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Curve counting on An × C2
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Abstract: Let An → C2/Zn+1 be the minimal resolution of An-
singularity and X = An × C2 be the associated toric Calabi-Yau
4-fold. In this note, we study curve counting on X from both
Donaldson-Thomas and Gromov-Witten perspectives. In partic-
ular, we verify conjectural formulae relating them proposed by the
author, Maulik and Toda.
Keywords: Curve counting, An-surfaces, Calabi-Yau 4-folds.

1. Introduction

There are many studies of curve counting on resolutions of ADE singularities
(e.g. [BG1, BG2, BG3, M]). The perspective of this note is to work with a
toric Calabi-Yau 4-fold:

X = An × C2,

where π : An → C2/Zn+1 is the minimal resolution of An-singularity, and to
study Donaldson-Thomas and Gromov-Witten invariants on X. As X is non-
compact, we define counting invariants using torus localization. Let T ⊆ (C∗)4
be the 3-dimensional subtorus which preserves the holomorphic volume form
on X. It lifts to actions on several moduli spaces:

• moduli space Mg,0(X, β) of genus g stable maps,
• moduli space MX,β of one dimensional stable sheaves E with [E] = β

and χ(E) = 1,
• moduli space Pm(X, β) of PT stable pairs (s : OX → F ) with [F ] = β

and χ(F ) = m.
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They all have finitely many points as torus fixed locus and we may define cor-
responding counting invariants by localization formulae [GP, CMT1, CMT2,
CK1, CK2, CKM, CT1, CT3, CT4]. In particular, we have

GW0,β(X), DT4(X, β), P1,β(X) ∈ Q(λ1, λ2, λ3, λ4)
(λ1 + λ2 + λ3 + λ4)

,

which are rational functions in equivariant variables {λi}4
i=1 (see Defintion 2.2,

3.2 and 3.6). Note that the last two invariants are well-defined up to a choice
of orientation.

As an equivariant analogue of GW/GV/DT4 conjecture in [CMT1, CMT2],
we show the following:

Theorem 1.1 (Theorem 4.1). Let X = An × C2 and β ∈ H2(X,Z). Then
for certain choice of orientation, we have

P1,β(X) = DT4(X, β),

and a multiple cover formula

GW0,β(X) =
∑

k�1, k|β

1
k3 · DT4(X, β/k).

When n = 1, X = TotP1(−2, 0, 0) is the total space of canonical bundle of
a non-compact Fano 3-fold TotP1(0, 0). In such case, there is a conjecture on
fixing the choice of orientation in the above theorem [Cao], which we verify
in Corollary 4.2.

In the appendix, we study stable pair moduli spaces Pm(X, β) for general
m. We define the corresponding stable pair invariants (Definition A.2) and
explicitly compute several examples on X = A1 × C2.

Proposition 1.2 (Proposition A.4). Let X = A1 × C2 and β = d [P1] ∈
H2(X). For certain choice of orientation, we have

Pm,d [P1](X) = 0, if m < d; P1, [P1](X) = (λ3 + λ4)
λ3λ4

; Pm, [P1](X) = 0, if m�2;

P2,2 [P1](X) = (λ3 + λ4)2

2λ2
3λ

2
4

; P3,2 [P1](X) = 0.

Finally we remark that one can also relate stable pair invariants discussed
above to curve counting invariants defined by the Hilbert schemes In(X, β)
of one dimensional subschemes Z with [Z] = β and χ(OZ) = n. This is
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usually referred as the DT/PT correspondence (see conjectures proposed in
[CK2, CKM]).

2. Gromov-Witten invariants

2.1. Geometric set-up

Let Zn+1 ⊆ SU(2) be the cyclic group of order (n + 1) which acts on C2 by

g · (z1, z2) = (g · z1, g
−1 · z2).

The algebraic torus (C∗)2 acts on C2 by the standard diagonal action which
commutes with the cyclic group action. The minimal resolution

π : An → C2/Zn+1

is endowed with the induced (C∗)2-action, which makes it to be a toric Calabi-
Yau surface.

