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Categorification of Legendrian knots
Tatsuki Kuwagaki

Abstract: The concept of a perverse schober defined by
Kapranov–Schechtman is a categorification of the notion of a per-
verse sheaf. In their definition, a key ingredient is a certain purity
property of perverse sheaves. In this short note, we attempt to
describe a real analogue of the above story, as categorification of
Legendrian points/knots. The notion turns out to include various
notions such as semi-orthogonal decomposition, mutation braid-
ing, spherical functor, N -spherical functor, and irregular perverse
schober.

1. Perverse schober

The notion of a perverse schober is a categorification of the notion of a per-
verse sheaf, found by Kapranov–Schechtman [12]. In this section, let us recall
their observations over a one-punctured disk briefly.

Let D be a standard open disk in C centered at 0. We will consider the
category of perverse sheaves with singularity at 0 and denote it by Perv(D, 0).
The category is known to have the following linear-algebraic description: Let
C be the category given by the following data:

1. Object: a pair of vector spaces (V,W ) with a pair of linear maps f : V →
W and g : W → V satisfying the condition that idV −fg and idW −gf
are invertible.

2. Morphism: compatible linear maps.

Theorem 1.1 (Beilinson [2]). There exists an equivalence between C and
Perv(D, 0).

For a given perverse sheaf, the two vector spaces are given by the space
of vanishing cycles and nearby cycles, or more explicitly, V := RΓL(E)0 and
W := RΓL(E)x for a perverse sheaf E where L is the interval inside the disk
D (Figure 1.1) and RΓL(·) is the local cohomology sheaf.
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Figure 1.1: Skeleton L.

Figure 1.2: An-skeleton.

Even though a perverse sheaf is a complex of sheaves, its vanishing cy-
cles and nearby cycles are vector spaces with a single degree. This purity
property enables Kapranov–Schechtman to consider a categorification of per-
verse sheaves even with the lack of the definition of “complexes of cate-
gories”.

They define a categorification in the following way. The data is the fol-
lowing: two stable dg-categories C and D, a functor F : C → D, a left ad-
joint FL : D → C, and a right adjoint FR : D → C satisfying the condition
that Cone(idC → FRF ) and Cone(FFR → idD) are autoequivalences. Then
the induced morphisms between the Grothendieck groups K0(C) ⊗Z C and
K0(D)⊗Z C gives a perverse sheaf by Beilinson’s theorem. Hence this notion
is actually a categorification of perverse sheaf and it turns out that this no-
tion was previously known as a spherical functor by Anno–Logvinenko [1].
Kapranov–Schechtman considered speherical functor as one representation of
categorification of perverse sheaf (“perverse schober”) over D with one singu-
larity. Actually, there are other realizations if we choose other skeletons like
in Figure 1.2.
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For example, if we have n = 2, then this gives a notion of spherical pair,
which is also a categorification of perverse sheaves. Also, they can be defined
over general surfaces with arbitrary number of singular points.

There are many interesting examples of perverse schobers coming from
VGIT wall-crossing [6, 7], Flops [3], mirror symmetry [16, 8, 11].

2. Purity in microlocal sheaf theory

Next, we would like to describe a real analogue. Let M be either R or R
2.

Let C be a compact manifold with dimension equals to dimM − 1 (possibly
with multiple connected components) and ι : C → M be an immersion. Then
the conormal bundle of S := ι(C) has two components over each component
of C. We choose one component of the conormal bundle over each component
of C (a choice of co-orientation).

The co-orientation is a conical Lagrangian subset L := LC of T ∗M . It is
the same as the data of Legendrian point/knot K := KL at contact infinity
of T ∗M i.e. L = R>0 ·K. We set L(K) := L ∪ T ∗

MM where T ∗
MM is the zero

section.
We would like to consider a (weakly) constructible sheaf E over M whose

microsupport satisfies �(E) ⊂ L(K). For readers who are not familiar with
the notion of microsupport defined by Kashiwara–Schapira [13], we would like
to explain it in some plain words.

For simplicity, we further assume that the cardinality of each fiber of ι is
at most two.

Condition 2.1. 1. Let Ssm be the smooth locus of S = ι(C) and Ssing be
the singular locus. Then we have a decomposition M = Ssm � Ssing �
(M\S). Then the first condition is that a sheaf valued in C-vector spaces
E is constructible with respect to this decomposition i.e. For each stra-
tum σ of the decomposition, the restriction E|σ is a locally constant
sheaf.

