
Pure and Applied Mathematics Quarterly
Volume 16, Number 4, 967–980, 2020

Modular forms from the Weierstrass functions
Hiroki Aoki and Kyoji Saito

Abstract: We construct holomorphic elliptic modular forms of
weight 2 and weight 1, by special values of Weierstrass ℘-functions,
and by differences of special values of Weierstrass ζ-functions, re-
spectively. Also we calculated the values of these forms at some
cusps.
Keywords: Weierstrass ℘-function, Weierstrass ζ-function, ellip-
tic modular forms, period integral.

Introduction

In the study of Jacobi inversion problem for the period maps associated with
primitive forms of types A2,B2 and G2, the second named author has intro-
duced a concept of Eisenstein series of types A2,B2 and G2 (cf. [Sa, §8]).

First, Eisenstein series of type A2 are nothing but the classical Eisenstein
series. In this case their weights are always equal or greater than 3.

Second, Eisenstein series of types B2 and G2, for the case when their
weights are equal or greater than 3, are described by shifted classical Eisen-
stein series [Sa, §8]. Their holomorphicity at cusps and the values at cusps
can be shown and calculated similar to the classical Eisenstein series by helps
of Riemann’s zeta-function or Dirichlet’s L-functions.

Third, Eisenstein series of types B2 and G2, for the case when their weights
are equal or less than 2, have completely different expressions. The weight 2
Eisenstein series of types B2 and G2 have the expressions as special values
of Weierstrass ℘-functions. The weight 1 Eisenstein series of type G2 has the
expression as a difference of special values of Weierstrass ζ-functions.

All of these Eisenstein series of types A2, B2 and G2, should be elliptic
modular forms, due to the theory of period maps introduced by the second
author. Actually, in the first and second cases, it is also clear by their expres-
sions. However, in the third case, it is not so obvious. In the present paper,
we give a short way to construct modular forms of weight 2 and 1, including
the above third case.
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1. From the Weierstrass ℘-function

In this section we construct elliptic modular forms of weight 2 from the
Weierstrass ℘-function. Since the Weierstrass ℘-function can be recognized
as a meromorphic Jacobi form of weight 2 and index 0, its special value at
z = sτ + t ( (s, t) ∈ Q2 − Z2 ) has a modularity. Therefore, it turns out to
be an elliptic modular form, by showing the holomorphicity at each cusps. It
has been already done by direct calculation (cf. [DS, §4.6]), however, here we
give a proof by using Jacobi forms.

1.1. Definition and notation

Let Ω ⊂ C be a Z-module generated by two R-linearly independent elements.
The Weierstrass ℘-function is defined by

℘(Ω, z) := 1
z2 +

∑
ω∈Ω−{0}

( 1
(z − ω)2 − 1

ω2

)

= 1
z2 +

∑
ω∈Ω−{0}

(2ω − z)z
(ω − z)2ω2

= 1
z2 +

∑
ω∈Ω−{0}

(
2 − z

ω

)
z(

1 − z
ω

)2 · 1
ω3 .

For a while we fix Ω. Since the sum in the third line of the above definition
converges absolutely and locally uniformly with respect to z, ℘(Ω, z) is a
meromorphic function on z in C. The set of all poles of ℘(Ω, z) is Ω and the
order at each pole is 2. Also, it is doubly periodic, namely,

℘(Ω, z) = ℘(Ω, z + ω) (ω ∈ Ω).

In this paper we move Ω as well as z. It is easy to see that

℘(Ω, z) = j2℘(jΩ, jz) (j ∈ C− {0}).

Here we put
℘(τ, z) := ℘(τZ + Z, z).

By a similar argument as above, we know that ℘ is a meromorphic function
on H× C, where we denote the complex upper half plane by

H := { τ ∈ C | Im τ > 0 } .

The set of all poles of ℘(τ, z) is { (τ, z) | ∃s, t ∈ Z s.t. z = sτ + t }.
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1.2. Construction of elliptic modular forms

For (s, t) ∈ Q2 − Z2, we define a holomorphic function on H by

f(s,t)(τ) := ℘(τ, sτ + t).

