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Abstract: A finite morphism f : X → P2 of a a smooth irreducible
projective surface X is called an almost generic cover if for each
point p ∈ P2 the fibre f−1(p) is supported at least on deg f − 2
distinct points and f is ramified with multiplicity two at a generic
point of its ramification locus R. In the article, the singular points
of the branch curve B ⊂ P2 of an almost generic cover are investi-
gated and main invariants of the covering surface X are calculated
in terms of invariants of the curve B.
Keywords: Covers of the projective plane, monodromy groups of
covers.

0. Introduction

Let X be a smooth irreducible projective surface. A finite morphism f : X →
P2, branched along a curve B ⊂ P2, is called a generic cover of the projective
plane if it has the following properties:

(G1) for each point p ∈ P2 the fibre f−1(p) is supported on at least deg f − 2
distinct points,

(G2) f is ramified with multiplicity 2 at a generic point of its ramification
locus R,

(G3) the singular points of B are only the ordinary nodes and ordinary cusps.

In particular, if X is imbedded in some projective space Pn then it is well
known (see, for example, [3]) that the restriction f : X → P2 to X of a linear
projection pr : Pn → P2 generic with respect to the imbedding of X, is a
generic cover of P2.

Properties of generic covers of P2 were investigated in [5]–[7] and [9].
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The notion of generic covers of P2 can be generalized as follows. We say
that a finite morphism f : X → P2 is an almost generic cover of the projective
plane if it satisfies properties (G1) and (G2) of generic covers.

Chisini’s Conjecture claims that a curve B ⊂ P2 satisfying property (G3)
can be the branch curve of at most one generic cover f : X → P2, deg f ≥ 5.
This conjecture was proved in [6] for generic linear projections and it was
proved in the general case if deg f ≥ 12 ([9]). In our opinion, it is of interest
to find wider classes of finite covers of the plane whose branching curves
uniquely determine the covers of these classes. In particular, it is interesting
to check “Chisini’s Conjecture” for the branch curves of almost generic covers
of P2. As a first step in this direction, the aim of this paper is to investigate
the types of singular points of the branch curve of an almost generic cover
and to compute the basic invariants of the covering surface of this cover in
terms of invariants of the branch curve and degree of the cover.

A dominant morphism f : X → P2 defines a homomorphism f∗ : π1(P2 \
B, p) → Sdeg f (called the monodromy of f) whose image Gf := f∗(π1(P2 \
B, p)) is the monodromy group of f and it is a subgroup of the symmetric
group Sdeg f acting on the fibre f−1(p) = {q1, . . . , qdeg f}.

Let o be a point of a curve B ⊂ P2. It is well known that the group
πloc

1 (B, o) := π1(V \B) does not depend on V , where V ⊂ P2 is a sufficiently
small complex analytic neighbourhood biholomorphic to a ball of small radius
centered at o. The image Gf,o := im f∗ ◦ i∗ is called the local monodromy
group of f at the point o, where i∗ : πloc

1 (B, o) = π1(V \B, q) → π1(P2 \B, p)
is a homomorphism defined (uniquely up to conjugation) by the imbedding
V ↪→ P2.

A complete description of the monodromy group of an almost generic
cover of P2 and the local monodromy groups at the points of its branch curve
is given by the following

Theorem 1. The monodromy group Gf of an almost generic cover f : X →
P2 coincides with Sdeg f .

The branch curve B of the cover f can have only the singular points of
type An and the points of B are divided into three types according to the types
of singularities of B at these points and properties of the local monodromy
groups:

(i) p ∈ B \ SingB and Gf,p � Z2 is generated by a transposition;
(ii) p ∈ SingB is of type An,2, that is (by definition), B has the singularity

of type A2n−1 at p, n ∈ N, and Gf,p � Z2 × Z2 is generated by two
commuting transpositions;
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(iii) p ∈ SingB is of type An,3, that is (by definition), B has the singularity
of type A3n−1 at p, n ∈ N, and Gf,p � S3 is generated by two non-
commuting transpositions.

Proof of Theorem 1 is based on the following complete classification of
the germs of three-sheeted smooth finite covers.