2. Let us take p ∈ K, in other words, let us pick a ray (a single orbit of the
R>0-action) in L with the condition x := π(p) ∈ Ssm where π : T ∗M →
M is the projection. Take a small neighborhood U of x such that U∩S ⊂
Ssm and U\Ssm has exactly two components (Figure 2.1). The one of
two components of U\Ssm is denoted by U+ if it is in the direction of p.
The other one is denoted by U−. Then the second condition asks that the
restriction morphism RΓ(U, E) → RΓ(U+, E) is a quasi- isomorphism.

Let us also pick x+ ∈ U+ and x− ∈ U−. By the condition 1, the restriction
map RΓ(U, E) → Ex and RΓ(U+, E) → Ex+ are isomorphisms. So the condi-
tion 2 asks whether the canonical morphism Ex → Ex+ is a quasi-isomorphism
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Figure 2.1: Defining microsupport.

or not. This condition of course does not depend on the choice of x+, x−. Also,
it is independent of the choice of x inside one component of Ssm. There exists
the following fact.

Lemma 2.2. Condition 2.1 is equivalent to �(E) ⊂ L(K).

Hence one can consider Condition 2.1 as the definition.
In the above setup, we also have a canonical morphism Ex → Ex− . We set

(2.1) Ep := Cone(Ex → Ex−),

which is a priori a complex of vector spaces. This is called microstalk of E
at p.

The following definition is made by Kashiwara–Schapira [13].

Definition 2.3. We say E is pure if Ep is concentrated in degree 0 for all
p ∈ K.

We will use this purity to get a categorification of Legendrian points and
knots in the following sections.

3. Categorification of Legendrian points

In this section, we would like to discuss the case of M = R. Then C =
{x1/2, ..., xn−1/2} is a finite set of points. With this notation, we mean xi+1/2
is on the right of xj+1/2 if i > j. Let us fix the co-orientation over C which gives
LC ⊂ T ∗M . Let R\C = �i∈0,...,nJi be the decomposition into the connected
components where the boundaries of Ji are xi−1/2 and xi+1/2. Let Ji, Ji+1 be
the adjacent intervals i.e., the closures of them intersect.

Let E be a sheaf micro-supported in L(K) and we assume it is pure. Take
yi ∈ Ji and yi+1 ∈ Ji+1.

Suppose that the co-orientation over xi/2 is positive. By the discussion of
the definition of microsupport, there exists an identification Exi+1/2

∼= Eyi+1
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and we have a generalization map from Exi+1/2 to Eyi . Combining these we
have a map fi+1/2 : Eyi+1 → Eyi . If the co-orientation is negative, we get a map
fi+1/2 : Eyi → Eyi+1 . By the purity, Eyi , Eyi+1, and the cone of these morphisms
are all vector spaces (not complexes). This implies that fi+1/2 is injective and
the cone is the cokernel of fi+1/2. Hence we have the following:

Proposition 3.1. The category of pure sheaves micro-supported in L is equiv-
alent to the category given by the following data:

1. Object: ({Vi}i∈0,...,n, {fi+1/2}i∈0,...,n−1) where, for any i, Vi is a finite-
dimensional vector space, fi+1/2 is an injective morphism from Vi to
Vi+1 if the co-orientation over xi is negative, fi+1/2 is an injective mor-
phism from Vi+1 to Vi if the co-orientation over xi is positive,

2. Morphism: compatible linear maps.

So these sheaves are expressed in terms of very simple linear-algebraic
data.

Let us consider the simplest case where C is a singleton C∗ = {x1/2} and
has the negative co-orientation. Every situation is locally the same as this
situation up to the inversion of the orientation.

Ansatz 1. A categorification C of LC∗ is a triangulated category C with a
semi-orthogonal decomposition

(3.1) C = 〈C0, C1〉 .

Then the stalk Cyi over yi ∈ Ji is set by Cyi := 〈C0, Ci〉 and the microstalk
Cp1/2 over p1/2 with π(p1/2) = x0 is set by C1.

Since we have the localization

(3.2) Cy0 ↪→ Cy1 → C1,

by taking the Grothendieck group ant tensor by C over Z, we get an exact
sequence of C-vector spaces

(3.3) K0(C0) ⊗Z C ↪→ K0(C1) ⊗Z C → K0(C1) ⊗Z C.

