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Generalization of the Weierstrass ℘ function and Maass
lifts of weak Jacobi forms

Hiroki Aoki

Dedicated to Professor Kyoji Saito on the occasion of his 75th birthday

Abstract: Typically, a Maass lift is a map from (holomorphic)
Jacobi forms of index 1 to Siegel modular forms of degree 2 or
other kinds of modular forms. In this paper, we construct Maass
lifts from weak Jacobi forms to (non-holomorphic) Siegel modular
forms of degree 2 with or without levels and characters, as formal
series. By the Koecher principle, the images of our lifts are not
holomorphic at cusps, even if the formal series converge. When the
level is equal or less than 3 and the character is trivial, the image
of our Maass lift is in the space of meromorphic Siegel modular
forms.
Keywords: ℘ function, Maass lifts, weak Jacobi forms.

1. Introduction

Three important keywords in this paper are ‘℘ function’, ‘Maass lifts’ and
‘weak Jacobi forms’. All of these three keywords are closely related to the
theory of Jacobi forms. In 1985, Eichler and Zagier introduced the concept of
Jacobi forms in their book [EZ]. In their book, they gave the relation between
our keywords to Jacobi forms:

(i) The Weierstrass ℘ function can be recognized as a meromorphic Jacobi
form of weight 2 and index 0 with respect to SL(2,Z).

(ii) They constructed a Maass lift. Actually, they gave a map from Jacobi
forms of index 1 to Siegel modular forms of degree 2.

(iii) They introduced the concept of weak Jacobi forms, which is just like
Jacobi forms but do not satisfy the condition on their Fourier coefficients
corresponding to the Koecher principle.
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Nevertheless, in their book, these three topics were treated independently. In
fact, all Siegel modular forms satisfy the Koecher principle, hence we can not
apply this Maass lift to weak Jacobi forms directly in the range of holomorphic
functions.

Ten years later, these three were connected by Borcherds. In 1995,
Borcherds [Bo] constructed modular forms on some orthogonal groups by
using infinite products (so called Borcherds products). In his paper, he men-
tioned not only Borcherds products but also Maass lifts (additive lifts) of
weak Jacobi forms. Actually, he gave maps from weak Jacobi forms of index
1 to modular forms on some orthogonal groups, by using the Weierstrass ℘

function. His idea seems to be able to apply to a map to Siegel modular forms
of degree 2, however, he did not give a complete proof in this case.

In this paper, first, we construct a Maass lift from weak Jacobi forms
to Siegel modular forms of degree 2, according to the idea of Eichler, Zagier
and Borcherds. After a slight review of basic properties of modular forms and
Jacobi forms in section 2, we construct a Maass lift without levels in section 3.
This part does not contain any new idea. The only thing the author do is to
give a complete proof of their idea, however, to prepare suitable notation is
useful to study the case with levels.

In 2012, Ibukiyama [Ib] constructed Maass lifts from Jacobi forms to
Siegel modular forms of degree 2 with levels and characters. In this paper,
second, we apply his idea to weak Jacobi forms. There are two difficulties in
this process. The first one is to find a meromorphic Jacobi form with levels
and characters corresponding to the ℘ function in the case of without levels.
We construct it in section 4. Another one is on the convergence of our Maass
lifts. We discuss it in section 5. Our discussion in section 5 includes some
complicated calculation. We show the precise process of it in section 6.

2. Preliminaries

In this section we review elliptic modular forms, Siegel modular forms and
Jacobi forms. To prepare suitable notation is useful to study Maass lifts.

2.1. Elliptic modular forms

First, we review elliptic modular forms. We denote the complex upper half
plane by

H := { τ ∈ C | Im τ > 0 }.
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The special linear group SL(2,R) acts on H transitively by

H � τ �→ g〈τ〉 := ατ + β

γτ + δ
∈ H

(
g =

(
α β
γ δ

)
∈ SL(2,R)

)
.

For any fixed k ∈ Z, this action induces the SL(2,R)-action on the set of all
holomorphic functions on H by

Hol(H) � f �→ (f |kg)(τ) := (γτ + δ)−kf(g〈τ〉) ∈ Hol(H),

where we denote the set of all holomorphic functions on X by Hol(X).
Let

SL(2,Z) := SL(2,R) ∩ Mat(2 × 2,Z)

and Γ(1) be a finite index subgroup of SL(2,Z). Let ψ(1) be a character of Γ(1),
namely, a homomorphism ψ(1) : Γ(1) → S1 := { z ∈ C | |z| = 1 }. Roughly,
an elliptic modular form is a Γ(1)-invariant (with ψ(1)) holomorphic function
on H. However, strictly, we should discuss with their behavior at cusps. Let
f be a Γ(1)-invariant holomorphic function on H, namely, we assume that f
satisfies ψ(1) (g1) f = f |kg1 for any g1 ∈ Γ(1). Then for any g ∈ SL(2,Z),
f |kg is

(
g−1Γ(1)g

)
-invariant (with a character). Since Γ(1) is a finite index

subgroup of SL(2,Z), there exists hg > 0 such that{
t ∈ R

∣∣∣ (1 t
0 1

)
∈ g−1Γ(1)g, ψ(1)

(
g

(
1 t
0 1

)
g−1

)
= 1

}
= hgZ.

Therefore, f |kg has a Fourier expansion

(2.1) (f |kg)(Z) =
∑

n∈h−1
g Z

cg(n)e(nτ),

where e(∗) := exp(2πi∗).

Definition 1. For f ∈ Hol(H) and k ∈ Z, we say f is an elliptic modular
form of weight k with character ψ(1) with respect to Γ(1) if f satisfies the
following two conditions:
(1) ψ(1) (g1) f = f |kg1 for any g1 ∈ Γ(1).
(2) On (2.1), cg(n) = 0 for any g ∈ SL(2,Z) and n < 0.

We denote by M
(1)
k (Γ(1);ψ(1)) the space of all elliptic modular forms

of weight k with character ψ(1) with respect to Γ(1). It is well known that
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M
(1)
k (Γ(1);ψ(1)) is finite-dimensional and especially

M
(1)
k (Γ(1);ψ(1)) = {0} (k � 0)

except when k = 0 and ψ(1) is the trivial character:

M
(1)
0 (Γ(1);1) = C,

where we denote the trivial character (map to 1) by 1.

