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Abstract: In this paper we consider reduced (non-normal) com-
mutative noetherian rings R. With the help of conductor ideals and
trace ideals of certain R-modules we deduce a criterion for a reflex-
ive R-module to be closed under multiplication with scalars in an
integral extension of R. Using results of Greuel and Knörrer this
yields a characterization of plane curves of finite Cohen–Macaulay
type in terms of trace ideals.

Further, we study one-dimensional local rings (R,m) such that
that their normalization is isomorphic to the endomorphism ring
EndR(m): we give a criterion for this property in terms of the
conductor ideal, and show that these rings are nearly Gorenstein.
Moreover, using Grauert–Remmert normalization chains, we show
the existence of noncommutative resolutions of singularities of low
global dimensions for curve singularities.

1. Introduction

This paper studies trace ideals and conductor ideals of reduced commuta-
tive noetherian rings and their relation to endomorphism rings of modules,
in particular maximal Cohen-Macaulay modules and reflexive modules. The
motivation comes from two directions: on the one hand, in order to compute
the integral closure of a commutative ring R in its total quotient ring (i.e.,
the normalization R̃ of R), one forms an ascending chain of endomorphism
rings of certain ideals that stabilizes at the normalization (first studied in
the analytic context by Grauert and Remmert [20]). This can be used to
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formulate an algorithm for computation of integral closure, which has been
implemented in computer algebra systems like Singular. See [12, 22] for
the original algorithms, and [3, 23, 2] for more recent enhancements of these
ideas.

Here, one would like to have a short chain of endomorphism rings, so that
the normalization is reached in few steps of the algorithm. If one knew the
conductor ideal C of the normalization, then this chain would only be of length
1, since EndR(C) is the normalization of R. In general it is not possible to find
the conductor ideal, and thus we have to come up with some test ideals that
are hopefully sufficiently close to the conductor. Therefore we will study trace
ideals of R-modules: these ideals are easy to calculate from the presentation
matrix of the module and we will see that they tell us whether the module
from which they come from is closed under multiplication with scalars of a
certain integral extension of R. This also leads us to consider conductor ideals
of smaller integral extensions of R than R̃.

In the study of trace ideals it is also natural to ask which ideals in a
commutative ring R can occur as trace ideals. Recently it has been studied,
when every ideal of R is isomorphic to a trace ideal [42, 41]. See [37] for an
answer in the local case and [18] for connections with stable ideals. Since
here we are mainly interested in the class of Cohen–Macaulay modules, one
is led to the finer question: which ideals in R are isomorphic to trace ideals
of Cohen–Macaulay modules over R? The first case to consider, is R of finite
CM-type, that is, there are only finitely many isomorphism classes of Cohen–
Macaulay modules over R.

Our main results in this direction are: a criterion for a reflexive module
over a ring to be a module over an integral extension using trace ideals and
conductor ideals (Theorem 3.5), and a characterization of plane curves of
finite Cohen–Macaulay type with trace ideals (Cor. 3.9).

As another application of normalization chains, we are interested in rings
that are “nearly” normal from the point of view of the normalization algo-
rithm: here we study one dimensional reduced local rings (R,m). If such an
R is not regular, then the singular locus of Spec(R) is zero-dimensional and
determined by the maximal ideal of R. In this case there is a natural chain
of endomorphism rings, cf. [38, 30], starting with

R ⊆ EndR(m) ⊆ · · ·

We say that R has a 1-step normalization or is 1-step normal if R̃ ∼= EndR(m).
Note that if R is regular, then it is also 1-step normal, since then R is iso-
morphic to its maximal ideal.
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We give a characterization of 1-step normal rings in terms of the maximal
ideal (Prop. 4.2 and Cor. 4.7) and study connections with nearly and almost
Gorenstein rings that have recently appeared in work of Herzog–Hibi–Stamate
about the trace of canonical modules [24].

The other direction of research is the study of endomorphism rings of
finitely generated modules over a commutative ring. These endomorphism
rings are in general noncommutative but still inherit some nice properties (like
noetherianity) from R. Recently, the study of various endomorphism rings has
flourished in both commutative and noncommutative algebra, as well as in
algebraic geometry and representation theory and even has applications to
theoretical physics. In particular interesting are endomorphism rings of mod-
ules that have finite global dimension. They can be seen as a noncommutative
analog of resolution of singularities: let R be a reduced noetherian ring and let
M be a faithful R-module. Then Λ = EndR(M) is called a noncommutative
resolution (=NCR) of singularities if gl. dim EndR(M) < ∞, see [11]. More-
over, if Λ is homologically homogeneous, then Λ is called a noncommutative
crepant resolution (=NCCR) of singularities, cf. [46, 32]. For more about the
rationale behind these definitions, see [39, 10].

Recently, there were quite a few results on construction of NC(C)Rs and
their properties, see e.g. [31, 7, 17, 34, 26, 45]. In particular, it is interesting
which values the global dimension can assume: this should give some informa-
tion about the singularities of Spec(R). Therefore, in [10] the global spectrum
gs(R) of a singularity Spec(R) was defined as the set of all possible finite
global dimensions of endomorphism rings of Cohen–Macaulay R-modules. In
[15, Theorem 4.6] the global spectra of some ADE-curve singularities were
determined.

Our main result in this direction is that for any curve singularity, the
integers 1, 2 are in the global spectrum (Lemma 5.1) and 3 ∈ gs(R) if and
only if the singularity Spec(R) is not of type A2n (Theorem 5.4).

1.1. Structure of the paper

Our goal was to make this paper as self-contained as possible, thus in Sec-
tion 2 we first review some homological facts and then introduce the main
players: trace ideals and conductor ideals. We also review the construction
of the normalization of a commutative ring by an ascending chain of endo-
morphism rings (the Grauert–Remmert normalization algorithm). In the next
section we characterize reflexive R-modules, where R is a reduced ring, that
are closed under scalar multiplication with elements in a finite birational ex-
tension R′, that is, these R-modules are also R′-modules (Theorem 3.5). In
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Section 3.1 the relationship between finite Cohen–Macaulay type and trace
ideals is studied, in particular, we show that the coordinate ring of a (re-
duced) plane curve singularity is of finite CM-type if and only if there are
finitely many possibilities for trace ideals of CM-modules over this ring (see
Cor. 3.9).

