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Curve counting on A4,, x C?
YALONG CAO*

To Professor Kyoji Saito with greatest admiration on the occasion of his
75th birthday

Abstract: Let A, — C2/Z, 1 be the minimal resolution of A,-
singularity and X = A,, x C? be the associated toric Calabi-Yau
4-fold. In this note, we study curve counting on X from both
Donaldson-Thomas and Gromov-Witten perspectives. In partic-
ular, we verify conjectural formulae relating them proposed by the
author, Maulik and Toda.
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1. Introduction

There are many studies of curve counting on resolutions of ADE singularities
(e.g. [BG1, BG2, BG3, M]). The perspective of this note is to work with a
toric Calabi-Yau 4-fold:

X =A, xC?

where 7 : A, — C?/Zy,1 is the minimal resolution of A,-singularity, and to
study Donaldson-Thomas and Gromov-Witten invariants on X. As X is non-
compact, we define counting invariants using torus localization. Let T C (C*)*
be the 3-dimensional subtorus which preserves the holomorphic volume form
on X. It lifts to actions on several moduli spaces:

e moduli space M (X, 3) of genus g stable maps,
e moduli space Mx g of one dimensional stable sheaves E with [E] = 8

and x(F) =1,
e moduli space P, (X, 5) of PT stable pairs (s : Ox — F) with [F] = 8
and x(F) = m.
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They all have finitely many points as torus fixed locus and we may define cor-
responding counting invariants by localization formulae [GP, CMT1, CMT2,
CK1, CK2, CKM, CT1, CT3, CT4]. In particular, we have

Q(A1, A2, Az, A1)

GWos(X), DTy (X, 3), Pig(X) € )
Oﬁ( ) 4( /B) 175( ) ()\1+)\2+)\3+)\4)

which are rational functions in equivariant variables {\; }{_; (see Defintion 2.2,
3.2 and 3.6). Note that the last two invariants are well-defined up to a choice
of orientation.

As an equivariant analogue of GW/GV/DT} conjecture in [CMT1, CMT2],
we show the following:

Theorem 1.1 (Theorem 4.1). Let X = A, x C? and B € Hy(X,Z). Then
for certain choice of orientation, we have

Prp(X) = DT4(X, f),

and a multiple cover formula

1
GWos(X)= Y = DTy (X, B/k).
k>1,k|8

When n =1, X = Totp:1(—2,0,0) is the total space of canonical bundle of
a non-compact Fano 3-fold Totp: (0, 0). In such case, there is a conjecture on
fixing the choice of orientation in the above theorem [Cao|, which we verify
in Corollary 4.2.

In the appendix, we study stable pair moduli spaces P,,(X, ) for general
m. We define the corresponding stable pair invariants (Definition A.2) and
explicitly compute several examples on X = 4; x C2.

Proposition 1.2 (Proposition A.4). Let X = A; x C? and 3 = d[P'] €
Hy(X). For certain choice of orientation, we have

A3+ A
Prapy(X) =0, if m <d; Py p)(X) = ( i\t\ 4); Py p1)(X) =0, if m>2;
34
A3+ Ag)?
Poapy(X) = B2 b () — 0.

VAR

Finally we remark that one can also relate stable pair invariants discussed
above to curve counting invariants defined by the Hilbert schemes I,,(X, )
of one dimensional subschemes Z with [Z] =  and x(Oz) = n. This is



Curve counting on A, x C? 661

usually referred as the DT /PT correspondence (see conjectures proposed in
[CK2, CKM]).

2. Gromov-Witten invariants
2.1. Geometric set-up

Let Z,1 C SU(2) be the cyclic group of order (n + 1) which acts on C? by

-1

g (z1,22) = (9 S21,9 - Z2).

The algebraic torus (C*)? acts on C? by the standard diagonal action which
commutes with the cyclic group action. The minimal resolution

7 Ay = C?/Zpin

is endowed with the induced (C*)2-action, which makes it to be a toric Calabi-
Yau surface.

The product X = A, x C? is naturally endowed with a (C*)? x (C*)?
action:

-1 —1 —1 —1
t- (.%'1,372721,22) - (tl Xy, t2 xo, t3 21, t4 22)7

which makes X to be a toric Calabi-Yau 4-fold.
We take the Calabi-Yau subtorus

7= {t € (C) x (€ | trtatata = 1},

which preserves the holomorphic volume form of X.