2.2. Siegel modular forms of degree 2

Second, we review Siegel modular forms of degree 2. We denote the Siegel
upper half space of degree 2 by

H2 :=
{

Z = tZ =
(
τ z
z ω

)
∈ Mat(2 × 2,C)

∣∣∣ ImZ > 0
}
.

The symplectic group

Sp(2,R) :=
{
M =

(
A B
C D

)
∈ Mat(4 × 4,R)

∣∣∣∣∣tMJM = J :=
(
O2 −E2
E2 O2

)}

acts on H2 transitively by

H2 � Z �→ M〈Z〉 := (AZ + B)(CZ + D)−1 ∈ H2.

For any fixed k ∈ Z, this action induces the Sp(2,R)-action on the set of all
holomorphic functions on H2 by

Hol(H2) � F �→ (F |kM)(Z) := det(CZ + D)−kF (M〈Z〉) ∈ Hol(H2).

Let
Sp(2,Z) := Sp(2,R) ∩ Mat(4 × 4,Z)

and Γ(2) be a finite index subgroup of Sp(2,Z). Let ψ(2) be a character of Γ(2).
Roughly, a Siegel modular form is a Γ(2)-invariant (with ψ(2)) holomorphic
function on H2. Actually, the definition of Siegel modular forms is as follows:

Definition 2. For F ∈ Hol(H2) and k ∈ Z, we say F is a Siegel modular
form of weight k with character ψ(2) with respect to Γ(2) if F satisfies the
conditions ψ(2) (M1)F = F |kM1 for any M1 ∈ Γ(2).
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We denote by M
(2)
k (Γ(2);ψ(2)) the space of all Siegel modular forms of

weight k with character ψ(2) with respect to Γ(2). It is well known that
M

(2)
k (Γ(2);ψ(2)) is finite-dimensional and especially

M
(2)
k (Γ(2);ψ(2)) = {0} (k � 0)

except when k = 0 and ψ(2) is the trivial character:

M
(2)
0 (Γ(2);1) = C.

Although this definition of Siegel modular forms does not contain any
condition at their cusps, it is better to discuss with their behavior at cusps
here, because we need to see it carefully later. For (s, t, u) ∈ R3, put

T (s, t, u) :=

⎛⎜⎜⎜⎝
1 0 s t
0 1 t u
0 0 1 0
0 0 0 1

⎞⎟⎟⎟⎠ ∈ Sp(2,R).

Let F ∈ M
(2)
k (Γ(2);ψ(2)). Then for any M ∈ Sp(2,Z), F |kM is

(
M−1Γ(2)M

)
-

invariant (with a character). Since Γ(2) is a finite index subgroup of Sp(2,Z),

ΛM :=

⎧⎨⎩ (s, t, u) ∈ R
3
∣∣∣∣∣ T (s, t, u) ∈ M−1Γ(2)M,

ψ(2)
(
MT (s, t, u)M−1

)
= 1

⎫⎬⎭
is a rank 3 lattice in R3. Therefore, F |kM has a Fourier expansion

(2.2) (F |kM)(Z) =
∑

(n,l,m)∈Λ�
M

cM(n, l,m)e(nτ + lz + mω),

where

Λ�
M :=

{
(n, l,m) ∈ R

3 | ∀(s, t, u) ∈ ΛM , ns + lt + mu ∈ Z

}

is the dual lattice of ΛM . On (2.2), sometimes we write cM

(
n l

2
l
2 m

)
instead

of cM(n, l,m) and then we have

(F |kM)(Z) =
∑

(n,l,m)∈Λ�
M

cM

(
n l

2
l
2 m

)
e
(

tr
((

n l
2

l
2 m

)(
τ z
z ω

)))
.
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For g ∈ GL(2,R), put

R (g) :=
(

tg O2
O2 g−1

)
∈ Sp(2,R)

and
R
(
Γ(2);M

)
:=
{
g ∈ GL(2,R)

∣∣ R (g) ∈ M−1Γ(2)M
}
.

For any g ∈ R
(
Γ(2);M

)
, we have

(2.3) cM

(
n l

2
l
2 m

)
= ψ(2)

(
MR (g)M−1

)
(det g)−k cM

(
g

(
n l

2
l
2 m

)
tg

)
.

Hence, since the series (2.2) converges absolutely on H2, if cM(n, l,m) �= 0,

∑
g∈R(Γ(2);M)

∣∣∣∣∣e
(

tr
(

tg

(
n l

2
l
2 m

)
g

(
τ z
z ω

)))∣∣∣∣∣ ,
where g runs over R

(
Γ(2);M

)
, which is a finite index subgroup of SL(2,Z),

should converge on H2. Consequently we have the following proposition.

Proposition 3 (Koecher principle). On (2.2), if n < 0 or if 4nm − l2 < 0,
then cM(n, l,m) = 0.

To study more details of Siegel modular forms, we can refer a lot of good
textbooks.1

At the end of this subsection, we give the definition of meromorphic Siegel
modular forms. We denote the set of all meromorphic functions on X by
Mer(X).

Definition 4. For F ∈ Mer(H2) and k ∈ Z, we say F is a meromorphic
Siegel modular form of weight k with character ψ(2) with respect to Γ(2) if
there exists F1 ∈ M

(2)
k1

(Γ(2);1) such that FF1 ∈ M
(2)
k+k1

(Γ(2);ψ(2)).

2.3. Jacobi forms

Jacobi forms were first studied by Eichler and Zagier in their book [EZ]. In
this book, they studied Jacobi forms with respect to the full modular group,

1When the author was a graduate student, my supervisor Professor Kyoji Saito
recommends two textbooks [Fr] and Klingen [Kl].



Maass lifts of weak Jacobi forms 377

mainly. Based on their book, we study Jacobi forms for arbitrary finite index
subgroup in this subsection. For details, see [AI] or [Ao4].

Let T := {±T (0, 0, u) | u ∈ R}. In the sense of the action of Sp(2,R)
on H2, T is the set of all parallel transformation with respect to the variable
ω. Let Sp(2,R)J and Sp(2,R)N be the centralizer and normalizer of T in
Sp(2,R), respectively. Namely,

Sp(2,R)J :={ M ∈ Sp(2,R) | ∀M1 ∈ T, M−1M1M = M1 }

and

Sp(2,R)N :={ M ∈ Sp(2,R) | ∀M1 ∈ T, M−1M1M ∈ T }.