In Section 4 we consider reduced one-dimensional local rings (“curves”)
and study those with 1-step normalization, that is, (R,m) such that R̃ ∼=
EndR(m). Using the reflexivity of the maximal ideal m (Prop. 4.1), we deduce
that these 1-step normal rings are characterized by the property m ⊆ C, the
conductor of the normalization (Prop. 4.2). This implies that 1-step normal
rings are nearly Gorenstein (Cor. 4.3) in the sense of [24]. We also show
that for 1-step normal rings the maximal ideal m is isomorphic to its dual
m∗ = HomR(m, R) (Prop. 4.51), but that this property does not characterize
1-step normal rings (Example 4.9).

In the final section we consider the global spectrum gs(R) of curve sin-
gularities Spec(R). Making use of normalization chains and methods from
representation theory, we show that 1, 2 and 3 are contained in the global
spectrum if and only if R is not the coordinate ring of an A2n-singularity (see
Thm. 5.4).

2. Preliminaries

2.1. Conventions

In this paper, Λ will denote any ring and the letter R is reserved for a com-
mutative noetherian ring. Additional assumptions, such as local, complete,
Cohen–Macaulay or Gorenstein, will be explicitly stated.

Recall that a commutative ring R is reduced if it has no non-zero nilpotent
elements, or equivalently, it satisfies Serre’s conditions (R0) and (S1), see [28].
Also recall that the normalization R̃ (=integral closure of R in its total ring
of fractions) is finitely generated as R-module if and only if the conductor
C
R̃/R

of the normalization R̃ in R contains a non-zerodivisor.
We are studying singularities of Spec(R), so most of the time we will

assume that R is reduced. In the study of normalizations we will also assume
that the normalization R̃ is a finitely generated R-module.

1Here the referee pointed out a much shorter proof of this proposition than in
the first version of this manuscript.
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2.2. Homological properties of modules

In the following, maximal Cohen–Macaulay modules over R will play a signif-
icant role. These modules have been studied not only in commutative algebra
but are also important in representation theory. In particular the description
of maximal Cohen–Macaulay modules over hypersurface rings via matrix fac-
torizations is very useful, see e.g. [40, 48, 5]. Here we give the most general
definition for not necessarily commutative rings, as well as the standard def-
initions in the commutative algebra context, for a good reference see e.g. [4].

Let Λ be an Iwanaga–Gorenstein ring. Recall, that this means that Λ is
noetherian and has finite injective dimension as left as well as right module
over itself. Then a finitely generated Λ-module M is called (maximal) Cohen–
Macaulay, abbreviated CM, if ExtiΛ(M,Λ) = 0 for all i > 0. If (R,m, k) is
any local commutative ring, then a finitely generated R-module M is CM if
its depth is equal to the (Krull-)dimension dim(R) of R, that is, the smallest
d ≥ 0 for which Extd(k,M) �= 0, is equal to dim(R). If R is any commutative
ring, then a finitely generated R-module M is CM if for any maximal ideal
m of R the localization Mm is CM in Rm. If R is any commutative ring,
we denote by mod(R) the category of finitely generated R-modules. The full
subcategory of CM-modules of mod(R) is denoted by CM(R). Moreover, R
is called a Cohen–Macaulay ring if it is CM as a module over itself.

Proposition 2.1 ([5], Lemma 4.2.2.(iii)). Let Λ be an Iwanaga–Gorenstein
ring (not necessarily commutative) and let M be a Cohen–Macaulay module
over Λ. Then M is reflexive and M∗ = HomΛ(M,Λ) is also Cohen–Macaulay
over Λop. In particular, if Λ is commutative, then M∗ is in CM(Λ).

Proposition 2.2 ([1], Proposition 6.1). Let R be a local, reduced Cohen–
Macaulay ring and M an R-module. Then the dual module M∗=HomR(M,R)
is a reflexive R-module.

Proposition 2.3 ([8], Prop. (1.1.9)). Let R be a commutative noetherian
ring and M be a finitely generated module. Then M is reflexive if and only if
M is isomorphic to its bidual M∗∗ = HomR(M∗, R).

The following facts about modules of homomorphism are helpful for com-
putations with these modules and will be used later:

Proposition 2.4 ([25], Lemma 2.1). Let R be a commutative ring, K = Q(R)
its total ring of quotients and I, J ∈ K be two fractional ideals, such that
depthR(I) and depthR(J) are greater or equal to 1 (that is, both ideals contain
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a non-zerodivisor). Then (I :K J) = {x ∈ K : xJ ⊆ I} is isomorphic to
HomR(J, I) as R-modules, via the homomorphism

ϕ : (I : J) −→ HomR(J, I) : x 	→ (m 	→ mx) .

Remark 2.5. 1. In particular, if I = R and J ⊇ R in Prop. 2.4, then (I :K
J) = (I :R J), since 1R ∈ J .

2. In the following, we will be in particular interested in endomorphism rings
EndR(I). If R is a reduced noetherian ring, and I ⊆ R and ideal containing
a non-zerodivisor x of R, then it is easy to see (e.g., in [22, Lemma 3.6.1]),
that HomR(I, I) ∼= 1

x(xI : I) as rings.
The following lemma deals with change of the base ring and homomor-

phism modules, and often allows one to consider endomorphism rings of gener-
ators. Here M is a generator (of mod(R)) if every finitely generated R-module
is a homomorphic image of a direct sum of copies of M . Equivalently, R is a
direct summand of Mn for some positive integer n.