Let e be SpecC with trivial (C*)*-action. Denote C ® ¢; to be the 1-
dimensional (C*)*-representation with weight t; and write \; € H (e (®) to
be its (C*)%-equivariant first Chern class. Then

H(*C*)4 (.) = Z[/\lv )\27 )\37 )\4]7

Z[A\1, A2y A, A4
(A1 + X2+ A3+ \g)

Hr(e) =

The homology of X satisfies

H.(X,Z)=7® H2(X,7Z),
H2<Xﬂ Z) = HZ(AmZ) = Z<[E1]v [EQ]a T [En]>>
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where {E;} are irreducible (—2)-curves in A,, such that E; N E; # 0 iff |i —
jl=1
Using notation from Lie theory, we define

Definition 2.1. A class f € Ho(X,7Z) corresponds to a positive root if
B=IE]+ [Eixa] + -+ [Ej],

for some 1 <i<j<n+1.
2.2. GW invariants

A stable map f : C' — X factors through some f: C'— S x {2z} — X. The
moduli space M o(X, ) of genus zero stable maps to X satisfies

MO,O(Xa 6) = MO,O(Sv /6> X (CQ'

Although it is non-compact, the torus T fixed locus is compact. The corre-
sponding Gromov-Witten invariants may be defined using localization for-
mula. We consider diagram

f

P
M0,0(376>7

where C is the universal curve and f is the universal stable map.

Definition 2.2.

CGWos(X) := /_ e(—R, [*N),
(Woo(S,6))5"

where N = Og @ t3 ® Og ® t4 is the normal bundle of S x {0} C X.

Proposition 2.3. If 3 =d -« for d € Z~y and o € Hy(X,7Z) corresponds to
a positive 1oot,

1 ()\1 —i—)\z)

Otherwise, GWo 3(X) = 0.
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Proof. A direct calculation (e.g. [M, Lem. 2.1]) shows the T-equivariant vir-
tual class [Mo (S, B)]¥" satisfies

[Moo(S, B)IF = (M + A2) - [Moo(S, B)ME,

where [Moo(S, )5 € Ao(Moo(S,)) is the reduced virtual class for the
moduli space of stable maps to (holomorphic symplectic) surface S. Hence,
we have

1
)\3 )\4 /[Mo,o (S,ﬁ)}\:;“ir

)\ + )\ =wd vir
- Mdeg[Mo,o(S, B)tea
A3 A4

1 ()\1 -+ )\2)

a3 AsAg

GWoﬁ (X) = 1

where the last equality is by the Aspinwall-Morrison formula (e.g. [M, Theo-
rem 1.1]). O

Remark 2.4. Defining higher genus GW invariants of X = A,, x C? requires
insertions. In fact, a more basic counting invariant is the so-called BPS or
Gopakumar-Vafa invariant. Since any curve in X sit inside the surface A,
whose BPS invariants vanish in higher genus (e.g. [BG2, M]). So we may
simply define higher genus (g > 1) Gopakumar-Vafa invariant of X to be
zero in accordance with the situation of compact Calabi-Yau 4-folds [CMT1,
CMT2, CT2, KP].

3. DT, invariants

In the case of a compact Calabi-Yau 4-fold X, there are sheaf theoretical
approaches [CMT1, CT2, CMT2] to Klemm-Pandharipande’s Gopakumar-
Vafa type invariants defined using GW invariants of X [KP]. The relevant
moduli spaces are moduli spaces of one dimensional stable sheaves and stable
pairs. We study their T-equivariant analogues on toric Calabi-Yau 4-fold X =
A,, x C? in this section.

3.1. One dimensional stable sheaves

Let X = A, x C? with Calabi-Yau torus T C (C*)* action. Let M 5 denote
the moduli scheme of one-dimensional stable sheaves on X with Chern char-
acter (0,0,0,3,1). It has an induced T-action whose fixed locus is described
as follows.
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Lemma 3.1. The torus fized locus M):G,B satisfies:

(1) M% 5 = {Oc}, if B corresponds to a positive root. Here C' C S x {0} is
the unique curve in class 3.

(2) M¥ 5 =0, otherwise.