To study them, we define elements of Sp(2,R) by

S :=

⎛⎜⎜⎜⎝
0 1 0 0
1 0 0 0
0 0 0 1
0 0 1 0

⎞⎟⎟⎟⎠ , U (x, y) :=

⎛⎜⎜⎜⎝
1 0 0 y
x 1 y 0
0 0 1 −x
0 0 0 1

⎞⎟⎟⎟⎠ (x, y ∈ R)

and

C (g1) :=

⎛⎜⎜⎜⎜⎝
α√
λ1

0 β√
λ1

0
0

√
λ1 0 0

γ√
λ1

0 δ√
λ1

0
0 0 0 1√

λ1

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎝g1 =

(
α β
γ δ

)
∈ GL+(2,R)

λ1 = det g1

⎞⎟⎟⎠ ,

where GL+(2,R) := { g ∈ GL(2,R) | det g > 0 }. The following lemma is
easy to show by direct calculation.

Lemma 5. Any M ∈ Sp(2,R)J (resp. Sp(2,R)N) can be written as

(2.4) M = ±C (g1)U (x, y)T (0, 0, u)

uniquely, where g1 ∈ SL(2,R) (resp. GL+(2,R)) and x, y, u ∈ R.

The relations of these matrices in the above lemma are as follows:

C (g1)C (g2) = C (g1g2) ,

U (x, y)C (g1) = C (g1)U
( 1

det g1
(x, y)g1

)
,
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T (0, 0, u)C (g1) = C (g1)T
(

0, 0, u

det g1

)
,

U (x1, y1)U (x2, y2) = U (x1 + x2, y1 + y2)T (0, 0, x1y2 − x2y1) ,
T (0, 0, u)U (x, y) = U (x, y)T (0, 0, u)

and

T (0, 0, u1)T (0, 0, u2) = T (0, 0, u1 + u2) .

By using the decomposition (2.4), we define a group homomorphism λ :
Sp(2,R)N → R+ := { λ1 ∈ R | λ1 > 0 } by λ(M) := λ1.

Let k ∈ Z. The group action of Sp(2,R)N on Hol(H × C) × R is defined
by

(φ,m)|kM := (φ|k,mM,λ(M)m)
(
M ∈ Sp(2,R)N

)
,

where φ|k,mM is given by

(φ|k,mM) (τ, z)e(mλ(M)ω) = (φ(τ, z)e(mω)) |kM.

We can see φ|k,mM ∈ Hol(H× C) by using Lemma 5. Actually, we have

(φ|k,mC (g1)) (τ, z) :=λk
1 (γτ + δ)−k e

(
−mλ1γz

2

γτ + δ

)
φ

(
ατ + β

γτ + δ
,

λ1z

γτ + δ

)
,

(φ|k,mU (x, y)) (τ, z) := e
(
m(x2τ + 2xz + xy)

)
φ(τ, z + xτ + y)

and

(φ|k,mT (s, t, u)) (τ, z) := e(mu)φ(τ + s, z + t).

Let
Sp(2,Z)J := Sp(2,R)J ∩ Mat(4 × 4,Z)

and Γ(J) be a finite index subgroup of Sp(2,Z)J. Let m ∈ R and ψ(J) be
a character of Γ(J). Roughly, a Jacobi form is a Γ(J)-invariant (with ψ(J))
holomorphic function on H× C. However, as the Koecher principle does not
hold on Jacobi forms, we should discuss with their behavior at cusps. Let φ
be a Γ(J)-invariant holomorphic function on H×C, namely, we assume that φ
satisfies ψ(J) (M1)φ = φ|k,mM1 for any M1 ∈ Γ(J). The following proposition
holds (cf. [Ao4, Proposition 6]).
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Proposition 6. Let k ∈ Z, m ∈ R and ψ(J) be a character of Γ(J). We assume
that φ ∈ Hol(H × C) satisfies ψ(J) (M1)φ = φ|k,mM1 for any M1 ∈ Γ(J). If
m < 0, then φ = 0. If m = 0, then φ does not depend on τ .

Hence we may assume m � 0. For any g ∈ SL(2,Z), φ|k,mC (g) is(
C (g)−1 Γ(J)C (g)

)
-invariant (with a character). Since Γ(J) is a finite index

subgroup of Sp(2,Z)J,

ΛJ
g :=

⎧⎨⎩ (s, t) ∈ R
2
∣∣∣∣∣ T (s, t, 0) ∈ C (g)−1 Γ(J)C (g) ,

ψ(J)
(
C (g)T (s, t, 0)C (g)−1

)
= 1

⎫⎬⎭
is a rank 2 lattice in R2. Therefore, φ|kC (g) has a Fourier expansion

(2.5) (φ|kC (g)) (Z) =
∑

(n,l)∈(ΛJ
g)�

cg(n, l)e(nτ + lz),

where (
ΛJ
g

)�
:=
{

(n, l) ∈ R
2 | ∀(s, t) ∈ ΛJ

g , ns + lt ∈ Z

}
is the dual lattice of ΛJ

g .

Definition 7. For φ ∈ Hol(H×C), k ∈ Z, m ∈ R+∪{0}, we say φ is a weak
Jacobi form of weight k and index m with character ψ(J) with respect to Γ(J)

if φ satisfies the following two conditions:
(1) ψ(J) (M1)φ = φ|k,mM1 for any M1 ∈ Γ(J).
(2) On (2.5), cg(n, l) = 0 for any g ∈ SL(2,Z) and n < 0.
We say a weak Jacobi form φ is a Jacobi form if φ satisfies one more condition:
(3) On (2.5), cg(n, l) = 0 for any g ∈ SL(2,Z) and 4nm− l2 < 0.

We denote by Jk,m(Γ(J);ψ(J)) (resp. Jweak
k,m (Γ(J);ψ(J))) the space of all Ja-

cobi forms (resp. all weak Jacobi forms) of weight k and index m with char-
acter ψ(J) with respect to Γ(J). Clearly, Jk,m(Γ(J);ψ(J)) ⊂ Jweak

k,m (Γ(J);ψ(J))
holds.

At the end of this subsection, we give the definition of meromorphic Jacobi
forms.