Theorem 2. Let (U, o′) and (V, o) be two connected germs of smooth complex-
analytic surfaces and f : (U, o′) → (V, o) a finite three-sheeted cover. Then
there are local coordinates z, w in (U, o′) and u, v in (V, o), and a non-negative
integer n ∈ Z≥0 such that f coincides with the cover fn : (U, o′) → (V, o) given
by

u = z,
v = w3 − nznw, n ∈ Z≥0.

Theorems 1 and 2 are proved in Section 1.
Let f : X → P2 be an almost generic cover branched along a curve B.

Below, we use the following notations:

• d := 1
2 degB;

• nk, the number of singular points of B of type A2k+1,3, k ∈ Z≥0;
• mk, the number of singular points of B of type A2k,3, k ∈ N;
• tk, the number of singular points of B of type Ak,2, k ∈ N;
• c =

∑∞
k=0((2k+1)nk +2kmk), n =

∑∞
k=1 ktk, s =

∑∞
k=1 k(nk +mk).

Note that the numbers c, n, and s are well-defined, since only for finitely
many k the numbers nk, mk, and tk do not vanish.

In Section 2, we compute the squares of canonical class and the Euler char-
acteristic of the structure sheaf of the covering surface of an almost generic
cover f : X → P2 with irreducible branch curve B ⊂ P2 in terms of degree,
numbers and singularity types of B. The obtained formulas coincide with
similar formulas for generic covers of the plane if we replace c (the number of
ordinary cusps) with c and n (the number of ordinary nodes) with n in the
formulas for generic covers of the plane in [5] (compare Claim 2.5, Proposi-
tions 2.1–2.3, Corollary 2.1, and Claim 2.4 in Section 2 with Lemmas 4, 6–8,
Corollary 2, and the formula for the degree of the dual curve of the branch
curve B in [5]). Therefore, we call c the number of pseudo-cusps and n the
number of pseudo-nodes of the branch curve B. And in view of Claim 2.3, the
number s is called the superabundance. Also in Section 2, we investigate the
singular points of the Galoisations of almost generic covers of the plane and
calculate main invariants of the desingularisations of their covering surfaces.
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1. Proof of Theorems 1 and 2

1.1. Covers fn, n ≥ 1

Consider a finite cover fn : C2 → C2, n ≥ 1, introduced in Theorem 2. If
we perform the coordinate change (z1, w1) = ( n

√
n
3 z, w), (u1, v1) = ( n

√
n
3u, v),

then in new coordinates the cover fn is given by

(1)
u1 = z1,

v1 = w3
1 − 3zn1w1, n ∈ N.

Claim 1.1. The branch curve Bn of the cover fn, n ≥ 1, has the singularity
of type A3n−1 at the point o = (0, 0).

Proof. The ramification curve Rn of fn is given by equation

J(fn) := det
(

1 0
∂v1
∂z1

∂v1
∂w1

)
= 0,

i.e., Rn is given by equation

(2) w2
1 − zn1 = 0.

Let n = 2k + δ, where δ = 0 or 1 depending on the parity of n.
If n = 2k is an even number, then R2k consists of two irreducible compo-

nents, R2k = R+ ∪R−, given by equations w = ±zk. Therefore the ramifica-
tion curve B2k = B+∪B−, where, due to (1), B+ = fn(R+) and B− = fn(R−)
parametrically given by equations

u1 = z1,

v1 = ∓2z3k
1

and hence, B2k is given by equation

(3) v2
1 − 4u6k

1 = 0

i.e., in the case when n = 2k, the point o is the singular point of Bn of type
A3n−1.

If n = 2k + 1 is an odd number, then Rn is an irreducible curve given
by equation w2 − zn = 0. Therefore, Rn can be given parametrically by
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equations z = t2 and w = t2k+1 and, due to (1), the ramification curve Bn

parametrically given by equations

u1 = t2,

v1 = −2t6k+3

Hence, Bn is given by equation

(4) v2
1 − 4u6k+3

1 = 0,

i.e., if n = 2k + 1 then o is the singular point of Bn of type A3n−1.

