2, �1,m1, ¨ ¨ ¨ , �3g´3,m3g´3q

can be completed to a global Darboux coordinate system. A version of the
action-angle principle (Theorem 3.4.5) is essentially used to prove the result.

Theorem 1.2.2. Let Σ be a closed oriented surface with genus g ą 1. There
is a smooth R

8g´8-valued function

ps1, ¨ ¨ ¨ , s2g´2, �1,m1, ¨ ¨ ¨ , �3g´3,m3g´3q

on pHit3pΣq, ωGq such that

ps1,¨ ¨ ¨ ,s2g´2, �1,m1 ¨ ¨ ¨ , �3g´3,m3g´3, s1, ¨ ¨ ¨ , s2g´2, �1,m1, ¨ ¨ ¨ , �3g´3,m3g´3q

becomes a global Darboux coordinate system.

Recently, Casella-Tate-Tillmann [8] shows that the Goldman bracket and
Fock-Goncharov bracket of PSL3pRq character variety of an open surface co-
incide on the trace algebra. Their results may cooperate with ours to give a
further generalization of Theorem 1.2.2.

1.3. About the proofs

We first prove a variant of the action-angle principle. Suppose that we are
given a Lagrangian fiber bundle f : M2n Ñ B over a connected open sub-
set B of Rn such that H2pB;Rq “ 0. Under certain conditions, the bundle
map f “ pf1, ¨ ¨ ¨ , fnq has complementary coordinates g “ pg1, ¨ ¨ ¨ , gnq such
that pf, gq forms a global Darboux coordinate system (Theorem 3.4.5). In-
deed if the bundle map f has a global Lagrangian section, then we can find
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complementary coordinate functions (Lemma 3.4.1). So it is enough to prove
the existence of a global Lagrangian section under the given conditions. We
borrow the idea of Duistermaat [10] to show this. We prove that one can find
a Lagrangian section locally (Lemma 3.4.3) and then, using sheaf cohomol-
ogy theory, we show that the obstruction for gluing local Lagrangian sections
vanishes.

Then we prove the decomposition theorem. We prove Theorem 1.2.1 by
induction on the number of cutting curves and we eventually end up with the
situation where we cut the surface by a single simple closed curve. There are
two cases depending on whether the curve separates the surface or not. We
prove the decomposition formulas for each of these cases.

To this end, we first decompose the tangent space of the Hitchin compo-
nent. It can be done by means of the Mayer-Vietoris sequence which is known
for the cohomology of group systems [3]. We construct a similar sequence for
the parabolic cohomology.

Suppose that ξ is a separating essential simple closed curve in Σ, so that
Σzξ “ Σ1 Y Σ2. We choose sets of pairs, called frame (Definition 2.1.4),
B “ tpζ1, B1q, ¨ ¨ ¨ , pζb, Bbqu and C “ tpξ, Cqu as in the previous subsection.
The Mayer-Vietoris sequence tells us that the natural inclusion map ιΣi :
π1pΣiq Ñ π1pΣq, i “ 1, 2 induces a homomorphism between tangent spaces

pι˚Σ1 , ι
˚
Σ2q : Trρs HitBn pΣ,C q Ñ Trρ˝ιΣ1 s HitB1

n pΣ1q ‘ Trρ˝ιΣ2 s HitB2
n pΣ2q

whose kernel is spanned by the tangent vectors along the twist flows. Given
two vectors α, β P Trρs HitBn pΣ,C q, we prove in Theorem 4.3.1 that

(2) ωΣ
Kpα, βq “ ωΣ1

K pι˚Σ1α, ι
˚
Σ1βq ` ωΣ2

K pι˚Σ2α, ι
˚
Σ2βq.

When ξ is non-separating, Σzξ “ Σ0, we have a similar homomorphism

ι˚Σ0 : Trρs HitBn pΣ,C q Ñ Trρ˝ιΣ0 s HitB0
n pΣ0q

induced from ιΣ0 : π1pΣ0q Ñ π1pΣq whose kernel is again spanned by the
twist flows. Then, we show in Theorem 4.4.1 that

(3) ωΣ
Kpα, βq “ ωΣ0

K pι˚Σ0α, ι
˚
Σ0βq.

In fact, (2) and (3) hold under weaker assumptions on rρs. See Theorem 4.3.1
and Theorem 4.4.1 for precise statements.

We prove (2) and (3) by using the Fox calculus. The key point, which
stems from Zocca [37], is that we can decompose a relative fundamental class
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(Lemma 3.3.4) into a sum of relative fundamental classes of subsurfaces to-
gether with some extra terms. Roughly writing rΣs “ rΣ1s ` rΣ2s ` extra
for the separating case and rΣs “ rΣ0s ` extra for the non-separating case.
Then we choose a nice representative in the given cohomology class in such
a way that all the extra terms vanish. Applying the decomposition formulas
inductively, we can prove Theorem 1.2.1.

Lemma 5.2.5 implies that the map F : Hit3pΣq Ñ R
8g´8 assigning to each

rρs the coordinates

ps1prρsq, ¨ ¨ ¨ , s2g´2prρsq, �1prρsq,m1prρsq, ¨ ¨ ¨ , �3g´3prρsq,m3g´3prρsqq

is a Lagrangian fiber bundle. Then we show that F satisfies all the condi-
tions of Theorem 3.4.5. Therefore Theorem 1.2.2 follows as a consequence of
Theorem 3.4.5.

2. The space of representations and Hitchin components

In this section, we review basic facts on Hitchin components for compact sur-
face with or without boundary. To describe their tangent spaces, we introduce
the group cohomology and the parabolic group cohomology which represent
the tangent spaces of HitnpΣq and HitBn pΣq respectively.

2.1. Definitions and properties

Let Σ denote a closed oriented hyperbolic surface. Throughout this paper,
the Lie group G always denotes PSLnpRq and g the Lie algebra slnpRq of
PSLnpRq. Let

X pπ1pΣq,PSLnpRqq “ Xnpπ1pΣqq :“ Hompπ1pΣq,PSLnpRqq{PSLnpRq

be the space of representations. We sometimes consider the GIT quotient
instead of the usual one. However do not have to distinguish them because
these two quotients coincide on a subspace X npπ1pΣqq defined below and we
focus only on X npπ1pΣqq throughout this paper.

Definition 2.1.1. A Hitchin component HitnpΣq is a connected component
of X pπ1pΣq,PSLnpRqq that contains a Fuchsian representation.

When n “ 2, Hit2pΣq coincides with the usual Teichmüller space. It is
known that the Teicumüller space is homeomorphic to the cell of dimension
6g´6 where g is the genus of Σ. Similar result holds for Hitchin components.
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Indeed Hitchin [18] himself shows that HitnpΣq is homeomorphic to the cell
of dimension pn2 ´ 1q ¨ p2g ´ 2q.

Now suppose that Σ is a compact hyperbolic surface possibly with bound-
ary. We can naturally generalize the notion of Hitchin components for such a
non-closed surface.

Definition 2.1.2 (Labourie-McShane [25]). Let Σ be a compact oriented hy-
perbolic surface. ρ P Hompπ1pΣq,PSLnpRqq is said to be a Hitchin representa-
tion if ρ can be continuously deformed into a Fuchsian representation in such
a way that the holonomies of boundary components are purely loxodromic (i.e.,
it is diagonalizable and all eigenvalues are distinct positive real numbers) in
the course of the deformation. A connected component of

trρs P Xnpπ1pΣqq | ρ is a Hitchin representationu

is denoted by the same notation HitnpΣq.

Suppose that Σ0 is a hyperbolic incompressible subsurface of a closed hy-
perbolic surface Σ. Given rρs P HitnpΣq, its restriction ρ|π1pΣ0q to the subgroup
π1pΣ0q is also in HitnpΣ0q. See Theorem 9.1 of Labourie-McShane [25].

The space Xnpπ1pΣqq contains an open subspace, the space of ‘good’ rep-
resentations

X npπ1pΣqq :“ Homspπ1pΣq, Gq{G

where

Homspπ1pΣq, Gq :“ tρ P Hompπ1pΣq, Gq | ρ is irreducible and ZGpρq “ t1uu.

If G “ PSLpn,Cq, Homspπ1pΣq, Gq is the set of good representations in the
sense of [29] and [20] and is contained in the set of stable representations.

Suppose that ρ P Homspπ1pΣq, Gq is given. Let X P slnpRq be an Adρ-
invariant element. Then expX is in ZGpρq. So by definition of X npπ1pΣqq,
we have expX “ 1 or, equivalently, X “ 0. It follows that gρ has no non-
trivial Adρ invariant element. Therefore Homspπ1pΣq, Gq is a smooth man-
ifold. Moreover, it is proven by Johnson-Millson [20] that the G-action on
Homspπ1pΣq, Gq is proper and free. Consequently the quotient space
X npπ1pΣqq is also a smooth manifold.

Hitchin representations for a compact surface have many interesting prop-
erties. We summarize them as the following lemma, which is implicitly used
several times throughout this paper.

Lemma 2.1.3. Let Σ be a compact oriented hyperbolic surface. Let rρs P

HitnpΣq.
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• ρ is faithful, irreducible and discrete.
• For each nontrivial γ P π1pΣq, ρpγq can be lifted to a purely loxodromic

element with positive eigenvalues.
• The centralizer of ρ, ZGpρq, is trivial.

In particular HitnpΣq is a subspace of X npπ1pΣqq.

Proof. First assume that Σ is closed. Then first two statements are noth-
ing but Proposition 3.4 of Labourie [23]. For the second statement, see also
Lemma 9 of Bonahon-Dreyer [4].

Suppose that Σ has a nonempty boundary component. We consider the
Hitchin double pρ. It is known that pρ is in the Hitchin component HitnppΣq

of the double pΣ of Σ. See Corollary 9.2.2.4 of [25]. As pΣ is closed, we know
that pρ is discrete, faithful and pρpγq is purely loxodromic for any nontrivial
element γ. It follows that the ρ has the same properties.

We now show that ρ is irreducible. By Theorem 9.1 of [25], ρ is a positive
representation. Therefore by Lemma 5.12 of Guichard-Wienhard [16], ρ is
irreducible.

For the third statement, we lift ρ to rρ : π1pΣq Ñ SLnpRq. Such a lift
exists (see, for instance, section 3.1 of Bonahon-Dreyer [5]). Suppose that X
is in the center of ρpπ1pΣqq. Since rρpγq is purely loxodromic, we observe that
X must be diagonalizable. Therefore, Schur’s lemma is applied so we can
conclude that X must be a scalar.

Let us introduce a nice submanifold of HitnpΣq which is essential for our
discussion.

Definition 2.1.4. Let Σ be compact oriented hyperbolic surface with bound-
ary components tζ1, ¨ ¨ ¨ , ζbu. By a boundary frame, we mean a collection
B “ tpζ1, B1q, ¨ ¨ ¨ , pζb, Bbqu of pairs each of which consists of a boundary
component and a conjugacy class of purely loxodromic element in G with pos-
itive eigenvalues. Given a boundary frame B, we define the following space

HitBn pΣq “ trρs P HitnpΣq | ρpζiq P Bi for i “ 1, 2, ¨ ¨ ¨ , bu.

We also define XB
n pπ1pΣqq Ă X npπ1pΣqq in the same fashion.

Let C “ tξ1, ¨ ¨ ¨ , ξmu be a collection of pairwise disjoint, non-isotopic
essential simple closed curves. A C-frame is a family C “ tpξ1, C1q, ¨ ¨ ¨ ,
pξm, Cmqu of pairs each of which consists of ξi and a conjugacy class of purely
loxodromic element in G with positive eigenvalues. Given a C-frame C , define

HitBn pΣ,C q “ trρs P HitBn pΣq | ρpξiq P Ci, i “ 1, 2, ¨ ¨ ¨ ,mu, and

XB
n pπ1pΣq,C q “ trρs P XB

n pπ1pΣqq | ρpξiq P Ci, i “ 1, 2, ¨ ¨ ¨ ,mu.
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To be more precise, we should understand ζi (and ξi) as a loop at the
base point p of π1pΣ, pq by choosing a path from p to a point in ζi (and ξi).
However since we are dealing with the conjugacy classes, we may ignore such
a technicality.

We observe that HitnpΣq “
Ť

HitBn pΣq where the union runs over all
possible choice of boundary frames. This foliation plays the key role in the
study of Poisson geometry of HitnpΣq.

2.2. Group cohomology

Cohomology of groups is a model for the tangent spaces of X npπ1pΣqq. In this
subsection we review a definition of group cohomology and its properties.

Let Γ be a finitely presented group. Given a representation ρ : Γ Ñ G,
we denote by gρ the Γ-module g under the action Adρ. If the action is clear
from the context, we omit the subscript ρ and simply write g instead of gρ.

By a resolution over Γ, we mean any projective resolution of M “ R or Z

¨ ¨ ¨ Ñ R2 Ñ R1 Ñ R0 Ñ M Ñ 0

where M is regarded as a trivial MΓ-module. Then the group cohomology
HqpΓ;V q with coefficient in a MΓ-module V is the cohomology of the complex
HomΓpR˚pΓq, V q. Recall that the (co)homology does not depend on the choice
of projective resolutions. We refer to Chapter 6 of Weibel [33] for general
discussion on group cohomology. Our major concern is the case where M “ R

and V “ gρ.
We mostly use the normalized bar resolution pF˚pΓq, dΓq throughout this

paper. Recall that FqpΓq is a free Γ-module on symbols �x1|x2| ¨ ¨ ¨ |xq� where
x1, ¨ ¨ ¨ , xq P Γzt1u. The differentials are given by

dΓ : �x1|x2| ¨ ¨ ¨ |xq� ÞÑ x1�x2| ¨ ¨ ¨ |xq� `

q´1
ÿ

i“1
p´1q

i�x1| ¨ ¨ ¨ |xixi`1| ¨ ¨ ¨ |xq�
` p´1q

q�x1| ¨ ¨ ¨ |xq´1�
with convention �x1| ¨ ¨ ¨ |1| ¨ ¨ ¨ |xq� “ 0. When its meaning is clear from the
context, we simply write pF˚, dq instead of pF˚pΓq, dΓq. By taking the
HomΓp´, gq functor, we get the chain complex CipΓ; gq “ HomΓpFi, gq with
differentials given by δΓpuq :“ u˝dΓ. The group of 1-cocycles and 1-cobound-
aries are denoted by

Z1
pΓ; gq :“ tu P C1

pΓ; gq | δΓpuq “ 0u

B1
pΓ; gq :“ tδΓpXq P C1

pΓ; gq |X P C0
pΓ; gqu.
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Observe that C0pΓ; gq “ g. Under this identification, we have δΓpXqpgq “

g ¨X´X. We also know that if u P Z1pΓ; gq, then up�xy�q “ up�x�q`x¨up�y�q.
Now we give a relative version of group cohomology. We follow Trotter’s

paper [32] (see also [17, section 1]). A group system is, by definition, a pair
pΓ,Sq of a finitely presented group Γ and a collection S “ tΓ1, ¨ ¨ ¨ ,Γmu of
its finitely presented subgroups Γ1, ¨ ¨ ¨ ,Γm.

Definition 2.2.1. Let M “ R or Z. An auxiliary resolution pR˚, A
i
˚q over

the group system pΓ,Sq, or simply pΓ,Sq-resolution, consists of

• R˚, a resolution over Γ
• Ai

˚, a resolution over Γi

• A˚ :“
Àm

i“1 MΓ bMΓi A
i
˚ is a direct summand of R˚.

Since A˚ is a direct summand of R˚, we can form a short exact sequence
of chain complexes

(4) 0 Ñ A˚ Ñ R˚ Ñ R˚{A˚ Ñ 0.

For a given Γ-module gρ “ g, we apply the HomΓp´, gq functor on this exact
sequence. Then we get the long exact sequence

¨ ¨ ¨ Ñ Hq
pΓ,S; gq Ñ Hq

pΓ; gq Ñ Hq
pS; gq Ñ Hq`1

pΓ,S; gq Ñ ¨ ¨ ¨ .

Note that HqpS; gρq –
À

HqpΓi; gρ|Γi
q.

Definition 2.2.2. The parabolic cohomology of Γ of degree q with coefficient
in gρ, Hq

parpΓ,S; gρq, is the image of HqpΓ,S; gρq in HqpΓ; gρq. In other words

Hq
parpΓ,S; gρq – Hq

pΓ,S; gρq{Hq´1
pS; gρq.

We are interested in the case where q “ 1 and Γ “ π1pΣq. In the appendix,
we describe how to compute the (1st) parabolic cohomology by finding a
nice resolution over a group system pΓ,Sq. In terms of the normalized bar
resolution F˚pΓq, elements of H1

parpΓ,S; gq can be represented by parabolic
cocycles

Z1
parpΓ,S; gq :“ tα P Z1

pΓ; gq | ι#Γi
pαq P B1

pΓi, gq, i “ 1, 2, ¨ ¨ ¨ ,mu

where ι#Γi
is the restriction defined at the end of this subsection.

Remark 2.2.3. Consider a group system pΓ,S 1q, S 1 “ tΓ1
1, ¨ ¨ ¨ ,Γ1

mu, which
is conjugate to pΓ,Sq in the sense that for each i “ 1, 2, ¨ ¨ ¨ ,m there is a
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gi P Γ such that Γ1
i “ giΓig

´1
i . Then the parabolic cohomology H1

parpΓ,S 1; gq

is the same as H1
parpΓ,S; gq because ι#γ pαq P B1pΓi; gq if and only if ι#gγg´1pαq P

B1pΓi; gq. In other words, the parabolic cohomology Hq
parpΓ,S; gq depends only

on the conjugacy class of Γi. So in regard of parabolic cohomology, we define
a group system as a pair of group Γ and a family of conjugacy classes of
subgroups Γ1, ¨ ¨ ¨ ,Γm of Γ.

We finish this subsection by introducing the restriction map. Let F˚pΓq be
the normalized bar resolution over Γ. Suppose that we are given a subgroup
ιΓ1 : Γ1 Ñ Γ. Then we have a natural chain map ι#Γ1 : HomΓpF˚pΓq, gq Ñ

HomΓpRΓbRΓ1 F˚pΓ1q, gq. Since HomΓpRΓbRΓ1 F˚pΓ1q, gq – HomΓ1 pF˚pΓ1q, gq

as chain complexes of R-vector spaces, this inclusion induces a homomorphism
ι˚Γ1 : H1pΓ, gq Ñ H1pΓ1, gq which we denote by ι˚Γ1rαs “ rι#Γ1pαqs where rαs P

H1pΓ, gq. Similarly, if pΓ1,S 1q is a group subsystem of pΓ,Sq, we have the
natural restriction map H1

parpΓ,S; gq Ñ H1
parpΓ1,S 1; gq.

2.3. Tangent spaces of Xnpπ1pΣqq

It is well-know that the tangent space of X npπ1pΣqq at each point rρs P

X npπ1pΣqq can be identified with H1pπ1pΣq; gρq. See for example [34], [13],
[17], [29] and [24]. Since HitnpΣq is a component of X npπ1pΣqq (Lemma 2.1.3),
we can say that the tangent space of HitnpΣq at rρs is H1pπ1pΣq; gρq.