Then the following lemma holds.

Lemma 1. We have
(
f(s,t)|2A

)
(τ) := (cτ + d)−2f(s,t)

(
aτ + b

cτ + d

)
= f(s,t)A(τ)

for any A =
(
a b
c d

)
∈ SL(2,Z).

Proof.
(
f(s,t)|2A

)
(τ) := (cτ + d)−2f(s,t)

(
aτ + b

cτ + d

)

= (cτ + d)−2℘

(
aτ + b

cτ + d
, s

aτ + b

cτ + d
+ t

)

= (cτ + d)−2℘

(
aτ + b

cτ + d
Z + Z, s

aτ + b

cτ + d
+ t

)
= ℘

(
(aτ + b)Z + (cτ + d)Z, s(aτ + b) + t(cτ + d)

)
= ℘

(
τZ + Z, (sa + tc)τ + (sb + td)

)
= ℘

(
τ, (sa + tc)τ + (sb + td)

)
= f(s,t)A(τ).

Hence, especially, we have f(s,t)|2A = f(s,t) for any A ∈ Γ(s,t), where we
denote by

Γ(s,t) :=
{
A ∈ SL(2,Z)

∣∣∣ (s, t)A− (s, t) ∈ Z2
}
.

We remark that Γ(s,t) is an elliptic modular group, since Γ(s,t) contains the
principal congruence subgroup of level L

Γ(L) :=
{

A ∈ SL(2,Z)
∣∣∣∣∣ A ≡

(
1 0
0 1

)
(mod L)

}
,

where L is the common denominator of s and t.
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In 1985, Eichler and Zagier mentioned that the function ℘(τ, z) is a mero-
morphic Jacobi form of weight 2 and index 1. Namely, in their book [EZ], they
gave the explicit formula of ℘(τ, z) as a quotient of holomorphic Jacobi forms
[EZ, Theorem. 3.6. (p. 39)]:

− 3
π2℘(τ, z) = φ12,1(τ, z)

φ10,1(τ, z)

= e(z) + 10 + e(−z)
e(z) − 2 + e(−z) + 12

(
e(z) − 2 + e(−z)

)
e(τ) + · · · ,

where e(∗) := exp (2πi∗). This series converges absolutely and locally uni-
formly in {(τ, z) ∈ H× C | | Im z| < Im τ} (cf. [Ao, §3.2.]). Hence we have

lim
τ→i∞

f(s,t)(τ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−π2

3 · e(t) + 10 + e(−t)
e(t) − 2 + e(−t) (s = 0)

−π2

3 (0 < |s| < 1)

.

Since f(s+m,t) = f(s,t) for any m ∈ Z, we know that f(s,t) is holomorphic at
i∞ for any (s, t) ∈ Q2 − Z2, namely, we have

(1.1) lim
τ→i∞

f(s,t)(τ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−π2

3 · e(t) + 10 + e(−t)
e(t) − 2 + e(−t) (s ∈ Z)

−π2

3 (s �∈ Z)

.

Therefore, we have the following theorem.

Theorem 2. f(s,t) is an elliptic modular form of weight 2 with respect to
Γ(s,t).

Example 3. The following two forms appear as Eisenstein series of types B2
and G2 in Saito [Sa, §8], respectively. (Eisenstein series appears in Saito [Sa]
should be distinguished from the usual Eisenstein series appears in the theory
of modular forms.)

• f(0, 12 ), which appears as ω2
0℘

(1
2ω0

)
in Saito [Sa], is an elliptic modular

form of weight 2 with respect to Γ0(2). We have

lim
τ→∞

f(0, 12 )(τ) = 2
3π

2, lim
τ→∞

(
f(0, 12 )|2S

)
(τ) = −1

3π
2.
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Hence we have f(0, 12 ) = 2
3π

2α2, which is an unique modular forms of
weight 2 with respect to Γ0(2) up to constant multiplier.