Definition 8. For φ ∈ Mer(H×C), k ∈ Z and m ∈ R, we say φ is a meromor-
phic Jacobi form of weight k and index m with character ψ(J) with respect to
Γ(J) if there exists φ1 ∈ Jk1,m1(Γ(J);1) such that φφ1 ∈ Jk+k1,m+m1(Γ(J);ψ(J)).
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2.4. Congruent subgroups

For any natural number N ∈ N := {1, 2, 3, . . . }, let

Γ(2)
0 (N) :=

{
M =

(
A B
C D

)
∈ Sp(2,Z)

∣∣∣ C ≡ O2 (mod N)
}

and

Γ(1)
0 (N) :=

{
g =

(
α β
γ δ

)
∈ SL(2,Z)

∣∣∣ γ ≡ 0 (mod N)
}

be congruent subgroups of level N . Let

Γ(J)
0 (N) := Γ(2)

0 (N) ∩ Sp(2,Z)J.

The Maass lifts (of usual Jacobi forms) with respect to Γ(2)
0 (N) were precisely

studied in the paper by Ibukiyama [Ib] and the aim of this paper is to extend
them to weak Jacobi forms. According to the paper by Ibukiyama [Ib], here
we introduce a character induced from a Dirichlet character of modulo N .
Let χ be a Dirichlet character modulo N , namely, χ : Z → C is a function
satisfying the following three conditions:
(1) χ(δ) = 0 if (δ,N) �= 1 and χ(δ) ∈ S1 if (δ,N) = 1.
(2) χ(δ1) = χ(δ2) if δ1 ≡ δ2 (mod N).
(3) χ(δ1δ2) = χ(δ1)χ(δ2) for any δ1, δ2 ∈ Z.
Then

ψ(1)
χ (g) := χ(δ)

(
g =

(
α β
γ δ

)
∈ Γ(1)

0 (N)
)

ψ(2)
χ (M) := χ(detD)

(
M =

(
A B
C D

)
∈ Γ(2)

0 (N)
)

and

ψ(J)
χ (M) := χ(detD)

(
M =

(
A B
C D

)
∈ Γ(J)

0 (N)
)

are characters of Γ(1)
0 (N), Γ(2)

0 (N) and Γ(J)
0 (N), respectively. For simplicity,

we write

M
(1)
k (N ;χ) := M

(1)
k (Γ(1)

0 (N);ψ(1)
χ ), M

(2)
k (N ;χ) := M

(2)
k (Γ(2)

0 (N);ψ(2)
χ ),
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Jk,m(N ;χ) := Jk,m(Γ(J)
0 (N);ψ(J)

χ ) and J
weak
k,m (N ;χ) := J

weak
k,m (Γ(J)

0 (N);ψ(J)
χ ).

The following two propositions are important to construct Maass lifts (cf.
[AI]).

Lemma 9. Any M ∈ Γ(J)
0 (N) can be written as

(2.6) M = ±C (g1)U (x, y)T (0, 0, u)

uniquely, where g1 ∈ Γ(1)
0 (N) and x, y, u ∈ Z.

Lemma 10. The group Γ(2)
0 (N) is generated by Γ(J)

0 (N) and S.

2.5. Fourier-Jacobi expansion

Let k ∈ Z, N ∈ N and χ be a Dirichlet character of modulo N . Let F ∈
M

(2)
k (N ;χ). Since T (0, 0, 1) ∈ Γ(2)

0 (N) and ψ
(2)
χ (T (0, 0, 1)) = 1, F has a

Fourier expansion with respect to ω. By Koecher principle (Proposition 3), it
is

(2.7) F (Z) =
∞∑

m=0
φm(τ, z)e(mω) (φm ∈ Jk,m(N ;χ)) ,

which we usually call Fourier-Jacobi expansion of F . On the Fourier expansion

φm(τ, z) =
∞∑
n=0

∑
l∈Z

(4nm−l2�0)

c(n, l,m)e (nτ + lz) ,

since S ∈ Γ(2)
0 (N) and ψ

(2)
χ (S) = χ(−1), we have

c(n, l,m) = (−1)kχ(−1)c(m, l, n).

Now we introduce the formal series of Jacobi forms. For k ∈ Z, we define

FMk(N ;χ) :=
{

(φm)∞m=0 ∈
∞∏

m=0
Jk,m(N ;χ)

∣∣∣∣∣ (Sym)
}

and

FM
weak
k (N ;χ) :=

{
(φm)∞m=0 ∈

∞∏
m=0

J
weak
k,m (N ;χ)

∣∣∣∣∣ (Sym)
}
,
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where (Sym) means the following condition:

(Sym) : On the Fourier expansion φm(τ, z) =
∑

n,l c(n, l,m)e (nτ + lz) ,
c(n, l,m) = (−1)kχ(−1)c(m, l, n) holds for any n, l,m ∈ Z.

By using this notation, we can regard the Fourier-Jacobi expansion (2.7) as
a map

(2.8) FJ : M(2)
k (N ;χ) ↪→ FMk(N ;χ)

by identifying (φm)∞m=0 with their formal sum
∑∞

m=0 φm(τ, z)e(mω). The map
FJ is injective but may not be surjective. Nevertheless, by Lemma 10, if an
element of FMk(N ;χ) or FM

weak
k (N ;χ) converges locally uniformly on H2,

then it is a Siegel modular form, namely in the image of FJ. In [Ao1], the
author proved the following theorem:

Theorem 11. When N = 1, the map FJ is surjective. Actually we have

M
(2)
k (1;1) = FMk(1;1) = FM

weak
k (1;1).

The author conjecture that the map (2.8) is surjective even when N ≥ 2,
but we could not give a proof yet.

Conjecture 12. Let N ∈ N and χ be a Dirichlet character of modulo N .
Then the map FJ is surjective, namely we have

M
(2)
k (N ;χ) = FMk(N ;χ) (?).

We remark that FMk(N ;χ) = FM
weak
k (N ;χ) is not always true when

N � 2. If there exists φ ∈ Jweak
k,1 (N ;χ) whose Fourier expansion looks like

Jacobi form at i∞ but not a Jacobi form by its behavior at another cusps, then
its image by our Maass lift ML(φ), defined in section 5, is in FM

weak
k (N ;χ) but

not in FMk(N ;χ). Nevertheless, for N � 4 we can show a bit weak theorem.
We define

FM
+
k (N ;χ) :=

{
(φm)∞m=0 ∈

∞∏
m=0

Jk,m(N ;χ)
∣∣∣∣∣ (Sym+)

}

and

FM
weak+
k (N ;χ) :=

{
(φm)∞m=0 ∈

∞∏
m=0

J
weak
k,m (N ;χ)

∣∣∣∣∣ (Sym+)
}
,
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where (Sym+) means the following condition:

(Sym+) : (2.3) holds for any M ∈ Sp(2,Z)J,

while the condition (Sym) is equivalent to

(Sym) : (2.3) holds for M = E4 ∈ Sp(2,Z)J.