As in the closed surface case, we have a nice description of local geometry
for HitBn pΣq. Guruprasad-Huebschmann-Jeffrey-Weinstein [17] shows that the
tangent space of HitBn pΣq at rρs P HitBn pΣq can be identified with the parabolic
group cohomology

TrρsX
B
n pπ1pΣqq – H1

parpπ1pΣq, txζ1y, ¨ ¨ ¨ , xζbyu; gρq.

More generally, we show the following in the appendix, Proposition A.0.2.

Proposition 2.3.1. Let Σ be a compact oriented hyperbolic surface possibly
with boundary components tζ1, ¨ ¨ ¨ , ζbu. Let tξ1, ¨ ¨ ¨ , ξmu be mutually disjoint,
non-isotopic essential simple closed curves. At each rρs P XB

n pπ1pΣq,C q,

TrρsX
B
n pπ1pΣq,C q – H1

parpπ1pΣq, txξ1y, ¨ ¨ ¨ , xξmy, xζ1y, ¨ ¨ ¨ , xζbyu; gρq

where ρ is a representative of the class rρs.

Recall, by Remark 2.2.3, that particular choices of a subgroups xξiy and
xζiy within their conjugacy classes are not important.
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3. Aspects of symplectic geometry

In this section, we collect elements of symplectic geometry related to our dis-
cussion. We review the construction of the Atiyah-Bott-Goldman symplectic
form on HitnpΣq as well as the symplectic form of H. Kim on HitBn pΣq.

The key part of this section is subsection 3.4 where we prove a variant
of the action-angle principle (Theorem 3.4.5) that allows us to find global
Darboux coordinates under certain conditions.

3.1. Definitions and properties

A symplectic manifold is a smooth manifold M with a non-degenerate closed
2-form ω. Given a smooth function f P C8pMq, the Hamiltonian vector field
associated to f is characterized by a unique vector field Xf such that

ωpXf , Y q “ dfpY q “ Y f

for every vector field Y . Since dω “ 0, we have

LXω “ dιXω ` ιXdω “ dιXω

where L denotes the Lie derivative. Hence a vector field X preserves ω if and
only if the induced 1-form ιXω “ ωpX,´q is closed. In particular, LXf

ω “ 0.
It follows that the flow Ψt associated to the vector field Xf is a symplecto-
morphism for each t P R whenever Ψt is defined.

Suppose that we have a symplectic manifold pM,ωq. By defining the Pois-
son bracket of smooth functions f, g P C8pMq by tf, gu “ ωpXf ,Xgq, we can
turn M into a Poisson manifold.

Let x P M2n be any point of a symplectic manifold. Darboux’s theorem
states that there is a coordinate neighborhood pU, pf1, ¨ ¨ ¨ , fn, g1, ¨ ¨ ¨ , gnqq of
x such that ω|U “

řn
i“1 dfi ^dgi. Such coordinates are called (local) Darboux

coordinates. Global Darboux coordinates are global coordinates

pf1, ¨ ¨ ¨ , fn, g1, ¨ ¨ ¨ , gnq : M Ñ R
2n

of M where ω can be expressed as ω “
řn

i“1 dfi ^ dgi.
There is a particularly important symplectic manifold which arises nat-

urally from any manifold. Let M be any smooth n-manifold. The cotangent
bundle p : T ˚M Ñ M has a canonical 1-form λcan which is characterized by
the following property: σ˚λcan “ σ for every 1-form σ. If pU, px1, ¨ ¨ ¨ , xnqq

is a local coordinate chart of M , then there are natural coordinates yi that
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parametrize each T ˚
q M , q P M , with respect to an ordered basis tdx1,¨ ¨ ¨ ,dxnu.

Then we observe that pp´1pUq, px1, ¨ ¨ ¨ , xn, y1, ¨ ¨ ¨ , ynqq is a local coordinate
chart of T ˚M . With respect to this coordinates, λcan can be written as
řn

i“1 yidxi. Define the 2-form ωcan by ωcan “ ´dλcan. Then pT ˚M,ωcanq is
a symplectic manifold of dimension 2n. Observe that that the Hamiltonian
flow on p´1pUq associated to each coordinate function xi is linear.

3.2. The Marsden-Weinstein quotient

Let pM,ωq be a symplectic manifold. Suppose that a Lie group K acts on
M as symplectomorphisms. For each X in the Lie algebra k of K we have
the fundamental vector field ξX given by pξXfqpxq “

d
dt |t“0fpexpp´tXq ¨ xq

for x P M . This action is called weakly Hamiltonian if for each X P k, the
vector field ξX is a Hamiltonian vector field. That is, for each X P k, there is a
smooth function HX such that ιξXω “ dHX . The action is called Hamiltonian
if there is a Lie algebra homomorphism X ÞÑ HX from k to C8pMq such that
ιξXω “ dHX . Here C8pMq is given the Lie algebra structure via the Poisson
bracket. The obstruction for a weakly Hamiltonian action to be Hamiltonian
stays in the Lie algebra cohomology H2pk;Rq. In particular, if H2pk;Rq “ 0,
every weakly Hamiltonian action of K becomes Hamiltonian.

Suppose that we have a Hamiltonian K-action. For each x P M there is
an element μpxq P k˚ such that HXpxq “ xμpxq, Xy for all X P k where x¨, ¨y

is the canonical pairing between k˚ and k. The map μ : x ÞÑ μpxq so defined
is called a moment map. Moment map is unique up to additive constant and
K-equivariant where k˚ is equipped with the coadjoint action.

If z P k˚ is a regular value of μ and is a fixed point of a coadjoint action,
then μ´1pzq is a K-invariant coisotropic submanifold. In this case, for each
x P μ´1pzq, the symplectic complement tX P TxM |ωpX,Zq “ 0 for all Z P

Txμ
´1pzqu of Txμ

´1pzq is precisely the tangent space of the orbit space K ¨x.
Therefore we can hope that a new symplectic manifold may be constructed
by collapsing this ‘bad’ directions. That is the ideal of symplectic reduction
which we state as follow:

Theorem 3.2.1 (Symplectic reduction or Marsden-Weinstein quotient). Let
pM,ωq be a symplectic manifold with a Hamiltonian action of a Lie group K.
Let μ be the moment map. Suppose that z P k˚ is a fixed point of the coadjoint
action and that it is a regular value of μ. If, in addition, K acts properly and
freely on μ´1pzq, then the quotient

μ´1
pzq{K
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is a smooth manifold and carries the canonical symplectic structure rω which
is uniquely determined by the property ω|μ´1pzq “ pq˚

rωq|μ´1pzq where q :
μ´1pzq Ñ μ´1pzq{K is the quotient map.

One can find more details about symplectic reduction for example in
[27, 26, 7].

3.3. The Fox calculus and the Atiyah-Bott-Goldman symplectic
form

Motivated by Atiyah-Bott [1], Goldman [13] gives an algebraic construction
of the symplectic form on X npπ1pΣqq. This symplectic form is now called the
Atiyah-Bott-Goldman symplectic form which we denote by ωΣ

G or simply ωG

if the surface Σ is understood from the context. The following theorem, one
of the main result of free differential calculus by Fox [12], is the key ingredient
of Goldman’s construction.

Theorem 3.3.1 (Fox [12]). Let Γ be a free group on free generators s1, ¨ ¨ ¨ , sn.
Let ZΓ be the group ring. There is a collection of operators B

Bsi
: ZΓ Ñ ZΓ,

i “ 1, 2, ¨ ¨ ¨ , n having the following properties

• Given x, y P ZΓ,
Bxy

Bsi
“ x

By

Bsi
`

Bx

Bsi
εpyq

where εpxq denotes the sum of coefficients of x.

• Bsi
Bsj

“

#

1 i “ j

0 i ‰ j

• For any x P ZΓ,

x “ εpxq1 `

n
ÿ

i“1

Bx

Bsi
psi ´ 1q.

Theorem 3.3.1 allows us to construct a non-trivial homology class in
H2pπ1pΣq;Zq. To do this we use the normalized bar resolution F˚pΓq over
Γ. For our convenience, let us make the following convention: �a ˘ b|x� “�a|x� ˘ �b|x� P F2pΓq for any a, b, x P Γzt1u. Now, choose a presentation

xx1, y1, x2, y2, ¨ ¨ ¨ , xg, yg |Ry

for Γ “ π1pΣq where R “
śg

i“1rxi, yis. Then

cΣ “

g
ÿ

i“1

�
BR

Bxi

ˇ

ˇ

ˇ

ˇ

xi

�
`

g
ÿ

i“1

�
BR

Byi

ˇ

ˇ

ˇ

ˇ

yi

�
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represents a generator of H2pΓ;Zq – Z by Proposition 3.9 of Goldman [13].
We call cΣ a fundamental cycle. The fundamental class of Γ is the class rcΣs

of cΣ in H2pΓ;Zq. If we use a different relation say R1 “ hRh´1 for some
h P Γ, then the fundamental class with respect to the new relation R1 reads

g
ÿ

i“1

�
h

BR

Bxi

ˇ

ˇ

ˇ

ˇ

xi

�
`

g
ÿ

i“1

�
h

BR

Byi

ˇ

ˇ

ˇ

ˇ

yi

�

which is homologues to the original fundamental cycle cΣ.

Theorem 3.3.2 (Goldman [13]). Let Σ be a closed oriented hyperbolic sur-
face. Then X npΓq is a symplectic manifold with the symplectic form defined
at each point rρs P X npΓq by

ωΣ
Gprαs, rβsq “ xα Y β, cΣy,

where rαs, rβs P H1pΓ; gρq.

The following Alexander-Whitney diagonal approximation theorem is use-
ful to find the explicit form of xα Y β, cΣy. See Lemma 4.5 of Huebschmann
[19].

From now on, we simply write αpgq instead of αp�g�q when there is no
chance of confusion.

Lemma 3.3.3. Let α, β P Z1pΓ; gq. For �x|y� P F2pΓq, we have

xα Y β, �x|y�y “ Trpαpxqx ¨ βpyqq.

By virtue of Lemma 3.3.3, one can compute

xα Y β, cΣy “ ´

g
ÿ

i“1
Tr

ˆ

α

ˆ

BR

Bxi

˙

βpxiq

˙

´

g
ÿ

i“1
Tr

ˆ

α

ˆ

BR

Byi

˙

βpyiq

˙

where p¨q : RΓ Ñ RΓ is the map induced from the inversion that sends a
generator �g� to �g´1�.

Suppose that Σ has a boundary component. Then X npπ1pΣqq is no longer
symplectic. However by controlling the boundary conjugacy classes, we get
a foliation each leaf of which is a symplectic manifold. See Theorem 2.2.1 of
Audin [2] for more details. To present the result, we need a relative version
of fundamental classes. Choose a path ηi from a base point p to a point in ζi
in such a way that zi :“ ζηii fits into a standard presentation

(5) Γ “ π1pΣ, pq “ xx1, y1, x2, y2, ¨ ¨ ¨ , xg, yg, z1, ¨ ¨ ¨ , zb |Ry

where R “
śg

i“1rxi, yis
śb

j“1 zj .
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Lemma 3.3.4. Let

cΣ “

g
ÿ

i“1

ˆ �
BR

Bxi

ˇ

ˇ

ˇ

ˇ

xi

�
`

�
BR

Byi

ˇ

ˇ

ˇ

ˇ

yi

� ˙

`

b
ÿ

j“1

�
BR

Bzj

ˇ

ˇ

ˇ

ˇ

zj

�

be a (absolute) 2-chain in F2pΓqbZ. There is an auxiliary resolution pR˚, A
i
˚q

over the group system pΓ, txziyuq with a chain equivalence F˚pΓqbZ Ñ R˚bZ

such that the image of cΣ under the map

F2pΓq b Z Ñ R2 b Z Ñ pR2{A2q b Z

represents a generator of H2pΓ, txziyu;Zq – Z. We call rcΣs a relative funda-
mental class of Γ.

We prove Lemma 3.3.4 in the appendix.
Note that if Σ is not closed, H2pΓ;Zq “ 0 and that cΣ itself is not even a

2-cycle in the absolute chain complex F˚pΓq b Z.

Theorem 3.3.5 (Guruprasad-Huebschmann-Jeffrey-Weinstein [17], H. Kim
[22]). Let Σ be a compact oriented hyperbolic surface possibly with boundary.
Let B be a boundary frame. Fix a presentation of π1pΣq as in (5) and a
representation ρ such that rρs P XB

n pΓq. Let rαs, rβs P H1
parpΓ, txziyu; gρq. We

choose, for each boundary component zi, an element Xi P HomΓpF0pxziyq, gq–

g such that ι#
xziy

α “ δxziyXi. Define ωΣ
K to be

ωΣ
Kprαs, rβsq “ xα Y β, cΣy ´

b
ÿ

i“1
TrpXiβpziqq

where xα Y β, cΣy is defined as in Lemma 3.3.3. Then ωK is a closed, non-
degenerate 2-form and pXB

n pΓq, ωΣ
Kq becomes a symplectic manifold.

Remark 3.3.6. Unlike Theorem 3.3.2, the operation xα Y β, cΣy in Theo-
rem 3.3.5 is defined only on the chain level and cannot descend to cohomology.
In fact, H. Kim [22] computes that for any X P C0pΓ; gq and β P Z1pΓ; gq,

xδΓX Y β, cΣy “

b
ÿ

i“1
TrpXβpziqq ‰ 0.

Nevertheless, the whole expression ωΣ
Kprαs, rβsq is a nice cohomological oper-

ation.
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Remark 3.3.7. The formula given in Lemma 8.4 of Guruprasad-Huebsch-
mann-Jeffrey-Weinstein [17] is incorrect. Since (with notation in [17]) xc, uY

vy is not antisymmetric, we have to replace xc, u Y vy with 1
2pxc, u Y vy ´

xc, v Y uyq. Then the formula of Lemma 8.4 of Guruprasad-Huebschmann-
Jeffrey-Weinstein [17] and Theorem 5.6 of H. Kim [22] are identical.

We state the relevant lemmas to prove Theorem 3.3.5.

Lemma 3.3.8 (H. Kim [22]). Suppose that X 1
i P g is another element such

that ι#
xziy

α “ δxziyX
1
i, for i “ 1, 2, ¨ ¨ ¨ , b. Then

xα Y β, cΣy ´

b
ÿ

i“1
TrpXiβpziqq “ xα Y β, cΣy ´

b
ÿ

i“1
TrpX 1

iβpziqq.

In particular, ωΣ
K is well-defined in the chain level.

Proof. This lemma is also proven in H. Kim [22] but is not stated in an
explicit form. So we recall the proof here.

Suppose that there are two elements Xi and X 1
i of g “ C0pxziy, gq such

that ι#
xziy

α “ δxziyXi “ δxziyX
1
i . Let Yi “ Xi ´ X 1

i . Then we have δxziyYi “ 0.
That is zi ¨ Yi ´ Yi “ 0. Since β P Z1

parpΓ, txziyu; gq, we can find Zi P g such
that βpziq “ zi ¨ Zi ´ Zi. Then we compute

b
ÿ

i“1
TrppXi ´ X 1

iqβpziqq “

b
ÿ

i“1
TrpYiβpziqq

“

b
ÿ

i“1
TrpYipzi ¨ Zi ´ Ziqq

“

b
ÿ

i“1
Trppz´1

i ¨ Yi ´ YiqZiq “ 0.

Therefore, ωΣ
K is independent of choice of Xi.

Lemma 3.3.9. Suppose that α “ δΓX for some X P C0pΓ; gq. For any
β P Z1

parpΓ, txziyu; gq, we have

xα Y β, cΣy ´

b
ÿ

i“1
TrpXiβpziqq “ 0.
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Likewise, for any α P Z1
parpΓ, txziyu; gq, and β “ δΓX,

xα Y β, cΣy ´

b
ÿ

i“1
TrpXiβpziqq “ 0.

Proof. See Proposition 5.4 of H. Kim [22].

In other words, ωΣ
K is well-defined and descends to a pairing on parabolic

cohomology groups.

Lemma 3.3.10. For any rαs, rβs P H1
parpΓ, txziyu; gq,

ωΣ
Kprαs, rβsq “ ´ωΣ

Kprβs, rαsq.

Moreover, if ωΣ
Kprαs, rβsq “ 0 for all rαs P H1

parpΓ, txziyu; gq, we have rβs “ 0.

Proof. See Proposition 5.5 of H. Kim [22].

Therefore, ωΣ
K is a nondegenerate 2-form on XB

n pΓq.
Then we have to show that ωΣ

K is closed to conclude that it is indeed a
symplectic form. This is not a trivial result and can be proven by various ways.
See, for instance, H. Kim [22], Guruprasad-Huebschmann-Jeffrey-Weinstein
[17], and Karshon [21].

The expression of cΣ depends on the choice of the relation R. We may
wonder the value of ωK changes if we use another relation. The following
lemma shows that it is not the case.

Lemma 3.3.11. Let R1 “ hRh´1 for some h P Γ. Let c1
Σ be the relative

fundamental class defined as in Lemma 3.3.4 with respect to R1. Then xα Y

β, cΣy “ xα Y β, c1
Σy for all rαs, rβs P H1

parpΓ, txziyu; gq.

Proof. It is straightforward to obtain

c1
Σ “

g
ÿ

i“1

ˆ �
h

BR

Bxi

ˇ

ˇ

ˇ

ˇ

xi

�
`

�
h

BR

Byi

ˇ

ˇ

ˇ

ˇ

yi

� ˙

`

b
ÿ

j“1

�
h

BR

Bzj

ˇ

ˇ

ˇ

ˇ

zj

�
.

Since α is a cocycle, α
´

h BR
Bxi

¯

“ α
´

BR
Bxi

¯

`
BR
Bxi

¨ αph´1q. Here we use the
convention px ˘ yq ¨ X “ x ¨ X ˘ y ¨ X where x, y P Γ, X P g. By definition of
xα Y β, c1

Σy,

xα Y β, c1
Σy “ xα Y β, cΣy
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` Tr
˜

αph´1
qβ

˜

g
ÿ

i“1

ˆ

BR

Bxi
pxi ´ 1q `

BR

Byi
pyi ´ 1q

˙

`

b
ÿ

i“1

BR

Bzi
pzi ´ 1q

¸¸

.

By Theorem 3.3.1, we conclude that the second term is Trpαph´1qβpR´1qq “

0.

3.4. The existence of global Darboux coordinates

Now we prove series of results toward the existence of a global Darboux
coordinate system. Our main goal of this subsection is Theorem 3.4.5.

Lemma 3.4.1 (A variation of Theorem 18.12 of da Silva [7]). Let f “

pf1, ¨ ¨ ¨ , fnq : M2n Ñ B be a fiber bundle over a connected open subset B
of Rn. Suppose that M is given a symplectic structure ω such that each fiber
is a simply connected Lagrangian submanifold. Suppose moreover that the
Hamiltonian vector fields Xf1 , ¨ ¨ ¨ ,Xfn are linearly independent at each point
in M and complete. Then the following hold:

• f : M Ñ B becomes an affine bundle over B.
• If f : M Ñ B admits a global Lagrangian section, then there is a

function g “ pg1, ¨ ¨ ¨ , gnq : M Ñ R
n such that pf1, ¨ ¨ ¨ , fn, g1, ¨ ¨ ¨ , gnq

is a global Darboux coordinate system.