Proof. Tt is due to Bryan-Gholampour [BG3, Section 2]. O

Following the localization definition in DTy theory (e.g. [CMT1, Section
3.3]), we define

Definition 3.2. If € Hyo(X,Z) corresponds to a positive root,

\/(71>% extg((OC,OC) . BT(EXt§(<OC’ OC))
er (Exty(Oc, Oc))

Q(A1, A2, A3, \1)
A+ X+ A3+ N\y)

DT4(X, ) :=

Otherwise, we define DT4(X, 3) := 0.

Remark 3.3. The above square root is unique up a sign corresponding to
a choice of orientation in defining DTy invariants (see e.g. [BJ, CGJ, CL1,
CL2]).

Proposition 3.4. In Definition 3.2, if B corresponds to a positive root, then

DT4(X, B) = iM.
A3 - A\

Proof. By adjunction, we have

RHomx (O¢, O¢) ~RHomg(Oc, Oc) @ RHomg(Oc, Oc)[—2] & (t3 - ty) ®
RHomg(Oc, Oc)[—1]®ts @ RHomg(Oc, Oc)[—1] ® t4,

whose cohomology gives

Extx (O, O¢) = Extg(Oc, Oc)@Exty(Oc, Oc) @ t3 & Extg(Oc, Oc) @ ta,
Eth((Oc, Oc) = EXt?g(Oc, Oc) &) EXt%((’)C7 Oc) & (tg . t4) D
Exty(Oc, Oc) @ t3 ® Exty(Oc, Oc) @ ty.

Note that Ext%(Oc, O¢) = C is generated by identity map whose T-weight
is zero. By T-equivariant Serre duality, we have
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Ext%(Oc, 0c) 2 C® (1 - to)
EXt}g(Oc, Oc) = EXt}g(Oc, Oc)v ® (ty - t2).
Then, it is easy to obtain
€T(Extg((00, Oc)) = ()\1 + )\2)()\3 + )\4) . (eT(EXt}g(Oc, Oc) X® t3))2.

Since T is the CY torus, A1 + A2 + A3 + Ay = 0, so we can take

V—er(Ext%(Oc, 0c)) = +(As + A1) - ex(Exth(Oc, Oc) © ts).
Therefore

A3 + )\4) ‘ GT(EXt}g(Oc, Oc) & tg)

. (
DT4(X, ) =+ N M er(Exts(Oc, Oc))

Finally, the conclusion follows from Riemann-Roch computation:
dime Ext5(Oc, Oc) =2+ - =0. O
3.2. Stable pairs

In this section, we study stable pair moduli space P,,(X, ) in the sense of
Pandharipande-Thomas [PT] and its T-equivariant counting invariant. For
the purpose of matching with GW invariants [CMT2], we restrict to the case
of m = 0,1 here and leave the study of P,,>2(X, ) to the appendix.

The T-fixed locus can be easily determined as follows.

Lemma 3.5. The torus fized locus P, (X, 3)T satisfies:

(1) Po(X, p)" = 0.

(2) Pi(X,8)T = {sc: Ox — Oc¢}, if B corresponds to a positive root. Here
C C S x {0} is the unique curve in class 5 and sc is the canonical section
Of Oc.

(3) Pi(X,B)T =0, otherwise.

Proof. Given a T-fixed stable pair (s : Ox — F), we have an exact sequence
0— Ic - Ox — F — coker(s) — 0,

where C' be the scheme theoretical support of F' and coker(s) is zero dimen-
sional.
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Then C C S x {0} is a Cohen-Macaulay curve and there exists {a; >
0}i<i<i such that

i=1
Note that
1 1 -1
(1) \(Oc) = —5C-C = §<a%+a?+2(ai —ai1)?).
i=1
Thus

X(F) = x(O¢) + x(coker(s)) > 0, for g # 0.

Hence Py(X,3)T = 0.
If x(F') =1, we have coker(s) = 0 and F' = O¢. By (1), it is elementary

to show x(O¢) = 1 is equivalent to the condition 5 corresponds to a positive
root. |

Stable pair invariants can be defined similarly by torus localization.

Definition 3.6. (1) Pyg(X) :=0. (2) If B corresponds to a positive root,

\/(—1)%6Xt§<(10’10)° cer(Exti (Io,Io)o) — Q(A1, Ao, As, Aa)

P g(X) = .
1.6(X) er(Exty (I, Ic)o) (A1 + A2+ A3+ A\g)

Otherwise, Py g(X) := 0.
Proposition 3.7. In Definition 3.6, if B corresponds to a positive root, then

(A3 + )\4).