1.2. Proof of Theorem 2

Denote M1 = f−1(L1) and M2 = f−1(L2) for L1 = {u0 = 0} and L2 =
{v0 = 0}, where u0, v0 are some local complex-analytic coordinates in (V, o).
Then the local intersection number of the curves M1 and M2 at the point o′

is equal to (M1,M2)o′ = dego′ f = 3. Therefore either M1 or M2 is a germ
of a non-singular curve. Let M1 be non-singular. Then we can choose local
coordinates z0, w0 in (U, o′) such that f∗(u0) = z0 and f∗(v0) = v0(z0, w0) =∑∞

i=0 ai(z0)wi
0, where ai(z0) =

∑∞
j=0 ai,jz

j
0 ∈ C[[z0]]. Performing the coordi-

nates change v0 ↔ v0 − a0(u0), we can assume that a0(z0) ≡ 0. In addition,
we have a1,0 = a2,0 = 0 and can assume that a3,0 = 1, since (M1,M2)o′ = 3.

Denote R ⊂ (U, o′) the ramification curve of the cover f and B = f(R) ⊂
(V, o) the branch curve. Note that the curves R ⊂ (U, o′) and B ⊂ (V, o)
depend only on the cover f and do not depend on the choice of coordinates
in (U, o′) and (V, o). Denote m ⊂ C[[z0, w0]] the maximal ideal in the ring of
power series C[[z0, w0]]. The curve R is given by equation

J(f) := det
(

1 0
∂v0
∂z0

∂v0
∂w0

)
= 0,

i.e., R is given by equation

(5)
∞∑
i=1

iai(z0)wi−1
0 = 0.

Let us write equation (5) in the following form

(6) a1,1z0 + a1,2z
2
0 + 2a2,1z0w0 + 3w2

0 + H(z0, w0) = 0,
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where H(z0, w0) ∈ m3. It follows from (6) that there are three possibilities:
either R = 2R1, where R1 is a germ of a smooth curve, or R = R1∪R2, where
R1 and R2 are germs of smooth curves, or R is an irreducible germ and o′ is
either a smooth point (if a1,1 �= 0), or a singular point of multiplicity two (if
a1,1 = 0). In the first case the cover f is ramified along R1 with multiplicity
three.

Claim 1.2. If the finite cover f is ramified along R1 with multiplicity three
then the branch curve B is smooth and f coincides with the cover f0.

Proof. It follows from (6) that the germ R1 is given by equation of the form

w0 + αz0 + H1(z0, w0) = 0,

where α ∈ C and H1(z0, w0) ∈ m2. In the new system of coordinates z1 = z0,
w1 = w0 + αz0 + H1(z0, w0), the cover f is given by functions u = z1 and
v0 = v1(z1, w1), where v1(z1, w1) has the following property:

∂v1

w1
= w2

1(3 + H2(z1, w1)),

with some H2(z1, w1) ∈ m. Therefore

v0 = H0(z1) + w3
1(1 + 1

w3
1

∫
w2

1H2(z1, w1)dw1),

where 1
w3

1

∫
w2

1H2(z1, w1)dw1 ∈ m. Now, it is easy to see that in the new
systems of coordinates

z = z1, w = w1
3

√
1 + 1

w3
1

∫
w2

1H2(z1, w1)dw1,

and u = u0, v = v0 − H0(u0) the cover f coincides with f0. Note that the
branch curve B of the cover f0 is smooth and it is given by equation v = 0.

Now, we assume that the cover f is ramified along R with multiplicity
two.

Claim 1.3. The restriction f|R : R → B of the cover f to the ramification
locus R is one-to-one mapping.

Proof. Obviously, 3 = deg f ≥ 2 deg f|R. Therefore deg f|R = 1.
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Claim 1.4. Let the branch curve B ⊂ (V, o) of the cover f have a singularity
of type Am at the point o. Then m = 3n− 1 for some n ∈ N and f coincides
with the cover fn.

Proof. The cover f : (U, o′) → (V, o) defines a homomorphism

f∗ : πloc
1 (B, o) = π1(V \B, p) → S3,

where S3 is the symmetric group acting on the fibre f−1(p). Note that the
epimorphism f∗ is defined uniquely only if we fix a numbering of the points of
f−1(p) and in general case it is defined uniquely up to an inner automorphism
of S3.