Proof. Observe that Xf1 , ¨ ¨ ¨ ,Xfn are tangent to each fiber. For if Z is any
vector field that is tangent to a fiber, we have ωpXfi , Zq “ dfipZq “ Zfi “ 0.
As each fiber is maximally isotropic, this means that each Xfi is also tangent
to a fiber.

Recall that ωprXfi ,Xfj s, Zq “ ZωpXfi ,Xfj q for every vector field Z. Be-
cause the fibers are Lagrangian we have ωpXfi ,Xfj q “ 0. Hence rXfi ,Xfj s “ 0
for all i, j. It follows that the rule x ÞÑ pXf1 |x, ¨ ¨ ¨ ,Xfn |xq defines a completely
integrable distribution. Since Xf1 , ¨ ¨ ¨ ,Xfn are linearly independent, the in-
tegral manifold is n-dimensional, and thus, is an open subset of each fiber.
Since each fiber is connected, the integral manifold must be the whole fiber.
This, together with the fact that Xfi ’s are complete, yields that the Hamil-
tonian flows associated to f1, ¨ ¨ ¨ , fn induce an Rn-action. Since the integral
manifold is the whole fiber, the action must be fiberwise transitive. Since each
fiber is simply connected and since the R

n-action is transitive, we conclude
that the action is a free action and this gives an affine bundle structure on
f : M Ñ B.

Let σ : B Ñ M be a Lagrangian section. Since the action is free and
fiberwise transitive, for each x P M , there is a unique tx P R

n such that
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x “ tx ¨ σpfpxqq. Define the smooth function g “ pg1, ¨ ¨ ¨ , gnq : M Ñ R
n by

gpxq “ tx.
We claim that x ÞÑ pfpxq, gpxqq is a global Darboux coordinate system.

We first observe that pf, gq is regular and one-to-one. Hence pf, gq is a global
coordinate system. Moreover B

Bfi
“ dσ B

Bxi
spans a Lagrangian subspace at

each point x of σpBq. Then we compute

ωx

ˆ

B

Bgi
|x,

B

Bfj
|x

˙

“ ωx

ˆ

Xfi |x, pdσ B

Bxj
q|x

˙

“ dfi
ˆ

dσ B

Bxj

˙

“ dpfi ˝ σq
B

Bxj

“
Bxi
Bxj

“

#

1 i “ j

0 i ‰ j

at each x P σpBq. Now consider a general point x P M . We may assume that
x can be reached from σpfpxqq by the Hamiltonian flow Ψ associated to some
fi. That is x “ Ψtpσpfpxqqq for some t P R. Since Ψt preserves ω, we have

ωx

ˆ

B

Bgi
|x,

B

Bfj
|x

˙

“ ωx

ˆ

Xfi |x, dΨt

ˆ

B

Bfj
|σpfpxqq

˙˙

“ ppΨ´t
q

˚ωqx

ˆ

Xfi |x, dΨt

ˆ

B

Bfj
|σpfpxqq

˙˙

“ ωσpfpxqq

ˆ

Xfi |σpfpxqq,
B

Bfj
|σpfpxqq

˙

“

#

1 i “ j

0 i ‰ j
.

Therefore pf, gq is a global Darboux coordinate system.

Remark 3.4.2. Lemma 3.4.1, looks similar to the well-known action-angle
principle (see for example Theorem 18.12 of da Silva [7]). One difference
is that, in our result, the given “integral of motion” can be taken as action
coordinates without any modification. An additional condition, the existence
of a Lagrangian section, must be imposed to obtain this stronger conclusion.

Lemma 3.4.3. Let pM2n, ωq be a symplectic manifold and f “ pf1, ¨ ¨ ¨ , fnq :
M Ñ B Ă R

n be as in Lemma 3.4.1. Then each c P B has a neighborhood U
such that there is a symplectomorphism F : f´1pUq Ñ T ˚B which is also a
morphism of affine bundles.
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Proof. Note that, by the first assertion of Lemma 3.4.1, M is an affine bundle.
We first show that there is a neighborhood U of c where a local Lagrangian

section σ|U on U exists. For this we choose a neighborhood V0 of c P B
where both M and T ˚B are trivialized. Let T : f´1pV0q Ñ V0 ˆ R

n be a
trivialization.

Let x P f´1pcq. Carathéodory-Jacobi-Lie theorem states that there is a
neighborhood U0 of x and function g “ pg1, ¨ ¨ ¨ , gnq such that pU0, pf, gqq is
a local Darboux chart. We may assume that U0 Ă f´1pV0q and that T pU0q “

U ˆI for some open box I of Rn and an open neighborhood U of c. So locally,
ω|U0 “

řn
i“1 dfi ^ dgi. Therefore, f : M Ñ B admits a local Lagrangian

section over U :“ fpU0q Ă V0. Let σ be this section.
Let z : U Ñ zpUq be the zero section of T ˚B Ñ B. Define a map

F0 : σpUq Ñ zpUq by z ˝ f . Observe that pT ˚B,ωcanq is a vector bundle with
fiber preserving the Hamiltonian R

n-action acting fiberwise freely, linearly and
transitively. We also have the fiberwise free, transitive and linear Hamiltonian
R

n-action on M . So, for each x P f´1pcq, there is a unique tx P R
n such that

tx ¨ σpcq “ x. Extend F0 to the map F : pf´1pUq, σpUqq Ñ pT ˚B|U , zpUqq

by F pxq “ tx ¨ zpfpxqq. Then F is clearly an affine bundle map. Lastly we
have to prove that F is symplectomorphic. To this end, observe that F is
symplectomorphic at each point of σpUq. Let Φt and Ψt be Hamiltonian flows
on each bundle corresponding to the same 1-dimensional subgroup of R

n.
Then F ˝ Φt “ Ψt. Since Hamiltonian flows preserve the symplectic form, we
conclude that F is symplectomorphic.

Assuming further that B has the trivial 2nd cohomology, we can prove
the existence of a global Lagrangian section. The proof is based on sheaf
cohomology theory and the idea of Duistermaat [10].

Proposition 3.4.4. Assume that B is connected and H2pB;Rq “ 0. Under
the assumptions of Lemma 3.4.3, f : M Ñ B admits a global Lagrangian
section.

Proof. For each y P B, vector fields Xf1 , ¨ ¨ ¨ ,Xfn are tangent to the fiber
My :“ f´1pyq. We write XfipMyq for the vector field on My induced by
Xfi . Let N be a vector bundle over B whose fiber over y is the R-vector
space spanned by Xf1pMyq, ¨ ¨ ¨ ,XfnpMyq. Since dfi annihilates TxMy Ă TxM ,
x P My, there is a unique closed 1-form ηi on B such that f˚ηi “ dfi.
The assignment η : Xfi ÞÑ ηi induces the isomorphism of vector bundles
η : N Ñ T ˚B in the obvious way.

Note that under the assumptions of Lemma 3.4.3, M has the structure of
affine bundle over B.
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Claim. Let σ1 be a local Lagrangian section of the affine bundle M Ñ B over
an open set U Ă B.

• If σ2 is another local Lagrangian section over U , then σ1 ´σ2 naturally
defines a local section of N Ñ B. Moreover, ηpσ1 ´ σ2q is a closed
1-form on U .

• Conversely, let γ be a local section of N Ñ B over U such that ηpγq

is a closed 1-form. Then σ1 ` γ is another Lagrangian local section of
M Ñ B on U .

Proof of the Claim. It is clear that σ1 ´ σ2 is naturally a section of N since
for each y P B, there is a unique translation vector from σ1pyq to σ2pyq.

Let y P B. Lemma 3.4.3 guarantees that we can find a neighborhood V of y
such that there is a symplectomorphism F : f´1pV q Ñ T ˚B sending σ1pV q to
the zero section. By construction of F , we have F pσ1 ´σ2q “ ηpσ1 ´σ2q. Since
F is an affine bundle morphism, we know that ηpσ1 ´ σ2q “ F pσ1q ´ F pσ2q

and that F pσ1q and F pσ2q are 1-forms on B. Since F is a symplectomorphism
F pσ1q and F pσ2q are both closed 1-forms. Hence, ηpσ1 ´σ2q “ F pσ1q ´F pσ2q

is also a closed 1-form. Thus, each point y P U has a neighborhood where
ηpσ1 ´ σ2q is closed, which proves the first part of the claim.

If γ is a local section of N such that ηpγq is closed, then we have that
F pσ1 ` γq “ ηpσ1 ` γq is a closed 1-form so it is a local Lagrangian section
of T ˚B. Since F is symplectomorphism, σ1 ` γ must be a local Lagrangian
section.

We can cover B by open sets tWiu such that the affine bundle M Ñ B
is trivial over Wi for each i and that there is a local Lagrangian section σi
on each Wi. We can further assume that each finite intersection of tWiu is
contractible. Observe, by the above claim, that the difference σij :“ σi ´σj of
the sections on Wi XWj gives a (Čech) 1-cocycle tηpσijqu of the sheaf Ker d1.
By the above claim again, the cohomology class in H1pB,Ker d1q represented
by tηpσijqu is the obstruction of finding a global Lagrangian section. We show
that this obstruction class vanishes.

Consider an exact sequence of sheaves

0 Ñ R Ñ Ω0
B Ñ Im d0

Ñ 0.

Here, R denotes the constant sheaf and Ω0
B is the sheaf of smooth functions

on B. The above exact sequence induces the long exact sequence

¨ ¨ ¨ Ñ H1
pB,Ω0

Bq Ñ H1
pB, Im d0

q Ñ H2
pB,Rq Ñ H2

pB,Ω0
Bq Ñ ¨ ¨ ¨ .
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Observe that Ker d1 “ Im d0 as sheaves. Moreover because Ω0
B is a soft sheaf,

it follows that
H1

pB,Ω0
Bq “ H2

pB,Ω0
Bq “ 0.

Therefore

H1
pB,Ker d1

q – H1
pB, Im d0

q – H2
pB,Rq – H2

pB;Rq “ 0.

Consequently, tηpσijqu represents the trivial class so Proposition 3.4.4 fol-
lows.

Finally, by putting all the above results together, one can deduce the
following theorem.

Theorem 3.4.5 (A variation of Duistermaat [10]). Let pM2n, ωq be a sym-
plectic manifold and f “ pf1, ¨ ¨ ¨ , fnq : M2n Ñ B be a fiber bundle over a
connected open subset B of Rn. Suppose:

• H2pB;Rq “ 0,
• each fiber is a simply connected Lagrangian submanifold, and
• the Hamiltonian vector fields Xf1 , ¨ ¨ ¨ ,Xfn are linearly independent at

each point in M and complete.

Then there is a function g “ pg1, ¨ ¨ ¨ , gnq : M Ñ R
n such that

pf1, ¨ ¨ ¨ , fn, g1, ¨ ¨ ¨ , gnq

is a global Darboux coordinate system.

4. Decomposition formulas

This section is devoted to the proof of our first main result, Theorem 1.2.1. As
mentioned in the introduction, we do induction on the number of curves. We
deal with the base cases by using the Fox calculus and cocycle computations.
Induction process is somewhat technical particularly when we try to cut the
surface by more than three curves. Suppose for instance that three curves
ξ1, ξ2 and ξ3 are positioned as in Figure 1. Then ξ1, ξ2 and ξ3 are all non-
separating in Σ. However ξ3 becomes separating seen as a curve in Σzpξ1Yξ2q.
On the other hand, ξ2 becomes separating if we subtract ξ1 and ξ3. Therefore
we get at least three different decompositions of π1pΣq depending on the order
of cutting. To treat this technicality systematically, we borrow the notation
of graph of groups.
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We then present a (parabolic) group cohomology version of the Mayer-
Vietoris sequence to prove the decomposition formula for a single cutting.
This sequence decomposes the tangent space into one or two components
and our formulas show that the pairing ωΣ

K is additive with respect to this
decomposition.

Figure 1: A set of curves that cuts a genus 2 surface into two pairs-of-pants.

4.1. Decomposition of fundamental groups

Let Σ be a compact oriented hyperbolic surface of genus g with boundary
components ζ1, ¨ ¨ ¨ , ζb. We denote by Γ its fundamental group π1pΣq. Let
tξ1, ¨ ¨ ¨ , ξmu be a collection of pairwise disjoint, non-isotopic essential simple
closed curves in Σ that divide the surface into subsurfaces Σ1, ¨ ¨ ¨ ,Σl. We
assume that each Σi is hyperbolic.

Following Johnson-Millson [20], we can construct a tree T as follow. Let
p : rΣ Ñ Σ be the universal cover. The set of vertices V pT q consists of
connected components of rΣz

Ťm
i“1 p

´1pξiq. Two vertices are joined by an edge
in EpT q if they are adjacent along some component of p´1pξiq. Observe that
each vertex corresponds to the universal cover of some Σi. Johnson-Millson
show in [20, Lemma 5.3] that T is indeed a tree and admits a Γ-action without
inversion. Hence, we have the following theorem.

Theorem 4.1.1 (Johnson-Millson [20], see also Serre [28]). Let Σ be a com-
pact oriented hyperbolic surface, tξ1, ¨ ¨ ¨ , ξmu a collection of pairwise disjoint,
non-isotopic essential simple closed curves in Σ that divides the surface into
hyperbolic subsurfaces Σ1, ¨ ¨ ¨ ,Σl. Then Γ :“ π1pΣq is isomorphic to the fun-
damental group π1pΓ,G,Dq of a graph of groups pΓ,Gq, G “ T {Γ where D is
a choice of a maximal tree of G. We can label vertices of G by Σ1, ¨ ¨ ¨ ,Σl and
edges by ξ1, ¨ ¨ ¨ , ξm. Choose a section j : D Ñ T . Then the vertex group at
Σi is ΓΣi “ StabΓpjpΣiqq and the edge group at ξi is Γξi “ StabΓpjpξiqq.

Observe that ΓΣi is conjugate in Γ to π1pΣiq and that Γξi is conjugate to
π1pξiq.
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Let us choose a base vertex of D and define a relation ď on V pDq by
declaring that Σi ď Σj if and only if Σi is nearer to the base vertex than Σj .
It is clear that ď is a partial order and the set V pDq becomes a poset. For
each vertex Σi we define the following subset

SpΣiq :“ tΣj P V pDq | Σi ď Σju.

Each edge ξi P EpDq is given the orientation from the smaller vertex to
the larger one. If ξi is not in EpDq we orient it arbitrary.

For each edge ξi and each γ P Γξi , denote by γ´ the image of γ in the
vertex group of the origin opξiq. Similarly γ` is the image of γ in the vertex
group of the terminal tpξiq. Therefore, for each ξi P EpGq,

Γ`
ξi

:“ tγ`
| γ P Γξiu, and

Γ´
ξi

:“ tγ´
| γ P Γξiu

are subgroups of Γ “ π1pΓ,G,Dq.
For each ξi P EpGq and each γ P Γξi , we have γ` “ γ´ in the whole

group Γ. If ξi is an edge of G but ξi R EpDq, then we have an additional
generator ξK

i with relation ξK
i γ

`pξK
i q´1 “ γ´ for each γ P Γξi in Γ. Note that

ξK
i corresponds to a loop transverse to ξi.

Let ρ : Γ Ñ G be a representation. Since each vertex group ΓΣi injects
into Γ, ρ induces a representation ρΓΣi

: ΓΣi Ñ G for each vertex group. ρ
also induces a representation ρξK

i
: xξK

i y Ñ G for each edge ξi which is not in
EpDq. In this way, we obtain a collection of representations ρΓΣi

: ΓΣi Ñ G

for each i “ 1, 2, ¨ ¨ ¨ , l and ρξK
i

: xξK
i y Ñ G for each ξi P EpGqzEpDq.

Conversely, suppose that we are given a collection of representations ρΓΣi
:

ΓΣi Ñ G for each i “ 1, 2, ¨ ¨ ¨ , l and ρξK
j

: xξK
j y Ñ G for each ξj P EpGqzEpDq,

subject to relations

• If ξk P EpDq and if Σi “ opΓξkq and Σj “ tpΓξkq then for each γ P Γξk ,

(6) ρΓΣi
pγ´

q “ ρΓΣj
pγ`

q.

• If ξk R EpDq and if Σi “ opξkq and Σj “ tpξkq then, for each γ P Γξk ,

(7) ρξK
k

pξK
k qρΓΣj

pγ`
qρξK

k
pξK

k q
´1

“ ρΓΣi
pγ´

q.

Then there is a unique representation ρ : Γ Ñ G whose restrictions are
precisely prescribed representations.
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Figure 2: An example of decomposition. Curves in C are depicted by thin
lines. The edges of graph G are lines with an arrow. Its maximal tree D is
thickened.

4.2. The Mayer-Vietoris sequence

Before go further, we summarize the general settings that we consider in the
subsequent section.

• Σ is a compact oriented hyperbolic surface with boundary components
tζ1, ¨ ¨ ¨ , ζbu. tξ1, ¨ ¨ ¨ , ξmu is a collection of pairwise disjoint, non-isotopic
essential simple closed curves in Σ that divide the surface into hyper-
bolic subsurfaces Σ1, ¨ ¨ ¨ ,Σl. We stick to the notation Γ “ π1pΣq (which
is also isomorphic to π1pΓ,G,Dq), ΓΣ1 , ¨ ¨ ¨ ,ΓΣl

and Γξ1 , ¨ ¨ ¨ ,Γξm of the
previous subsection.

• Denote by ιΣi the map Σi Ñ Σ, the extension of the inclusion Σi Ñ Σ
to the completion Σi of Σi. We sometimes use the same notation ιΣi to
denote the induced homomorphism ιΓΣi

: ΓΣi Ñ Γ.
• Unless otherwise stated, rρs denotes an element in XB

n pΓ,C q such that
rρΓΣi

s P XBi

n pΓΣiq for each i “ 1, 2, ¨ ¨ ¨ , l where

Bi “ tpξ, Bq | ξ is a component of BΣi and pιΣipξq, Bq P B Y C u.

The Mayer-Vietoris sequence for cohomology of group system is proven
in [3]. Our version of the Mayer-Vietoris sequence is the following.

Proposition 4.2.1. Fix a representation ρ in the class rρs. Let pΓ,Sq be a
group system where Γ “ π1pΣq and S “ tΓ`

ξ1
, ¨ ¨ ¨ ,Γ`

ξm
, xζ1y, ¨ ¨ ¨ , xζbyu. Define

for each i “ 1, 2, ¨ ¨ ¨ , l, Si “ txζy Ă ΓΣi | ζ is a component of BΣiu so that
pΓΣi ,Siq is a group subsystem of pΓ,Sq.
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• The sequence

0 Ñ

m
à

i“1
H0

pΓ`
ξi
; gq

δ
Ñ H1

parpΓ,S; gρq
ι˚
Ñ

l
à

i“1
H1

parpΓΣi ,Si; gρΓΣi
q Ñ 0

is exact.
• The connecting homomorphism δ sends X P H0pΓξi ; gq to the tangent

cocycle of an algebraic bending by X along ξi and ι˚ is induced from the
inclusions ιΣi : pΓΣi ,Siq Ñ pΓ,Sq that is,

ι˚prαsq “ ι˚Σ1rαs ‘ ¨ ¨ ¨ ‘ ι˚Σl
rαs.

We do not prove the first statement at this moment because their proof has
no dependency on remaining parts of our paper. For the sake of completeness
however we give a proof in the appendix.