• f(0, 13 ), which appears as ω2
0℘

(1
3ω0

)
in Saito [Sa], is an elliptic modular

form of weight 2 with respect to Γ0(3). We have

lim
τ→∞

f(0, 13 )(τ) = π2, lim
τ→∞

(
f(0, 13 )|2S

)
(τ) = −1

3π
2.

Hence f(0, 13 ) = π2α2
1, which is an unique modular forms of weight 2 with

respect to Γ0(3) up to constant multiplier.

Here we put S :=
(

0 −1
1 0

)
and denote the Hecke congruence subgroup of level

L by

Γ0(L) :=
{

A =
(
a b
c d

)
∈ SL(2,Z)

∣∣∣∣∣ b ≡ 0 (mod L)
}
.

Notation α2 and α1 correspond to α which appears in Aoki-Ibukiyama [AI,
§6] as elliptic modular forms of weight 2 and level 2 and weight 1 and level 3,
respectively.

1.3. Values at cusps

Although we have already known the values of f(s,t) at all cusps in previous
subsection, here we calculate them directly from the definition without using
the expression of ℘ by Jacobi forms. It is much easier than the calculation of
the Fourier expansion of f(s,t), essentially given in [DS, §4.6].

By Lemma 1, it is enough to calculate

lim
τ→i∞

f(s,t)(τ)

for any fixed 0 � s < 1 and 0 � t < 1. Let L be a common denominator of
s and t. Since f(s,t)(τ + L) = f(s,t)(τ), we may assume Re(τ) < L. Also we
assume Im(τ) > L. Recall that

f(s,t)(τ) = 1
z(τ)2 +

∑
(c,d)∈Z2−{(0,0)}

(
2 − z(τ)

ω(τ)

)
z(τ)(

1 − z(τ)
ω(τ)

)2 · 1
ω(τ)3 ,
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where ω(τ) := cτ +d and z(τ) := sτ + t, converges absolutely. We decompose
it as

f(s,t)(τ) = 1
z(τ)2 +

∑
d∈Z−{0}

(
2 − z(τ)

d

)
z(τ)(

1 − z(τ)
d

)2 · 1
d3 + f∗

(s,t)(τ),

where we put

f∗
(s,t)(τ) :=

∑
c∈Z−{0}

d∈Z

(
2 − z(τ)

ω(τ)

)
z(τ)(

1 − z(τ)
ω(τ)

)2 · 1
ω(τ)3 .

First we show that limτ→i∞ f∗
(s,t)(τ) = 0. Since

∣∣∣∣ z(τ)
ω(τ)

∣∣∣∣ < 1
2 for any τ

except for finitely many (c, d), we have
∣∣∣∣∣∣∣f

∗
(s,t)(τ) −

∑
finite

(
2 − z(τ)

ω(τ)

)
z(τ)(

1 − z(τ)
ω(τ)

)2 · 1
ω(τ)3

∣∣∣∣∣∣∣ < 10
∑

c∈Z−{0}
d∈Z

∣∣∣∣ z(τ)
ω(τ)3

∣∣∣∣ .

Here we use the following lemma.

Lemma 4. Let k � 3 be an integer. Then we have

∑
c∈Z−{0}

d∈Z

1
|ω(τ)|k

<
4

(Im τ)k ζR(k) + 2π
(Im τ)k−1 ζR(k − 1),

where we denote the Riemann’s zeta-function by ζR.

Proof.

∑
c∈Z−{0}

d∈Z

1
|ω(τ)|k

= 2
∞∑
c=1

∑
d∈Z

1
|cτ + d|k

< 4
∞∑
c=1

⎛
⎜⎝ 1

(c Im τ)k +
∫ ∞

0

dx(√
(c Im τ)2 + x2

)k
⎞
⎟⎠
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= 4
∞∑
c=1

(
1

(c Im τ)k +
∫ π

2

0

(cos θ)k−2

(c Im τ)k−1 dθ

)

< 4
∞∑
c=1

( 1
(c Im τ)k + π

2
1

(c Im τ)k−1

)

= 4
(Im τ)k ζR(k) + 2π

(Im τ)k−1 ζR(k − 1)

By using this lemma, we have

lim
τ→i∞

f∗
(s,t)(τ) =

∑
finite

lim
τ→i∞

⎛
⎜⎝
(
2 − z(τ)

ω(τ)

)
z(τ)(

1 − z(τ)
ω(τ)

)2 · 1
ω(τ)3

⎞
⎟⎠ = 0.