P X)==
1,8(X) N

Proof. From the distinguished triangle

Oc — [C[l] — Ox[l],
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we have a diagram

RI'(Ox)[l]] =—————=RI'(0x)[1]

l l

RHomX(IC, Oc) e RHomx(Ic, Ic)[l] —— RHomx(Ic, Ox)[l]

l |

RHOIDX(IC, ]C)O[H RHOmx(Oc,Ox)[Q],

where the horizontal and vertical arrows are distinguished triangles. By taking
cones, we obtain a distinguished triangle

(2)  RHomx (I, O¢) — RHomx (I¢, Ic)o[1] = RHomx (Oc, Ox)[2].
Combining with the distinguished triangle

RHomy (O¢, Oc) - RHomx (Ox, Oc) — RHomx (I¢, O¢),
we obtain T-equivariant isomorphisms

Extk (Io, I0)o = Exty (Oc, O¢),
Ext% (Ic, Ic)o = Ext} (Oc, Oc).

So our calculation reduces to Proposition 3.4. O
4. GW/GV /DT, comparison

By Remark 2.4, higher genus (¢ > 0) Gopakumar-Vafa invariants of X are
zero (in particular, by Lemma 3.5 and Definition 3.6, Py g(X) = 0, which
matches with the conjecture in the compact setting [CMT2]), so here we
concentrate on the genus zero comparison.

Theorem 4.1. Let X = A, x C? and 3 € Hy(X,Z). Then for certain choice
of orientation, we have

Pl,,@(X) = DT4(X7/B>7

and a multiple cover formula

1
GWos(X) = = DTy(X, B/k).
k>1, k|3
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Proof. 1t is a combination of Proposition 2.3, 3.4 and 3.7. O

Concerning the choice of orientation, there is a conjecture when X is
the total space of canonical bundle of a Fano 3-fold [Cao]. We restrict to
X = A; x C% ie. X = Totp1(—2,0,0). In this case, we have X = Ky, where
Y = Totp1(0,0) is a non-compact Fano 3-fold.

More specifically, in [Cao, Sect. 3.2], we defined twisted DT3 invariants
of Y = Totpi(ly,lz) with I3 + 13 > —1 to be

(3) DTYS(Y,d[P']) := (—1)%iF)~1 /

(M,

7 e, (N*") € Q(As, M),
d

where Ty C T is the two dimensional subtorus acting trivially on the base P!,
My 4 is the moduli scheme of one dimensional stable sheaves F' on Y with
[F] = d[P], x(F) = 1 and N'¥ is the virtual normal bundle of Mgod — Myq.
The above signs (—1)41+2)=1 correspond to the choice of orientation which
conjecturally match with GW invariants.

Corollary 4.2. Conjecture 4.10 of [CMT1] and Conjecture 3.8 of [Cao] are
true for X = Totp1(—2,0,0), i.e.

YY) € Qs M),

1 .
GWO,d [Pl](X) = Z i DT%Wlst (Y, -

k=1, k|d
where Y = Totp1 (0,0).

Proof. Similarly as the proof of Proposition 3.4, we have

DTS (Y, d[P']) =0, ifd>1.
ey (Exty (O, Op1))
er, (Exty (Opr, Op1))
(1. (C® (t3-ta))
en,(CRt3®C®ty)
(/\3 + /\4)
YV

DT (Y, [P']) = (-1)

By A + A2 + A3 + A4 = 0 and Proposition 2.3, we are done. O
Appendix A. Stable pair invariants

For general m > 0, torus fixed stable pairs (s : Ox — F) € P(X,3)T are
classified in [CK2, Section 2.2]. Moreover, by [CK2, Proposition 2.6], we have:
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Proposition A.1. For any I = (s : Ox — F) € P,(X,8)!, we have
Ext! (I, 1)} =0.

Therefore we may define

Definition A.2. Let X = A, x C? and 8 € Hy(X,Z). Then

%extg((lyl)o . 6T( EXt%{(Ia I)O)

| w VD
(4)  Pus(X)= > (-1 er (Extk (1, 1))

]ePn(X.8)T
Q()\la )\27 A-?); /\4)
A1+ X2+ A3+ A\y)

where ny = 0 or 1 for each I € P,(X,B)" and the sign corresponds to a
choice of orientation.
We define Prg(X) =0 if Py(X,B8)T = 0.