The second assertion regarding the map δ is shown in [20, Lemma 5.8].
Because we do need some details about the connecting homomorphism, we
give more descriptions here.

Choose a representation ρ in the class rρs. Let ξ0 be an edge of G. Let
X P H0pΓ`

ξi0
; gq where H0pΓ`

ξi0
; gq “ kerpAdρ ´ Idq Ă g. We introduce a flow

Φt
X,ξi0

in HitnpΣq as follow. If ξi0 is an edge in EpDq joining Σp and Σq with
Σp ă Σq, define

Φt
X,ξi0

pρqpxq “

$

’

’

’

’

’

’

&

’

’

’

’

’

’

%

ρpxq x P ΓΣj , Σj ďΣp or incomparable
pexp tXqρpxqpexp ´tXq x P ΓΣj , Σj ě Σq

pexp tXqρpxqpexp ´tXq x “ ξK
k , opξkq, tpξkq P SpΣqq

pexp tXqρpxq x“ξK
k , opξkqPSpΣqq, tpξkqRSpΣqq

ρpxqpexp ´tXq x“ξK
k , tpξkqPSpΣqq, opξkqRSpΣqq

.

For each t, Φt
X,ξi0

pρq satisfies all relations in (6) and (7).
If ξi0 is not in EpDq, we define

Φt
X,ξi0

pρqpxq “

#

ρpxqpexp tXq x “ ξK
i0

ρpxq otherwise
.

Again Φt
X,ξi0

pρq fulfills the relations in (6) and (7) for each t. Therefore, in
both cases, we get the flow of representations Φt

X,ξi0
. Call this flow the alge-

braic bending by X along ξi0 . The last assertion of Proposition 4.2.1 states
that B

BtΦ
t
X,ξi0

“ δp0, 0, ¨ ¨ ¨ , 0, X, 0, ¨ ¨ ¨ , 0q where X is in the H0pΓξi0
; gq com-

ponent of
Àm

i“1 H
0pΓξi ; gq.
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4.3. The local decomposition formula: separating cases

Assume ξ is separating so that Σzξ has two components Σ1,Σ2 each of
which is hyperbolic. In view of Theorem 4.1.1, Γ is the fundamental group of

‚ ‚
Σ1 Σ2ξ .

From Proposition 4.2.1, we have the short exact sequence

0 Ñ H0
pΓ`

ξ ; gq
δ

Ñ H1
parpΓ,S; gq

pι˚
Σ1

,ι˚
Σ2

q

ÝÝÝÝÝÑ H1
parpΓΣ1 ,S1; gq ‘ H1

parpΓΣ2 ,S2; gq Ñ 0

where, as before, S “ tΓ`
ξ , xζ1y, ¨ ¨ ¨ , xζbyu is a collection of subgroups of Γ that

forms a group system pΓ,Sq and Si “ txζy Ă ΓΣi | ζ is a component of BΣiu.
We also abbreviate the inclusion ιΓΣi

: ΓΣi Ñ Γ to ιΣi .
Now we can state the decomposition formula.

Theorem 4.3.1. Let Σ be a compact oriented hyperbolic surface possibly with
boundary components tζ1, ¨ ¨ ¨ , ζbu and ξ an essential simple closed curve that
separates Σ into two hyperbolic subsurfaces Σ1 and Σ2. Let pΓ,Sq be the group
system where Γ “ π1pΣq and S “ tΓ`

ξ , xζ1y, ¨ ¨ ¨ , xζbyu. Choose a boundary
frame B and tξu-frame C . Let rρs P XB

n pΓ,C q be such that rρΓΣi
s P XBi

n pΓΣiq

where

Bi “ tpζ, Bq | ζ is a component of BΣi and pιΣipζq, Bq P B Y C u

for each i “ 1, 2. Fix a representation ρ in the class rρs. For rαs, rβs P

H1
parpΓ,S; gρq, we have

ωΣ
Kprαs, rβsq “ ωΣ1

K pι˚Σ1rαs, ι˚Σ1rβsq ` ωΣ2
K pι˚Σ2rαs, ι˚Σ2rβsq.

We prove the following lemma first.

Lemma 4.3.2. Let Si “ txζy | ζ is a component of BΣiu, i “ 1, 2. If ι˚Σ2
rαs “

0 then there is a unique 1-cocycle Ăα1 P Z1
parpΓ,S; gq such that rĂα1s “ rαs in

H1
parpΓ,S; gq and that ι#Σ2

pĂα1q “ 0 in Z1
parpΓΣ2 ,S2; gq. Similarly, if ι˚Σ1

rαs “ 0
then there is a unique 1-cocycle Ăα2 such that rĂα2s “ rαs and that ι#Σ1

pĂα2q “ 0
in Z1

parpΓΣ1 ,S1; gq.

Proof. We prove the first case. Pick any representative of rαs say α1
1 P

Z1
parpΓ,S; gq. Since ι˚Σ2

rαs “ ι˚Σ2
rα1

1s “ 0, there is X P g such that ι#Σ2
pα1

1q “
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δΓΣ2
X. Let Ăα1 “ α1

1 ´δΓX. Then clearly rĂα1s satisfies the required properties.
For the uniqueness, suppose that there is another class α2

1 P Z1
parpΓ,S; gq sat-

isfying the same properties. Then since rα2
1s “ rĂα1s in H1

parpΓ,S; gq, we have
α2

1 “ Ăα1 ` δΓY for some Y P g. Applying ι#Σ2
, we have 0 “ ι#Σ2

δΓY “ δΓΣ2
Y

in Z1
parpΓΣ2 ,S2; gq. By Lemma 2.1.3, Y “ 0 and the uniqueness follows.
The second case can be achieved along the same lines.

Proof of Theorem 4.3.1. We borrow the idea of Zocca [37]. We use the fol-
lowing presentations

ΓΣ1 “ xx1,1, y1,1, ¨ ¨ ¨ , x1,g1 , y1,g1 , z1,0, ¨ ¨ ¨ , z1,b1 | r1y,

ΓΣ2 “ xx2,1, y2,1, ¨ ¨ ¨ , x2,g2 , y2,g2 , z2,0, ¨ ¨ ¨ , z2,b2 | r2y,

Γξ “ xξy with ξ´
“ z1,0, ξ

`
“ z´1

2,0 , and
Γ “ π1pΣq “ xx1,1, y1,1, ¨ ¨ ¨ , x1,g1 , y1,g1 , z1,1, ¨ ¨ ¨ , z1,b1

x2,1, y2,1, ¨ ¨ ¨ , x2,g2 , y2,g2 , z2,1, ¨ ¨ ¨ , z2,b2 | ry

where relations are given by

r1 “

˜

g1
ź

j“1
rx1,j , y1,js

¸ ˜

b1
ź

j“1
z1,j

¸

z1,0,

r2 “ z2,0

˜

b2
ź

j“1
z1,j

¸ ˜

g2
ź

j“1
rx2,j , y2,js

¸

, and

r “

˜

g1
ź

j“1
rx1,j , y1,js

¸ ˜

b1
ź

j“1
z1,j

¸ ˜

b2
ź

j“1
z2,j

¸ ˜

g2
ź

j“1
rx2,j , y2,js

¸

.

We decompose the relative fundamental cycle (Lemma 3.3.4) by splitting
the summation

cΣ “

g1
ÿ

i“1

ˆ�
Br

Bx1,i

ˇ

ˇ

ˇ

ˇ

x1,i

�
`

�
Br

By1,i

ˇ

ˇ

ˇ

ˇ

y1,i

�˙

`

b1
ÿ

i“1

�
Br

Bz1,i

ˇ

ˇ

ˇ

ˇ

z1,i

�

`

g2
ÿ

i“1

ˆ�
Br

Bx2,i

ˇ

ˇ

ˇ

ˇ

x2,i

�
`

�
Br

By2,i

ˇ

ˇ

ˇ

ˇ

y2,i

�˙

`

b2
ÿ

i“1

�
Br

Bz2,i

ˇ

ˇ

ˇ

ˇ

z2,i

�
.

Observe that�
Br

Bx1,i

ˇ

ˇ

ˇ

ˇ

x1,i

�
“

�
Br1

Bx1,i

ˇ

ˇ

ˇ

ˇ

x1,i

�
,

�
Br

By1,i

ˇ

ˇ

ˇ

ˇ

y1,i

�
“

�
Br1

By1,i

ˇ

ˇ

ˇ

ˇ

y1,i

�
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for each i “ 1, 2, ¨ ¨ ¨ , g1 and�
Br

Bz1,i

ˇ

ˇ

ˇ

ˇ

z1,i

�
“

�
Br1

Bz1,i

ˇ

ˇ

ˇ

ˇ

z1,i

�

for each i “ 1, 2, ¨ ¨ ¨ , b1. Thus

cΣ1 “

g1
ÿ

i“1

ˆ�
Br

Bx1,i

ˇ

ˇ

ˇ

ˇ

x1,i

�
`

�
Br

By1,i

ˇ

ˇ

ˇ

ˇ

y1,i

�˙

`

b1
ÿ

i“1

�
Br

Bz1,i

ˇ

ˇ

ˇ

ˇ

z1,i

�
`

�
Br1

Bz1,0

ˇ

ˇ

ˇ

ˇ

z1,0

�
.

The last term
�

Br1
Bz1,0

ˇ

ˇ

ˇ
z1,0

�
is equal to �z´1

1,0 |z1,0�.
On the other hand, we have�

Br
Bx2,i

ˇ

ˇ

ˇ

ˇ

x2,i

�
“

�
Br2

Bx2,i

ˇ

ˇ

ˇ

ˇ

x2,i

�
,�

Br
By2,i

ˇ

ˇ

ˇ

ˇ

y2,i

�
“

�
Br2

By2,i

ˇ

ˇ

ˇ

ˇ

y2,i

�
, and�

Br
Bz2,j

ˇ

ˇ

ˇ

ˇ

z2,j

�
“

�
Br2

Bz2,j

ˇ

ˇ

ˇ

ˇ

z2,j

�

for i “ 1, 2, ¨ ¨ ¨ , g2 and j “ 1, 2, ¨ ¨ ¨ , b2. Since the extra term
�

Br2
Bz2,0

ˇ

ˇ

ˇ
z2,0

�
“�1|z2,0� is 0, we get

cΣ “ cΣ1 ` cΣ2 ´ �z´1
1,0 |z1,0�.

Now we first assume ι˚Σ2
rα1s “ 0 and compute ωΣ

Kprα1s, rβsq. By Lemma
4.3.2, we can find a representative Ăα1 of rα1s such that ι#Σ2

Ăα1 “ 0. We use Ăα1
to compute ωΣ

K as follow

ωΣ
Kprα1s, rβsq “ ωΣ

KprĂα1s, rβsq

“ xĂα1 Y β, cΣ1y ` xĂα1 Y β, cΣ2y ` xĂα1 Y β, �z´1
1,0 |z1,0�y

´

b1
ÿ

i“1
TrpX1,iβpz1,iqq ´

b2
ÿ

i“1
TrpX2,iβpz2,iqq

where Xi,j P g is such that δxzi,jyXi,j “ ι#
xzi,jy

Ăα1. By the construction of Ăα1,
we have xĂα1 Y β, cΣ2y “ 0 and Ăα1pzi,0q “ Ăα1pz´1

i,0 q “ 0, for i “ 1, 2. Again,
by the construction of Ăα1, we can choose X2,i to be 0 for all i “ 1, 2, ¨ ¨ ¨ , b2.
Hence

ωΣ
Kprα1s, rβsq “ ωΣ1

K pι˚Σ1rα1s, ι˚Σ1rβsq ` TrpXβpz1,0qq
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where X P g is given by the property δxz1,0yX “ ι#
xz1,0y

Ăα1. Observe that
ι#
xz1,0y

Ăα1 “ ι#
xz2,0y

Ăα1 “ 0. Therefore we can take X to be zero. This leads us to

ωΣ
Kprα1s, rβsq “ ωΣ1

K pι˚Σ1rα1s, ι˚Σ1rβsq.

Similarly, if rα2s P H1
parpΓΣ2 ,S2; gq is such that ι˚Σ1

rα2s “ 0, we choose Ăα2
as before to get

ωΣ
Kprα2s, rβsq “ ωΣ2

K pι˚Σ2rα2s, ι˚Σ2rβsq.

Now suppose that we are given a general rαs P H1
parpΓ,S; gq. Since

H1
parpΓ,S; gq “ ker ι˚Σ1

` ker ι˚Σ2
(not direct), we can decompose rαs as a sum

rαs “ rα1s ` rα2s where rα1s P ker ι˚Σ2
and rα2s P ker ι˚Σ1

. Then by linearity
we have

ωΣ
Kprαs, rβsq “ ωΣ

Kprα1s, rβsq ` ωΣ
Kprα2s, rβsq

“ ωΣ1
K pι˚Σ1rα1s, ι˚Σ1rβsq ` ωΣ2

K pι˚Σ2rα2s, ι˚Σ2rβsq

“ ωΣ1
K pι˚Σ1rαs, ι˚Σ1rβsq ` ωΣ2

K pι˚Σ2rαs, ι˚Σ2rβsq.

It completes the proof of Theorem 4.3.1.

4.4. The local decomposition formula: non-separating cases

Suppose that ξ is non-separating such that Σ0 :“ Σzξ is hyperbolic. In this
case Γ is the fundamental group of Σ0 ‚ ξ and we have the exact sequence:

0 Ñ H0
pΓ`

ξ , gq Ñ H1
parpΓ,S; gq

ι˚
Σ0
Ñ H1

parpΓΣ0 ,S0; gq Ñ 0

where S “ tΓ`
ξ , xζ1y, ¨ ¨ ¨ , xζbyu, S0 “ txζy | ζ is a component of BΣ0u so that

pΓΣ0 ,S0q is a group subsystem of pΓ,Sq. Note that the homomorphism ιΓΣ0
:

ΓΣ0 Ñ Γ and ιΓ˘
ξ

: Γ˘
ξ Ñ ΓΣ0 are abbreviated to ιΣ0 and ιξ˘ respectively.

The corresponding decomposition formula is the following:

Theorem 4.4.1. Let Σ be a compact oriented hyperbolic surface and ξ a
non-separating essential simple closed curve such that Σ0 “ Σzξ is hyper-
bolic subsurface. Let pΓ,Sq be a group system where Γ “ π1pΣq and S “

tΓ`
ξ , xζ1y, ¨ ¨ ¨ , xζbyu. Choose a boundary frame B and tξu-frame C . Let rρs P

XB
n pΓ,C q be such that rρΓΣ0

s P XB0
n pΓΣ0q where

B0 “ tpζ, Bq | ζ is a component of BΣ0 and pιΣ0pζq, Bq P B Y C u.
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Fix a representation ρ in rρs. For rαs, rβs P H1
parpΓ,S; gρq, we have

ωΣ
Kprαs, rβsq “ ωΣ0

K pι˚Σ0rαs, ι˚Σ0rβsq.

As in the separating case, we start with proving the following:

Lemma 4.4.2. Let S0 “ txζy Ă ΓΣ0 | ζ is a component of BΣ0u. There are
1-cocycles rα, rα1 such that rrαs “ rrα1s “ rαs in H1

parpΓ,S; gq and that ι#Γ´
ξ

rα “ 0,

ι#Γ`
ξ

rα1 “ 0 in Z1pΓ`
ξ ; gq and Z1pΓ´

ξ ; gq respectively.

Proof. Choose any representative α1 of rαs. By the assumption, ι#Γ`
ξ

pα1q “

δΓ`
ξ
X for some X P g. Let rα “ α1 ´δΓX so that rαpΓ`

ξ q “ 0. The construction
of rα1 is almost the same.

Proof of Theorem 4.4.1. We use the following presentations

Γ “ xx1, y1, ¨ ¨ ¨ , xg, yg, z1, ¨ ¨ ¨ , zb`1, ξ
K

| ry,

Γξ “ xξy with ξ`
“ zb`1, ξ

´
“ z´1

b`2

and
ΓΣ0 “ xx1, y1, ¨ ¨ ¨ , xg, yg, z1, ¨ ¨ ¨ , zb`2 | r0y

where

r “ rzb`1, ξ
K

s

˜

g
ź

j“1
rxj , yjs

¸

b
ź

j“1
zj

and

r0 “ zb`1zb`2

˜

g
ź

j“1
rxj , yjs

¸

b
ź

j“1
zj .

Then, the relative fundamental cycle cΣ can be written as

cΣ “

g
ÿ

i“1

ˆ�
Br
Bxi

ˇ

ˇ

ˇ

ˇ

xi

�
`

�
Br
Byi

ˇ

ˇ

ˇ

ˇ

yi

�˙

`

�
Br

Bzb`1

ˇ

ˇ

ˇ

ˇ

zb`1

�
`

�
Br

BξK

ˇ

ˇ

ˇ

ˇ

ξK

�
`

b
ÿ

i“1

�
Br
Bzi

ˇ

ˇ

ˇ

ˇ

zi

�
.

On the other hand, the relative fundamental cycle cΣ0 is

cΣ0 “

g
ÿ

i“1

ˆ�
Br0

Bxi

ˇ

ˇ

ˇ

ˇ

xi

�
`

�
Br0

Byi

ˇ

ˇ

ˇ

ˇ

yi

�˙

`

b`2
ÿ

i“1

�
Br0

Bzi

ˇ

ˇ

ˇ

ˇ

zi

�
.
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Note that for each i “ 1, 2, ¨ ¨ ¨ , g and j “ 1, 2, ¨ ¨ ¨ , b, we have�
Br
Bxi

ˇ

ˇ

ˇ

ˇ

xi

�
“

�
Br0

Bxi

ˇ

ˇ

ˇ

ˇ

xi

�
,

�
Br
Byi

ˇ

ˇ

ˇ

ˇ

yi

�
“

�
Br0

Byi

ˇ

ˇ

ˇ

ˇ

yi

�
, and

�
Br
Bzj

ˇ

ˇ

ˇ

ˇ

zj

�
“

�
Br0

Bzj

ˇ

ˇ

ˇ

ˇ

zj

�
.

It follows that

cΣ ´ cΣ0 “

�
Br

Bzb`1

ˇ

ˇ

ˇ

ˇ

zb`1

�
`

�
Br

BξK

ˇ

ˇ

ˇ

ˇ

ξK

�
´

�
Br0

Bzb`1

ˇ

ˇ

ˇ

ˇ

zb`1

�
´

�
Br0

Bzb`2

ˇ

ˇ

ˇ

ˇ

zb`2

�
.