This exact sequence gives a pure sheaf microsupported in LC∗ , hence the
ansatz is justified.

From this ansatz, one can consider a categorification for any co-orientation
of C. Let us consider the case where the co-orientation over each point in
C is negative. In this case, the data {Vi}i=0,...,n is a sequence of injective
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Figure 4.1: A crossing point with a coorientation.

morphisms i.e., a filtered vector space indexed by {0, ..., n}. Then in this
case, a categorification C is given by a triangulated category C with a semi-
orthogonal decomposition

(3.4) C = 〈C0, ..., Cn〉 .

Then the stalk Cyi over yi ∈ Ji is set by Cyi := 〈C0, ..., Ci〉 and the microstalk
Cpi+1/2 over pi+1/2 with π(pi+1/2) = xi+1/2 is set by Ci+1.

4. Categorification of Legendrian knots

In this section, let us consider the case M = R
2. Then C is a curve in this

case. To simplify the discussion, we assume that ι is an immersion which is
an embedding up to finite transversal double points. We call these singular
points of the immersion “crossing points”.

Remark 4.1 (Cusps). In general, when we consider “front projection” for
Legendrian knots, they can have cusps. In this note, we will avoid the appear-
ance of cusps. In the presence of cusps, we can still talk about pure sheaves
following Kashiwara–Schapira and we can still talk about their categorifica-
tion by introducing a pair of a category and an integer which categorifies a
shifted vector space. However we do not treat this notion in this note, since
we do not have any interesting examples of this categorification.

Let us consider a local picture around a crossing point (Figure 4.1). Here
the arrows are indicating the co-orientations. Consider a pure sheaf E micro-
supported in LC . For ∗ ∈ {N,E,W, S}, E∗ means the stalk of E over a point in
the corresponding domain indicated in Figure 4.1. Again we have morphisms,
EN → EW , EE and EW , EE → ES .
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Figure 4.2: Two paths.

Proposition 4.2 ([20]). The sequence

(4.1) EN → EW ⊕ EE → ES

is exact.

Using this, we have the following.

Proposition 4.3 ([20]). The category of pure sheaves micro-supported in a
crossing point is equivalent to the category given by the following data:

1. Object: (VN , VW , VE , VS , fNW , fNE , fWS , fES) where Va is a finite di-
mensional vector space and fab : Va → Vb is a linear inclusion for any
a, b ∈ {N,E,W, S}. Moreover, they satisfy the following; a sequence

(4.2) EN
fNW +fNE−−−−−−→ EW ⊕ EE

fWS−fES−−−−−−→ ES

is an exact sequence.
2. Morphism: compatible linear maps.

Note that there exists a short exact sequence of complexes

(4.3) 0 → (EN → EW ) → (EN → EW ⊕ EE → ES) → (EE → ES) → 0.

Since the middle term is acyclic, we have a quasi-isomorphism EW /EN ∼=
ES/EE . Since Ep1

∼= EW /EN and Ep4
∼= ES/EE , this implies Ep1

∼= Ep4 . Similarly,
one can deduce Ep2

∼= Ep3 . This is the locally constant property of microstalks
[13].

To consider a categorification of a crossing point, let us consider the two
paths γ1, γ2 depicted in Figure 4.2.

Then the pull back of a categorification of a crossing point along each γi
should be a categorification of two negative Legendrian points over γi.
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From these intuitions, we can imagine some necessary condition to cate-
gorify a crossing point.

1. Over points N,E,W, S, stalks are triangulated categories CN , CE ,
CW , CS .

2. We have semi-orthogonal decompositions CS = 〈CN , C11, C12〉 along γ1
and CS = 〈CN , C21, C22〉 along γ2.

3. Micro-stalks can be considered as Cp1
∼= C11, Cp2

∼= C12, Cp3
∼= C21, and

Cp4
∼= C22.

Then by the locally constant property of the micro-stalks, it is natural to
assume C11 ∼= C22 and C21 ∼= C12. Hence, from γ1 to γ2, the semi-orthogonal
components of CS are flipped;

(4.4) 〈CN , C11, C12〉 � 〈CN , C′
12, C′

11〉 := 〈CN , C21, C22〉 .

To realize this relation naturally, we set the following ansatz.