Lemma 2.6. Let R be a reduced local ring. Suppose that S is a finite bi-
rational extension of R, i.e., R ⊆ S ⊆ R̃ and S is finitely generated as
R-module. Then if M and N are (R, S)-bimodules and N is torsion-free, one
has

HomR(M,N) = HomS(M,N).

Proof. See [40], Prop. 4.14.

Remark 2.7. Assume that R, S,M,N are as in the lemma. If R is of dimension
1, then the lemma holds for any Cohen–Macaulay module N , since torsion-
free is equivalent to Cohen–Macaulay under this assumption on R. If R is
Gorenstein of any dimension > 0, then the above lemma also holds for N ∈
CM(R), since then N is reflexive and reflexive implies torsion-free (see e.g. [4,
Exercise 1.4.19]). Finally if R is a local domain of any dimension > 0, then
the above lemma also holds for N ∈ CM(R), since the depth of a torsion-free
module is ≥ 1.

2.3. Trace ideals

Here we will give the general definition for trace ideals over any ring Λ. Later
we will only study them for commutative rings R.

Let Λ be a ring, M a right Λ-module. We set M∗ = HomΛ(M,Λ), the
Λ-dual of M endowed with its natural structure of a left Λ-module. Note that
M is as well a left E = EndΛ(M), right Λ-bimodule and M∗ a left Λ, right
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EndΛ(M)-bimodule. Here we view M as an Λ ⊗ Eop-module and M∗ as an
Λop ⊗ E-module. The tensor product here can be taken over any subring in
the centre Z(Λ) of Λ, as such a subring then also maps to the centre of E.

The natural pairing

M∗ ×M → Λ
(λ,m) 	→ λ(m)

satisfies λ(ϕ(m)) = (λ ◦ ϕ)(m) for each Λ-endomorphism ϕ : M → M and
thus induces an Λ-bilinear trace homomorphism

τΛ : M∗ ⊗E M → Λ , λ⊗m 	→ λ(m)

The image I = τΛ(M) is a two–sided ideal in Λ, the trace ideal of M . We
sometimes denote it simply by τ(M), when it is clear in which ring we are
working.

For computation of trace ideals, we note the following: If R is a commu-
tative Cohen–Macaulay ring and I is an ideal of grade ≥ 1, then τ(I) is the
fractional ideal

τ(I) = I · I−1 ,

where I−1 is defined to be the quotient (R :Q(R) I), which is in this case iso-
morphic to I∗ = HomR(I, R). For a proof, see [24, Lemma 1.1]. In particular,
if I is an ideal of grade ≥ 2 on R, then τ(I) = I, see [42, Example 2.4].

If M is a CM-module over R and R is a hypersurface ring of the form
A/(f), where A = k[[x1, . . . , xn]] or A = k[x1, . . . , xn], then M can be repre-
sented by a matrix factorization (X, Y ) of f . Then τ(M) = I1(syz(M)), the
first fitting ideal of of the syzygy module of M , see [47]. Here I1(syz(M)) is
the ideal generated by the entries of the matrix Y .

Some general facts about trace ideals of commutative rings R:

Lemma 2.8 (cf. Prop. 2.8 in [42]). We have the following properties of trace
ideals of finitely presented R-modules M , N :

(1) τ(M ⊕N) = τ(M) + τ(N).
(2) Let R′ be a commutative finitely generated flat R-algebra. Then τR′(M⊗R

R′) = τR(M) ⊗R R′. This implies in particular, that taking trace ideals
commutes with completion and localization.

(3) If M is reflexive, then EndR(M) ∼= EndR(M∗) and τ(M) = τ(M∗).
(4) τ(M) = R if and only if M is a generator of mod(R). Note that if R is

local, this just means that R ∈ add(M).
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(5) τ(M) = τ(M/torsR(M)), where torsR(M) denotes the torsion submodule
of M .

Proof. (1)–(4) are proven in Prop. 2.8 in [42].
We prove (5) for a lack of reference: recall that

torsR(M) = {m ∈ M : ∃ a non-zerodivisor r ∈ R such that rm = 0}.

If f : M → R is a homomorphism, then for any m ∈ torsR(M) it follows that
f(m) = 0. Thus, for any g(m) for g ∈ HomR(M,R) define ḡ : M/torsR(M) −→
R, m̄ 	→ g(m). It is easy to see that ḡ is well defined. It follows that g(m) =
ḡ(m̄) for any m ∈ M and thus τ(M) ⊆ τ(M/torsR(M). On the other hand,
for any f̄ ∈ HomR(M/tors(M), R) one can define f ∈ HomR(M,R) such that
f(m) := f̄(m), where m is the image of m under the natural projection M −→
M/torsR(M). So for any f̄(m) there exists a homomorphism f : M → R such
that f(m) = f̄(m), which shows τ(M) ⊇ τ(M/torsR(M)).

Remark 2.9. In (3), one may ask, whether either EndR(M) ∼= EndR(M∗) or
τ(M) = τ(M∗) characterizes reflexive modules. This is not the case: for the
first property take R = k[[x, y]] and M = (x, y). Then EndR M = R and
since M∗ = R also EndR M∗ = R, but clearly M is not reflexive (its depth
is 1). For the second property take any local ring (R,m) and M = R/m⊕R.
Then by (1) of the Proposition, τ(M) = R and since M∗ ∼= R τ(M∗) = R.
But clearly M is not reflexive, since M∗∗ = R.

2.4. Conductors

Next we collect some properties of conductor ideals in order to study the
relationship of conductor ideals and trace ideals in Section 3.

If R is commutative noetherian and reduced, then recall that the normal-
ization R̃ of R is the integral closure of R in its total ring of quotients Q(R). If
R = R̃, then R is called normal. As already mentioned in Section 2.1, we will
assume that R̃ is module-finite over R. In particular, if R is 1-dimensional and
local, then the normalization is R-module finite if R is analytically unramified
(equivalently, the completion R̂ is reduced), see [25, Kor. 2.12].