Therefore, we have

(1.2) lim
τ→i∞

f(s,t)(τ) = lim
τ→i∞

1
z(τ)2 + lim

τ→i∞

∑
d∈Z−{0}

(
2 − z(τ)

d

)
z(τ)(

1 − z(τ)
d

)2 · 1
d3 .

(Case: s �= 0)
From (1.2), we have

lim
τ→i∞

f(s,t)(τ) =
∑

d∈Z−{0}

−1
d2 = −2 ζR(2).

Comparing with (1.1), we have the famous formula

(1.3) ζR(2) = π2

6 .

Since Jacobi forms φ12,1 and φ10,1 are constructed from (Jacobi or lattice)
theta-functions, without using the Riemann’s zeta-function, this is a new
proof of (1.3).

(Case: s = 0)
From (1.2), we have

lim
τ→i∞

f(0,t)(τ) = 1
t2

+
∑

d∈Z−{0}

(
2 − t

d

)
t(

1 − t
d

)2 · 1
d3
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= 1
t2

+
∑

d∈Z−{0}

t

d3

∞∑
n=0

(n + 2)
(
t

d

)n

= 1
t2

+ 2
∞∑
n=1

∞∑
d=1

(2n + 1) t2n

d2n+2

= 1
t2

+ 2
∞∑
n=1

(2n + 1) ζR(2n + 2)t2n.

Hence we have

(1.4) 1
t2

+ 2
∞∑
n=1

(2n + 1) ζR(2n + 2)t2n = −π2

3 · e(t) + 10 + e(−t)
e(t) − 2 + e(−t) .

This is a relation between the special values of the Riemann’s zeta-function.
We remark that the equation (1.4) can be shown by using the Bernoulli
numbers B2n:

1
2z + z

ez − 1 =
∞∑
n=0

B2n

(2n)!z
2n, ζR(2n + 2) = (−1)nB2n+2(2π)2n+2

2(2n + 2)! .

2. From the Weierstrass ζ-function

In this section we construct elliptic modular forms of weight 1 from the Weier-
strass ζ-function. Since the Weierstrass ζ-function is quasi-periodic and is not
doubly periodic, its special value itself does not have a modularity. Classically,
to gain a modularity, we modify it to the Hecke form by decreasing the Weier-
strass η-function (cf. [La, Chapter 15] or [DS, §4.8]). However, here we can
construct an elliptic modular form taking the difference of two special val-
ues properly. Although this is a corollary of the classical argument, here we
calculate the values at some cusps by much easier calculation.

2.1. Definition and notation

Again let Ω ⊂ C be a Z-module generated by two R-linearly independent
elements. The Weierstrass ζ-function is defined by

ζ(Ω, z) := 1
z

+
∑

ω∈Ω−{0}

( 1
z − ω

+ 1
ω

+ z

ω2

)

:= 1
z
−

∑
ω∈Ω−{0}

z2

(ω − z)ω2
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:= 1
z
−

∑
ω∈Ω−{0}

z2(
1 − z

ω

) · 1
ω3 .

For a while we fix Ω. Since the sum in the third line of the above definition
converges absolutely and locally uniformly with respect to z, ζ(Ω, z) is a
meromorphic function on z in C. The set of all poles of ζ(Ω, z) is Ω and the
order at each pole is 1. It is not doubly periodic, however, ζ(Ω, z+ω)−ζ(Ω, z)
does not depend on z, but only on ω.

In this paper we move Ω as well as z. It is easy to see that

ζ(Ω, z) = jζ(jΩ, jz) (j ∈ C− {0}).

Here we put
ζ(τ, z) := ζ(τZ + Z, z).