Below, we study stable pair invariants on X = A4; x C?, ie. X =
Totp1 (—2,0,0). In this case, the T-fixed locus P, (X,d[P!])T can also be
described as follows (ref. [CMT2, Section 4.2]).

Let p : X — P! be the projection, then for I = (s : Ox — F) €
P (X, d[P)T, we have (C*)3-weight decompositions

pF = @ oz
(i07i17i2)€Z3
p*OX — @ Lo—io ® Ll—u ® L2_i2,
(io,ihiz)GZ‘;o

where Ly = Op1(—2) @ ty, L1 = Op1 @ t3 and Ly = Op1 ® 1.
The T-equivariance of s implies morphisms

810711,12 : Lo—lo ® Ll—ll ® L2—12 — F—ZO,—l17—12

in Coh(P!) which are surjective in one dimension, so either F~%:~%:~2 = ()
Fromh =[50 @ [T @ Ly @ Op (Ziginyia)

for some T-fixed divisor Z; C P'. The Ox-module structure implies

0,81,12
Zijk € Ziv1jk, Zigj41ks Zijk+1
as closed subschemes of P!. So the set
Ap = {(i,4, k) € ZL,| F7777F £ 0}

is a (finite) three dimensional Young diagram with d number of boxes.
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As Z;y 014, is T-fixed, it is supported on 0 or co € P! and determined
uniquely by its length nf ivsiss Miviri, ab 0 and oo respectively. Thus a 7-

fixed stable pair I € P,,(X,d[P!])T can be characterized by two sequences of

nonnegative integers {n such that

S N L

10,241,012 (1'071‘172‘2)GAF7 0,811,022 (io,il,iz)EAF’
* * * * o

ni,j,k< i+1,5.k s Ti+1,ks Mg k+1> x = ( or oo,

Z (21+nwk+n”k) (m d)
(17.]7]‘:)6AF

where the last equation is deduced from x(F) = m.
As for the stable pair invariant, we note that

Pus(X)= 3 (=1)"\/(=1)" - er(xx (1, Do),

(1€ Pm (X,8)T

where yx(—,—) is the Euler pairing on X. For I = (s : Ox — F) €
P (X, 8)T, we have

xx (I, 1) = xx(F, F) — xx(Ox, F) — xx(F,Ox)

in the T-equivariant K-theory K (e) of one point.
To choose a square root of its Euler class, we can first choose a ‘square
1
root’ of xx(I,I)o, i.e. finding yx(I,1)¢ € K{ (o) such that

xx (I, o = xx(I, I) +xx (I, I) € K{ (o),

where (-) denotes the involution on K{ (e) induced by Z-linearly extending
the map

W1 4 W2 W3 L Wa —W1 g —W2 p—W3 1 — W4

By Serre duality, we then have

er(xx(I,1)§) = /(=1 - er (xx (I, 1)o).

1
There are many ways to choose a square root xx (I, 1), for example, when
F = j,Fy ® j. Fy, where j : P! — X is the zero section, we can take

1
XX<[7 [)5 = XX(]*F())]*FO) + XX(]*F()vj*FI) - XX(OXLj*FO @ j*F1)7
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since we have (e.g. [CMT1, Lemma 4.1]):

Xx (J«F0, jxF1) = xp1 (Fo, F1) — xpt (Fo, F1 @ Np1/x)
+ X[p)l(F[), P ® AQNIFM/X) — Xp! (Fo, Fi® /\3NIP’1/X)a

where

Npiyx = Op1(—2Z5) @ty @ Op1 @ t3 ® Op1 @ ty.
Note also from equivariant Riemann-Roch formula, for any T-fixed divisor
(CLZO + bZOO) C Pl,

ea)\l 6—b>\1

(—e™) " (d—eny

ch (X]pl (Op1(aZy + bZOO))) =

from which we obtain the following identities (ref. [CT1, Lemma 6.3]).

Lemma A.3. As elements in K{ (o), we have

X(O[[Dl (aZo + bZOO))
0t R Lt R g, ifa, b 20,
a —t1, if a=0,b=—2.
We apply Lemma A.3 to explicitly compute stable pair invariants Py, g(X)
for some small degree curve classes.