It is well known (see, for example, [8]) that if m = 2k− δ, where δ = 0 or
1, then the group πloc

1 (B, o) is generated by two so called geometric generators
γ1 and γ2 such that πloc

1 (B, o) has the following presentation:

(7) πloc
1 (B, o) = 〈γ1, γ2 | (γ1γ2)kγ1−δ

1 = (γ2γ1)kγ1−δ
2 〉.

Denote τi := f∗(γi) ∈ S3, i = 1, 2. The branch curve B is singular. Therefore,
by Claim 1.2, τi are not cycles of length three, i.e., τ1 and τ2 are transpositions
generating the group S3, since (U, o′) is a germ of an irreducible surface.
Without loss of generality, we can assume that τ1 = (1, 3) and τ2 = (2, 3),
i.e., up to conjugation there is the unique epimorphism from πloc

1 (B, o) to S3.
We have τ1τ2 = (1, 2, 3), τ2τ1 = (1, 3, 2) and it follows from (7) that

(1, 2, 3)k(1, 3)1−δ = (1, 3, 2)k(2, 3)1−δ.

If δ = 1 then k = 3k1, i.e., m = 3(2k1) − 1 and if δ = 0 then k = 3k1 − 2,
i.e., m = 2(3k1 − 2) = 3(2k1 − 1) − 1, where k1 ≥ 1. By Grauert–Remmert–
Riemann–Stein Theorem ([11], [2]), the cover f : (U, o′) → (V, o) is uniquely
defined by the epimorphism f∗ : πloc

1 (B, o) = π1(V \ B, p) → S3. Now, to
complete the proof of Claim 1.4, it suffices to apply Claim 1.1.

It follows from Claim 1.4 that to prove Theorem 2, it suffices to show that
in the second and third cases the branch curve B has the singularity of type
Am for some m ≥ 1. Therefore it suffices to show (see, for example, [1]) that
the multiplicity of the singular point o of B is equal to 2.

It follows from (6) that in the second case a1,1 = 0 and the germ R =
R1 ∪R2 is the union of two curves smooth at o′. In addition, it is easy to see
that equations of Ri, i = 1, 2, have the following form

w0 + αiz0 + Hi(z0, w0) = 0,
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where Hi(z0, w0) ∈ m2 and αi ∈ C. Therefore the function z0 is a local
parameter at o′ for the germs Ri, i = 1, 2, i.e., Bi = f(Ri) ⊂ V are germs
of smooth curves at the point o, since u0 = z0. Hence, the multiplicity of
the singular point o of B is equal to 2. As a result, we obtain that B has
a singularity of type A2m−1 for some m equals to the intersection number
(B1, B2)o.

In the third case, denote by ν : R̃ → R the resolution of singular point o
of R (if a1,1 �= 0 then ν = id), p = ν−1(o′), and denote by m

R̃,p
the maximal

ideal of the ring of holomorphic functions at p on R̃.
It follows from (6) that (L1, R)o′ = 2. Therefore ν∗(u0) ∈ m2

R̃,p
\m3

R̃,p
and

the function t =
√
ν∗(u0) is a local parameter on R̃ at p. Let ν∗(w0) = w(t) ∈

m
R̃,p

. Then R is given parametrically by

z0 = t2, w0 = w(t)

and therefore B is given by

(8) u0 = t2, v0 =
∞∑
i=0

∞∑
j=0

ai,jt
2jw(t)i,

where v0(t) ∈ m3
R̃,p

, since a1,0 = a2,0 = 0. It follows from (8) that the multi-
plicity of B the point o is equal to 2. Therefore the singularity type of B at
o is A2m for some m ∈ N.

1.3. Proof of Theorem 1

In the beginning, we prove the following

Claim 1.5. Let (U, o′) and (V, o) be two germs of smooth complex-analytic
surfaces and f : (U, o′) → (V, o) a finite two-sheeted cover. Then there are local
coordinates z, w in (U, o) and u, v in (V, o) such that f is given by equations
u = z, v = w2.

The ramification locus R ⊂ (U, o′) and the branch curve B ⊂ (V, o) of
the cover f are smooth curves and they are given, respectively, by equations
w = 0 and v = 0.