The product X = An × C2 is naturally endowed with a (C∗)2 × (C∗)2
action:

t · (x1, x2, z1, z2) = (t−1
1 x1, t

−1
2 x2, t

−1
3 z1, t

−1
4 z2),

which makes X to be a toric Calabi-Yau 4-fold.
We take the Calabi-Yau subtorus

T :=
{
t ∈ (C∗)2 × (C∗)2 | t1t2t3t4 = 1

}
,

which preserves the holomorphic volume form of X.
Let • be SpecC with trivial (C∗)4-action. Denote C ⊗ ti to be the 1-

dimensional (C∗)4-representation with weight ti and write λi ∈ H∗
(C∗)4(•) to

be its (C∗)4-equivariant first Chern class. Then

H∗
(C∗)4(•) ∼= Z[λ1, λ2, λ3, λ4],

H∗
T (•) ∼= Z[λ1, λ2, λ3, λ4]

(λ1 + λ2 + λ3 + λ4)
.

The homology of X satisfies

H∗(X,Z) = Z⊕H2(X,Z),
H2(X,Z) ∼= H2(An,Z) = Z〈[E1], [E2], · · · , [En]〉,
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where {Ei} are irreducible (−2)-curves in An such that Ei
⋂
Ej 
= ∅ iff |i −

j| = 1.
Using notation from Lie theory, we define

Definition 2.1. A class β ∈ H2(X,Z) corresponds to a positive root if

β = [Ei] + [Ei+1] + · · · + [Ej−1],

for some 1 � i < j � n + 1.

2.2. GW invariants

A stable map f : C → X factors through some f : C → S × {z} ↪→ X. The
moduli space M0,0(X, β) of genus zero stable maps to X satisfies

M0,0(X, β) ∼= M0,0(S, β) × C2.

Although it is non-compact, the torus T fixed locus is compact. The corre-
sponding Gromov-Witten invariants may be defined using localization for-
mula. We consider diagram

C f ��

π
��

S

M0,0(S, β),

where C is the universal curve and f is the universal stable map.

Definition 2.2.

GW0,β(X) :=
∫

[M0,0(S,β)]vir
T

e(−Rπ∗f
∗N),

where N = OS ⊗ t3 ⊕OS ⊗ t4 is the normal bundle of S × {0} ⊆ X.

Proposition 2.3. If β = d · α for d ∈ Z>0 and α ∈ H2(X,Z) corresponds to
a positive root,

GW0,β(X) = 1
d3 · (λ1 + λ2)

λ3λ4
.

Otherwise, GW0,β(X) = 0.
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Proof. A direct calculation (e.g. [M, Lem. 2.1]) shows the T -equivariant vir-
tual class [M0,0(S, β)]vir

T satisfies

[M0,0(S, β)]vir
T = (λ1 + λ2) · [M0,0(S, β)]vir

red,

where [M0,0(S, β)]vir
red ∈ A0(M0,0(S, β)) is the reduced virtual class for the

moduli space of stable maps to (holomorphic symplectic) surface S. Hence,
we have

GW0,β(X) = 1
λ3λ4

∫
[M0,0(S,β)]vir

T

1

= (λ1 + λ2)
λ3λ4

deg[M0,0(S, β)]vir
red

= 1
d3 · (λ1 + λ2)

λ3λ4
,

where the last equality is by the Aspinwall-Morrison formula (e.g. [M, Theo-
rem 1.1]).

Remark 2.4. Defining higher genus GW invariants of X = An×C2 requires
insertions. In fact, a more basic counting invariant is the so-called BPS or
Gopakumar-Vafa invariant. Since any curve in X sit inside the surface An,
whose BPS invariants vanish in higher genus (e.g. [BG2, M]). So we may
simply define higher genus (g � 1) Gopakumar-Vafa invariant of X to be
zero in accordance with the situation of compact Calabi-Yau 4-folds [CMT1,
CMT2, CT2, KP].