By a similar argument as above, we know that ζ is a meromorphic function
on H×C. The set of all poles of ζ(τ, z) is { (τ, z) | ∃s, t ∈ Z s.t. z = sτ + t }.
We define η1(τ) and η2(τ) by

ζ(τ, z + τ) − ζ(τ, z) = η1(τ) and ζ(τ, z + 1) − ζ(τ, z) = η2(τ).

2.2. Construction of an elliptic modular form

For (s, t) ∈ Q2 − Z2, we define a holomorphic function on H by

g(s,t)(τ) := ζ(τ, sτ + t).

Then the following lemma holds.

Lemma 5. We have
(
g(s,t)|1A

)
(τ) := (cτ + d)−1g(s,t)

(
aτ + b

cτ + d

)
= g(s,t)A(τ)

for any A =
(
a b
c d

)
∈ SL(2,Z).

Proof.
(
g(s,t)|1A

)
(τ) := (cτ + d)−1g(s,t)

(
aτ + b

cτ + d

)

= (cτ + d)−1ζ

(
aτ + b

cτ + d
, s

aτ + b

cτ + d
+ t

)
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= (cτ + d)−1ζ

(
aτ + b

cτ + d
Z + Z, s

aτ + b

cτ + d
+ t

)
= ζ

(
(aτ + b)Z + (cτ + d)Z, s(aτ + b) + t(cτ + d)

)
= ζ

(
τZ + Z, (sa + tc)τ + (sb + td)

)
= ζ

(
τ, (sa + tc)τ + (sb + td)

)
= g(s,t)A(τ).

However, g(s,t) itself is not modular, since we have

(2.1)
(
g(s,t)|1A

)
(τ) − g(s,t)(τ) = g(s,t)A(τ) − g(s,t)(τ) = uη1(τ) + vη2(τ)

for any A ∈ Γ(s,t), where u := s(a− 1) + tc ∈ Z and v := sb + t(d− 1) ∈ Z.
Now we take r ∈ Z−{0} such that (rs, rt) �∈ Z2. We remark that Γ(s,t) ⊂

Γ(rs,rt). Let
hr,(s,t)(τ) := rg(s,t)(τ) − g(rs,rt)(τ).

Then, from (2.1), hr,(s,t) has the automorphic property of weight 1 with re-
spect to Γ(s,t), namely, we have hr,(s,t)|1A = hr,(s,t) for any A ∈ Γ(s,t). The
following lemma holds.

Lemma 6. hr,(s,t) is bounded at each cusp.

We give a proof of this lemma in the next subsection. Consequently, we
have the following theorem.

Theorem 7. hr,(s,t) is an elliptic modular form of weight 1 with respect to
Γ(s,t).

More generally, the following theorem holds.

Theorem 8. Let U := {u1, u2, . . . , um} be a set of m tuples, where uj :=
(sj , tj) ∈ Q2 − Z2. We put

hU (τ) :=
m∑
j=1

guj (τ)

and

ΓU :=
m⋂
j=1

Γuj .

If
∑m

j=1 uj = (0, 0), then hU is an elliptic modular form of weight 1 with
respect to ΓU .

Here we remark that g(−s,−t)(τ) = −g(s,t)(τ). Therefore, this theorem con-
tains Theorem 7. This theorem can be shown by the same way as Theorem 7.
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2.3. Values at cusps

In this subsection, we give a proof of Lemma 6, in a similar manner as sub-
section 1.3. Here we fix s and t. By the argument in the previous section, we
may assume that 0 � s < 1 and 0 � t < 1. By Lemma 5, it is enough to
show that hr,(s,t)(τ) is bounded for sufficiently large Im τ . Let L be a common
denominator of s and t. Since hr,(s,t)(τ + L) = hr,(s,t)(τ), we may assume
Re(τ) < L. Also we assume Im(τ) > L. From the definition, we have

(2.2) hr,(s,t)(τ) = r2 − 1
rz(τ) +

∑
(c,d)∈Z2−{(0,0)}

r(r − 1)z(τ)2(
1 − z(τ)

ω(τ)

) (
1 − rz(τ)

ω(τ)

) · 1
ω(τ)3 ,

where ω(τ) := cτ+d and z(τ) := sτ+t. The sum in (2.2) converges absolutely.
We decompose it as

hr,(s,t)(τ) = r2 − 1
rz(τ) +

∑
d∈Z−{0}

r(r − 1)z(τ)2(
1 − z(τ)

d

) (
1 − rz(τ)

d

) · 1
d3 + h∗

r,(s,t)(τ),

where we put

h∗
r,(s,t)(τ) :=

∑
c∈Z−{0}

d∈Z

r(r − 1)z(τ)2(
1 − z(τ)

ω(τ)

) (
1 − rz(τ)

ω(τ)

) · 1
ω(τ)3 .