Proof. As in the proof of Theorem 2, denote M1 = f−1(L1) and M2 =
f−1(L2) for L1 = {u0 = 0} and L2 = {v0 = 0}, where u0, v0 are some local
complex-analytic coordinates in (V, o). Then the local intersection number of
the curves M1 and M2 at the point o′ is equal to (M1,M2)o′ = dego′ f = 2.
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Therefore either M1 or M2 is a germ of a non-singular curve. Let M1 be
non-singular. Then we can choose local coordinates z0, w0 in (U, o′) such that

(9) f∗(u0) = z0 and f∗(v0) = v0(z0, w0) =
∞∑
i=0

ai(z0)wi
0,

where ai(z0) =
∑∞

j=0 ai,jz
j
0 ∈ C[[z0]]. Performing the coordinates change v0 ↔

v0−a0(u0), we can assume that a0(z0) ≡ 0. In addition, we have a1,0 = 0 and
can assume that a2,0 = 1, since (M1,M2)o′ = 2.

The ramification curve R ⊂ (U, o′) of the cover f is given by equation

(10)
∞∑
i=1

∞∑
j=0

iai,jz
j
0w

i−1
0 = 0.

It follows from (10) that (R, o′) is the germ of a smooth curve, since a2,0 �= 0.
In addition, the function z0 is a local parameter at o′ for R. Therefore, by (9),
the branch curve B = f(R) ⊂ (V, o) is also smooth at the point o. To complete
the proof of Claim 1.5, it suffices to apply Grauert–Remmert–Riemann–Stein
Theorem.

Let V ⊂ P2 be a sufficiently small neighbourhood of a point q of the
branch curve B of an almost generic cover f . Let deg f = N . It follows from
property (G1) that there are three possibilities:

(1) f−1(V ) is a disjoint union of N − 1 neighbourhoods U1, . . . , UN−1 such
that f : U1 → V is a two-sheeted cover and f : Ui → V are biholomor-
phic maps for i = 2, . . . , N − 1;

(2) f−1(V ) is a disjoint union of N − 2 neighbourhoods U1, . . . , UN−2 such
that f : U1 → V and f : U2 → V are two-sheeted covers and f : Ui → V
are biholomorphic maps for i = 3, . . . , N − 2;

(3) f−1(V ) is a disjoint union of N − 2 neighbourhoods U1, . . . , UN−1 such
that f : U1 → V is a three-sheeted cover and f : Ui → V are biholomor-
phic maps for i = 2, . . . , N − 1.

Claim 1.6. Let B1 be an irreducible component of the branch curve B ⊂ P2

of an almost generic cover f and R1 = f−1(B1) ∩ R. Then the restriction
f|R1 : R1 → B1 = f(R1) of f to R1 is a birational morphism.

Proof. It follows from property (G1) that deg f|R1 ≤ 2. Assume that deg f|R1 =
2. Then it follows from Claims 1.5 and 1.3 that B1 is a smooth curve and
f|R1 : R1 → B1 is unramified two-sheeted cover. Applying property (G1), we
obtain that B = B1, since any two curves in P2 have non-empty intersection.
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Therefore, by Zariski Theorem, the group π1(P2 \ B) is cyclic. Hence, the
monodromy group Gf � Z2 is generated in Sdeg f by product of two commut-
ing transpositions. Therefore Gf can not act transitively on the set f−1(p)
which contradicts the irreducibility of X.

The surface X is irreducible. Therefore X \ f−1(B) is connected and
hence, Gf acts transitively on the fibre f−1(p) over the base point p of the
group π1(X \ f−1(B), p). It follows from property (G2) and Claim 1.6 that
the monodromy group Gf ⊂ Sdeg f of an almost generic cover f : X → P2 is
generated by transpositions. Therefore the monodromy group Gf coincides
with Sdeg f .

It follows from Claim 1.5 that in case (1) locally at the point q, the branch
curve B is smooth (the germ (B, q) is the branch curve of the restriction of f to
the neighbourhood U1). By Claim 1.5, the local fundamental group πloc

1 (B, q)
is generated by circuit γ around B and the local monodromy group Gf,q is
generated by transposition τ = f∗(γ).