Proposition A.4. Let X = A; x C? and 8 = d[P'] € Hy(X). For certain
choice of orientation, we have

A3 + A
P (X) =0, if m < d; Py p(X)= %; Py (X) = 0, if m > 2;
3N4
A3+ Myg)?
Pyopry(X) = (o + 2)7 ; Pyop(X) =0.

2NN

Proof. From the description of T-fixed locus, Pp,(X, )T = 0 if m < d, so
invariants are zero.
Ford =1, m =n+1 > 0, we have m possibilities of F"

F =0p(aZy+bZy), wherea,b€ Zxg, a+b=n,
for which we can choose

1
Xx(f, [)02 =1—1t3—ty 4+ tgty — Xpl(Opl(aZO + bZOO)).
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Combining with Lemma A.3, we have

N (A3 M) ) 1
eT(XX(I,I)o> A As A a(a—l)--'(a/—\a)---(afn)
(A3 +A)  (=1)"

Nidshg  al(n—a)l’

By taking sum over 0 < a < n, we obtain

Z er <XX(I,I)§>:M, if m=1.

[1)€Pn(X,8)T Azhs
Z er (XX([,I)E):O, it m> 1.
IePn(X,8)T

For d =2, m = 2, the only possibilities for F' are
F = Opl +OP1 ®t;1 or F = Opl —‘rOPl ®t21
The corresponding Euler class satisfies

e < (I 1)%> _ a2+ M) (A A) (20 + Xg)
A 2)\3)\4(/\4 - /\3) ’ 2A3A£(A3 _ )\4) )

whose sum gives the answer.
For d = 2, m = 3, we have four possibilities of F"

F =0p1 + Op1(Zy) ® tgl, F=0p 4+ Op1(Zs) ® tgl,
F=0p + (’)]pl(Zo) ® tzl, F=0p + O]pl(Zoo) & tll,

where Zy = {0}, Z., = {oo} are torus fixed points of P*.
By Lemma A.3, we have

xp (Op1(Z0)) = 1+ t1, xp1(Opi(Zo)) = 1+ 27

1
This enables us to obtain the corresponding Euler class er(xx(I,1)¢):

(/\1 -+ )\4)()\3 + )\4)2 ()\4 — )\1)()\3 + )\4)2
MM F A= 2 s — M) A2 A — A (s — M)
()\1 + )\3)()\3 + )\4)2 ()\3 — )\1)()\3 + )\4)2

MASATAL + A3 = M) (Aa = A3)" MA3AZ( + A — A3) (A — A3)’

whose sum is zero by a direct calculation.



Curve counting on A, x C? 673

References

[BJ] D. Borisov AND D. JOYCE, Virtual fundamental classes for moduli
spaces of sheaves on Calabi-Yau four-folds. Geom. Topol. (21) (2017)
3231-3311. MR3692967

[BG1] J. BRYAN AND A. GHOLAMPOUR, Root Systems and the Quan-
tum Cohomology of ADE resolutions. Algebra Number Theory (2)(4)
(2008) 369-390. MR2411404

[BG2] J. BRYAN AND A. GHOLAMPOUR, The Quantum McKay Corre-
spondence for polyhedral singularities. Invent. Math. 178(3) (2009)
655-681. MR2551767

[BG3] J. BRYAN AND A. GHOLAMPOUR, BPS invariants for resolutions
of polyhedral singularities. Selecta Math. (N.S.) (15)(4) (2009) 521
533. MR2565049

[Cao] Y. CA0O, Genus zero Gopakumar-Vafa type invariants for Calabi-
Yau 4-folds II: Fano 3-folds. Commun. Contemp. Math. 22(7) (2020)
1950060, 25 pages. MR4135009

[CGJ] Y. Cao, J. GROSs, AND D. JOYCE, Orientability of moduli spaces
of Spin(7)-instantons and coherent sheaves on Calabi-Yau 4-folds.
Adv. Math. 368 (2020) 107134. MR4085139

[CK1] Y. Ca0 AND M. KooL, Zero-dimensional Donaldson-Thomas
invariants of Calabi-Yau 4-folds. Adv. Math. 338 (2018) 601~
648. MR3861713

[CK2] Y. CAa0 AND M. Koo, Curve counting and DT/PT cor-
respondence for Calabi-Yau 4-folds. Adv. Math. 375 (2020)
107371. MR4135421

[CKM] Y. Cao, M. KooL, AND S. MONAVARI, K-theoretic DT/PT cor-
respondence for toric Calabi-Yau 4-folds. arXiv:1906.07856.