3. DT4 invariants

In the case of a compact Calabi-Yau 4-fold X, there are sheaf theoretical
approaches [CMT1, CT2, CMT2] to Klemm-Pandharipande’s Gopakumar-
Vafa type invariants defined using GW invariants of X [KP]. The relevant
moduli spaces are moduli spaces of one dimensional stable sheaves and stable
pairs. We study their T -equivariant analogues on toric Calabi-Yau 4-fold X =
An × C2 in this section.

3.1. One dimensional stable sheaves

Let X = An ×C2 with Calabi-Yau torus T ⊆ (C∗)4 action. Let MX,β denote
the moduli scheme of one-dimensional stable sheaves on X with Chern char-
acter (0, 0, 0, β, 1). It has an induced T -action whose fixed locus is described
as follows.
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Lemma 3.1. The torus fixed locus MT
X,β satisfies:

(1) MT
X,β = {OC}, if β corresponds to a positive root. Here C ⊆ S × {0} is

the unique curve in class β.
(2) MT

X,β = ∅, otherwise.

Proof. It is due to Bryan-Gholampour [BG3, Section 2].

Following the localization definition in DT4 theory (e.g. [CMT1, Section
3.3]), we define

Definition 3.2. If β ∈ H2(X,Z) corresponds to a positive root,

DT4(X, β) :=

√
(−1) 1

2 ext2X(OC ,OC) · eT
(
Ext2X(OC ,OC)

)
eT

(
Ext1X(OC ,OC)

)

∈ Q(λ1, λ2, λ3, λ4)
(λ1 + λ2 + λ3 + λ4)

.

Otherwise, we define DT4(X, β) := 0.

Remark 3.3. The above square root is unique up a sign corresponding to
a choice of orientation in defining DT4 invariants (see e.g. [BJ, CGJ, CL1,
CL2]).

Proposition 3.4. In Definition 3.2, if β corresponds to a positive root, then

DT4(X, β) = ±(λ3 + λ4)
λ3 · λ4

.

Proof. By adjunction, we have

RHomX(OC ,OC) �RHomS(OC ,OC) ⊕ RHomS(OC ,OC)[−2] ⊗ (t3 · t4)⊕
RHomS(OC ,OC)[−1]⊗t3 ⊕ RHomS(OC ,OC)[−1] ⊗ t4,

whose cohomology gives

Ext1X(OC ,OC) ∼= Ext1S(OC ,OC)⊕Ext0S(OC ,OC) ⊗ t3 ⊕ Ext0S(OC ,OC) ⊗ t4,

Ext2X(OC ,OC) ∼= Ext2S(OC ,OC) ⊕ Ext0S(OC ,OC) ⊗ (t3 · t4)⊕
Ext1S(OC ,OC) ⊗ t3 ⊕ Ext1S(OC ,OC) ⊗ t4.

Note that Ext0S(OC ,OC) ∼= C is generated by identity map whose T -weight
is zero. By T -equivariant Serre duality, we have
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Ext2S(OC ,OC) ∼= C⊗ (t1 · t2)
Ext1S(OC ,OC) ∼= Ext1S(OC ,OC)∨ ⊗ (t1 · t2).

Then, it is easy to obtain

eT (Ext2X(OC ,OC)) = (λ1 + λ2)(λ3 + λ4) ·
(
eT (Ext1S(OC ,OC) ⊗ t3)

)2
.

Since T is the CY torus, λ1 + λ2 + λ3 + λ4 = 0, so we can take
√
−eT (Ext2X(OC ,OC)) = ±(λ3 + λ4) · eT (Ext1S(OC ,OC) ⊗ t3).

Therefore

DT4(X, β) = ±(λ3 + λ4)
λ3 · λ4

· eT (Ext1S(OC ,OC) ⊗ t3)
eT (Ext1S(OC ,OC))

.

Finally, the conclusion follows from Riemann-Roch computation:

dimC Ext1S(OC ,OC) = 2 + β · β = 0.