It follows from Claim 1.5 that in case (2) locally at the point q, the
branch curve B consists of two smooth components (denote them by B1 and
B2), B1 is the branch curve of the restriction of f to the neighbourhood U1
and B2 is the branch curve of the restriction of f to the neighbourhood U2.
Note that by Claim 1.6, we have B1 �= B2. Therefore B at the point q has
the singularity of type A2k−1, where k = (B1, B2)q. The local fundamental
group πloc

1 (B, q) is generated by circuits γ1 around B1 and γ2 around B2 and
the local monodromy group Gf,q is generated by commuting transpositions
τ1 = f∗(γ1) and τ2 = f∗(γ2). Therefore q is a point of type Ak,2.

Using Theorem 2 and Claim 1.1, it is easy to see that in case (3) the point
q is of type Ak,3 for some k ∈ N.

2. Relations between invariants of covering surfaces of
almost generic covers and invariants of their branch

curves

2.1. Invariants of the branch and ramification curves

Let f : X → P2 be an almost generic cover. We will assume that the branch
curve B ⊂ P2 of f is irreducible and let R ⊂ X be the ramification locus of f .

Claim 2.1. The degree of B is an even number, degB = 2d, d ∈ N.

Proof. Let L be a line in P2 generic with respect to B and M = f−1(L).
By property (G2), the restriction f|M : M → L of f to M is a generic cover
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branched over the common points of L and B and by Hurwitz formula, a
generic cover of P1 is branched over even number of points. Therefore degB =
(L,B)P2 is an even number.

The following claim is well known.

Claim 2.2. If s ∈ SingB is of type Ak,2 then its δ-invariant is equal to k; if
s is of type A2k+1,3, k ≥ 0, then its δ-invariant is equal to 3k + 1; if s is of
type A2k,3, k ≥ 1, then its δ-invariant is equal to 3k.

Claim 2.3. The geometric genus g(B) of B is equal to

(11) g(B) = (2d− 1)(d− 1) − c− n− s.

Proof. By Theorem 1, the singular points of the curve B are of the types An,2
and An,3, n ∈ N. Therefore Claim 2.3 follows from Claim 2.2.

Claim 2.4. The degree d̂ = deg B̂ of the dual curve B̂ of B is equal to

d̂ = 2d(2d− 1) − 3c− 2n.

Proof. If s ∈ SingB is of type Ak,2 then its number of virtual cusps vanishes
and the number of its virtual nodes is equal to k; if s is of type A2k+1,3,
k ≥ 0, then its number of virtual cusps is equal to 1 and its number of virtual
nodes is equal to 3k; if s is of type A2k,3, k ≥ 1, then its number of virtual
cusps vanishes and its number of virtual nodes is equal to 3k. Now, Claim 2.4
follows from generalized Plükker’s formula (see [4]).

Claim 2.5. The self-intersection number (R2)X of R is positive and it is
equal to

(12) (R2)X = 2d2 − c− n.

Proof. It follows from Theorems 1 and 2, and equation (2) that s is a singular
point of the curve R (and its singular type is An−1) iff f(s) is a point of type
An,3, n ≥ 1. Therefore

(13) 2(g(R) − 1) = (KX + R,R)X − 2
∞∑
k=1

k(nk + mk).

By Claim 1.6, we have g(B) = g(R). In addition, KX = f∗(KP2) + R and

(f∗(KP2), R)X = −3 degB = −6d.
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Therefore, equality (12) follows from (11) and (13) and it follows from
Claim 2.4 that (R2)X > 0, since d̂ > 0.

2.2. Invariants of the covering surfaces

Let N be the degree of an almost generic cover f : X → P2.

Proposition 2.1. The self-intersection number K2
X is equal to

(14) K2
X = 9N + 2(d2 − 6d) − c− n.

Proof. We have KX = f∗(KP2) + R. Therefore, by Claim 2.5,

K2
X = (f∗(KP2), f∗(KP2))X + 2(f∗(KP2), R)X + R2 =

9N − 12d + 2d2 − c− n.

Denote by e(M) =
∑

i(−1)i dimH i(M,Q) the topological Euler charac-
teristic of a topological space M .

Proposition 2.2. The topological Euler characteristic e(X) is equal to

e(X) = 3N + 2d(2d− 3) − 3c− 2n.