Then the following theorem holds. (cf. [Ao2])

Theorem 13. When N ≤ 4, we have

M
(2)
k (N ;χ) = FM

+
k (N ;χ).

Let
FJ1 : M

(2)
k (N ;χ) � F �→ φ1 ∈ Jk,1(N ;χ).

The Maass lift (of Jacobi forms) of level N and character χ is a map

ML : Jk,1(N ;χ) → M
(2)
k (N ;χ)

such that FJ1 ◦ ML = Id. From the next section, we see these Maass lifts
precisely.

3. Maass lifts without levels

The Maass lifts with levels include much more tedious calculations than with-
out levels. Hence, before discussing the lifts with levels precisely, we view the
story of the Maass lift without levels in this section.

Throughout this section, we fix N = 1 and therefore its Dirichlet character
χ should be trivial. Hence, for simplicity, we write M

(1)
k , M

(2)
k , Jk,m, . . .

instead of M(1)
k (1;1), M(2)

k (1;1), Jk,m(1;1), . . . .

3.1. Elliptic modular forms without levels

First of all, we remark that M
(1)
k = {0} when k is odd, because −E2 ∈

Γ(2)
0 (1) = SL(2,Z). Hence we may assume k is even. To construct the Maass

lift, first we review some special elliptic modular forms.
The Dedekind eta function is defined by

η(τ) := e
( 1

24τ
) ∞∏

n=1
(1 − e(nτ)) .
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This function η is holomorphic on H, does not have any zero on H and satisfies
two functional equations

η(τ + 1) = e
( 1

24

)
η(τ) and 1√

τ
η

(
−1
τ

)
= e

(
−1

8

)
η(τ),

where we choose 0 < arg (
√
τ) < π

2 . In this paper we do not give the defini-
tion of elliptic modular forms of fractional weights, however, since SL(2,Z)
is generated by two matrices ( 1 1

0 1 ) and
( 0 −1

1 0
)
, roughly, this η is an elliptic

modular form of weight 1
2 . To have an elliptic modular form of integral weight

from it, we raise it to 24th power. The Ramanujan Delta function is defined
by

Δ(τ) := η(τ)24 = e(τ)
∞∏
n=1

(1 − e(nτ))24 ∈ M
(1)
12 .

This Δ is an elliptic modular form of weight 12 and does not have any zero
in H.

For even k ≥ 4, the Eisenstein series of weight k (with level 1) is a
holomorphic function on H defined by

(3.1) Gk(τ) :=
∑′

(γ,δ)∈Z2

1
(γτ + δ)k ∈ M

(1)
k ,

where
∑′ is the summation over all pairs of integers (γ, δ) except (0, 0). More

generally, in this paper we denote by
∑′ the summation except the zero

vector. The Fourier expansion of Gk is given by

(3.2) Gk(τ) = 2ζ(k) + 2(2πi)k

(k − 1)!

∞∑
n=1

σk−1(n)e(nτ),

where σk−1 is a divisor function defined by σk−1(n) :=
∑

α|n α
k−1 and ζ is the

Riemann zeta function.
When k = 2, the sum in the equation (3.1) does not converge, however,

we can define G2 as a holomorphic function on H2 by the equation (3.2):

G2(τ) :=2ζ(2) + 2(2πi)2
∞∑
n=1

σ1(n)e(nτ)

= − (2πi)2

12

(
1 − 24

∞∑
n=1

σ1(n)e(nτ)
)
.(3.3)
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It is well known that G2 is not an elliptic modular form but a quasi-modular
form of weight 2 with respect to SL(2,Z). Namely, G2 satisfies the functional
equation

G2(τ) = −2πi γ

γτ + δ
+ (γτ + δ)−2G2

(
ατ + β

γτ + δ

)
for any

(
α β
γ δ

)
∈ SL(2,Z).

We remark that there are several ways to define Eisenstein series. Some-
times we use G̃k or ek defined by

G̃k(τ) :=(k − 1)!
2(2πi)k Gk(τ) = 1

2ζ(1 − k) +
∞∑
n=1

σk−1(n)e(nτ)(3.4)

or

ek(τ) := 1
2ζ(k)Gk(τ) = 1 − 2k

Bk

∞∑
n=1

σk−1(n)e(nτ)(3.5)

instead of Gk, where we use the functional equation of the Riemann zeta
function and the Bernoulli numbers B2k, defined by

z

exp(z) − 1 =
∞∑
n=0

Bn
zn

n! .

3.2. Jacobi forms and the Weierstrass ℘ function

Second we review some special (weak, meromorphic) Jacobi forms.
The structure of the bigraded ring of all weak Jacobi forms are determined

in the book of Eichler and Zagier [EZ]. This is given by

⊕
k,m∈Z

J
weak
k,m =

(⊕
k∈Z

M
(1)
k

)
[φ−2,1, φ0,1] ⊕ φ−1,2

(⊕
k∈Z

M
(1)
k

)
[φ−2,1, φ0,1] ,

where

φ−2,1(τ, z) = (e(z) − 2 + e(−z))
+ (−2e(2z) + 8e(z) − 12 + 8e(−z) − 2e(−2z)) e(τ)

+ · · · ∈ J
weak
−2,1 ,

φ0,1(τ, z) = (e(z) + 10 + e(−z))
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+ (10e(2z) − 64e(z) + 108 − 64e(−z) + 10e(−2z)) e(τ)
+ · · · ∈ J

weak
0,1

and

φ−1,2(τ, z) = (e(z) − e(−z))
+ (e(3z) + 3e(z) − 3e(−z) − 3e(−3z)) e(τ)

+ · · · ∈ J
weak
−1,2 .

Especially, we have

⊕
k∈2Z

⊕
m∈Z

J
weak
k,m =

(⊕
k∈Z

M
(1)
k

)
[φ−2,1, φ0,1](3.6)

and

⊕
k∈Z

J
weak
k,1 =

(⊕
k∈Z

M
(1)
k

)
φ−2,1 ⊕

(⊕
k∈Z

M
(1)
k

)
φ0,1.(3.7)

We remark that φ−2,1(τ, 0) = 0 and φ0,1(τ, 0) = 12. Therefore, from (3.6), if
φ ∈ Jweak

k,m satisfies the conditions φ(τ, 0) = 0 and k ∈ 2Z, then there exists
φ̃ ∈ Jweak

k+2,m−1 such that φ = φ̃φ−2,1. More precisely, we have

φ−2,1(τ, z) = (1 − e(z))2

e(z)

∞∏
n=1

(1 − e(nτ + z))2 (1 − e(nτ − z))2

(1 − e(nτ))4
(cf. [Bo]).