Following [40, 21], recall that R ⊆ S is a finite birational extension of rings
if S is a ring contained in the total quotient ring Q(R) and is finitely generated
as an R-module. Note that this implies that S is an integral extension of R
(see [4, Appendix A]).



Trace ideals, normalization chains, and endomorphism rings 1009

Definition 2.10. Let R be a reduced ring and let R ⊆ R′ be a reduced
extension of R such that R′ is contained in Q(R), the total ring of fractions,
and moreover R′ is module finite over R. Then (R :Q(R) R

′) = {a ∈ Q(R) :
aR′ ⊆ R} is called the (relative) conductor of R′ in R, denoted CR′/R. For
R′ = R̃, the normalization of R, one simply calls C := (R :Q(R) R̃), the
conductor of R.

It is easy to see that (R :Q(R) R′) = (R :R R′) is an ideal in R and R′,
and that CR′/R = HomR(R′, R) = Ann(R′/R). In fact, CR′/R is the largest
common ideal of R′ and R. Note that in particular, if R = R′, then CR′/R = R.

Lemma 2.11. Let R be reduced and let R′ be a reduced extension with R′ ⊆
Q(R) and R′ module finite over R. Then

R ⊆ R′ ⊆ HomR(CR′/R, R) .

Proof. From Prop. 2.4 it follows that HomR(CR′/R, R) = (R : CR′/R) contains
R. Since HomR(CR′/R, R) = (R′)∗∗, it follows that R′ ⊆ HomR(CR′/R, R).

The relation between conductor ideals and reflexive finite birational ex-
tensions of R is described by the following result.

Theorem 2.12 ([13], Theorem 1.4). Let R be a reduced ring and let F be
the set of all reflexive finite birational extensions of R. Then the map

F −→ {I ⊆ R : I is a conductor of an element in F} : S 	→ CS/R

is an order inverting bijection between the elements in F and their conductors.
The inverse map is is given by I 	→ EndR(I).

Lemma 2.13. Let R be a reduced ring. Then the normalization R̃ of R and
the conductor of the normalization C are both reflexive R-modules. Moreover,
one has

EndR(C) = R̃ .

Proof. The equality EndR(C) = R̃ is shown in [13, Remark after Prop. 1.2],
which also shows the reflexivity of R̃. Alternatively, in view of Prop. 2.3 one
can show, using adjunction, that R̃ ∼= C∗ and thus R̃ is reflexive. Dualizing
again yields that C is reflexive.
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2.5. Normalization chains

Here we briefly describe the ideas of the Grauert-Remmert normalization
algorithm, which was our main motivation to study endomorphism rings of
trace ideals.

Let R be a reduced noetherian (commutative) ring. One calls N(R) :=
{p ∈ Spec(R) : Rp is not normal} the non-normal locus of R. It can be shown
(see e.g. [22, Lemma 3.6.3]) that N(R) = V (C

R̃/R
), that is, the conductor of

the normalization defines precisely the non-normal points of Spec(R).
If I is an ideal of R that contains a non-zerodivisor, then

R ⊆ EndR(I) ⊆ R̃ .

If I = C, then EndR C = R̃ (see Lemma 2.13). But in practice it is hard to
guess the conductor ideal, and thus one needs to proceed in steps.

The rough idea is (here we follow [12] and [22, 3.6]): Start with the reduced
non-normal ring R0 := R and an ideal I0 ⊆ R0 containing a non-zerodivisor
and supp(I0) = Sing(Spec(R0)) such that R0 � EndR0(I0) (this holds e.g. for
radical ideals with V (I0) ⊇ N(R0)). Then R1 := EndR0(I0) is a reduced ring
lying between R and R̃. If R1 is equal to the normalization, we are finished,
otherwise find an ideal I1 ⊆ R1 such that R1 � R2 := EndR1(I1) and repeat
if necessary. This yields a chain of rings

(1) R0 = R � R1 = EndR0(I0) � · · · � Rl = EndRl−1(Il−1) ,

with supp(Ii) ⊆ Sing(Spec(Ri)) which terminates at Rl = R̃, l < ∞, if R̃
is a finitely generated R-module. We call such a chain of rings a (Grauert–
Remmert) normalization chain of R. The crucial point in this algorithm is to
find good test ideals Ij that are easy to compute, so that one needs as few
steps as possible in the algorithm. In practice one takes Ij to be the radical
of the Jacobian ideal of Rj , see [22, Algorithm 3.6.9]. However, it would be
interesting to consider other type of ideals, or even endomorphism rings of
modules of higher rank. In the next section, we will therefore study trace
ideals, which are easy to calculate and sometimes are closer to the conductor
than the radical of the Jacobian ideal.

3. Traces and conductors

Here we study connections between trace ideals of certain R-modules and
conductor ideals of finite birational extensions of R. In particular we are



Trace ideals, normalization chains, and endomorphism rings 1011

interested in trace ideals of CM-modules and we consider the finite CM-type
case in 3.1.

Note that the relation between trace ideals and birational extensions of
R has in particular been studied in [18, Prop. 1.2]

Proposition 3.1. Let R ⊆ R′ be a finite birational extension of a reduced
commutative noetherian ring R and let M ′ be a module over R′. Then

τR(M ′) ⊆ CR′/R.

In particular, if M ′ ∼= R′, then also the other inclusion holds, that is,

τR(R′) = CR′/R.

Proof. Clearly M ′ is also a module over R, so τR(M ′) is well-defined. Since
we can identify CR′/R with (R : R′) = {a ∈ R | aR′ ⊆ R}, we have to show
that for any R-linear map f from M ′ to R, for any m ∈ M ′ and any x ∈ R′,
the element f(m)x is contained in R. An element x ∈ R′ can be written as
x = r

s , for some r, s ∈ R, where s is a non-zerodivisor. Then

sf(xm) = f(rm) = rf(m) = sxf(m),

and since s is a non-zerodivisor, it follows that f(xm) = xf(m). Since M ′ is
an R′-module, xm ∈ M ′ and since f : M ′ −→ R is an R-linear map, f(xm)
lies in R. This shows that τR(M ′) ⊆ CR′/R.