3.2. Stable pairs

In this section, we study stable pair moduli space Pm(X, β) in the sense of
Pandharipande-Thomas [PT] and its T -equivariant counting invariant. For
the purpose of matching with GW invariants [CMT2], we restrict to the case
of m = 0, 1 here and leave the study of Pm�2(X, β) to the appendix.

The T -fixed locus can be easily determined as follows.

Lemma 3.5. The torus fixed locus Pm(X, β)T satisfies:
(1) P0(X, β)T = ∅.
(2) P1(X, β)T =

{
sC : OX → OC

}
, if β corresponds to a positive root. Here

C ⊆ S × {0} is the unique curve in class β and sC is the canonical section
of OC .
(3) P1(X, β)T = ∅, otherwise.

Proof. Given a T -fixed stable pair (s : OX → F ), we have an exact sequence

0 → IC → OX → F → coker(s) → 0,

where C be the scheme theoretical support of F and coker(s) is zero dimen-
sional.
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Then C ⊆ S × {0} is a Cohen-Macaulay curve and there exists {ai �
0}1�i�l such that

C =
l∑

i=1
aiEi.

Note that

(1) χ(OC) = −1
2C · C = 1

2
(
a2

1 + a2
l +

l−1∑
i=1

(ai − ai+1)2
)
.

Thus

χ(F ) = χ(OC) + χ(coker(s)) > 0, for β 
= 0.

Hence P0(X, β)T = ∅.
If χ(F ) = 1, we have coker(s) = 0 and F ∼= OC . By (1), it is elementary

to show χ(OC) = 1 is equivalent to the condition β corresponds to a positive
root.

Stable pair invariants can be defined similarly by torus localization.

Definition 3.6. (1) P0,β(X) := 0. (2) If β corresponds to a positive root,

P1,β(X) :=

√
(−1) 1

2 ext2X(IC ,IC)0 · eT
(
Ext2X(IC , IC)0

)
eT

(
Ext1X(IC , IC)0

) ∈ Q(λ1, λ2, λ3, λ4)
(λ1 + λ2 + λ3 + λ4)

.

Otherwise, P1,β(X) := 0.

Proposition 3.7. In Definition 3.6, if β corresponds to a positive root, then

P1,β(X) = ±(λ3 + λ4)
λ3 · λ4

.

Proof. From the distinguished triangle

OC → IC [1] → OX [1],
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we have a diagram

RΓ(OX)[1]

��

RΓ(OX)[1]

��
RHomX(IC ,OC) �� RHomX(IC , IC)[1] ��

��

RHomX(IC ,OX)[1]

��
RHomX(IC , IC)0[1] RHomX(OC ,OX)[2],

where the horizontal and vertical arrows are distinguished triangles. By taking
cones, we obtain a distinguished triangle

RHomX(IC ,OC) → RHomX(IC , IC)0[1] → RHomX(OC ,OX)[2].(2)

Combining with the distinguished triangle

RHomX(OC ,OC) → RHomX(OX ,OC) → RHomX(IC ,OC),

we obtain T -equivariant isomorphisms

Ext1X(IC , IC)0 ∼= Ext1X(OC ,OC),
Ext2X(IC , IC)0 ∼= Ext2X(OC ,OC).

So our calculation reduces to Proposition 3.4.

4. GW/GV/DT4 comparison

By Remark 2.4, higher genus (g > 0) Gopakumar-Vafa invariants of X are
zero (in particular, by Lemma 3.5 and Definition 3.6, P0,β(X) = 0, which
matches with the conjecture in the compact setting [CMT2]), so here we
concentrate on the genus zero comparison.

Theorem 4.1. Let X = An×C2 and β ∈ H2(X,Z). Then for certain choice
of orientation, we have

P1,β(X) = DT4(X, β),

and a multiple cover formula

GW0,β(X) =
∑

k�1, k|β

1
k3 · DT4(X, β/k).
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Proof. It is a combination of Proposition 2.3, 3.4 and 3.7.