(3.8)

If we fix τ ∈ H and consider φ−2,1(τ, z) as a holomorphic function with respect
to z on C, the equation (3.8) means that the set of all zeros of φ−2,1 is Z+ τZ

and at each zero its order is 2.
The Weierstrass ℘ function is a meromorphic function on H× C defined

by

℘(τ, z) := 1
z2 +

∑′

(x,y)∈Z2

( 1
(z − xτ − y)2 − 1

(xτ + y)2
)
.

If we fix τ ∈ H and consider ℘(τ, z) as a meromorphic function with respect
to z on C, the set of all poles of ℘ is Z+τZ and at each pole its order is 2. It is
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well known that the Weierstrass ℘ function satisfies the functional equations

℘(τ, z) = ℘(τ, z + xτ + y) = (γτ + δ)−2℘

(
ατ + β

γτ + δ
,

z

γτ + δ

)

for any x, y ∈ Z and
(

α β
γ δ

)
∈ SL(2,Z). Actually, ℘ is a meromorphic Jacobi

form of weight 2 and index 0 (with level 1):

(3.9) ℘(τ, z) = (2πi)2

12
φ0,1(τ, z)
φ−2,1(τ, z)

. (cf. [EZ])

The Laurent expansion of ℘ at z = 0 is

℘(τ, z) = 1
z2 +

∞∑
k=2

(2k − 1)G2k(τ)z2k−2.

Let

D := 1
2πi

∂

∂z
and p1(z) := 1

1 − e(z) .

Borcherds gave an interesting expression of ℘ in his paper [Bo]:

1
(2πi)2℘(τ, z) = (D p1) (z) − 1

(2πi)2G2(τ)

+
∞∑
n=1

∑
α|n

α (e(nτ + αz) + e(nτ − αz)) .(3.10)

The right hand side converges in {(τ, z) ∈ H×C | | Im z| < Im τ}. From this
expression, immediately we have

( 1
2πi

)2 (
D

k−2 ℘
)

(τ, z) =
(
D

k−1 p1
)

(z)

+
∞∑
n=1

∑
α|n

αk−1
(
e(nτ + αz) + (−1)ke(nτ − αz)

)
(k ≥ 3).(3.11)

3.3. Maass lift of Jacobi forms

In the case of level 1, the Maass lift was essentially given by Maass to prove
the Saito-Kurokawa conjecture (cf. [EZ, Section 6]).
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The Maass lift is constructed by using Hecke operators Vm : Jk,1 � φ �→
φ|Vm ∈ Jk,m, defined below. Let

φ(τ, z) =
∑

(n,l)∈Z2

c(n, l)e(nτ + lz) ∈ Jk,1

be a Jacobi form of weight k and index 1. We remark that c(n, l) = 0 when
4n − l2 < 0. By (3.7), we may assume k is even. Moreover we may assume
k � 4, because Jk,1 �= {0} if and only if k is an even integer equal or greater
than 4 (cf. [EZ, Theorem 3.5]).

(i) First, for m ∈ N, let

Δ(m) :=
{ (

α β
γ δ

)
∈ Mat(2 × 2,Z)

∣∣∣ αδ − βγ = m

}

and define

(φ|Vm) (τ, z) := 1
m

∑
[g]∈SL(2,Z)\Δ(m)

(φ|k,1C (g)) (τ, z).

Since

(3.12)
{ (

α β
0 δ

)
∈ Mat(2 × 2,Z)

∣∣∣∣∣ α, δ ∈ N, αδ = m,
β ∈ Z, 0 � β < δ

}

is a complete set of representatives of a coset SL(2,Z)\Δ(m), the Fourier
expansion of φ|Vm is given by

(φ|Vm) (τ, z) =
∑

(n,l)∈Z2

⎛⎝ ∑
α|(n,l,m)

αk−1c

(
nm

α2 ,
l

α

)⎞⎠ e(nτ + lz)

and therefore φ|Vm ∈ Jk,m.

(ii) Second, for m = 0, let

(φ|V0) (τ) :=c(0, 0)G̃k(τ)

=c(0, 0)
(

1
2ζ(1 − k) +

∞∑
n=1

σk−1(n)e(nτ)
)
.

Since k � 4, it is clear that φ|V0 ∈ Jk,0.
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Thus the Maass lift of φ, defined by

(ML(φ)) (Z) :=
∞∑

m=0
(φ|Vm) (τ, z)e(mω),

has the Fourier expansion

(ML(φ)) (Z) = c(0, 0)
2 ζ(1 − k)

+
∑′

(n,m)∈N2
0

∑
l∈Z

⎛⎝ ∑
α|(n,l,m)

αk−1c

(
nm

α2 ,
l

α

)⎞⎠ e(nτ + lz + mω),

where N0 := {0} ∪ N. Therefore ML(φ) ∈ FMk. Hence, by Theorem 11, we
have ML(φ) ∈ M

(2)
k .

On of the important example of this lift is for

φ10,1(τ, z) := Δ(τ)φ−2,1(τ, z) ∈ J10,1.

The image of the Maass lift of this φ10,1 is Igusa’s modular form of weight 10:

Δ10(Z) := ML(φ10,1) =
∞∑

m=1
(φ10,1|Vm) (τ, z)e(mω).

As φ10,1(τ, 0) = 0, we have (φ10,1|Vm) (τ, 0) = 0. Hence we have

(3.13) (φ10,1|Vm)
φ−2,1

∈ J
weak
12,m−1

and therefore Δ10(Z) has zeros of at least order 2 at the image of { Z ∈
H | z = 0 } by each element of Sp(2,Z).

3.4. Maass lift of weak Jacobi forms

Now we apply the idea of the Maass lift to weak Jacobi forms. The Maass
lifts of weak Jacobi forms was first studied in 1990’s by Borcherds. In his
paper [Bo], he constructed maps from weak Jacobi forms to modular forms
on orthogonal groups SO(2, n+2) associated with unimodular lattices (hence
n ∈ 8N). Here we consider a lift to Siegel modular forms of degree 2, that
corresponds to the case n = 1 in Borcherds’ paper. He did not give a complete



390 Hiroki Aoki

proof when n = 1, however, our construction in this subsection is totally based
on his idea, except for the part using Theorem 11.