For the second assertion it has to be shown that CR′/R ⊆ τ(R′). Therefore
let a ∈ CR′/R. Define a map fa : R′ → R as x 	→ xa. Then fa is well-defined
since by definition xa ∈ R for any x ∈ R′ and of course fa is R-linear. Clearly
fa(1) = a, so a ∈ τR(R′) = (f(x) | f ∈ HomR(R′, R), x ∈ R′).

Lemma 3.2. Let R ⊆ R′ ⊆ R
′′ be finite birational extensions of a commuta-

tive noetherian ring R. Then:
(1) CR′′/R ⊆ CR′/R.
(2) τ(R′′) ⊆ τ(R′).

Proof. (1): clear from the definitions of the relative conductors:

CR′′/R = {a ∈ R : aR′′ ⊆ R} ⊆ {b ∈ R : bR′ ⊆ R} = CR′/R,

since R′ ⊆ R′′.
(2): Follows from (1) and Prop. 3.1.
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Example 3.3. In general one only has τ(M) ⊆ CR′/R for a R′-module M and
not equality: consider e.g. R = C[[x, y]]/(x3+y4) the E6 singularity. Then one
can compute the indecomposable CM−R-modules, see [48]. The ring R′ =
EndR(mR) is a birational extension of R and has the same indecomposable
CM-modules as R, with exception of R itself. From Yoshino’s list (see loc. cit. )
of matrix factorizations of the indecomposables (in Yoshino’s notation) one
sees that τ(M2) = (x, y2) is strictly contained in CR′/R = mR.

There is a converse for reflexive modules:

Proposition 3.4. Let R ⊆ R′ be a finite birational extension of a commu-
tative noetherian reduced ring R and let M be a module over R. If τR(M) ⊆
CR′/R, then M∗ is a module over R′. If moreover M is reflexive, then M is a
module over R′.

Proof. Let f ∈ M∗ and x ∈ R′. Then x · f is a function from M → R, since
for any m ∈ M one has xf(m) ∈ R, which follows from the containment of
τR(M) in the conductor CR′/R. Clearly xf is an R-linear function, thus M∗

is also an R′-module.
By Prop. 3.1, this implies that τR(M∗) ⊆ CR′/R. Thus, by what we just

proved, (M∗)∗ = M∗∗ is also an R′-module. If M is reflexive, this means that
M is a module over R′.

Theorem 3.5. Let R be a reduced noetherian local ring and let M be a finitely
generated reflexive R-module and let R′ be a finite birational extension. The
following two assertions are equivalent:
(1) τ(M) ⊆ CR′/R, where CR′/R is the conductor of R′ in R.
(2) M is a module over R′.

Proof. (2) ⇒ (1): Follows from Prop. 3.1 τ(M) ⊆ C.
(1) ⇒ (2): Follows from Prop. 3.4.

Remark 3.6. In particular, if R is irreducible, then τR(M) = C if M is a CM-
module over R̃. If R is not irreducible, then one can have an inclusion, e.g.,
consider R = k[[x, y]]/(xy) with M = R/(x). Then M is isomorphic to an
irreducible component of the normalization and τR(M) = (y) � C = (x, y).

Looking at the relative conductor CR′/R of a ring R ⊆ R′ ⊆ R̃, we ask if
the corresponding statements of Thm. 3.5 also holds for CM-modules M over
R, namely, whether the following are equivalent:
(1) τR(M) ⊆ CR′/R.
(2) M is a module over R′.

The implication (2) ⇒ (1) holds for any R-module with this property by
Prop. 3.1. However, the other implication is in general not satisfied: consider a
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non-normal local ring R with canonical module ωR such that τR(ωR) = C, the
conductor of the normalization (examples for such rings are the non-regular
1-step normal rings considered in Section 4). The canonical module is Cohen–
Macaulay over R, but ωR is not a module over the normalization R̃: by [4,
Thm. 3.3.4] R ∼= EndR(ωR) and thus by [15] ωR is not a module over R̃.

3.1. Trace ideals and finite CM type

The guiding question of this section is: which ideals in R are isomorphic to
trace ideals of Cohen–Macaulay modules? The first case to consider, is R of
finite CM-type, that is, there are only finitely many isomorphism classes of
CM-modules over R. Rings of finite CM-type have been extensively studied,
in particular, they are classified for rings of Krull-dimension ≤ 2, see [40] for
an overview and references.

Here we pose the following

Question 3.7. Let R be a complete local or graded ring. Are the following
equivalent?
(1) R is of finite CM-type.
(2) There are only finitely many possibilities for τR(M), where M ∈ CM(R).

It is clear that (1) implies (2), since τ(M1 ⊕ M2) = τ(M1) + τ(M2)
and there are only finitely many isomorphism classes of indecomposable CM-
modules over R. The other implication is also true for a class of rings coming
from geometry: coordinate rings of plane curve singularities. To prove this
we will use results of Greuel and Knörrer about 1-dimensional rings of finite
CM-type.

Proposition 3.8. Let R be a reduced Gorenstein ring. Let R′ and R′′ be two
finite birational extensions of R. Then CR′/R

∼= CR′′/R if and only if R′ ∼= R′′.

Proof. If R′ is isomorphic to R′′, then clearly their conductors are isomorphic.
For the other direction, if R ⊆ S is finite, then S is a CM-module over R.
Since R is Gorenstein, by Prop. 2.1, S is also a reflexive R-module. Now
Theorem 2.12 implies the result.

Corollary 3.9. Let (R,m, k) be a reduced local complete ring of dimension 1
and embedding dimension 2 and k containing Q (that is, R is the coordinate
ring of a plane curve singularity). Then R is of finite CM-type if and only if
there are finitely many possibilities for τR(M), M ∈ CM(R).