Concerning the choice of orientation, there is a conjecture when X is
the total space of canonical bundle of a Fano 3-fold [Cao]. We restrict to
X = A1 ×C2, i.e. X = TotP1(−2, 0, 0). In this case, we have X = KY , where
Y = TotP1(0, 0) is a non-compact Fano 3-fold.

More specifically, in [Cao, Sect. 3.2], we defined twisted DT3 invariants
of Y = TotP1(l1, l2) with l1 + l2 � −1 to be

(3) DTtwist
3 (Y, d [P1]) := (−1)d(l1+l2)−1

∫
[MT0

Y,d
]vir

eT0(Nvir) ∈ Q(λ3, λ4),

where T0 ⊆ T is the two dimensional subtorus acting trivially on the base P1,
MY,d is the moduli scheme of one dimensional stable sheaves F on Y with
[F ] = d [P1], χ(F ) = 1 and Nvir is the virtual normal bundle of MT0

Y,d ↪→ MY,d.
The above signs (−1)d(l1+l2)−1 correspond to the choice of orientation which
conjecturally match with GW invariants.

Corollary 4.2. Conjecture 4.10 of [CMT1] and Conjecture 3.8 of [Cao] are
true for X = TotP1(−2, 0, 0), i.e.

GW0,d [P1](X) =
∑

k�1, k|d

1
k3 · DTtwist

3
(
Y,

d

k
[P1]

)
∈ Q(λ3, λ4),

where Y = TotP1(0, 0).

Proof. Similarly as the proof of Proposition 3.4, we have

DTtwist
3 (Y, d [P1]) = 0, if d > 1.

DTtwist
3 (Y, [P1]) = (−1) · eT0(Ext2Y (OP1 ,OP1))

eT0(Ext1Y (OP1 ,OP1))

= (−1) · eT0

(
C⊗ (t3 · t4)

)
eT0(C⊗ t3 ⊕ C⊗ t4)

= −(λ3 + λ4)
λ3λ4

.

By λ1 + λ2 + λ3 + λ4 = 0 and Proposition 2.3, we are done.

Appendix A. Stable pair invariants

For general m � 0, torus fixed stable pairs (s : OX → F ) ∈ Pm(X, β)T are
classified in [CK2, Section 2.2]. Moreover, by [CK2, Proposition 2.6], we have:
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Proposition A.1. For any I = (s : OX → F ) ∈ Pm(X, β)T , we have
Ext1(I, I)T0 = 0.

Therefore we may define

Definition A.2. Let X = An × C2 and β ∈ H2(X,Z). Then

Pm,β(X) :=
∑

[I]∈Pm(X,β)T
(−1)nI

√
(−1) 1

2 ext2X(I,I)0 · eT
(
Ext2X(I, I)0

)
eT

(
Ext1X(I, I)0

)(4)

∈ Q(λ1, λ2, λ3, λ4)
(λ1 + λ2 + λ3 + λ4)

,

where nI = 0 or 1 for each I ∈ Pm(X, β)T and the sign corresponds to a
choice of orientation.

We define Pm,β(X) = 0 if Pm(X, β)T = ∅.
Below, we study stable pair invariants on X = A1 × C2, i.e. X =

TotP1(−2, 0, 0). In this case, the T -fixed locus Pm(X, d [P1])T can also be
described as follows (ref. [CMT2, Section 4.2]).