Ansatz 2. A categorification C of a crossing point is triangulated categories
C and C′ with semi-orthogonal decompositions

C = 〈CN , C11, C12〉 ,
C′ = 〈C′

N , C′
12, C′

11〉 .
(4.5)

with an equivalence C′ f−→ C such that

(4.6) 〈f(C′
N ), f(C′

12), f(C′
11)〉 = 〈CN ,LC11C12, C11〉

as semi-orthogonal decompositions where the right hand side is the left muta-
tion at C11. Then the stalk are given by CW := 〈CN , C11〉, CE := 〈CN , C′

12〉, and
CS := C. Microstalks are Cp1 := C11, Cp2 := C′

12, Cp3 := C12, and Cp4 := C11,

By taking K0(•)⊗ZC, we get a sheaf micro-supported in a crossing point.

Example 4.4. Let us describe a somewhat fancy example. Let C be a trian-
gulated category with an exceptional collection C = 〈E1, ..., En〉. Then it is
well-known that the braid group Brn acts on the set of exceptional collections
of C; let σi be a positive braiding of i-th braid and i+1-th braid. Then a part
of the exceptional collection 〈Ei, Ei+1〉 is mutated into

〈
E′

i+1, Ei

〉
.

For a positive braid σ, we can associate a Lengendrian K.
Let us take two paths γ1 and γ2. Let C be a categorification of K. Then

the pull-backs along γ1 and γ2 give two exceptional collections. Suppose the
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Figure 4.3: Braid.

Figure 4.4: Legendrian braid K.

exceptional collection given by C = 〈E1, ..., En〉. Then the exceptional collec-
tion associated to γ2 is a mutation associated to σ! “A braid mutation is a
categorification of the braid”.

5. Irregular perverse schober

5.1. Irregular singularities

First let us define the notion of an irregular singularity. Again, let D be a
unit disk centered at 0 in C and O(∗0) be the sheaf of meromorphic functions
with poles at 0. Let ∇ be a connection on O(∗0), then ∇ can be written as

(5.1) ∇ = d + f(z)dz

in the standard coordinate where f(z) is a meromorphic function with poles
at 0. If the order of the pole of f is less than 2, the connection ∇ is regular,
otherwise irregular.

One can extend the notion of the regularity to D-modules. A D-module
is an O-module with an action of ∂z with Leibniz rule. In other words, it
is a module over the ring D = O 〈∂z〉 where the generation is taken inside
EndC(O). A meromorphic connection (O(∗0),∇) has an associate D-module
O(∗0) where ∂z acts as ∇∂z . Another example is the delta function D-module
D · δ := D/D · z.



430 Tatsuki Kuwagaki

Let Db
coh(D) be the triangulated category of cohomologically coherent

D-modules. Let Db
rh(D, 0) be the triangulated hull of regular meromorphic

connections (O(∗0),∇) and the delta function D-module. Let Modrh(D, 0) ⊂
Db

rh(D, 0) be the full subcategory spanned by objects concentrated in degree
0. Then the regular Riemann–Hilbert correspondence states an equivalence
between Modrh(D, 0) and Perv(D, 0).

In the definition of Modrh(D, 0), if we replace regular meromorphic con-
nections with irregular meromorphic connections, we obtain irregular holo-
nomic D-modules Modhol(D, 0). In the irregular case, to state Riemann–
Hilbert correspondence, we have to take a bit more care.

A key fact is the following Hukuhara–Levelt–Turritten theorem. Let f =∑
k ckz

k/l be a Puiseux series in C((z1/l)). Then we set E(f) to be a rank 1
free C((z1/l))-module with the action of ∇ := d + df . We set C((z1/∞)) :=⋃

l C((z1/l)). The isomorphism class of E(f) only depends on the class [f ] ∈
C((z1/∞))/z−1

C[[z1/∞]].

Theorem 5.1 (Hukuhara–Levelt–Turritten theorem). Let (O(∗0)n,∇) be a
meromorphic connection. Then there exists a subset

{f1, ..., fm} ⊂ C((z1/∞))/z−1
C[[z1/∞]]

such that the ramified formal completion of (O(∗0)n,∇) is isomorphic to⊕ E(fi) ⊗Ri where each Ri is a regular connection.