Proof. We have e(X) = N(e(P2) − e(B)) + (N − 1)e(B \ SingB) + (N −
2)e(SingB). Therefore Proposition 2.2 follows from (11) and equalities

e(B) = (2 − 2g(B)) −
∞∑
k=1

(mk + tk),(15)

e(B \ SingB) = (2 − 2g(B)) − n0 −
∞∑
k=1

(nk + 2mk + 2tk),(16)

e(SingB) = n0 +
∞∑
k=1

(nk + mk + tk).(17)

Proposition 2.3. The Euler characteristic χ(OX) of the structure sheaf OX

equals

χ(OX) = N + d(d− 3)
2 − c

3 − n

4 .

Proof. Proposition 2.3 follows from Noether’s formula K2
X + e(X) =

12χ(OX).
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Corollary 2.1. We have

c ≡ 0 ( mod 3), n ≡ 0 (mod 4).

Proposition 2.4. The following inequality holds

N ≤ 4d2

2d2 − c− n
.

Proof. Let M = f−1(L), where L is a line in P2. We have (M2)X = N and
(M,R)X = deg f = 2d. Applying Hodge Index Theorem to M and R and
applying Claim 2.5, we obtain inequality

N(2d2 − c− n) − 4d2 ≤ 0.(18)

Claim 2.6. If N ≥ 6 then n > 0.

Proof. Transforming the left side of inequality (18), we obtain the inequality

1
2[(N−6)(2d(2d−1)+2d−3c−2n+c)+4(2d(2d−1)−3c−2n+2d)−4n] ≤ 0

and applying Claim 2.4, we have

(N − 6)(d̂ + 2d + c) + 4(d̂ + 2d) ≤ 4n.

Now, Claim 2.6 follows from inequalities d̂ > 0 and d > 0.

2.3. Galoisations of almost generic covers

The Cayley imbedding c : Gf = SN ↪→ SN !, defined by the action of SN on
itself by multiplication from the right side, defines the Galois finite cover
g : Y → P2 branched along the curve B, deg g = N !. For a point p ∈ P2

the fibre g−1(p) is supported on Mf,p = N !
|Gf,p| distinct points, where |Gf,p|

is the order of the local monodromy group Gf,p = Gg,p, and if V ⊂ P2

is a sufficiently small complex-analytic neighbourhood of the point p, then
g−1(V ) =

⊔Mf,p

i=1 Wi is a disjoint union of Mf,p complex-analytic normal va-
rieties Wi biholomorphic to each other and the restriction g|Wi

: Wi → V to
each Wi is the Galois cover with the Galois group isomorphic to Gf,p.

If p ∈ B \SingB then for each i = 1, . . . ,Mf,p = N !
2 the cover g|Wi

: Wi →
V is a two-sheeted cover branched over the non-singular curve B ∩ V .

If p ∈ SingB and B has the singularity of type An,2 at p, then for each
i = 1, . . . ,Mf,p = N !

4 the cover g|Wi
: Wi → V is the Galois cover with Galois

group Z2 × Z2 branched along B ∩ V with multiplicity two.
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Claim 2.7. If B has the singularity of type An,2 at p, then for n ≥ 2 the
point g−1

|Wi
(p) is a singular point of Wi of type An−1 and it is smooth point if

n = 1.

Proof. Let B1 and B2 be two irreducible branches of the curve B∩V . Without
loss of generality, we can assume that u = 0 is the equation of B1 and u−vn =
0 is the equation of B2. Then Wi is biholomorphic to a neighbourhood of the
point o = (0, 0, 0, 0) in the surface given in C4 by equations z2 = u and
w2 = u− vn. Therefore, it is biholomorphic to a neighbourhood of the point
o′ = (0, 0, 0) in the surface given in C3 by equation w2 = z2 − vn.

If p ∈ SingB and B has the singularity of type An,3 at p, then for each
i = 1, . . . ,Mf,p = N !

6 the cover g|Wi
: Wi → V is the Galois cover with Galois

group S3 branched along B ∩ V with multiplicity two.

Claim 2.8. If B has the singularity of type An,3 at p, then for n ≥ 2 the
point g−1

|Wi
(p) is a singular point of Wi of type An−1 and it is smooth point if

n = 1.