By evaluating the right hand side, we get

cΣ “ cΣ0 ´ �zb`1|zb`2� ´ �zb`1ξ
Kz´1

b`1|zb`1� ` �zb`1|ξK� ´ �zb`1zb`2|ξK�.
By Lemma 4.4.2, we can find rα and rβ such that rαs “ rrαs (rβs “ rrβs,
respectively) and rαpzb`2q “ 0 (rβpzb`1q “ 0, respectively). Now we have

ωΣ
Kprαs, rβsq “ ωΣ0

K pι˚Σ0rrαs, ι˚Σ0rrβsq ´ Trprαpzb`1qzb`1 ¨ rβpzb`2qq

` Trprαpzb`1qzb`1 ¨ rβpξK
qq ´ Trprαpzb`1zb`2qpzb`1zb`2q ¨ rβpξK

qq

` TrpXb`1 rβpzb`1qq ` TrpXb`2 rβpzb`2qq

where Xb`1 and Xb`2 are elements of g such that ι#ξ` rα “ δΓ`
ξ
Xb`1 and ι#ξ´ rα “

δΓ´
ξ
Xb`2. Since rβpzb`1q “ rαpzb`2q “ 0 the last two terms vanish.
We expand using zb`2 “ ξKz´1

b`1pξKq´1,

rαpzb`1qzb`1 ¨ rβpzb`2q “ rαpzb`1qzb`1 ¨ prβpξK
q ` pξKz´1

b`1q ¨ rβppξK
q

´1
qq

“ rαpzb`1qzb`1 ¨ prβpξK
q ´ pξKz´1

b`1pξK
q

´1
q ¨ rβpξK

qq

“ rαpzb`1qzb`1 ¨ prβpξK
q ´ zb`2 ¨ rβpξK

qq.

On the other hand, since rαpzb`2q “ 0,

rαpzb`1zb`2qpzb`1zb`2q ¨ rβpξK
q “ rαpzb`1qpzb`1zb`2q ¨ rβpξK

q.

Therefore, all terms except ωΣ0
K pι˚Σ0

rrαs, ι˚Σ0
rrβsq cancel each other. So we get

ωΣ
Kprαs, rβsq “ ωΣ0

K pι˚Σ0rrαs, ι˚Σ0rrβsq

as desired.
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Combining Theorem 4.3.1 and Theorem 4.4.1, one gets the following gen-
eral local decomposition theorem.

Corollary 4.4.3. Let Σ be a compact oriented hyperbolic surface and let
tξ1, ¨ ¨ ¨ , ξmu be a collection of pairwise disjoint, non-isotopic essential sim-
ple closed curves in Σ that divide the surface into hyperbolic subsurfaces
Σ1, ¨ ¨ ¨ ,Σl. Let pΓ,Sq be a group system where Γ “ π1pΣq and S “

tΓ`
ξ1
, ¨ ¨ ¨ ,Γ`

ξm
, xζ1y, ¨ ¨ ¨ , xζbyu. Choose a boundary frame B and C-frame C .

Let rρs be an element in XB
n pΓ,C q such that rρΓΣi

s P XBi

n pΓΣiq for each
i “ 1, 2, ¨ ¨ ¨ , l where

Bi “ tpζ, Bq | ζ is a component of BΣi and pιΣipζq, Bq P B Y C u.

Fix a representative ρ of rρs. Then for any rαs, rβs P H1
parpΓ,S; gρq, we have

ωΣ
Kprαs, rβsq “

l
ÿ

i“1
ωΣi
K pι˚Σi

rαs, ι˚Σi
rβsq.

Proof. We use induction on the number of curves in C. If C consists of a single
curve ξ, we are done by Theorem 4.3.1 or 4.4.1 depending on whether ξ is
separating or not.

Suppose that a collection C “ tξ1, ¨ ¨ ¨ , ξmu, m ą 1, is given where ξm is
separating. Without loss of generality, we may assume that Σ´ :“ Σ1Y¨ ¨ ¨YΣp

and Σ` :“ Σp`1 Y ¨ ¨ ¨ Y Σl are two components of Σzξm. By virtue of Theo-
rem 4.1.1, we can identify Γ with the fundamental group of graph of groups

‚ ‚
Σ´ Σ`ξm . Let S˘ “ txζy Ă ΓΣ˘ | ζ is a component of BΣ˘u so that pΓΣ` ,S`q

and pΓΣ´ ,S´q become group subsystems of pΓ, tΓ`
ξm
, xζ1y, ¨ ¨ ¨ , xζbyuq. Then by

Theorem 4.3.1,

ωΣ
Kprαs, rβsq “ ω

Σ´
K pι˚Σ´

rαs, ι˚Σ´
rβsq ` ω

Σ`
K pι˚Σ`

rαs, ι˚Σ`
rβsq,

where ιΣ` and ιΣ´ are the natural maps pΓΣ` ,S`q Ñ pΓ,Sq and pΓΣ´ ,S´q Ñ

pΓ,Sq respectively. Observe that a collections of curves tξ P C | ξ X Σ` ‰ Hu

and tξ P C | ξ X Σ´ ‰ Hu cut Σ` and Σ´ into Σ1, ¨ ¨ ¨ ,Σp and Σp`1, ¨ ¨ ¨ ,Σl

respectively. By the induction hypothesis, we have

ω
Σ´
K pι˚Σ´

rαs, ι˚Σ´
rβsq “

p
ÿ

i“1
ωΣi
K pĎιΣi

˚ι˚Σ´
rαs, ĎιΣi

˚ι˚Σ´
rβsq,
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and

ω
Σ`
K pι˚Σ`

rαs, ι˚Σ`
rβsq “

l
ÿ

i“p`1
ωΣi
K pĎιΣi

˚ι˚Σ`
rαs, ĎιΣi

˚ι˚Σ`
rβsq

where ĎιΣi : ΓΣi Ñ ΓΣ˘ , i “ 1, 2, ¨ ¨ ¨ , l are the natural inclusions. We observe
that ĎιΣi

˚ι˚Σ˘
“ ι˚Σi

. Therefore, we obtain

ωΣ
Kprαs, rβsq “

l
ÿ

i“1
ωΣi
K pι˚Σi

rαs, ι˚Σi
rβsq.

Now suppose that ξm is non-separating. Let Σ0 :“ Σzξm. Then by Theo-
rem 4.1.1, Γ is the fundamental group of a graph of groups Σ0 ‚ ξm . By
Theorem 4.4.1, we have

ωΣ
Kprαs, rβsq “ ωΣ0

K pι˚Σ0rαs, ι˚Σ0rβsq.

Here ιΣ0 is the injection from ΓΣ0 into Γ. Since Cztξmu divides Σ0 into
Σ1, ¨ ¨ ¨ ,Σl, by the induction hypothesis, we obtain

ωΣ0
K pι˚Σ0rαs, ι˚Σ0rβsq “

l
ÿ

i“1
ωΣi
K pĎιΣi

˚ι˚Σ0rαs, ĎιΣi

˚ι˚Σ0rβsq.

Since ĎιΣi
˚ι˚Σ0

“ ι˚Σi
, we have

ωΣ0
K pι˚Σ0rαs, ι˚Σ0rβsq “

l
ÿ

i“1
ωΣi
K pι˚Σi

rαs, ι˚Σi
rβsq.

This completes the induction and Corollary 4.4.3 follows.

4.5. Global decomposition

As mentioned in the introduction, we can decompose π1pΣq into π1pΣiq’s and
this decomposition allows us to construct the map

(8) XnpΓq Ñ XnpΓΣ1q ˆ ¨ ¨ ¨ ˆ XnpΓΣl
q

induced from rρs ÞÑ prρΓΣ1
s, rρΓΣ2

s, ¨ ¨ ¨ , rρΓΣl
sq.

Recall that Theorem 9.1 of Labourie-McShane [25] shows that if rρs is
Hitchin, then so is each factor ρΓΣi

. Therefore, if we restrict (8) to HitBn pΣ,C q

we get the map

(9) Φ : HitBn pΣ,C q Ñ HitB1
n pΣ1q ˆ ¨ ¨ ¨ ˆ HitBl

n pΣlq
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where

Bi “ tpξ, Bq | ξ is a component of BΣi and pιΣipξq, Bq P B Y C u.

Proposition 4.5.1. Let Σ be a compact oriented hyperbolic surface possibly
with boundary components tζ1, ¨ ¨ ¨ , ζbu and let tξ1, ¨ ¨ ¨ , ξmu be a collection of
pairwise disjoint, non-isotopic oriented essential simple closed curves in Σ
that divide the surface into hyperbolic subsurfaces Σ1, ¨ ¨ ¨ ,Σl. We have the
following:

• Let pΓ,Sq be a group system where Γ “ π1pΣq,

S “ txζ1y, ¨ ¨ ¨ , xζby,Γ`
ξ1
, ¨ ¨ ¨ ,Γ`

ξm
u

and let
Si “ txζy Ă ΓΣi | ζ is a compoment of BΣiu.

Then we have identifications

Trρs HitBn pΣ,C q “ H1
parpΓ,S; gρq

and

TΦprρsq
HitB1

n pΣ1q ˆ ¨ ¨ ¨ ˆ HitBl
n pΣlq “

l
à

i“1
H1

parpΓΣi ,Si; gρΓΣi
q.

• Under the above identifications, the differential dΦ fits into the Mayer-
Vietoris sequence

0 Ñ

m
à

i“1
H0

pΓξi ; gq
δ

Ñ H1
parpΓ,S; gq

dΦ
Ñ

l
à

i“1
H1

parpΓΣi ,Si; gq Ñ 0,

that is,
dΦprαsq “ ι˚Σ1rαs ‘ ¨ ¨ ¨ ‘ ι˚Σl

rαs.

Proof. The first statement is already done in Proposition 2.3.1.
The second assertion follows from the definition of Φ and Proposition

4.2.1.

Lemma 4.5.2. Each fiber of Φ is connected.
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Proof. We complete C to get a maximal geodesic lamination of Σ and con-
struct the Bonahon-Dreyer coordinates on HitnpΣq and on HitnpΣiq (see [4]
or Appendix B) with respect to this maximal lamination. In this coordinates,
HitBn pΣ,C q is the set

trρs P HitnpΣq | lζj pρq “ lζj pρ0q, lξkpρq “ lξkpρ0q,

j “ 1, 2, ¨ ¨ ¨ , b, and k “ 1, 2, ¨ ¨ ¨ ,mu

for some fixed reference point rρ0s P HitBn pΣ,C q. Here lξ is defined by

lξpρq “

ˆ

log |λ1pρpξqq|

|λ2pρpξqq|
, ¨ ¨ ¨ , log |λn´1pρpξqq|

|λnpρpξqq|

˙

P R
n´1

where ξ is a closed leaf or a boundary component and λipgq is the ith largest
eigenvalue of g P G. Recall that each component of lζi and lξi can be expressed
as a linear combination of triangle invariants and shear invariants. Moreover
one can express Φ as

Φ “ prΣ1 ˆ ¨ ¨ ¨ ˆ prΣl

where prΣi
denotes the projection onto the triangle invariants and shear

invariants associated to ideal triangles and (infinite or closed) leaves con-
tained in the interior of Σi. It follows that the fiber of Φ is spanned by the
shear invariants associated to closed leaves C. Therefore the fiber of Φ is
connected.

We now introduce a Hamiltonian R
mpn´1q-action that makes Φ an affine

bundle over the base space HitBn pΣ,C q{Rmpn´1q. Then we prove that the base
space HitBn pΣ,C q{Rmpn´1q is the symplectic reduction.

Let Hyp` be the set of purely loxodromic (or positive hyperbolic) ele-
ments in G “ PSLnpRq. By an invariant function we mean a smooth function
f : Hyp`

Ñ R such that fpghg´1q “ fphq for all h P Hyp` and g P G. Given
an invariant function f , there associated another function F : Hyp`

Ñ g

characterized by the property that d
dt |t“0fpg exp tXq “ TrpF pgqXq for all

X P g. Observe that AdgpF phqq “ F pghg´1q.
Let f1, ¨ ¨ ¨ , fn´1 be invariant functions such that

g ÞÑ fpgq :“ pf1pgq, ¨ ¨ ¨ , fn´1pgqq

is injective and that tF1pgq, F2pgq, ¨ ¨ ¨ , Fn´1pgqu forms a basis of kerpAdg ´ Idq

where g P Hyp`. To each oriented essential simple closed curve ξ, associate
a map fξ : HitBn pΣq Ñ R

n´1 which is defined by fξprρsq “ fpρpξqq.
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Given C “ tξ1, ¨ ¨ ¨ , ξmu a family of mutually disjoint, non-isotopic ori-
ented essential simple closed curves, let Tt

ξi,j
prρsq “ rΦt

Fjpρpξiqq,ξi
pρqs, the al-

gebraic bending by Fjpρpξiqq along ξi. Then for pt1, ¨ ¨ ¨ , tmq P R
mpn´1q, where

ti “ pt1i , ¨ ¨ ¨ , tn´1
i q P R

n´1, we define the complete flow

Tpt1,¨¨¨ ,tmq
prρsq “ Ttn´1

m

ξm,n´1 ˝ Ttn´2
m

ξm,n´2 ˝ ¨ ¨ ¨ ˝ Tt21
ξ1,2 ˝ Tt11

ξ1,1prρsq.

The above formula is well-defined in the sense that it does not depend on the
order of compositions. Hence we obtain the R

mpn´1q-action on HitBn pΣq given
by

pt1, ¨ ¨ ¨ , tmq ¨ rρs “ Tpt1,¨¨¨ ,tmq
prρsq.

Recall that δpFjpρpξiqqq is the fundamental vector field of the unit vector
(seen as a Lie algebra element) in the direction of tji at rρs.

Lemma 4.5.3. The R
mpn´1q-action on HitBn pΣ,C q is free.

Proof. Choose a representative ρ of rρs and a base point Σ1 of D. We observe
that, by construction of the R

mpn´1q-action, pt ¨ ρq|ΓΣ1
“ ρΓΣ1

on the vertex
group ΓΣ1 of the base vertex. Suppose that t ¨ rρs “ rρs for some t P R

mpn´1q.
Then, by Lemma 2.1.3, t ¨ ρ “ ρ as representations. Now by induction and
the definition of the action we have t “ 1. Therefore, the R

mpn´1q-action is
free.

Lemma 4.5.4. Let

HB
pΓq :“ tρ P HompΓ, Gq | rρs P HitBn pΣqu.

The R
mpn´1q-action on HBpΓq is proper.

Proof. Define

HpΓΣiq :“ tρ P HompΓΣi , Gq | rρs P HitnpΣiqu

for each i “ 1, 2, ¨ ¨ ¨ , l. We know, by Lemma 2.1.3, that HBpΓq and HpΓΣiq

are subspaces of HomspΓ, Gq and HomspΓΣi , Gq respectively. Let C be a com-
pact subset of HBpΓq. We know that the restriction map

ιΣi : HB
pΓq Ñ HpΓΣiq

and
ιξK

j
: HB

pΓq Ñ HompxξK
j y, Gq, ξj P EpGqzEpDq,
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are continuous and equivariant with respect to the R
mpn´1q-action. Fix the

base vertex Σ1 of D. Let

Ui :“ tt P R
mpn´1q

| t ¨ ιΣipCq X ιΣipCq ‰ Hu,

Vj :“ tt P R
mpn´1q

| t ¨ ιξK
j

pCq X ιξK
j

pCq ‰ Hu.

Since ιΣi and ιξK
j

are equivariant,

tt P R
mpn´1q

| t ¨ C X C ‰ Hu Ă

l
č

i“2
Ui X

N
č

j“1
Vj

where N “ |EpGqzEpDq|. We claim that
Şl

i“2 Ui X
ŞN

j“1 Vj is compact. Since

(10) tt P R
mpn´1q

| t ¨ C X C ‰ Hu

is closed, it follows that (10) is compact.
It is known that the G-action on HomspΓΣi , Gq is proper. See Proposition

1.1 of Johnson-Millson [20]. Hence, on each HpΓΣiq Ă HomspΓΣi , Gq, the set

D :“ tg P G | gιΣipCqg´1
X ιΣipCq ‰ Hu

is compact. Suppose that ξ is in EpDq and precedes Σi. Let

E :“ tpt1, ¨ ¨ ¨ , tn´1q P R
n´1

| exppt1F1pρpξqq ` ¨ ¨ ¨ ` tn´1Fn´1pρpξqqq P D

for some ρ P Cu.

Recall that the R
n´1 action on HomspΓΣi , Gq corresponding to the flow along

ξ is conjugation by exppt1F1pρpξqq ` ¨ ¨ ¨ ` tn´1Fn´1pρpξqqq, ρ P C. Hence we
have

tt P R
n´1

| t ¨ ιΣipCq X ιΣipCq ‰ Hu Ă E.

We claim that E is compact which also proves that

tt P R
n´1

| t ¨ ιΣipCq X ιΣipCq ‰ Hu

is compact. Consider the map k : Rn´1 ˆ C Ñ G given by

ppt1, ¨ ¨ ¨ , tn´1q, ρq ÞÑ exppt1F1pρpξqq ` ¨ ¨ ¨ ` tn´1Fn´1pρpξqqq.

This map is continuous. Moreover if W is an unbounded subset of Rn´1 then
so is kpW ˆ Cq where G is given the operator norm. Since C is compact,
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the projection p1 : Rn´1 ˆ C Ñ R
n´1 onto the first factor is a closed map.

Therefore, E “ p1pk´1pDqq is closed and bounded subset of R
n´1 so E is

compact.
By induction on l, we have

l
č

i“2
Ui Ă A2 ˆ ¨ ¨ ¨ ˆ Al ˆ R

Npn´1q

where each Ai is a compact subspace of the subgroup R
n´1 of Rmpn´1q cor-

responding to the flow along an edge in D.
Now we claim that the set

Bj :“ tt P R
n´1

| t ¨ ιξK
j

pCq X ιξK
j

pCq ‰ Hu

is compact. Recall that the R
n´1 action on ιξK

j
pCq is the right multiplication

by exppt1F1pρpξjqq ` ¨ ¨ ¨ ` tn´1Fn´1pρpξjqqq. Let A
` be the set of diagonal

matrices with diagonal entries being sorted from the largest to smallest. Con-
sider the Cartan projection a : G Ñ A

` which is known to be continuous and
proper. We may assume that K ¨ ιξK

j
pCq “ ιξK

j
pCq ¨ K “ ιξK

j
pCq where K is a

maximal compact subgroup of G. Then we observe that

F :“ tg P A
`

| ιξK
j

pCqg X ιξK
j

pCq ‰ Hu

is compact. Indeed if F is not compact, there is an unbounded sequence
tgiu in A

` such that ιξK
j

pCqgi X ιξK
j

pCq ‰ H for all i. Then ιξK
j

pCq must be
unbounded, which contradicts the assumption that ιξK

j
pCq is compact. Since

a is proper, a´1pF q “ tg P G | ιξK
j

pCqg X ιξK
j

pCq ‰ Hu is compact in G. Thus
Bj “ p1pk´1pa´1pF qqq is also closed and bounded. It follows that Bj must be
compact.

Hence topologically,
Şl

i“2 Ui X
ŞN

j“1 Vj is a closed subspace of A2 ˆ ¨ ¨ ¨ ˆ

Al ˆB1 ˆ ¨ ¨ ¨ ˆBN . Since each Ai and Bj are compact,
Şl

i“2 Ui X
ŞN

j“1 Vj is
also compact.

Lemma 4.5.5. The R
mpn´1q-action on HitBn pΣq is proper.

Proof. We show the following claim first.