Let

φ(τ, z) =
∑

(n,l)∈Z2

c(n, l)e(nτ + lz) ∈ J
weak
k,1

be a weak Jacobi form of weight k and index 1. We remark that c(n, l) = 0
when n < 0. By (3.7), we may assume k is even. Here we add the assumption
k > 0. For any x ∈ Z, since φ|k,1U (x, 0) = φ, we have c(n, l) = c(n +
xl+ x2, l + 2x). Therefore, from the definition of weak Jacobi forms, we have
c(0, l) = 0 except for l = −1, 0, 1. As k is even and φ|k,1C (−E2) = φ, we have
c(0,−1) = c(0, 1). For m ∈ N, we don’t change the definition of Vm. Namely,

(φ|Vm) (τ, z) := 1
m

∑
[g]∈SL(2,Z)\Δ(m)

(φ|k,1C (g)) (τ, z)

=
∑

(n,l)∈Z2

⎛⎝ ∑
α|(n,l,m)

αk−1c

(
nm

α2 ,
l

α

)⎞⎠ e(nτ + lz).

Then we have φ|Vm ∈ Jweak
k,m . For m = 0, we need to modify the definition of

φ|V0. When k > 2, we define

(φ|V0) (τ, z) := c(0, 0)G̃k(τ) + c(0, 1) 1
(2πi)2

(
D

k−2 ℘
)

(τ, z).

By using (3.4) and (3.11), we have

(φ|V0) (τ, z) =c(0, 0)
2 ζ(1 − k) + c(0, 1)

(
D

k−1 p1
)

(z)

+
∑

(n,l)∈N×Z

⎛⎝ ∑
α|(n,l)

αk−1c

(
0, l

α

)⎞⎠ e(nτ + lz).(3.14)

When k = 2, we define

(φ|V0) (τ, z) := c(0, 1) 1
(2πi)2℘(τ, z).

Here we remark that φ(τ, 0) is an elliptic modular form of weight 2 with
respect to SL(2,Z). Hence φ(τ, 0) = 0 and therefore 2c(0, 1) + c(0, 0) = 0. By
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using (3.3) and (3.10), we have

(φ|V0) (τ, z) =c(0, 1) (D p1) (z) + c(0, 1) 1
12

(
1 − 24

∞∑
n=1

σ1(n)e(nτ)
)

+ c(0, 1)
∞∑
n=1

∑
α|n

α (e(nτ + αz) + e(nτ − αz))

=c(0, 0)
2 ζ(−1) + c(0, 1) (D p1) (z)

+
∑

(n,l)∈N×Z

⎛⎝ ∑
α|(n,l)

α c

(
0, l

α

)⎞⎠ e(nτ + lz).

Hence the equation (3.14) holds even for k = 2. We remark that φ|V0 has
poles of order k at each z ∈ Z + τZ.

The Maass lift of a weak Jacobi form φ is defined by

(ML(φ)) (Z) :=
∞∑

m=0
(φ|Vm) (τ, z).

It has the Fourier expansion

(ML(φ)) (Z) = c(0, 0)
2 ζ(1 − k) + c(0, 1)

(
D

k−1 p1
)

(z)

+
∑′

(n,m)∈N2
0

∑
l∈Z

⎛⎝ ∑
α|(n,l,m)

αk−1c

(
nm

α2 ,
l

α

)⎞⎠ e(nτ + lz + mω)

and therefore the Fourier coefficients of ML(φ) has the symmetry under the
exchange of the variables τ and ω. Nevertheless, if φ �∈ Jk,1, we have ML(φ) �∈
FM

weak
k , because φ|V0 is not a holomorphic but a meromorphic Jacobi form.

To identify this ML(φ), we consider the product of two formal series of Jacobi
forms Δ10(Z) k

2 and (ML(φ)) (Z). By the equations (3.9) and (3.13), we have

(
Δ10(Z)

) k
2
(
(ML(φ)) (Z)

)
∈ FM

weak
6k .

Thus, by Theorem 11,
(
Δ10(Z)

) k
2
(
(ML(φ)) (Z)

)
∈ M

(2)
6k . Hence we have the

following theorem.

Theorem 14. For any φ ∈ Jweak
k,1 , ML(φ) is a meromorphic Siegel modular

form of weight k.
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4. Generalized ℘ function

Hereafter we assume N ≥ 2 and χ is a Dirichlet character modulo N . As
N �= 1, we have χ(0) = 0.

4.1. Eisenstein series with levels

First of all, we remark that M(1)
k (N ;χ) = {0} when χ(−1) �= (−1)k, because

−E2 ∈ Γ(2)
0 (N). Hence, here we assume χ(−1) = (−1)k. There are some

kinds of definitions of Eisenstein series with levels, however, in this paper, we
introduce one appeared in the paper by Ibukiyama [Ib]. The Eisenstein series
of weight k and level N with character χ is defined by

(4.1) G̃k,χ(τ) := 1
2L(1 − k, χ) +

∞∑
n=1

σk−1,χ(n)e(nτ) ∈ M
(1)
k (N ;χ),

where L(1 − k, χ) is the special value of (analytic continued) Dirichlet L
function and σk−1,χ is the divisor function with character χ defined by

σk−1,χ(n) :=
∑
δ|n

χ(δ)δk−1.

The generalized Bernoulli numbers Bn,χ are defined by the generating
function

(4.2)
∑N

b=1 χ(b)z exp(bz)
exp(Nz) − 1 =

∞∑
n=0

Bn,χ
zn

n! (cf. [AIK, §4]).

These Bernoulli numbers are closely related to special values of the Dirichlet
L function:

L(1 − k, χ) = −1
k
Bk,χ (k ∈ N) (cf. [AIK, §9]).

Hence we have

G̃k,χ(τ) := − 1
2kBk,χ +

∞∑
n=1

σk−1,χ(n)e(nτ).

In (4.2), substituting −z for z, we have∑N
b=1 χ(b)z exp((N − b)z)

exp(Nz) − 1 =
∞∑
n=0

Bn,χ
(−z)n

n!
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and therefore

χ(−1)
∑N

b=1 χ(b)z exp(bz)
exp(Nz) − 1 =

∞∑
n=0

(−1)nBn,χ
zn

n! .