Let p : X → P1 be the projection, then for I = (s : OX → F ) ∈
Pm(X, d [P1])T , we have (C∗)3-weight decompositions

p∗F =
⊕

(i0,i1,i2)∈Z3

F i0,i1,i2 ,

p∗OX =
⊕

(i0,i1,i2)∈Z3
�0

L−i0
0 ⊗ L−i1

1 ⊗ L−i2
2 ,

where L0 = OP1(−2) ⊗ t2, L1 = OP1 ⊗ t3 and L2 = OP1 ⊗ t4.
The T -equivariance of s implies morphisms

si0,i1,i2 : L−i0
0 ⊗ L−i1

1 ⊗ L−i2
2 → F−i0,−i1,−i2

in Coh(P1) which are surjective in one dimension, so either F−i0,−i1,−i2 = ∅
or

F−i0,−i1,−i2 = L−i0
0 ⊗ L−i1

1 ⊗ L−i2
2 ⊗OP1(Zi0,i1,i2)

for some T -fixed divisor Zi0,i1,i2 ⊆ P1. The OX -module structure implies

Zi,j,k ⊆ Zi+1,j,k, Zi,j+1,k, Zi,j,k+1

as closed subschemes of P1. So the set

ΔF :=
{
(i, j, k) ∈ Z3

�0
∣∣F−i,−j,−k 
= 0

}

is a (finite) three dimensional Young diagram with d number of boxes.
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As Zi0,i1,i2 is T -fixed, it is supported on 0 or ∞ ∈ P1 and determined
uniquely by its length n0

i0,i1,i2 , n
∞
i0,i1,i2 at 0 and ∞ respectively. Thus a T -

fixed stable pair I ∈ Pm(X, d [P1])T can be characterized by two sequences of
nonnegative integers

{
n0
i0,i1,i2

}
(i0,i1,i2)∈ΔF

,
{
n∞
i0,i1,i2

}
(i0,i1,i2)∈ΔF

, such that

n∗
i,j,k � n∗

i+1,j,k , n∗
i,j+1,k , n∗

i,j,k+1, ∗ = 0 or ∞,∑
(i,j,k)∈ΔF

(2i + n0
i,j,k + n∞

i,j,k) = (m− d),

where the last equation is deduced from χ(F ) = m.
As for the stable pair invariant, we note that

Pm,β(X) =
∑

[I]∈Pm(X,β)T
(−1)nI

√
(−1)m · eT

(
χX(I, I)0

)
,

where χX(−,−) is the Euler pairing on X. For I = (s : OX → F ) ∈
Pm(X, β)T , we have

χX(I, I)0 = χX(F, F ) − χX(OX , F ) − χX(F,OX)

in the T -equivariant K-theory KT
0 (•) of one point.

To choose a square root of its Euler class, we can first choose a ‘square
root’ of χX(I, I)0, i.e. finding χX(I, I)

1
2
0 ∈ KT

0 (•) such that

χX(I, I)0 = χX(I, I)
1
2
0 + χX(I, I)

1
2
0 ∈ KT

0 (•),

where (·) denotes the involution on KT
0 (•) induced by Z-linearly extending

the map
tw1
1 tw2

2 tw3
3 tw4

4 �→ t−w1
1 t−w2

2 t−w3
3 t−w4

4 .

By Serre duality, we then have

eT (χX(I, I)
1
2
0 ) = ±

√
(−1)m · eT (χX(I, I)0).

There are many ways to choose a square root χX(I, I)
1
2
0 , for example, when

F = j∗F0 ⊕ j∗F1, where j : P1 ↪→ X is the zero section, we can take

χX(I, I)
1
2
0 = χX(j∗F0, j∗F0) + χX(j∗F0, j∗F1) − χX(OX , j∗F0 ⊕ j∗F1),
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since we have (e.g. [CMT1, Lemma 4.1]):

χX(j∗F0, j∗F1) = χP1(F0, F1) − χP1(F0, F1 ⊗NP1/X)
+ χP1(F0, F1 ⊗ ∧2NP1/X) − χP1(F0, F1 ⊗ ∧3NP1/X),

where
NP1/X = OP1(−2Z∞) ⊗ t2 ⊕OP1 ⊗ t3 ⊕OP1 ⊗ t4.

Note also from equivariant Riemann-Roch formula, for any T -fixed divisor
(aZ0 + bZ∞) ⊂ P1,

ch
(
χP1(OP1(aZ0 + bZ∞))

)
= eaλ1

(1 − e−λ1) + e−bλ1

(1 − eλ1) ,

from which we obtain the following identities (ref. [CT1, Lemma 6.3]).