We call the set of classes {f1, .., fm} ⊂ C((z1/∞))/z−1
C[[z1/∞]] the formal

type of (O(∗0)n,∇).
Let us fix a formal type T := {f1, ..., fm} and fix a lift to a set of meromor-

phic functions f̃1, .., f̃n (the choice of lift requires a little more care. See the
example below). We draw a Legendrian knot in the following procedure [19].
Let us fix a small positive number ε. We set

(5.2) ni(θ) := �
(
f̃i|z=εe

√
−1θ

)
.

Here f̃i is an element of the class [fi]. The graph of ni(θ) is living in S1 ×R.
By coorientating towards −∞, we get a front projection of Legendrian knot.

Example 5.2. Consider the Airy equation ∂2
t f − tf = 0. This equation has

an irregular singularity at ∞. We change the coordinate by t = 1/z. Then the
formal type of this equation is {±z−

5
2 }. Then ni(θ) = (−1)i+1�ε− 3

2 e−
3i
2 θ. The

two ni(θ) form a single multi-valued function by the monodromy. In this case,
we have an immersion of a single circle as the following picture (famously first
drawn by Stokes):
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Figure 5.1: Airy knot.

In general, the picture is an immersion of some circles. We denote the
Legendrian knot by K(T ). Let Shp

L(K(T ))(S
1 × R)0 be the category of pure

sheaves microsupported in L(K(T )) such that the stalk at (θ, t) ∈ S1 × R

with t � 0 is 0. Let MeroT (D, 0) be the category of meromorphic connections
with the formal type T , which is a full subcategory Modhol(D, 0).

Theorem 5.3 (Deligne, Malgrange, Shibuya, . . . , Shende–Treumann–
Williams–Zaslow [19]). There exists an equivalence

(5.3) MeroT (D, 0) � Shp
L(K(T ))(S

1 × R)0.

Let M be a holonomic D-module. The formal type of T is defined by
the formal type of M ⊗ O(∗0), which is a meromorphic connection. Let
ModT

hol(D, 0) be the full subcategory of Modhol(D, 0) spanned by objects of
formal type T .

Let E be an object of the category Shp
L(K(T ))(S1 × R)0. Let K(0) be the

component of K corresponding to f = 0. Now let us implicitly identify S1×R

with D\{0}. Recall the skeleton L considered in section 1 and take a point
p ∈ L∩ (D\0). Let Eo

p be the microstalk over E over K(0) at p. We set M the
monodromy of Eo

p around 0.
Let us introduce a category CT given by the following data:

1. Object: A pair (E , V, f, g) where E is an object of Shp
L(K(T ))(S1 × R)0,

V is a finite-dimensional C-vector space, and linear maps f : Eo
p → V

and g : V → Eo
p such that id−f ◦ g and id−g ◦ f are invertible and

id−g ◦ f = M .
2. Morphism: Compatible maps.
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The following theorem is stated by Malgrange [15] (see also [17]). We
present a sketch of proof using D’Agnolo–Kashiwara’s irregular Riemann–
Hilbert correspondence [4].

Theorem 5.4 (Irregular Beilinson theorem). There exists an equivalence
between CT and ModT

hol(D, 0).

Proof. We only sketch how to construct the corresponding objects. Suppose
given an object in CT . The regular Beilinson theorem (Theorem 1.1) gives
us a perverse sheaf P from the data of (Eo

p , V, f, g). On the other hand, we
have an enhanced ind-sheaf [4] (or irregular C-constructible sheaf [14]) over
D corresponding to E , which will be denoted by E. Let us take a small open
disk D around 0 and consider the restriction of E to S1 = ∂D. Let us put
the perverse sheaf P on D with singularity on 0 as an enhanced ind-sheaf.

As noted in [5], the restriction of E to S1 is precisely E up to Legendrian
isotopy. Let U be the the connected component of the complement of K(0)
which contains ∞. Let L be the local system on U with monodromy M . Then
there exists a canonical morphism L → E|S1 = E . By shrinking S1, this gives
a morphism L → E as enhanced ind-sheaves where L is a local system over
(D\0) ×R>0. Note that there also exists a canonical morphism from from L
as enhanced sheaves.