[CL1] Y. Cao aND N. C. LEUNG, Donaldson-Thomas theory for Calabi-
Yau 4-folds. arXiv:1407.7659. MR3660236

[CL2] Y. Cao AND N. C. LEUNG, Orientability for gauge theories on
Calabi-Yau manifolds. Adv. Math. 314 (2017) 48-70. MR3658712

[CMT1] Y. Ca0o, D. MAULIK, AND Y. TODA, Genus zero Gopakumar-Vafa
type invariants for Calabi-Yau 4-folds. Adv. Math. 338 (2018) 41—
92. MR3861701


http://www.ams.org/mathscinet-getitem?mr=3692967
http://www.ams.org/mathscinet-getitem?mr=2411404
http://www.ams.org/mathscinet-getitem?mr=2551767
http://www.ams.org/mathscinet-getitem?mr=2565049
http://www.ams.org/mathscinet-getitem?mr=4135009
http://www.ams.org/mathscinet-getitem?mr=4085139
http://www.ams.org/mathscinet-getitem?mr=3861713
http://www.ams.org/mathscinet-getitem?mr=4135421
http://arxiv.org/abs/arXiv:1906.07856
http://arxiv.org/abs/arXiv:1407.7659
http://www.ams.org/mathscinet-getitem?mr=3660236
http://www.ams.org/mathscinet-getitem?mr=3658712
http://www.ams.org/mathscinet-getitem?mr=3861701

674

[CMT2]

[CT1]

[CT2

[CT3]

[CT4]

Yalong Cao

Y. Cao, D. MAULIK, AND Y. TODA, Stable pairs and Gopakumar-
Vafa type invariants for Calabi-Yau 4-folds. arXiv:1902.00003. To
appear in J. Eur. Math. Soc. (JEMS).

Y. CA0 AND Y. ToDA, Curve counting via stable objects in derived
categories of Calabi-Yau 4-folds. arXiv:1909.04897.

Y. CA0 AND Y. ToDA, Gopakumar-Vafa type invariants on Calabi-
Yau 4-folds via descendent insertions. arXiv:2003.00787. To appear
in Comm. Math. Phys.

Y. Cao AND Y. Tobpa, Tautological stable pair invariants of
Calabi-Yau 4-folds. arXiv:2009.03553.

Y. Cao AND Y. Tobpa, Counting perverse coherent systems on
Calabi-Yau 4-folds. arXiv:2009.10909.

[GP] T. GRABER AND R. PANDHARIPANDE, Localization of virtual
classes. Invent. Math. 135 (1999) 487-518. MR1666787

[KP] A. KLEMM AND R. PANDHARIPANDE, Enumerative geometry
of Calabi-Yau 4-folds. Comm. Math. Phys. 281 (2008) 621
653. MR2415462

[M] D. MAuULIK, Gromov-Witten theory of A,-resolutions. Geom. Topol.

(13) (2009) 1729-1773. MR2496055

[PT] R. PANDHARIPANDE AND R. P. THOMAS, Curve counting via sta-
ble pairs in the derived category. Invent. Math. 178 (2009) 407—
44°7. MR2545686

Yalong Cao

Kavli Institute for the Physics and Mathematics of the Universe (WPI)
The University of Tokyo Institutes for Advanced Study

The University of Tokyo

Kashiwa, Chiba 277-8583

Japan

E-mail: yalong.cao@ipmu.jp


http://arxiv.org/abs/arXiv:1902.00003
http://arxiv.org/abs/arXiv:1909.04897
http://arxiv.org/abs/arXiv:2003.00787
http://arxiv.org/abs/arXiv:2009.03553
http://arxiv.org/abs/arXiv:2009.10909
http://www.ams.org/mathscinet-getitem?mr=1666787
http://www.ams.org/mathscinet-getitem?mr=2415462
http://www.ams.org/mathscinet-getitem?mr=2496055
http://www.ams.org/mathscinet-getitem?mr=2545686
mailto:yalong.cao@ipmu.jp

	Introduction
	Gromov-Witten invariants
	Geometric set-up
	GW invariants

	DT4 invariants
	One dimensional stable sheaves
	Stable pairs

	GW/GV/DT4 comparison
	Stable pair invariants
	References