Claim. Let p : HBpΓq Ñ HitBn pΣq be the projection, ppρq “ rρs. There is
a section s : HitBn pΣq Ñ HBpΓq of p such that spt ¨ rρsq “ t ¨ sprρsq for all
t P R

mpn´1q.
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Proof of the Claim. We extend C to a maximal geodesic lamination on Σ and
fix an ideal triangle T contained in Σ1, the origin of the tree D. By Labourie-
McShane [25], there is an equivariant flag curve Fρ : B8

rΣ Ñ FlagpRnq for
each ρ P HBpΓq where rΣ is the universal cover of Σ. Fix also flags P , Q and
a line R such that pP,Q,Rq is generic. Denote by p, q, r the three vertices
of a lift rT of T . Then for each rρs P HitBn pΣq there is a unique rρ P HBpΓq

such that rrρs “ rρs, F
rρppq “ P , F

rρpqq “ Q and F
rρprqp1q “ R. Let s :

HitBn pΣq Ñ HBpΓq be the map defined by sprρsq “ rρ. For any t P R
mpn´1q,

we have pt ¨ ρq|ΓΣ1
“ ρ|ΓΣ1

. It follows that Ft¨ρppq “ P , Ft¨ρpqq “ Q, and
Ft¨ρprqp1q “ R. Hence t ¨ ρ “ sprt ¨ ρsq as desired.

Let C be a compact subset of HitBn pΣq. To prove the properness, we let
C 1 “ spCq. Since s is equivariant, we have

tt P R
mpn´1q

| t ¨ C X C ‰ Hu “ tt P R
mpn´1q

| t ¨ C 1
X C 1

‰ Hu.

The right hand side is compact by Lemma 4.5.4. Therefore, the R
mpn´1q-

action is proper on HitBn pΣq.

Let μ : HitBn pΣq Ñ R
mpn´1q be the function defined by

(11) μprρsq “ pfξ1pρq, ¨ ¨ ¨ , fξmpρqq

and let L “ imageμ. μ is the complete invariant of conjugacy classes of Hyp`.
Therefore, the value μpgq determines the conjugacy class in which g P Hyp`

is contained.

Theorem 4.5.6 (Generalization of Goldman [14]). Keep the assumption of
Proposition 4.5.1. For any boundary frame B, the Rmpn´1q-action on HitBn pΣq

is Hamiltonian whose moment map is given by (11). Each y P L is a regular
value of μ and the action is proper on μ´1pyq.

Proof. Theorem 4.3 of Goldman [14] states that when Σ is closed, the Rmpn´1q-
action on pHitnpΣq, ωGq is weakly Hamiltonian. Since curves in C are pairwise
disjoint, non-isotopic, Theorem 3.5 of [14] implies that the Hamiltonian func-
tions rρs ÞÑ fipρpξjqq commute each other. Therefore this action is Hamilto-
nian.

Now we assume that Σ has boundary. Let pΓ,Sq be a group system where
Γ “ π1pΣq and S “ txζ1y, ¨ ¨ ¨ , xζby,Γ`

ξ1
, ¨ ¨ ¨ ,Γ`

ξm
u. We first consider the co-

homological operation

H1
pΓ,S; gq b H1

pΓ; gq
Y
Ñ H2

pΓ,S;Rq
XrcΣs
Ñ R
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where the first arrow is the usual cup product and the second is the cap
product with a relative fundamental class rcΣs P H2pΓ,S;Rq. It descends to
the operation

H1
parpΓ,S; gq b H1

parpΓ,S; gq Ñ R

which is the same as the explicitly defined form ωΣ
K . See Lemma 8.4 of [17].

Then as in the proof of Proposition 3.7 of [14], we can show that the Poincaré
dual of the cohomology element Xfξi

|rρs P H1
parpΓ,S; gρq Ă H1pΓ; gρq is ξi b

Fjpρpξiqq P H1pΓ,S; gq. This follows from the commutativity of following
diagram, absolute version of which appears in the proof of Proposition 3.7 of
[14]:

H1pΓ; gq

ω̃K

XrcΣs

θ

H1pΓ,S; gq

η

H1pΓ,S; gq˚ H1pΓ,S; g˚q˚

Tr˚

.

For the precise definition of each map, we refer to Goldman [14]. One can
also prove that, by exactly the same argument of Theorem 4.3 of [14], the
Poincaré dual of r

B

Btji
Ts “ δpFjpρpξiqqq P H1pΓ; gq is given by ξi b Fjpρpξiqq

as well. This proves that the action is weakly Hamiltonian. To prove that
the action is Hamiltonian, we again use the fact that ξi are all disjoint which
implies that tfξi , fξju “ 0 for all i, j.

It remains to prove the properness of the action. But since μ´1pyq is closed
in HitBn pΣq, the properness follows by Lemma 4.5.5.

In particular, by virtue of Theorem 3.2.1, we can construct the Marsden-
Weinstein quotient

q : μ´1
pyq Ñ μ´1

pyq{R
mpn´1q

We denote by rωΣ
K the induced symplectic form on μ´1pyq{Rmpn´1q.

Let C be the C-frame such that μ´1pyq “ HitBn pΣ,C q. As we mentioned
above the quotient space HitBn pΣ,C q{Rmpn´1q carries the symplectic form rωΣ

K .
On the other hand, the target of Φ, HitB1

n pΣ1q ˆ ¨ ¨ ¨ ˆ HitBl
n pΣlq, also admits

a symplectic form ωΣ1
K ‘ ¨ ¨ ¨ ‘ ωΣl

K .

Theorem 4.5.7. Let Σ be a compact oriented hyperbolic surface possibly
with boundary components tζ1, ¨ ¨ ¨ , ζbu and let tξ1, ¨ ¨ ¨ , ξmu be a collection
of pairwise disjoint, non-isotopic oriented essential simple closed curves in
Σ that divide the surface into hyperbolic subsurfaces Σ1, ¨ ¨ ¨ ,Σl. Let B and
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C be a boundary frame and C-frame respectively. Then Φ in (9) induces the
natural map

Φ : HitBn pΣ,C q{R
mpn´1q

Ñ HitB1
n pΣ1q ˆ ¨ ¨ ¨ ˆ HitBl

n pΣlq

where

Bi “ tpξ, Bq | ξ is a component of BΣi and pιΣipξq, Bq P B Y C u.

Moreover Φ is a symplectic diffeomorphism onto

HitB1
n pΣ1q ˆ ¨ ¨ ¨ ˆ HitBl

n pΣlq.

Proof. Since R
mpn´1q acts as conjugation on each ΓΣi , Φ is well-defined.

We now prove that Φ is symplectic. Since

Tqrρs HitBn pΣ,C q{R
mpn´1q

– dqpH1
parpΓ,S; gρqq,

each element in Tqrρs HitBn pΣ,C q{Rmpn´1q can be written as dqprαsq for some
rαs P H1

parpΓ,S; gρq. Moreover, by Proposition 4.5.1, we have

dpΦ ˝ qqprαsq “ dΦprαsq “ ι˚Σ1rαs ‘ ¨ ¨ ¨ ‘ ι˚Σl
rαs.

Therefore, it follows that

Φ˚
pωΣ1

K ‘ ¨ ¨ ¨ ‘ ωΣl
K qpdqrαs, dqrβsq “

l
ÿ

i“1
ωΣi
K pι˚Σi

rαs, ι˚Σi
rβsq.

By Corollary 4.4.3, we have

l
ÿ

i“1
ωΣi
K pι˚Σi

rαs, ι˚Σi
rβsq “ ωΣ

Kprαs, rβsq.

Since q˚prωΣ
Kq “ ωΣ

K on Trρs HitBn pΣ,C q “ H1
parpΓ,S; gρq, and since rαs and

rβs were chosen in H1
parpΓ,S; gρq, it follows that

ωΣ
Kprαs, rβsq “ rωΣ

Kpdqrαs, dqrβsq.

Therefore, rωΣ
K “ Φ˚pωΣ1

K ‘ ¨ ¨ ¨ ‘ ωΣl
K q as we wanted.

Φ is one-to-one. Indeed by Lemmas 4.5.2 and 4.5.3, Rmpn´1q acts on each
fiber of Φ transitively and freely. Hence Φprρ1sq “ Φprρ2sq if and only if rρ1s
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and rρ2s are in the same fiber of Φ if and only if there is a unique t P R
mpn´1q

such that t ¨ rρ1s “ rρ2s. Therefore, rρ1s and rρ2s represent the same element
in HitBn pΣ,C q{Rmpn´1q.

We now show that Φ is an open embedding. Observe that
δp

Àm
i“1 H

0pΓξi ; gqq is tangent to the orbits of the R
mpn´1q-action. Therefore

we have, by Proposition 4.5.1,

Tqrρs HitBn pΣ,C q{R
mpn´1q

– dqpH1
parpΓ,S; gρqq

“ H1
parpΓ,S; gρq{δp

m
à

i“1
H0

pΓξi ; gqq

–

l
à

i“1
H1

pΓΣi ,Si; gq.

Therefore, Proposition 4.5.1 shows that Φ has the full rank and that

dim HitBn pΣ,C q{R
mpn´1q

“ dim HitB1
n pΣ1q ˆ ¨ ¨ ¨ ˆ HitBl

n pΣlq.

It follows that Φ is an open embedding.
Finally, Bonahon-Dreyer [4] tells us how to construct the inverse of Φ.

Therefore Φ is surjective.

5. Global Darboux coordinates on Hit3pΣq

In this section we prove Theorem 1.2.2.
We first review Goldman’s construction of a global parametrization on

Hit3pΣq where Σ is a closed surface and then compute ωG between some co-
ordinate vector fields. We then construct an R

8g´8-valued function and prove
that this function satisfies all the conditions of Theorem 3.4.5. Corollary 5.2.1
is essentially used in the proof.

Throughout this section, Σ denotes a closed oriented hyperbolic surface
unless otherwise stated.

5.1. Review on the Goldman coordinates

Choi-Goldman [9] show that Hit3pΣq can be seen as the deformation space
of convex projective structures on the surface Σ. It allows Goldman [15] to
construct global coordinates of Hit3pΣq based on projective geometry. Let us
briefly summarize the construction of Goldman coordinates.

Take a maximal collection of disjoint, non-isotopic essential simple closed
curves C “ tξ1, ¨ ¨ ¨ , ξ3g´3u in Σ. This collection C cuts the surface into 2g ´ 2
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pants P1, ¨ ¨ ¨ , P2g´2. As mentioned in Lemma 2.1.3, if rρs P HitnpΣq, then
each ρpξiq is in Hyp`. Therefore, by giving an orientation to each ξi, we can
associate the following invariants mi and �i to each oriented simple closed
curve ξi:

�ipρq “ log |λ1pρpξiqq|

|λ3pρpξiqq|
, mipρq “ 3 log |λ2pρpξiqq|.

Here λi denotes the ith largest eigenvalue.
Recall that there is a Hamiltonian R

6g´6-action on Hit3pΣq with moment
map μ : Hit3pΣq Ñ pR6g´6q˚ given by

rρs ÞÑ p�1pρq,m1pρq, ¨ ¨ ¨ , �3g´3pρq,m3g´3pρqq.

Note that we identify pR6g´6q˚ with R
6g´6 via the canonical inner product.

The quotient q : Hit3pΣq Ñ Hit3pΣq{R6g´6 is an affine bundle. Recall also
that Hit3pΣq is foliated by

Ť

yPL μ´1pyq. As each μ´1pyq is invariant under
the R

6g´6-action, the quotient space Hit3pΣq{R6g´6 is also foliated by sym-
plectic manifolds of the form μ´1pyq{R6g´6. We have seen that each leaf
μ´1pyq{R6g´6 can be identified with the symplectic manifold of the form
HitB

y
1

3 pP1q ˆ ¨ ¨ ¨ ˆ HitB
y
2g´2

3 pP2g´2q via the map Φy in Theorem 4.5.7 where
By

i are boundary frames corresponding to y.
Goldman [15] shows that each factor HitBi

3 pPiq is parametrized by two
coordinates ps, tq. We can therefore parametrize the quotient Hit3pΣq{R6g´6

by �i, mi coordinates together with interior coordinates si and ti defined by

si :“ log s ˝ pri ˝Φy, and ti :“ log t ˝ pri ˝Φy

where pri is the projection onto ith factor of HitB
y
1

3 pP1qˆ¨ ¨ ¨ˆHitB
y
2g´2

3 pP2g´2q.
To complete our discussion, we have to parametrize the fiber of the affine

bundle q : Hit3pΣq Ñ Hit3pΣq{R6g´6. To this end, we need to specify the
origin of the affine bundle Hit3pΣq Ñ Hit3pΣq{R6g´6. We make the following
observation first:

Lemma 5.1.1. Let prρ1s, ¨ ¨ ¨ , rρ2g´2sq P HitB
y
1

3 pP1q ˆ ¨ ¨ ¨ ˆ HitB
y
2g´2

3 pP2g´2q

be in the image of Φy. Then there is a unique rρs P μ´1pyq Ă Hit3pΣq

such that Φypqprρsqq “ prρ1s, ¨ ¨ ¨ , rρ2g´2sq and that σρ
j pξiq “ 0 for each i “

1, 2, ¨ ¨ ¨ , 3g ´ 3 and j “ 1, 2. Here σρ
j pξiq are shear invariants of ξi given in

(21) of Appendix B.

Proof. We have to show the uniqueness of rρs. Suppose that there is another
rρ1s P Hit3pΣq such that Φprρ1sq “ prρ1s, ¨ ¨ ¨ , rρ2g´2sq and that σρ1

j pξiq “ 0



1368 Suhyoung Choi et al.

for all i “ 1, 2, ¨ ¨ ¨ , 3g ´ 3 and j “ 1, 2. Then we can find a non-zero vector
t P R

6g´6 such that t ¨ rρ1s “ rρs. Due to Proposition 5.2 of Bonahon and I.
Kim [6], there is a block-diagonal matrix

A :“

¨

˚

˚

˚

˝

D1 0 ¨ ¨ ¨ 0
0 D2 ¨ ¨ ¨ 0

0 0 . . . 0
0 0 0 D3g´3

˛

‹

‹

‹

‚

, Di “

ˆ

1 ´3
1 3

˙

such that A t “ pσρ
1pξ1q, σρ

2pξ1q, ¨ ¨ ¨ , σρ
1pξ3g´3q, σρ

2pξ3g´3qqT “ 0. Since A is
non-singular, t must be the null vector which is a contradiction.

Therefore, we obtain a section s : Image Φy Ñ μ´1pyq Ă Hit3pΣq of
Φy ˝ q|μ´1pyq by assigning to each prρ1s, ¨ ¨ ¨ , rρ2g´2sq in the image of Φy, the
unique rρs P Hit3pΣq constructed in Lemma 5.1.1. Use the image of s as the
origins of the action to get the well-defined twist-bulge parameters ui, vi to
each ξi. In summary, the global coordinates of Hit3pΣq are given by

ts1, t1, ¨ ¨ ¨ , s2g´2, t2g´2, �1,m1, ¨ ¨ ¨ , �3g´3,m3g´3, u1, v1, ¨ ¨ ¨ , u3g´3, v3g´3u

where
si :“ si ˝ q, and ti :“ ti ˝ q.

We have to remark that these coordinates may not be compatible with the
symplectic form ωG.

5.2. Proof of Theorem 1.2.2

In this subsection we give a proof of Theorem 1.2.2. We start with some
lemmas aiming to apply Theorem 3.4.5 at the end.

Recall that for a function f , we denote by Xf its Hamiltonian vector field.
Recall also that

B

Bsi
“ ds B

Bsi
, and B

Bti
“ ds B

Bti

for each i “ 1, 2, ¨ ¨ ¨ , 2g ´ 2.

Corollary 5.2.1 (See also [22]). Let Σ be a closed oriented hyperbolic surface.
For any section s : Image Φ Ñ Hit3pΣq of Φ ˝ q : Hit3pΣq Ñ Image Φ and at
any point rρs P HitnpΣq, we have:

ωG

ˆ

B

Bsi
,

B

Bsj

˙

“ ωG

ˆ

B

Bsi
,

B

Btj

˙

“ ωG

ˆ

B

Bti
,

B

Btj

˙

“ 0
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whenever i ‰ j and

ωG

ˆ

B

Bsi
,

B

Bti

˙

“ ´1.

Remark 5.2.2. The first part of Corollary 5.2.1 is partially proven by H.
Kim, see Proposition 6.4 of [22]. He uses the mathematica to prove them. We
can obtain the same result and more without mathematica.

Proof. Enough to consider the case when Pi and Pj are adjacent.
Suppose that rρs P HitnpΣ,C q for some C . Then B

Bsi “ ds B
Bsi

and B
Bti “

ds B
Bti

are tangent to HitnpΣ,C q. Observe that ωΣ
K “ ωΣ

G when Σ is closed and
that pq˚

rωGq|HitnpΣ,C q “ ωG|HitnpΣ,C q. Theorem 4.5.7 yields

ωG

ˆ

ds B

Bsi
, ds B

Bsj

˙

“ rωK

ˆ

dpq ˝ sq
B

Bsi
, dpq ˝ sq

B

Bsj

˙

“ ωPi
K

ˆ

ι˚ΓPi

B

Bsi
, ι˚ΓPi

B

Bsj

˙

` ω
Pj

K

ˆ

ι˚ΓPj

B

Bsi
, ι˚ΓPj

B

Bsj

˙

.

If i ‰ j, we have ι˚ΓPj

B
Bsi

“ ι˚ΓPi

B
Bsj

“ 0 and the result follows.
Similarly,

ωG

ˆ

ds B

Bsi
, ds B

Btj

˙

“ rωK

ˆ

dpq ˝ sq
B

Bsi
, dpq ˝ sq

B

Btj

˙

“ ωPi
K

ˆ

ι˚ΓPi

B

Bsi
, ι˚ΓPi

B

Btj

˙

` ω
Pj

K

ˆ

ι˚ΓPj

B

Bsi
, ι˚ΓPj

B

Btj

˙

“ 0,

since ι˚ΓPj

B
Bsi

“ ι˚ΓPi

B
Btj

“ 0.
When i “ j, we argue in the same fashion:

ωG

ˆ

ds B

Bsi
, ds B

Bti

˙

“ rωK

ˆ

dpq ˝ sq
B

Bsi
, dpq ˝ sq

B

Bti

˙

“ ωPi
K

ˆ

B

Bsi
,

B

Bti

˙

“ ´1.

Here ωPi
K p

B
Bsi

, B
Bti

q “ ´1 is due to Theorem 5.8 of H. Kim [22].

Lemma 5.2.3. For each i “ 1, 2, ¨ ¨ ¨ , 2g ´ 2, the Hamiltonian vector field
Xsi is of the form

Xsi “
B

Bti
`

3g´3
ÿ

j“1

ˆ

aj
B

Buj
` bj

B

Bvj

˙



1370 Suhyoung Choi et al.

for some smooth functions aj and bj.

Proof. The most generic form of the Hamiltonian vector field Xsi of si is

Xsi “

2g´2
ÿ

j“1
asj

B

Bsj
`

2g´2
ÿ

j“1
atj

B

Btj
`

3g´3
ÿ

j“1
auj

B

Buj
`

3g´3
ÿ

j“1
avj

B

Bvj

`

3g´3
ÿ

j“1
a�j

B

B�j
`

3g´3
ÿ

j“1
amj

B

Bmj
.

If we compute ωGpXsi ,X�kq, we get

ωGpXsi ,X�kq “ dsi
ˆ

B

Buk

˙

“
Bsi
Buk

“ 0.