Take the gluing i.e. the kernel of L → P ⊕ E. This satisfies the irregular
perversity condition [14], hence gives an object of ModT

hol(D, 0).
On the other hand, given an object M of ModT

hol(D, 0), consider a mero-
morphic connection M ⊗ O(∗0). By taking the Riemann-Hilbert image of
this connection, we get an object E of Shp

LK(T )
(S1 × R)0. Again, we denote

the counterpart as an enhanced ind-sheaf by E. Consider the exact triangle

(5.4) E → Sol(M) → Q
[1]−→

which is the image of the exact triangle extending the morphism M →
M ⊗ O(∗0) under D’Agnolo–Kashiwara functor Sol. Then Q is supported
over 0. Let L′ be the local system corresponding to f = 0-part of E. Then
there exists a morphism E → L′ as enhanced sheaves. Composing this map
with the extension map Q → E[1], we get a perverse sheaf as the cone of
Q[−1] → L′.

5.2. Irregular perverse schober

Let us define an irregular perverse schober. For a given formal type T :=
{f1, ..., fn}, we get a Legendrian knot K(T ).
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Figure 5.2: Spherical functor.

Definition 5.5. Suppose 0 �∈ T . A Stokes schober of the formal type T is a
categorification of K(T ) following Ansatz 2.

A Stokes schober gives a set of semi-orthogonally decomposed triangu-
lated categories labeled by Stokes rays. The left mutation of a semi-orthogonal
decomposition in this sequence is identified with the next semi-orthogonal de-
composition by an equivalence. Note that walking around 0 ∈ D, we get a
monodromy autoequivalence for each Ci. This set of data was originally used
in Sanda–Shamoto [18] to treat Dubrovin-type conjecture (see also Exam-
ple 5.10).

Recall L a skeleton of D.

Definition 5.6. Suppose 0 ∈ T and fi = 0. An irregular perverse schober of
the formal type T is given by the following data:

1. A categorification C of K(T ) following ansatz 2. Let C =
〈C1, ..., Ci, ..., Cn〉 be the semi-orthogonal decomposition associated to
C along L.

2. A triangulated category D and a perverse schober consisting of D and
Ci such that the spherical twist for Ci is the same as the monodromy
autoequivalence of Ci.

The author was informed that Sanda–Shamoto obtained the same defini-
tion previously. The irregular Beilinson theorem tells us that this is actually
a categorification of an irregular singularity i.e., by taking K0 ⊗Z C, it gives
an irregular D-module.

Example 5.7 (N -spherical functors). Consider the knot given in Figure 5.2.



434 Tatsuki Kuwagaki

Figure 5.3: N -Spherical functor.

For example, a formal type T = {1/z2,
√
−1/z2} gives the knot. By the

definition, the corresponding irregular perverse schober is given by the data
(here we assume the equivalences involved in Ansatz 2 are the identities): a
semi-orthogonal decomposition 〈C1, C2〉 such that the mutation of 〈C1, C2〉 is
4-periodic. Recall the following theorem.

Theorem 5.8 (Halpern-Leistner–Shipman [10]). A four-periodic semi-
orthogonal decomposition gives a spherical functor and the converse is also
true.

Hence this irregular perverse schober gives a spherical functor. Note that
there is no D since 0 �∈ T .

One can also consider the following knot where the number of crossing is
2N .

By the same argument, this gives an N -spherical functor in the sense of
Dyckerhoff–Kapranov–Schechtman [9].

Example 5.9 (Quantum D-modules). The relation between irregular singu-
larities and semi-orthogonal decompositions has been observed in the context
of Dubrovin’s conjecture. In particular, the relation between mutation of SOD
and Stokes structure was studied and conjectured by Sanda–Shamoto [18]. In
our language, their conjecture can be rephrased as follows:

Conjecture 5.10 ((a part of) Sanda–Shamoto’s Dubrovin conjecture [18]).
Let X be a Fano manifold. There exists an irregular perverse schober whose
nearby cycle is Db(X) and the Hochschild decategorification gives a Stokes
data which is the irregular Riemann–Hilbert image of the quantum D-module
of X around 0 ∈ P

1
�
.

Irregular singularities of quantum D-modules appear not only in �-
directions but also Kaehler directions. In the work announced by Iritani,
irregular singularities of quantum D-module are observed in the situation of
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toric flips. By the philosophy of “discrepant resolution conjecture”, this should
correspond to semi-orthogonal decompositions of the derived category of co-
herent sheaves and should form an irregular perverse schober. The B-model
consideration of this subject will be explored in a work in progress joint with
Will Donovan.
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