Proof. The local fundamental group πloc
1 (B, p) is generated by two circuits

γ1 and γ2 around the curve B (see subsection 1.1) and the Galois cover
g|Wi

: Wi → V is defined by epimorphism g∗ : πloc
1 (B, p) → S3 sending γi,

i = 1, 2, to transpositions. The cover g|Wi
: Wi → V can be decomposed into

a composition g|Wi
= fn ◦ hn, where hn : Wi → Wi/〈τ〉 � U ⊂ C2 is the

factor-map under the action of a subgroup 〈τ〉 of the group S3 generated by
a transposition τ ∈ S3 and by Theorem 2, fn : U → V is the restriction of the
cover fn : C2 → C2 (see subsection 1.1) to some neighbourhood U ⊂ C2.

It is easy to see that hn : Wi → U ⊂ C2 is a two-sheeted cover branched
along the curve Cn∩U , where Cn is the complement to the ramification divisor
Rn of the cover fn : C2 → C2 in the total inverse image of Bn, f∗

n(Bn) =
2Rn + Cn. Let Fn(z1, w1) = 0 be an equation of Cn. Then it follows from
(2)–(4) that

(w3
1 − 3zn1w1)2 − 4z3n

1 = (w2
1 − zn1 )2Fn(z1, w1) = 0.

Therefore we have Fn(z1, w1) = w2
1 −4zn1 and hence the surface Wi is isomor-

phic to a hypersurface in C1 × U given by y2 = w2
1 − 4zn1 .

It follows from Claims 2.7 and 2.8 that the covering surface Y of the
Galoisation of an almost generic cover f : X → P2 has

S = N !
(1

6

∞∑
k=1

(nk + mk) + 1
4

∞∑
k=2

tk

)

singular points.
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Let ν : Z → Y be the minimal resolution of singular points of the covering
surface Y . It is well known that the inverse image ν−1(s) of a point s ∈ Sing Y
of singularity type Ak is the chain E1 ∪ · · · ∪Ek of (−2)-curves Ei. Therefore,
by Claims 2.7 and 2.8, the number of (−2)-curves contracted by ν is

M = N !
6

∞∑
k=1

(2knk + (2k − 1)mk) + N !
4

∞∑
k=2

(2k − 1)tk

and if we denote g̃ := g ◦ ν : Z → P2, then

(19) e(g̃−1(SingB)) = N !
6

∞∑
k=0

((2k + 1)nk + 2kmk) + N !
4

(
t1 +

∞∑
k=2

2ktk
)
.

Proposition 2.5. The canonical class KZ of the surface Z is equal to

KZ = (d− 3)g̃∗(L),

where L is a line in P2, and its self-intersection number K2
Z is equal to

(20) K2
Z = (d− 3)2N !.

Proof. Let ν−1(Sing Y ) =
⋃M

i=1 Ei. We have

KZ = g̃∗(KP2) + 1
2 g̃

∗(B) +
M∑
j=1

αjEj ,

since g̃ is ramified over B with multiplicity two. In addition, we have
(KZ , Ei)Z = 0 for each i, since Ei are rational curves with self-intersection
number (E2

i )Z = −2, and (g̃∗(KP2), Ei)Z = (g̃∗(B), Ei)Z = 0, since g̃(Ei) are
points. Therefore (

∑M
j=1 αjEj , Ei)Z = 0 for each i and hence

∑M
i=1 αiEi = 0,

since the intersection matrix E = ((Ej , Ei)Z) is negatively defined. Now, to
complete the proof of Proposition 2.5, notice that KP2 = −3L, the divisor B
is equivalent to 2dL, and deg g̃ = N !.

Proposition 2.6. The topological Euler characteristic e(Z) is equal to

e(Z) = N !
[
3 + d(2d− 3) − 1

6

∞∑
k=0

(
(19k + 5)nk + 16kmk

)
− 3

4 t1 −
1
2

∞∑
k=2

ktk

]
.

Proof. We have

e(Z) = N !(e(P2) − e(B)) + N !
2 e(B \ SingB) + e(g̃−1(SingB))

and Proposition 2.6 follows from (11), (15), (16), and (19).
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