Proof. We have already seen that if R is of finite CM-type, then there only
exists a finite number of possible trace ideals. Suppose that there are only
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finitely many possibilities for τ(M). Since for any possible finite birational
extension R ⊆ S one has τR(S) = CS/R and by Prop. 3.8 τR(S) ∼= τR(S′)
if and only if S ∼= S′, it follows, that there are only finitely many possible
finite birational extensions of R. But this is exactly the characterization of
coordinate rings plane curves of finite CM-type of Greuel–Knörrer, see [21],
Satz 2.

Remark 3.10. The proof of [21, Satz 2] holds for all Gorenstein complete local
rings of dimension 1 that satisfy mult(R) < emb.dim(R) + 2, so also Cor. 3.9
extends to this case.

It is not clear how to generalize this proof to higher dimension, that
is, to Gorenstein singularities X = Spec(R) of finite CM-type and dimen-
sion greater than or equal to 2: by [6, 35] these X are precisely the ADE-
hypersurface singularities. So in order to get an analog to Cor. 3.9, one would
need to show that any Gorenstein ring R with finitely many isomorphism
classes of trace ideals CM-modules is isomorphic to the coordinate ring of
one of these ADE-singularities.
Example 3.11. An example for a ring of infinite CM-type is the coordinate
ring of the swallowtail singularity. The graded rank one CM-modules over the
swallowtail were classified by Hovinen [27, Thm. 4.4.7]. He showed in partic-
ular that the first fitting ideals, or equivalently, the trace ideals, of pairwise
non-isomorphic graded CM-modules of rank 1 are pairwise non-isomorphic.
This shows that there are infinitely many possibilities for trace ideals of CM-
modules in this example.

4. One-step normalization and conductors

In this section, let (R,m) be a one-dimensional reduced local ring. The most
natural normalization chain starts with

R ⊆ EndR(m) ⊆ · · ·

As defined in the introduction, we say that R has a 1-step normalization or
is 1-step normal if R̃ ∼= EndR(m). Note that 1-step normal rings include the
regular local rings, since in this case m ∼= R and thus also EndR(m) ∼= R.
Here we characterize 1-step normal rings in terms of their maximal ideal and
study connections with nearly and almost Gorenstein rings, see [24] for more
on these type of rings.

Recall that a local ring (or positively graded k-algebra) R is called nearly
Gorenstein if R is Cohen–Macaulay, admits a canonical module ωR and
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τR(ω) ⊇ m, where m is the (graded) maximal ideal of R. The trace of the
canonical module measures the non-Gorenstein locus of R. First we prove the
following fact, which has been proven for domains in [9, Prop. 2.14] (there it
is more generally shown that for 1-dimensional local domains every integrally
closed ideal is reflexive):

Proposition 4.1. Let (R,m) be a one-dimensional Cohen–Macaulay local
ring. Then m is a reflexive CM(R)-module.

Proof. First assume that R is regular. Then since the global dimension of R
is 1, the maximal ideal m is projective and thus reflexive. Assume now that
R is not regular. We show that m ∼= m∗∗ = HomR(HomR(m, R), R), which
by Prop. 2.3 is enough to show reflexivity of the maximal ideal. Consider the
exact sequence

0 −→ m −→ R −→ R/m −→ 0.

Applying HomR(−, R) to it yields the exact sequence

(2) 0 −→ HomR(R/m, R) −→ R −→ m∗ −→ Ext1(R/m, R) −→ 0.

Since R/m = k is of finite length over R and hence of depth 0, it follows that
HomR(R/m, R) = 0. Moreover, note that Ext1(R/m, R) is killed by m, and
thus a module of finite length over R. Applying HomR(−, R) to (2) gives

0 −→ HomR(Ext1(k,R), R) −→ m∗∗ −→ R −→ Ext1(Ext1(k,R), R) −→ · · · .

Here the same reasoning as above implies that HomR(Ext1(k,R), R) = 0 and
thus m∗∗ embeds into R. Assume that m∗∗ were isomorphic to R. Then, as
the dual of any module is reflexive (cf. Prop. 2.2), we have m∗ ∼= m∗∗∗ =
(m∗∗)∗ ∼= R. Now, looking back at sequence (2), the map R −→ m∗ = R must
be given by multiplication by some a ∈ R. But since the next term is killed
by m, R/aR is killed by m, which implies that aR = m and R is a discrete
valuation ring, contradiction.

On the other hand, Ext1(Ext1(k,R), R) is of finite length and annihilated
by m, which implies that the image of R in this module is also annihilated
by m. So the image is a factor of R/m = k and since the image is non-zero,
it must equal k. But this implies that m∗∗ is isomorphic to m.

Proposition 4.2. Let (R,m) be a reduced one-dimensional noetherian local
ring. Then C ⊇ m if and only if R is 1-step normal.

Proof. First assume that R is 1-step normal. If R is regular, then C = R
and we do not have to show more. If R is not regular, then it is easy to see



1016 Eleonore Faber

(by direct calculation) that EndR(m) = HomR(m, R). Since R has a 1-step
normalization, this means that m∗ ∼= R̃. Applying HomR(−, R) to both sides
of the equation yields

m∗∗ ∼= (R̃)∗ ∼= C .

Since by Prop. 4.1 m∗∗ is isomorphic to m, we have that m ∼= C. It remains
to show that C = m. Clearly C ⊆ m. For the other inclusion we only need to
show that m is closed under multiplication in R̃, which will render m an ideal
of R̃ and then by definition of the conductor, m ⊆ C. Therefore, let ϕ : C −→ m

be the isomorphism (as R-modules). Any element in R̃ can be written as r
s ,

for some r, s ∈ R, where s is a nonzerodivisor. Let m ∈ m, then m = ϕ(c)
for some c ∈ C. Since C is closed under multiplication in R̃, r

sc = c′ for some
c′ ∈ C, or equivalently, rc = sc′. Applying the R-isomorphism ϕ yields that
rϕ(c) = rm = sϕ(c′) is in m. Since s is a nonzerodivisor and ϕ(c′) ∈ m, the
claim follows.