On the other hand,

´ωGpXsi ,X�kq “

2g´2
ÿ

j“1
asj

B�k
Bsj

`

2g´2
ÿ

j“1
atj

B�k
Btj

`

3g´3
ÿ

j“1
auj

B�k
Buj

`

3g´3
ÿ

j“1
avj

B�k
Bvj

`

3g´3
ÿ

j“1
a�j

B�k
B�j

`

3g´3
ÿ

j“1
amj

B�k
Bmj

“ a�k .

It follows that Xsi does not have B
B�k

components, k “ 1, 2, ¨ ¨ ¨ , 3g ´ 3. Sim-
ilarly, since ´ωGpXsi ,Xmk

q “ 0 “ amk
, we can conclude that Xsi does not

contain B

Bmk
, k “ 1, 2, ¨ ¨ ¨ , 3g ´ 3 factors either. Thus,

Xsi “

2g´2
ÿ

j“1
asj

B

Bsj
`

2g´2
ÿ

j“1
atj

B

Btj
`

3g´3
ÿ

j“1
auj

B

Buj
`

3g´3
ÿ

j“1
avj

B

Bvj
.

We showed in Corollary 5.2.1 that

ωG

ˆ

B

Bsj
,

B

Bsk

˙

“ 0, and ωG

ˆ

B

Bsj
,

B

Btk

˙

“

#

´1 if j “ k

0 if j ‰ k
.

Recall also that X�i “
B

Bui
, and Xmi “

B
Bvi

. Hence for any j and k,

ωG

ˆ

B

Buj
,

B

Bsk

˙

“ ωG

ˆ

B

Bvj
,

B

Bsk

˙

“ ωG

ˆ

B

Buj
,

B

Btk

˙

“ ωG

ˆ

B

Bvj
,

B

Btk

˙

“ 0.
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Combining these two results, we get

1 “ ωG

ˆ

Xsi ,
B

Bsi

˙

“ atiωG

ˆ

B

Bti
,

B

Bsi

˙

“ ati

and, whenever k is not equal to i,

0 “ ωG

ˆ

Xsi ,
B

Bsk

˙

“ atkωG

ˆ

B

Btk
,

B

Bsk

˙

“ atk .

Thus it follows that

atk “

#

1 if k “ i

0 if k ‰ i
.

In particular Xsi does not have B
Btk components for all k different from i.

Finally by computing

0 “
Bsi
Btk

“ ωG

ˆ

Xsi ,
B

Btk

˙

“ ask

we can show that Xsi does not have B
Bsk components for all k.

Lemma 5.2.4. Each vector field Xsi , i “ 1, 2, ¨ ¨ ¨ , 2g ´ 2, is complete.

Proof. From Lemma 5.2.3, Xsi is of the form

Xsi “
B

Bti
`

ÿ

j

ˆ

aj
B

Buj
` bj

B

Bvj

˙

We investigate the coefficient functions ai, bi. Observe that

ωG

ˆ

Xsi ,
B

B�j

˙

“
Bsi
B�j

“ 0.

On the other hand

ωG

ˆ

Xsi ,
B

B�j

˙

“ ωG

ˆ

B

Bti
,

B

B�j

˙

` aj .

Therefore

aj “ ´ωG

ˆ

B

Bti
,

B

B�j

˙

.
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Similarly,

ωG

ˆ

Xsi ,
B

Bmj

˙

“
Bsi

Bmj
“ ωG

ˆ

B

Bti
,

B

Bmj

˙

` bj “ 0

shows that

bj “ ´ωG

ˆ

B

Bti
,

B

Bmj

˙

.

Since X�k “
B

Buk
is a Hamiltonian vector field as well as a coordinate vector

field, we have

0 “ pLX�k
ωGq

ˆ

B

Bti
,

B

B�j

˙

“ X�kωG

ˆ

B

Bti
,

B

B�j

˙

“ ´
Baj
Buk

which yields that functions a1, ¨ ¨ ¨ , a3g´3 do not depend on u1, ¨ ¨ ¨ , u3g´3.
Same argument using Xmk

instead of X�k shows that a1, ¨ ¨ ¨ , a3g´3 do not
depend on the v1, ¨ ¨ ¨ , v3g´3 variables either. Similarly, b1, ¨ ¨ ¨ , b3g´3 are func-
tions depending only on si, ti, �i and mi.

The equation 9xptq “ Xsipxptqq for an integral curve reads

dsjptq
dt “ 0, j “ 1, 2, ¨ ¨ ¨ , 2g ´ 2(12)

dtjptq
dt “ 0, j “ 1, 2, ¨ ¨ ¨ , 2g ´ 2, j ‰ i(13)

dtiptq
dt “ 1(14)

d�jptq
dt “ 0, j “ 1, 2, ¨ ¨ ¨ , 3g ´ 3(15)

dmjptq

dt “ 0, j “ 1, 2, ¨ ¨ ¨ , 3g ´ 3(16)

dujptq
dt “ aj , j “ 1, 2, ¨ ¨ ¨ , 3g ´ 3(17)

dvjptq
dt “ bj , j “ 1, 2, ¨ ¨ ¨ , 3g ´ 3.(18)

A solution for equations (12)-(16) is

(19)

$

’

’

’

’

&

’

’

’

’

%

ti “ t ` const.
tj “ const. j “ 1, 2, ¨ ¨ ¨ , 2g ´ 2, j ‰ i

sj “ const. j “ 1, 2, ¨ ¨ ¨ , 2g ´ 2
�j ,mj “ const. j “ 1, 2, ¨ ¨ ¨ , 3g ´ 3

.
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Having the fact that aj and bj are functions of si, ti, �i,mi in mind, plug the
solution (19) into aj and bj . Then aj and bj become purely smooth functions
of the time t. It means that the equations (17), (18) have a solution for all t.
Therefore the vector field Xsi for each i “ 1, 2, ¨ ¨ ¨ , 2g ´ 2 is complete.

We define a function F : Hit3pΣq Ñ R
8g´8 to be

F prρsq “ ps1pρq, ¨ ¨ ¨ , s2g´2pρq, �1pρq, ¨ ¨ ¨ , �3g´3pρq,m1pρq, ¨ ¨ ¨ ,m3g´3pρqq.

Lemma 5.2.5. For each x P ImageF Ă R
8g´8, the fiber F´1pxq is a simply

connected Lagrangian submanifold.

Proof. Tangent space at each point of F´1pxq is spanned by vectors

Xs1 , ¨ ¨ ¨ ,Xs2g´2 ,X�1 , ¨ ¨ ¨ ,X�3g´3 , and Xm1 , ¨ ¨ ¨ ,Xm3g´3 .

By Corollary 5.2.1 and Lemma 5.2.3, F´1pxq is a Lagrangian submanifold.
By Lemma 5.2.4, Xs1 , ¨ ¨ ¨ ,Xs2g´2 , X�1 ,Xm1 , ¨ ¨ ¨ ,X�3g´3 ,Xm3g´3 are com-

muting complete vector fields tangent to each fiber F´1pxq. Thus, the Hamil-
tonian flows of s1, ¨ ¨ ¨ , s2g´2, �1,m1, ¨ ¨ ¨ , �3g´3,m3g´3 induce an R

8g´8-action
on F´1pxq. By Lemma 5.2.3, this action is free and transitive on each fiber
F´1pxq. Therefore, each fiber is diffeomorphic to R

8g´8 which is simply con-
nected.

Lemma 5.2.6. F is a fiber bundle over its image.

Proof. We have to show that the R
8g´8-action on Hit3pΣq defined in the

proof of Lemma 5.2.5 is proper. We already shown that the actions induced
by Hamiltonian vector fields X�i and Xmi are proper (Lemma 4.5.5). Therefore
it is sufficient to prove that Xsi induces the proper R-action for each i. To
see this, we prove the following claim analogues to the claim in the proof of
Lemma 4.5.5. We have to prove this again because the section constructed in
the Lemma 4.5.5 is not equivariant with respect to the action induced by Xsi .

Claim. There is a section s : Hit3pΣq Ñ HpΓq of the projection p : ρ ÞÑ rρs

which is equivariant with respect to the R
8g´8-action.

Proof. Fρ : BrΣ Ñ RP 2 be the equivariant hyperconvex Frenet curve for
ρ P HpΓq. As before, we fix the base vertex Σ1 of D. Σ1 can be decomposed
into two ideal triangles T` and T´ as in section 4.2 of [15]. In the universal
cover, we fix a lift ĂT` of T` and ĂT´ of T´ such that ĂT` and ĂT´ are adjacent.
Let a, b, c be three ideal vertices of ĂT` and let d be the remaining ideal vertex
of ĂT´. Then there is a unique ρ P HpΓq such that Fρpaq “ r1 : 0 : 0s,
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Fρpbq “ r0 : 1 : 0s, Fρpcq “ r0 : 0 : 1s and Fρpdq “ r2 : 2 : ´1s. We
set sprρsq to be such a unique ρ. Then by construction of Goldman’s psi, tiq
coordinates, we have pt ¨ ρq|ΓΣ1

“ ρ|ΓΣ1
for any t P R

8g´8. This yields that
Ft¨ρpaq “ r1 : 0 : 0s, Ft¨ρpbq “ r0 : 1 : 0s, Ft¨ρpcq “ r0 : 0 : 1s, and
Ft¨ρpdq “ r2 : 2 : ´1s. Hence we conclude that spt ¨ rρsq “ t ¨ spρq.

Since Σ1 is a three holed sphere, we have a presentation

ΓΣ1 “ xC1, C2, C3 |C1C2C3 “ 1y.

H. Kim [22] computes sprρsqpCiq in terms of s1, t1 coordinates. Now by
Lemma 5.2.3, it is enough to show that if t1 Ñ ˘8, then the corresponding
sprρsq is unbounded. When t1 tends `8, we see that the p1, 2q component of
sprρsqpC1q

e
1
12p´3�C1`3�C2`3�C3´2mC1`2mC2`2mC3q´s1`t1

diverges. Then t1 tends to ´8, p2, 1q component of sprρsqpC1q

e´
mC3

3 ´t1p´e
1
12p3�C1´3�C2`3�C3`2mC1´2mC2`6mC3`12s1q

´ e
1
12p´3�C1`3�C2`3�C3´2mC1`2mC2`6mC3´12s1q ´ e

�C3
2 ´ emC3 q

diverges. Therefore, the R
8g´8-action is proper on HpΓq. To show that the

R
8g´8-action on Hit3pΣq is proper, we lift a compact subset C of Hit3pΣq to

a compact set spCq and argue as in Lemma 4.5.5.

Now we can prove Theorem 1.2.2. Let B be the image of the function
F : Hit3pΣq Ñ R

8g´8. According to section 1.8 of Goldman [15], B is diffeo-
morphic to R

2g´2 ˆ R and

R “ tp�1, ¨ ¨ ¨ , �3g´3,m1, ¨ ¨ ¨ ,m3g´3q P R
3g´3
` ˆ R

3g´3
| |mi| ă �iu

where R` “ tx P R |x ą 0u. In particular, B is contractible. In addition to
this, due to Lemma 5.2.4, Lemma 5.2.5 and Lemma 5.2.6, we observe that
F : Hit3pΣq Ñ R

8g´8 satisfies the conditions of Theorem 3.4.5. Therefore the
result follows from Theorem 3.4.5.

Appendix A. More details on group cohomology

This appendix is devoted to prove Propositions 4.2.1 and 2.3.1.
Let us recall our settings. Σ is a compact hyperbolic surface with boundary

ζ1, ¨ ¨ ¨ , ζb. We choose a collection of pairwise disjoint, non-isotopic essential
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simple closed curves ξ1, ¨ ¨ ¨ , ξm that separate Σ into subsurfaces Σ1, ¨ ¨ ¨ ,Σl

each of which is hyperbolic. We use the notation in section 4.1 and section 4.2.
We denote by ΓΣi the conjugacy class of the subgroup π1pΣiq in π1pΣq and by
Γ`
ξi

the conjugacy class of π1pξiq in π1pΣq. Let S“tΓ`
ξ1
, ¨ ¨ ¨ ,Γ`

ξm
, xζ1y, ¨ ¨ ¨ ,xζbyu

and Si “ txζy | ζ is a component of BΣiu, i “ 1, 2, ¨ ¨ ¨ , l. Then pΓΣi ,Siq are
group subsystem of pΓ,Sq.

We give a CW-structure on Σ as follows:

• Choose points p1, ¨ ¨ ¨ , pl on the interior of each Σ1, ¨ ¨ ¨ ,Σl, q1, ¨ ¨ ¨ , qm
on ξ1, ¨ ¨ ¨ , ξm and qm`1, ¨ ¨ ¨ , qm`b on ζ1, ¨ ¨ ¨ , ζb. They are 0-cells

• Each ξi and ζi is adjacent to at most two Σj . If ξi is adjacent to say Σ1
and Σ2, we connect qi to each p1 and p2 by path η1,i and η2,i in Σ1 and
Σ2 respectively. Do the same thing for each ζi. On each Σi, we choose
simple closed curves xi,1, yi,1, ¨ ¨ ¨ , xi,gi , yi,gi based at pi in such a way
that they are not intersecting and ΣizpBΣi Y

Ť

j ηi,j Y
Ť

jpxi,j Y yi,jqq is
a disk. xi,j , yi,j , ηi,j , ξi, ζi are 1-cells

• 2-cells are disks corresponding to each Σi.

We can check that this CW-structure has the following properties:

• The natural inclusions Σi Ñ Σ, ξi Ñ Σ and ζi Ñ Σ are cellular.
• Let p : rΣ Ñ Σ be the universal cover. CW-structure of Σ lifts to a CW-

structure of rΣ. We observe that the natural inclusions p´1pΣiq Ñ rΣ are
also cellular.

•
Ťm

i“1 p
´1pξiq decomposes rΣ into contractible regions. Each component

corresponds to the universal cover of Σi for some i.

Denote by C˚prΣq the cellular chain complex over R for rΣ associated to
this CW-structure. We know that Γ acts on each Cip

rΣq as covering trans-
formations so that Cip

rΣq becomes a RΓ-module. In fact, Cip
rΣq is a free RΓ-

module. Since rΣ is contractible, the cellular chain complex C˚prΣq is exact.
The augmented complex C˚prΣq Ñ R is therefore a free resolution over Γ.

As we did previously, ΓΣi action on ĂΣi turns C˚pĂΣiq into a complex of
RΓΣi-modules. Since ĂΣi is also contractible, C˚pĂΣiq Ñ R is a free resolution
over ΓΣi . Moreover, we see that RΓbC˚pĂΣiq – C˚pp´1pΣiqq. Since ĂΣi is again
a subcomplex of rΣ, the natural inclusion induces a chain map (as RΓ-modules)
C˚pp´1pΣiqq Ñ C˚prΣq. Therefore, we get the natural surjective chain map

l
à

i“1
C˚pp´1

pΣiqq Ñ C˚prΣq Ñ 0.
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We do the same thing for Γξi . If ξi connects opξiq “ Σa and tpξiq “

Σb, we have a natural chain map from C˚pp´1pξiqq to C˚pp´1pΣaqq and to
C˚pp´1pΣbqq both are induced by the inclusion. Then

pι#,´ι#q : C˚pp´1
pξiqq Ñ C˚pp´1

pΣaqq ‘ C˚pp´1
pΣbqq

is also injective chain map. So we have the exact sequence of chain maps

0 Ñ

m
à

i“1
C˚pp´1

pξiqq Ñ

l
à

i“1
C˚pp´1

pΣiqq.

Two maps fit into the exact sequence of complexes

0 Ñ

m
à

i“1
C˚pp´1

pξiqq Ñ

l
à

i“1
C˚pp´1

pΣiqq Ñ C˚prΣq Ñ 0

of RΓ-modules. We apply HomΓp´, gρq functor to compute the group co-
homology where g is a RΓ-module via the Ad ρ action. Let C˚pΓ; gq “

HomΓpC˚prΣq, gq.
The natural map HomΓpC˚pp´1pΣiqq, gq Ñ HomΓΣi

pC˚pĂΣiq, gq that sends
f to a homomorphism a ÞÑ fp1 b aq is an isomorphism of chain complexes
of R-vector spaces. Therefore the middle chain computes

Àl
i“1 H

qpΓΣi , gq.
Similarly, HomΓpC˚pp´1pξiqq, gq – HomΓξi

pC˚prξiq, gq computes HqpΓξi , gq.
This proves that the following sequence

(20) 0 Ñ

m
à

i“1
H0

pΓξi ; gq
δ

Ñ H1
pΓ; gq Ñ

l
à

i“1
H1

pΓΣi ; gq Ñ

m
à

i“1
H1

pΓξi ; gq Ñ 0

is exact.
To prove Theorem 4.2.1, we have to characterize the parabolic cohomology

in terms of cocycles. We state this as the following lemma.

Lemma A.0.1. Let

Z1
parpΓ,S; gq

“ tf P Z1
pΓ; gq | fpξq “ 0 for all ξ P

m
à

i“1
C1pp´1

pξiqq ‘

b
à

i“1
C1pp´1

pζiqqu.
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Then

H1
parpΓ,S; gq “

Z1
parpΓ,S; gq

B1pΓ; gq X Z1
parpΓ,S; gq

.

Proof. We see that pC˚prΣq,
Àm

i“1 C˚prξiq ‘ C˚prζiqq is an auxiliary resolution
over the group system pΓ,Sq. Now the lemma follows from the definition of
parabolic cohomology.

It follows that the map

l
à

i“1
H1

parpΓΣi ,Si; gq Ñ

m
à

i“1
H1

pΓξi ; gq

in (20) is trivial.
Suppose that an element prα1s, ¨ ¨ ¨ , rαlsq in

À

Z1
parpΓΣi ,Si; gq is given.

For each rαis, we define a parabolic cocycle αi P Z1
parpΓ,S; gq by

αipxq “

#

αipxq x P C1pp´1pΣiqq

0 otherwise
.

Then rα1s ` ¨ ¨ ¨ ` rαls is an element of H1
parpΓ,S; gq which maps to

prα1s, ¨ ¨ ¨ , rαlsq. Thus

H1
parpΓ,S; gq Ñ

l
à

i“1
H1

parpΓΣi ,Si; gq

is surjective.
Finally the exactness at H1

parpΓ,S; gq and
À

H0pΓξi ; gq follow from the
exactness of (20) and the fact that the parabolic cohomology group is a sub-
group of the ordinary cohomology.

Proposition A.0.2. Let rρs P XB
n pΓ,C q. We have

TrρsX
B
n pΓ,C q – H1

parpΓ,S; gρq.

Proof. We use the discrete connection model to describe the space of repre-
sentations. Namely, we see the 1-skeleton Σp1q of Σ as an oriented graph and
consider a discrete flat connection over the graph, which is the rule that as-
signs to each oriented edge an element of G in such a way that the holonomy
around each 2-cell is trivial.
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To be more precise, write the boundary frame as B “ tpζ1, B1q, ¨ ¨ ¨ ,

pζb, Bbqu and the C-frame as C “ tpξ1, C1q, ¨ ¨ ¨ , pξm, Cmqu. We define

C “ tρ P GEpΣp1qq
| ρpξiq, ¨ ¨ ¨ , ρpξmq, ρpζ1q, ¨ ¨ ¨ , ρpζbq

are fixed elements in G so that ρpξiq P Ci, ρpζiq P Biu.

The gauge group G is the subset of GΣp0q given by

tg P GΣp0q
| gqi P ZGpρpξiqq, and gqm`j P ZGpρpζjqqu.