Here we show that h∗
r,(s,t)(τ) is bounded for large Im τ . Since

∣∣∣∣ z(τ)
ω(τ)

∣∣∣∣ < 1
2 for any τ

except for finitely many (c, d), we have
∣∣∣∣∣∣h∗

r,(s,t)(τ) −
∑
finite

r(r − 1)z(τ)2(
1 − z(τ)

ω(τ)

) (
1 − rz(τ)

ω(τ)

) · 1
ω(τ)3

∣∣∣∣∣∣ < 4r(r − 1)
∑

c∈Z−{0}
d∈Z

∣∣∣∣∣ z(τ)2

ω(τ)3

∣∣∣∣∣ .

Hence, by using this Lemma 4, we know that h∗
r,(s,t)(τ) is bounded for large

Im τ . Therefore, hr,(s,t)(τ) is bounded for large Im τ also.
Although we know that hr,(s,t)(τ) is bounded for large Im τ , to calculate

the value at i∞ is not so easy, because hr,(s,t) does not vanish at i∞ except
when s = 0. Hereafter, we calculate the value at i∞ only in the case of s = 0.
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(Case: s = 0)
When s = 0, we have

lim
τ→i∞

h∗
r,(0,t)(τ) = 0.

Therefore we have

lim
τ→i∞

hr,(0,t)(τ) = r2 − 1
rt

+
∑

d∈Z−{0}

r(r − 1)t2(
1 − t

d

) (
1 − rt

d

) · 1
d3

= r2 − 1
rt

+ r
∑

d∈Z−{0}

t2

d3

∞∑
n=0

(
rn+1 − 1

)(
t

d

)n

= r2 − 1
rt

+ 2r
∞∑
n=1

∞∑
d=1

(
r2n − 1

) t2n+1

d2n+2

= r2 − 1
rt

+ 2r
∞∑
n=1

(
r2n − 1

)
ζR(2n + 2)t2n+1

= r2 − 1
rt

+ r
∞∑
n=1

(
r2n − 1

) B2n+2

(2n + 2)!(−1)n(2π)2n+2t2n+1

= r2 − 1
rt

+
(
− 1
rt

∞∑
n=1

B2n+2

(2n + 2)! (2πirt)2n+2 + r

t

∞∑
n=1

B2n+2

(2n + 2)! (2πit)2n+2
)

= r2 − 1
rt

− 1
rt

(
−1 + (πirt) − 1

12(2πirt)2 + 2πirt
e(rt) − 1

)

+ r

t

(
−1 + (πit) − 1

12(2πit)2 + 2πit
e(t) − 1

)

= 2πi
(
r − 1

2 + r

e(t) − 1 − 1
e(rt) − 1

)
.

Example 9. h2,(0, 13 ) appears as Eisenstein series of type G2 in Saito [Sa, §8],
that is, ω0

(
2ζ

(1
3ω0

)
− ζ

(2
3ω0

))
. This h2,(0, 13 ) is an elliptic modular form of

weight 1 with respect to Γ1(3). We have

lim
τ→∞

h2,(0, 13 )(τ) = −
√

3πi.

Hence h2,(0, 13 ) = −
√

3πiα1, which is an unique modular forms of weight 1
with respect to Γ1(3) up to constant multiplier. Here we put

Γ1(L) :=
{

A =
(
a b
c d

)
∈ SL(2,Z)

∣∣∣∣∣ a ≡ d ≡ 1 (mod L),
b ≡ 0 (mod L)

}
.
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