For the other implication assume that C ⊇ m. If the inclusion is strict, then
R is regular and hence 1-step normal. If m = C, then EndR(C) = EndR(m),
and since the left hand side is equal to the normalization R̃, our claim fol-
lows.

We have the following connection between nearly Gorenstein rings and
1-step normal rings:

Corollary 4.3. Under the conditions of the proposition, if R is 1-step normal,
then R is nearly Gorenstein.

Proof. Since either R is regular or C = m, by Prop. 6.6 of [24] R is nearly
Gorenstein.

Remark 4.4. (1) The other implication does not hold: by Prop. 7.1 of [24], the
semigroup ring R = k[[t3, t5, t7]] is nearly Gorenstein. But the endomorphism
ring of the maximal ideal m = (t3, t5, t7) is k[[t2, t3]], which is clearly not the
normalization of R.

(2) There is also the slightly different concept of almost Gorenstein rings,
that was first considered by Barucci–Fröberg and later generalized by [19]. It
can be shown that 1-dimensional almost Gorenstein rings are always nearly
Gorenstein (see [24, Prop. 6.1]) but one can easily find examples of nearly
Gorenstein rings that are not almost Gorenstein. There seem to be no clear
relation between almost Gorenstein rings and 1-step normalization rings, since
e.g., the ring R from (a) is also almost Gorenstein but not 1-step normal and
on the other hand the ring S = k[[t5, t6, t7]] is 1-step normal but not almost
Gorenstein (see [24, Remark 6.2]).
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Another interesting property of 1-step normal rings is that the maximal
ideal is isomorphic to its dual.

Proposition 4.5. Let (R,m) be a 1-step normal complete integral domain of
dimension 1. Then m ∼= m∗.

Remark 4.6. The following short proof was kindly pointed out by the referee.
Alternatively, one could use more representation theoretic methods and study
the endomorphism ring of the R-module M = R⊕R̃ to show that the maximal
ideal m ∈ addM . Then either R is regular and m ∼= R ∼= m∗, or otherwise
this implies that m ∼= R̃.

Proof. If R is regular, then m ∼= R ∼= m∗. Assume that R is 1-step normal,
but not regular. Then R̃ ∼= EndR(m) = HomR(m, R) = m∗ � R. We show
that then m itself is isomorphic to R̃, which implies the claim. For this note
that by Prop. 4.2 the conductor C = m, and thus mR̃ ⊆ R. One can easily
see that the units of R are not contained in mR̃. So this inclusion is strict,
which implies mR̃ ⊆ mR. On the other hand, mR ⊆ mR̃, so it follows that
mR = mR̃. Since R is an integral domain, the normalization R̃ is a discrete
valuation ring, and the ideal mR̃ must be principal and isomorphic to R̃. So
m is indeed isomorphic to R̃.

Corollary 4.7. Let (R,m) be a one-dimensional complete integral domain.
Then R is 1-step normal if and only if R̃ is isomorphic to m.

Proof. If R is 1-step normal then the proof of Prop. 4.5 shows that m ∼= R̃.
Then

EndR(m) ∼= EndR(R̃) = R̃.

The other implication is clear.

Remark 4.8. Note that there is also the notion of self-dual module: if M is
a module over local ring R with canonical module ω, then M is self-dual
if M ∼= HomR(M,ω). The property of m to be self-dual in this sense has
e.g. been appeared in [29, 44] and more recently been studied in [36].

One can also ask if in Prop. 4.5 the condition m ∼= m∗ is also sufficient
for R to be 1-step normal, but this is certainly not true:
Example 4.9. Let R be a reduced local ring of dimension one with infinite
residue field and not a discrete valuation ring. Assume further that the mul-
tiplicity of R is equal to 2. By [44, Thm. 2.6] this condition is equivalent with
the property that the embedding dimension of R is 2 and m = m∗ (and even
that any CM-module over R is self-dual). Thus any plane curve of multiplic-
ity two has the property m ∼= m∗. Explicit examples are coordinate rings of
An-curves, which do not have a one-step normalization for n ≥ 3.
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5. Global spectrum of curve singularities

In this final section we assume that R is complete local noetherian. We are
interested in the global spectrum gs(R) of R, where R is one-dimensional and
reduced (i.e., Spec(R) is a curve singularity), defined as

gs(R) = {n ∈ N : ∃M ∈ CM(R), such that gl. dim EndR(M) = n} .

One restricts to CM-modules because this is a class of modules for which one
can use methods from representation theory. In order to show that 1 and 2
are always in the global spectrum (Lemma 5.1) and characterize when 3 is in
the global spectrum (Theorem 5.4, under some additional assumptions on R)
we will use normalization chains.

We start with a reduced local complete noetherian ring R of dimension 1
and consider a chain of the form (1). We want to determine

(3) gl. dim EndR(M), where M =
l⊕

j=0
Rj .

The most natural chain to study is

(4) R = R0 ⊆ EndR(mR) = R1 ⊆ · · · ⊆ EndRl−1(mRl−1) = Rl = R̃ ,

as in [38]. Also cf. [30] for a more representation theoretic approach (here
the non-regular one dimensional rings are considered as orders over a DVR,
which can be taken to be the Noether normalization since we assume R to be
complete). It has been shown that the global dimension of such an EndR(M)
is bounded above by l (see [38, Thm. 4]), but it is not clear which value
it will assume in general. Let us note that such chains and the global di-
mension of rings of the form (3) have been studied for semigroup rings by
Mousavidehshikh: he has shown that for a given integer n, one can construct
certain semigroup rings R such that n ∈ gs(R), and moreover that always
2 ∈ gs(R) for these R, see [43, Thm. 5.4 and Thm. 5.9]. In general it is not
clear, which integers are contained in gs(R).