We have the gauge action A : G ˆ C Ñ C which is given by

Apg, ρqpγq “ gγ`ρpγqg´1
γ´

where γ´ and γ` denote the initial and terminal vertex of the edge γ respec-
tively. See Labourie [24] for more details.

In this setting XB
n pΓ,C q is an open subset of C X R´1peq modulo the

gauge group action where R : GEpΣp1qq Ñ Gl is the holonomy around each
2-cell.

Let

C0
parpΓ,S; gq “ tf P C0

pΓ; gq | δf P Z1
parpΓ,S; gqu,

C1
parpΓ,S; gq “ tf P C1

pΓ; gq | fpξq “ 0

for all ξ P

m
à

i“1
C1pp´1

pξiqq ‘

b
à

i“1
C1pp´1

pζiqqu, and

C2
parpΓ, S; gq “ C2

pΓ; gq.

We have the following commutative diagram

C0
parpΓ,S; gq

d
C1

parpΓ,S; gq
d

C2
parpΓ,S; gq

TeG dA

“

TρC dR

Rρ´1

TeG
l

“

where Rρ´1 is induced from the right translation by ρ´1 and dA denotes the
map that sends a tangent vector to its fundamental vector field. It is then
clear from Lemma A.0.1, that the tangent space is H1

parpΓ,S; gq.
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Lemma A.0.3. Let

cΣ “

g
ÿ

i“1

ˆ �
BR

Bxi

ˇ

ˇ

ˇ

ˇ

xi

�
`

�
BR

Byi

ˇ

ˇ

ˇ

ˇ

yi

� ˙

`

b
ÿ

j“1

�
BR

Bzj

ˇ

ˇ

ˇ

ˇ

zj

�

be a (absolute) 2-chain in F2pΓq b Z. Let pR˚, A
i
˚q be an auxiliary resolution

over the group system pΓ,Sq constructed in the proof of Lemma A.0.1. Choose
a chain equivalence F˚pΓq b Z Ñ R˚ b Z. Then the image of cΣ under the
map

F2pΓq b Z Ñ R2 b Z Ñ pR2{A2q b Z

represents a generator of H2pΓ,S;Zq – Z.

Proof. Let xγ P Γzt1u | γ1 ¨ γ2 “ γ1γ2y be a ‘tautological’ presentation for Γ
and let X0 be a presentation complex for this presentation. Let X be a KpΓ, 1q

space obtained by attaching appropriate cells to X0. Observe that the cellular
chain complex of rX corresponds to the normalized bar resolution F˚pΓq over
Γ. The chain equivalence F˚pΓq b Z Ñ R˚ b Z is given by the homotopy
equivalence between KpΓ, 1q spaces X and Σ. This chain equivalence sends
cΣ to the sum of all 2-cells of Σ. Certainly its image in pR2{A2qbZ represents
the generator of H2pΓ,S;Zq.

Appendix B. Review on the Bonahon-Dreyer coordinates

In this appendix, we review Bonahon-Dreyer’s parametrization of HitnpΣq.
Complete discussion on this coordinates can be found in their original paper
[4]. See also [6] for the relationship between coordinates of Bonahon-Dreyer
and that of Goldman.

For the remaining of this appendix, we assume that Σ is a closed oriented
surface of genus g ą 1. We identify the universal cover rΣ of Σ with the
Poincaré disk H

2 with the ideal boundary B8
rΣ homeomorphic to the circle.

To parametrize HitnpΣq, we have to fix some topological data

• We equip Σ with an auxiliary hyperbolic metric and take a maximal
geodesic lamination Λ on Σ.

• We give an arbitrary orientation on each leaf.
• To each closed leaf, we choose a “short” transverse arc intersecting the

leaf exactly once.

Observe that since Λ is maximal, ΣzΛ consists of 4g ´ 4 triangles T1, T2 ¨ ¨ ¨ ,
T4g´4.
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The starting point of this parametrization is the following characterization
theorem due to Labourie.

Theorem B.0.1 (Labourie [23]). A representation ρ : π1pΣq Ñ PSLnpRq is
Hitchin if and only if there is a ρ-equivariant flag curve Fρ : B8

rΣ Ñ FlagpRnq

such that F p1q
ρ : B8

rΣ Ñ PR
n is hyperconvex and Frenet.

Therefore if ρ P HitnpΣq is given, each point of B8
rΣ is decorated by a flag.

We define three types of invariants associated to each ideal triangle, bi-infinite
leaf and closed leaf.

v1

v3 v2

rT�

Figure 3: The local configuration of rT�.

For each ideal triangle T�, we consider its lift rT� in the universal cover.
Let v1, v2, v3 be ideal vertices of rT� in clockwise cyclic order as in Figure 3.
Then by Fock-Goncharov [11], Fρpv1q “: A, Fρpv2q “: B, and Fρpv3q “: C is
a positive triple in the sense that the following triangle invariants

τρi,j,kpT�, v1q :“ log Ti,j,kpA,B,Cq,

τρi,j,kpT�, v2q :“ log Ti,j,kpB,C,Aq, and
τρi,j,kpT�, v3q :“ log Ti,j,kpC,A,Bq

for each i, j, k ą 0 with i ` j ` k “ n are well-defined. Here,

Ti,j,kpA,B,Cq :“ Api`1q ^ Bpjq ^ Cpk´1q

Api´1q ^ Bpjq ^ Cpk`1q
ˆ

Apiq ^ Bpj´1q ^ Cpk`1q

Apiq ^ Bpj`1q ^ Cpk´1q
ˆ

Api´1q ^ Bpj`1q ^ Cpkq

Api`1q ^ Bpj´1q ^ Cpkq
.

These invariants τρi,j,kpT�, v1q, τρi,j,kpT�, v2q, and τρi,j,kpT�, v3q are subject to the
following rotation condition

τρi,j,kpT�, v1q “ τρj,k,ipT�, v2q “ τρk,i,jpT�, v3q.
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v`

v´

vRrγ�vL rTL
rTR

Figure 4: The local configuration near rγ�.

Consider an infinite leaf γ� and its lift rγ�. There are two ideal triangles
rTL and rTR sharing the edge rγ�. In the universal cover, it looks like Figure 4.
Again, by Fock-Goncharov [11], Fρpv`q “: E, Fρpv´q “: F , FρpvRq “: Y
and FρpvLq “: X is a positive quadruple in the sense that the following shear
invariants of the infinite leaf γ�

σρ
i pγ�q :“ logDipE,F,X, Y q, i “ 1, 2, ¨ ¨ ¨ , n ´ 1

are well-defined where

DipE,F,X, Y q :“ ´
Epiq ^ F pn´1´iq ^ Xp1q

Epiq ^ F pn´1´iq ^ Y p1q
ˆ

Epi´1q ^ F pn´iq ^ Y p1q

Epi´1q ^ F pn´iq ^ Xp1q
.

vL vR

v`

v´

rc�

vL

vR

v`

v´

rc�

Figure 5: The local configuration near rc�. Note that there are two possibilities.

Lastly we consider a closed leaf c�. For each c� there are infinite leaves
that spiral to it. In the universal cover, we have configurations as in Figure 5.
We use small transverse arc, which is one of our topological data, to choose
two ideal triangles ĂTL and ĂTR on each side of rc�. Let vL be the ideal vertex
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of ĂTL which is farthest from rc�. We choose vR in the same fashion. Then
Fρpv`q “: E, Fρpv´q “: F , FρpvRq “: Y and FρpvLq “: X is again positive
quadruple of flags which allows us to compute the following shear invariants
of the closed leaf c�:

(21) σρ
i pc�q :“ logDipE,F,X, Y q

for i “ 1, 2, ¨ ¨ ¨ , n ´ 1.
These three types of parameters defined above are not free and must sat-

isfy certain relations so called closed leaf equalities, closed leaf inequalities and
rotation conditions. Bonahon and Dreyer argue that they the only relations
among the parameters defined above.

Theorem B.0.2 (Bonahon-Dreyer [4]). The rule B that assigns to each rρs P

HitnpΣq the invariants τρi,j,kpT�, vqq, σρ
i pγ�q, and σρ

i pc�q is an analytic injective
map from HitnpΣq onto the interior of a convex polytope defined by a collection
of linear equations and inequalities.

Remark B.0.3. Suppose that Σ is a hyperbolic surface with boundary. We
apply the above technique to the Hitchin double pρ of ρ P HitnpΣq. This allows
us to construct the Bonahon-Dreyer coordinates for the Hitchin component
HitnpΣq of the compact hyperbolic surface Σ.

Acknowledgements

Discussions with Francis Bonahon, William Goldman, Michael Kapovich,
Inkang Kim, Ana Cannas da Silva, and Tengren Zhang were very helpful
for us to complete our paper. Sun Zhe and Johannes Huebschmann kindly
explained their work and gave many constructive comments. We specially
appreciate their help. The second author would like to give special thanks
to Francis Bonahon, Daniel Douglas and Hatice Zeybek for their hospitality
and helpful conversations during the visit to USC. Finally the first and sec-
ond author visited Stanford University for the GEAR retreat in 2017 and the
University of California, Davis in 2015, where we made large progression on
this paper.

References

[1] Atiyah, M. F., Bott, R. (1983). The Yang-Mills equations over
Riemann surfaces. Philos. Trans. Roy. Soc. London Ser. A 308 523–
615. MR0702806

http://www.ams.org/mathscinet-getitem?mr=0702806


Symplectic coordinates on PSL3pRq-Hitchin components 1383

[2] Audin, M. (1997). Lectures on gauge theory and integrable systems.
In Gauge theory and symplectic geometry (Montreal, PQ, 1995). NATO
Adv. Sci. Inst. Ser. C Math. Phys. Sci. 488 1–48. Kluwer Acad. Publ.,
Dordrecht. MR1461568

[3] Bieri, R., Eckmann, B. (1978). Relative homology and Poincaré du-
ality for group pairs. J. Pure Appl. Algebra 13 277–319. MR0509165

[4] Bonahon, F., Dreyer, G. (2014). Parameterizing Hitchin compo-
nents. Duke Math. J. 163 2935–2975. MR3285861

[5] Bonahon, F., Dreyer, G. (2017). Hitchin characters and geodesic
laminations. Acta Math. 218 201–295. MR3733100

[6] Bonahon, F., Kim, I. (2018). The Goldman and Fock-Goncharov co-
ordinates for convex projective structures on surfaces. Geom. Dedicata
192 43–55. MR3749422

[7] Cannas da Silva, A. (2001). Lectures on symplectic geometry. Lecture
Notes in Mathematics 1764. Springer-Verlag, Berlin. MR1853077

[8] Casella, A., Tate, D., Tillmann, S. (2018). Moduli spaces of real
projective structures on surfaces: Notes on a paper by V.V. Fock and
A.B. Goncharov. arXiv preprint arXiv:1801.03913.

[9] Choi, S., Goldman, W. M. (1993). Convex real projective struc-
tures on closed surfaces are closed. Proc. Amer. Math. Soc. 118 657–
661. MR1145415

[10] Duistermaat, J. J. (1980). On global action-angle coordinates. Comm.
Pure Appl. Math. 33 687–706. MR0596430

[11] Fock, V., Goncharov, A. (2006). Moduli spaces of local systems and
higher Teichmüller theory. Publ. Math. Inst. Hautes Études Sci. 103
1–211. MR2233852

[12] Fox, R. H. (1953). Free differential calculus. I. Derivation in the free
group ring. Ann. of Math. (2) 57 547–560. MR0053938

[13] Goldman, W. M. (1984). The symplectic nature of fundamental groups
of surfaces. Adv. in Math. 54 200–225. MR0762512

[14] Goldman, W. M. (1986). Invariant functions on Lie groups and Hamil-
tonian flows of surface group representations. Invent. Math. 85 263–
302. MR0846929

[15] Goldman, W. M. (1990). Convex real projective structures on compact
surfaces. J. Differential Geom. 31 791–845. MR1053346

http://www.ams.org/mathscinet-getitem?mr=1461568
http://www.ams.org/mathscinet-getitem?mr=0509165
http://www.ams.org/mathscinet-getitem?mr=3285861
http://www.ams.org/mathscinet-getitem?mr=3733100
http://www.ams.org/mathscinet-getitem?mr=3749422
http://www.ams.org/mathscinet-getitem?mr=1853077
http://arxiv.org/abs/arXiv:1801.03913
http://www.ams.org/mathscinet-getitem?mr=1145415
http://www.ams.org/mathscinet-getitem?mr=0596430
http://www.ams.org/mathscinet-getitem?mr=2233852
http://www.ams.org/mathscinet-getitem?mr=0053938
http://www.ams.org/mathscinet-getitem?mr=0762512
http://www.ams.org/mathscinet-getitem?mr=0846929
http://www.ams.org/mathscinet-getitem?mr=1053346


1384 Suhyoung Choi et al.

[16] Guichard, O., Wienhard, A. (2012). Anosov representations: do-
mains of discontinuity and applications. Invent. Math. 190 357–
438. MR2981818

[17] Guruprasad, K., Huebschmann, J., Jeffrey, L., Weinstein, A.

(1997). Group systems, groupoids, and moduli spaces of parabolic bun-
dles. Duke Math. J. 89 377–412. MR1460627

[18] Hitchin, N. J. (1992). Lie groups and Teichmüller space. Topology 31
449–473. MR1174252

[19] Huebschmann, J. (1995). Symplectic and Poisson structures of certain
moduli spaces. I. Duke Math. J. 80 737–756. MR1370113

[20] Johnson, D., Millson, J. J. (1987). Deformation spaces associated
to compact hyperbolic manifolds. In Discrete groups in geometry and
analysis (New Haven, Conn., 1984). Progr. Math. 67 48–106. Birkhäuser
Boston, Boston, MA. MR0900823

[21] Karshon, Y. (1992). An algebraic proof for the symplectic structure of
moduli space. Proc. Amer. Math. Soc. 116 591–605. MR1112494

[22] Kim, H. C. (1999). The symplectic global coordinates on the mod-
uli space of real projective structures. J. Differential Geom. 53 359–
401. MR1802726

[23] Labourie, F. (2006). Anosov flows, surface groups and curves in pro-
jective space. Invent. Math. 165 51–114. MR2221137

[24] Labourie, F. (2013). Lectures on representations of surface groups.
Zurich Lectures in Advanced Mathematics. European Mathematical So-
ciety (EMS), Zürich. MR3155540

[25] Labourie, F., McShane, G. (2009). Cross ratios and identities
for higher Teichmüller-Thurston theory. Duke Math. J. 149 279–
345. MR2541705

[26] Marsden, J. E., Misiołek, G., Ortega, J.-P., Perlmutter, M.,
Ratiu, T. S. (2007). Hamiltonian reduction by stages. Lecture Notes in
Mathematics 1913. Springer, Berlin. MR2337886

[27] McDuff, D., Salamon, D. (2017). Introduction to symplectic topol-
ogy, third ed. Oxford Graduate Texts in Mathematics. Oxford University
Press, Oxford. MR3674984

[28] Serre, J.-P. (1980). Trees. Springer-Verlag, Berlin-New York Trans-
lated from the French by John Stillwell. MR0607504

http://www.ams.org/mathscinet-getitem?mr=2981818
http://www.ams.org/mathscinet-getitem?mr=1460627
http://www.ams.org/mathscinet-getitem?mr=1174252
http://www.ams.org/mathscinet-getitem?mr=1370113
http://www.ams.org/mathscinet-getitem?mr=0900823
http://www.ams.org/mathscinet-getitem?mr=1112494
http://www.ams.org/mathscinet-getitem?mr=1802726
http://www.ams.org/mathscinet-getitem?mr=2221137
http://www.ams.org/mathscinet-getitem?mr=3155540
http://www.ams.org/mathscinet-getitem?mr=2541705
http://www.ams.org/mathscinet-getitem?mr=2337886
http://www.ams.org/mathscinet-getitem?mr=3674984
http://www.ams.org/mathscinet-getitem?mr=0607504


Symplectic coordinates on PSL3pRq-Hitchin components 1385

[29] Sikora, A. S. (2012). Character varieties. Trans. Amer. Math. Soc. 364
5173–5208. MR2931326

[30] Sun, Z., Wienhard, A., Zhang, T. (2017). Flows on the PSLpV q-
Hitchin component. arXiv preprint arXiv:1709.03580.

[31] Sun, Z., Zhang, T. (2017). The Goldman symplectic form on the
PSLpV q-Hitchin component. arXiv preprint arXiv:1709.03589.

[32] Trotter, H. F. (1962). Homology of group systems with applications
to knot theory. Ann. of Math. (2) 76 464–498. MR0143201

[33] Weibel, C. A. (1994). An introduction to homological algebra. Cam-
bridge Studies in Advanced Mathematics 38. Cambridge University Press
Cambridge. MR1269324

[34] Weil, A. (1964). Remarks on the cohomology of groups. Ann. of Math.
(2) 80 149–157. MR0169956

[35] Wolpert, S. (1985). On the Weil-Petersson geometry of the moduli
space of curves. Amer. J. Math. 107 969–997. MR0796909

[36] Zhang, T. (2015). Degeneration of Hitchin representations along inter-
nal sequences. Geom. Funct. Anal. 25 1588–1645. MR3426063

[37] Zocca, V. (1998). Fox calculus, symplectic forms, and moduli spaces.
Trans. Amer. Math. Soc. 350 1429–1466. MR1443899

Suhyoung Choi
Department of Mathematical Sciences
KAIST
Daejeon
Korea
E-mail: schoi@math.kaist.ac.kr

Hongtaek Jung
Center for Geometry and Physics
Institute for Basic Science
Pohang
Korea
E-mail: htjung@ibs.re.kr

http://www.ams.org/mathscinet-getitem?mr=2931326
http://arxiv.org/abs/arXiv:1709.03580
http://arxiv.org/abs/arXiv:1709.03589
http://www.ams.org/mathscinet-getitem?mr=0143201
http://www.ams.org/mathscinet-getitem?mr=1269324
http://www.ams.org/mathscinet-getitem?mr=0169956
http://www.ams.org/mathscinet-getitem?mr=0796909
http://www.ams.org/mathscinet-getitem?mr=3426063
http://www.ams.org/mathscinet-getitem?mr=1443899
mailto:schoi@math.kaist.ac.kr
mailto:htjung@ibs.re.kr


1386 Suhyoung Choi et al.

Hong Chan Kim
Department of Mathematics Education
Korea University
Seoul
Korea
E-mail: hongchan@korea.ac.kr

mailto:hongchan@korea.ac.kr

	Introduction
	History and motivation
	Statements of results
	About the proofs

	The space of representations and Hitchin components
	Definitions and properties
	Group cohomology
	Tangent spaces of Xn (1())

	Aspects of symplectic geometry
	Definitions and properties
	The Marsden-Weinstein quotient
	The Fox calculus and the Atiyah-Bott-Goldman symplectic form
	The existence of global Darboux coordinates

	Decomposition formulas
	Decomposition of fundamental groups
	The Mayer-Vietoris sequence
	The local decomposition formula: separating cases
	The local decomposition formula: non-separating cases
	Global decomposition

	Global Darboux coordinates on Hit3()
	Review on the Goldman coordinates
	Proof of Theorem 1.2.2

	More details on group cohomology
	Review on the Bonahon-Dreyer coordinates
	Acknowledgements
	References