Lemma A.3. As elements in KT
0 (•), we have

χ(OP1(aZ0 + bZ∞))

=

⎧⎨
⎩

t−b
1 + · · · + t−1

1 + 1 + t1 + · · · + ta1 , if a, b � 0,

−t1 , if a = 0, b = −2.

We apply Lemma A.3 to explicitly compute stable pair invariants Pm,β(X)
for some small degree curve classes.

Proposition A.4. Let X = A1 × C2 and β = d [P1] ∈ H2(X). For certain
choice of orientation, we have

Pm,d [P1](X) = 0, if m < d; P1, [P1](X)= (λ3 + λ4)
λ3λ4

; Pm, [P1](X) = 0, if m � 2;

P2,2 [P1](X) = (λ3 + λ4)2

2λ2
3λ

2
4

; P3,2 [P1](X) = 0.

Proof. From the description of T -fixed locus, Pm(X, β)T = ∅ if m < d, so
invariants are zero.

For d = 1, m = n + 1 > 0, we have m possibilities of F :

F = OP1(aZ0 + bZ∞), where a, b ∈ Z�0, a + b = n,

for which we can choose

χX(I, I)
1
2
0 = 1 − t3 − t4 + t3t4 − χP1(OP1(aZ0 + bZ∞)).
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Combining with Lemma A.3, we have

eT

(
χX(I, I)

1
2
0

)
= (λ3 + λ4)

λn
1λ3λ4

· 1
a(a− 1) · · · ̂(a− a) · · · (a− n)

= (λ3 + λ4)
λn

1λ3λ4
· (−1)a−n

a ! (n− a)! .

By taking sum over 0 � a � n, we obtain

∑
[I]∈Pm(X,β)T

eT

(
χX(I, I)

1
2
0

)
= (λ3 + λ4)

λ3λ4
, if m = 1.

∑
[I]∈Pm(X,β)T

eT

(
χX(I, I)

1
2
0

)
= 0, if m > 1.

For d = 2, m = 2, the only possibilities for F are

F = OP1 + OP1 ⊗ t−1
3 or F = OP1 + OP1 ⊗ t−1

4 .

The corresponding Euler class satisfies

eT

(
χX(I, I)

1
2
0

)
= (λ3 + λ4)(2λ3 + λ4)

2λ2
3λ4(λ4 − λ3)

,
(λ3 + λ4)(2λ4 + λ3)

2λ3λ2
4(λ3 − λ4)

,

whose sum gives the answer.
For d = 2, m = 3, we have four possibilities of F :

F = OP1 + OP1(Z0) ⊗ t−1
3 , F = OP1 + OP1(Z∞) ⊗ t−1

3 ,

F = OP1 + OP1(Z0) ⊗ t−1
4 , F = OP1 + OP1(Z∞) ⊗ t−1

4 ,

where Z0 = {0}, Z∞ = {∞} are torus fixed points of P1.
By Lemma A.3, we have

χP1(OP1(Z0)) = 1 + t1, χP1(OP1(Z∞)) = 1 + t−1
1 .

This enables us to obtain the corresponding Euler class eT
(
χX(I, I)

1
2
0
)
:

(λ1 + λ4)(λ3 + λ4)2

λ1λ2
3λ4(λ1 + λ4 − λ3)(λ3 − λ4)

,
(λ4 − λ1)(λ3 + λ4)2

λ1λ2
3λ4(λ1 + λ3 − λ4)(λ3 − λ4)

,

(λ1 + λ3)(λ3 + λ4)2

λ1λ3λ2
4(λ1 + λ3 − λ4)(λ4 − λ3)

,
(λ3 − λ1)(λ3 + λ4)2

λ1λ3λ2
4(λ1 + λ4 − λ3)(λ4 − λ3)

,

whose sum is zero by a direct calculation.
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