5.1. Elements in the global spectrum

Lemma 5.1. Let R be a complete local CM ring of Krull-dimension one,
which is not regular. Then {1, 2} is always a subset of the global spectrum,
that is, there always exist NCRs of global dimension 1 and 2 of Spec(R).
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Proof. For a ring R with these properties the normalization R̃ is a finitely
generated CM-module. Since R̃ is regular, its global dimension is 1 and from
EndR R̃ = End

R̃
R̃ = R̃ follows that 1 ∈ gs(R). Now look at the chain (4).

If l = 0, then R is regular. So we have l ≥ 1. Let M = Rl−1 ⊕ Rl. Then,
since all Ri’s are finite extensions of R, one has EndR(M) = EndRi(M)
for all i = 1, . . . , l − 1 (see Lemma 2.6). Thus we may assume w.l.o.g. that
l = 1, i.e., M = R0 ⊕ R1, where R0 = R and R1 = R̃. Then EndR M is a
noncommutative resolution which is a generator. By [10, Prop. 2.8] the global
dimension is strictly greater than 1. By [38] Theorem 4, the global dimension
is bounded by 2. Hence gl. dim EndR M = 2.

This lemma immediately shows that for a complete local reduced ring
R of Krull-dimension 1, one has gs(R) = {1} if and only R is regular. For
rings of Krull-dimension 2 a slightly weaker statement holds: if R is a singular
complete normal domain with residue field of characteristic 0, then gs(R) =
{2} if and only if Spec(R) is a simple singularity, cf. [10, Cor. 4.13]. For a
ring of Krull-dimension d ≥ 3 it is not clear how to interpret the equality
gs(R) = {d} in terms of singularities of Spec(R).

For the remaining results, we make use of the classification of the complete
equicharacteristic 0 curve singularities of finite CM type by Greuel–Knörrer
[21]. Here we say that X = Spec(R) is a complete equicharacteristic 0 curve
singularity if (R,m) is a complete local CM ring of Krulldimension 1 and
k = R/m is algebraically closed and of characteristic 0. For the general clas-
sification of one-dimensional local rings of finite CM type, a good overview
can be found in [40].

Proposition 5.2. Let X = Spec(R) be a complete equicharacteristic 0 curve
singularity with R of finite CM type. Then 3 ∈ gs(R) if and only if Spec(R)
is not regular or an A2n-singularity.

Proof. First note that the only Gorenstein curves of finite CM-type are the
simple plane curves, see [21, Korollar 1]. The non-Gorenstein curves of finite
CM-type are the ones birationally dominating the simple plane curves, see
e.g. [48]. Let R be any of the finite CM type rings. Then from [15, Thm. 4.6]
it follows that 3 is contained in the global spectrum if and only if R is not an
A2n-singularity.

Proposition 5.3. Let X = Spec(R) be a complete equicharacteristic 0 curve
singularity and assume that R is 1-step normal. Then if R is Gorenstein,
Spec(R) is either regular with gs(R) = {1}, an A1-singularity with gs(R) =
{1, 2, 3} or an A2-singularity with gs(R) = {1, 2}. If R is not Gorenstein,
then there exists a generator/cogenerator M such that gl. dim EndR(M) = 3.
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Proof. If R is regular, then the only indecomposable CM-module is R itself
and gl. dim EndR(R) = gl. dimR = 1, which implies that gs(R) = {1}. There-
fore assume that R is not regular. We will consider R as an order over the
DVR T as e.g., in [14, 33]. Since R is complete, it has a canonical module
ωR, which is given as HomT (R, T ). Consider M = R⊕ R̃, then by Leuschke’s
theorem [38], the global dimension of EndR(M) ≤ 2. It is equal to 2 by the
same reasoning as in the proof of lemma 5.1. If R is of finite CM type then
Prop. 5.2 shows that 3 ∈ gs(R) if and only if Spec(R) is not of type A2n. If
R is of infinite CM-type, then by Prop. 4.2, the maximal ideal m is equal to
the conductor of the normalization, and hence m is an ideal in R̃. Then, since
R̃ is regular and thus of finite CM type, by Thm. 4.4 of [30] (generalization
of [16], Thm. 1.1) the representation dimension of R is bounded above by 3.
Since R is not of finite CM-type it is equal to 3 by [30, Thm. 4.1.3]. Explicitly,
one may take M = R⊕ ωR ⊕ R̃, by [30, Thm. 4.1.3] gl. dim EndR M ≤ 3 and
it is equal to two if and only if addM = CM(R).

Theorem 5.4. Let X = Spec(R) be a complete equicharacteristic 0 curve
singularity. Then 3 ∈ gs(R) if and only if Spec(R) is neither regular nor an
A2n-singularity, n ≥ 1. Equivalently: Spec(R) is an A2n-singularity if and
only if gs(R) = {1, 2}.
Proof. One direction is clear: if R is regular, then gs(R) = {1}, as argued
in Prop. 5.3. The global spectrum of an A2n-singularity is gsR = {1, 2},
by [15, Thm. 4.4]. For the other direction use the same notation as in the
proof of Lemma 5.1 above. If l = 1 then the assertion follows from Prop. 5.3.
Now assume that l ≥ 2. Then there is a chain R ⊆ R1 = EndR m ⊆ · · · ⊆
Rl = EndRl−1 mRl−1 = R̃. Suppose that 3 �∈ gs(R). Argue by induction:
for l = 1 we have shown the assertion. Now we may assume that Rl−i for
all i = 0, . . . , k ≤ l are A2i-singularities. Then Rl−i−1 ↪→ Rl−i is a radical
embedding, see [16] for the definition of this term. If Rl−i−1 were not of finite
CM-type then Theorem [30, Thm. 4.4] would yield an endomorphism ring of
global dimension 3. If Rl−i−1 is of finite CM-type, then Prop. 5.2 shows that
the only possibility is an A2i+2-singularity.

Remark 5.5. It would be interesting to consider also chains of endomorphism
rings that involve endomorphism rings over modules of rank ≥ 2, in particular,
one could make use of trace ideals in order to find suitable modules M that
are defined on a large integral extension of R.
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