Hence, if χ(−1) �= (−1)n, we have Bn,χ = 0.
Let χ0 be the principal character module N , namely

χ0(δ) :=
{

1 ( (δ,N) = 1 )
0 ( (δ,N) �= 1 ) .

In this case, we have

(4.3) G̃k,χ0(τ) =
∑
δ|N

μ(δ)δk−1G̃k(δτ)

for any positive even integer k, where μ is the Möbius function.

4.2. Jacobi forms with levels

As in the case of level 1, the structure of all weak Jacobi forms of level N
are determined by Aoki-Ibukiyama [AI] or more precisely Aoki [Ao4]. As with
(3.7), we have

(4.4)
⊕
k∈Z

J
weak
k,1 (N ;χ) =

(⊕
k∈Z

M
(1)
k (N ;χ)

)
φ−2,1 ⊕

(⊕
k∈Z

M
(1)
k (N ;χ)

)
φ0,1.

Hence Jweak
k,1 (N ;χ) = {0} when χ(−1) �= (−1)k.

4.3. Generalization of the ℘ function

We define a meromorphic function RN,χ on C by

RN,χ(z) :=
∑N

b=1 χ(b)e(bz)
1 − e(Nz) =

∞∑
n=0

−Bn,χ

n! (2πiz)n−1.

From this definition, we have RN,χ(z) = −χ(−1)RN,χ(−z) and

(4.5) RN,χ(z) =
∞∑
j=0

−B2j+ε,χ

(2j + ε)! (2πiz)2j+ε−1,
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where we put

ε :=
{

0 ( χ(−1) = 1 )
1 ( χ(−1) = −1 ) .

This meromorphic function RN,χ has at most a pole of order 1 at each z ∈ 1
NZ.

The residue of RN,χ at z = s
N is given by

(4.6) Res
(
RN,χ,

s

N

)
= lim

z→ s
N

(
z − s

N

)
RN,χ(z) = −

∑N
b=1 χ(b)e

(
bs
N

)
2πiN .

For example, we have

(4.7) Res (RN,χ, 0) = −B0,χ

2πi =
{

−ϕ(N)
2πiN ( χ = χ0 )

0 ( χ �= χ0 ) ,

where ϕ is the Euler’s totient function. We remark that if Res
(
RN,χ,

s
N

)
= 0

then z = s
N is not a pole of RN,χ. If we need the explicit residue at each

pole, we can calculate the sum in (4.6) by using the Gauss sum of Dirichlet
characters, however, we do not use it in this paper. From the definition, we
can see that the equation RN,χ(z) = RN,χ(z + 1) holds.

We define a generalized ℘ function by

PN,χ(τ, z) := RN,χ(z) + QN,χ(τ, z),

where

QN,χ(τ, z) :=
∞∑
n=1

∞∑
α=1

χ(α)e(nατ + αz)

−
∞∑
n=1

∞∑
α=1

χ(−α)e(nατ − αz).

In the definition of QN,χ, the sum in the first line and the second line converge
when max{0,− Im z} < Im τ and max{0, Im z} < Im τ , respectively. Hence
this PN,χ is a meromorphic function on { (τ, z) ∈ C2 | | Im z| < Im τ )}.

For a while we assume 0 < Im z < Im τ . Under this assumption, we have

PN,χ(τ, z) − PN,χ(τ, z − τ)

= RN,χ(z) −RN,χ(z − τ) −
∞∑
α=1

χ(α)e(αz) −
∞∑
α=1

χ(−α)e(ατ − αz)
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=
(
RN,χ(z) −

∞∑
α=1

χ(α)e(αz)
)

+χ(−1)
(
RN,χ(τ − z) −

∞∑
α=1

χ(α)e(ατ − αz)
)

= 0.

By using this relation for analytic continuation, we can regard PN,χ as a
meromorphic function on H× C, satisfying the functional equation

(4.8) PN,χ(τ, z) = PN,χ(τ, z + 1) = PN,χ(τ, z + τ).

If we fix τ ∈ H and consider PN,χ(τ, z) as a meromorphic function with
respect to z on C, it is an elliptic function (doubly periodic meromorphic
function) with two periods 1 and τ . It has at most a pole of order 1 at each
z ∈ 1

NZ + τZ. Moreover, we can show

PN,χ(τ, z) = −χ(−1)PN,χ(τ,−z).

Next we will show that PN,χ has an automorphic property with respect
to Γ(1)

0 (N), the congruent subgroups of level N . For g1 =
(

α β
γ δ

)
∈ Γ(1)

0 (N),
let

(PN,χ|g1) (τ, z) := χ(α)(γτ + δ)−1PN,χ

(
ατ + β

γτ + δ
,

z

γτ + δ

)
.

From (4.8), PN,χ|M satisfies functional equation

(4.9) (PN,χ|g1) (τ, z) = (PN,χ|g1) (τ, z + 1) = (PN,χ|g1) (τ, z + τ).

Therefore, from (4.8) and (4.9), both PN,χ and PN,χ|g1 are meromorphic el-
liptic functions.

Now we fix τ ∈ H and consider PN,χ(τ, z) as a meromorphic function with
respect to z on C. As already mentioned, PN,χ has at most a pole of order 1
at each z ∈ 1

NZ+ τZ. By (4.6), the residue of RN,χ at z = s
N + τt is given by

(4.10) Res
(
RN,χ,

s

N
+ τt

)
= −

∑N
b=1 χ(b)e

(
bs
N

)
2πiN .

We compare poles of PN,χ|g1 with poles of PN,χ. From the definition of
PN,χ,k|g1, it has at most a pole at each z ∈ γτ+δ

N Z + (ατ + β)Z = 1
NZ + τZ.

The residue of PN,χ,k|g1 at z = (γτ+δ)s′
N + (ατ + β)t′ is given by

Res
(
RN,χ|g1,

(γτ + δ)s′

N
+ (ατ + β)t′

)
= −

χ(α)
∑N

b=1 χ(b)e
(
bs′

N

)
2πiN
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= −
∑N

b=1 χ(b)e
(
bδs′

N

)
2πiN .(4.11)

From (4.10), the residue of PN,χ,k at the same point is given by

(4.12) Res
(
RN,χ,

(γτ + δ)s′

N
+ (ατ + β)t′

)
= −

∑N
b=1 χ(b)e

(
bδs′

N

)
2πiN .

Comparing (4.11) with (4.12), two meromorphic elliptic functions RN,χ and
RN,χ|g1 have completely same poles. Therefore, the difference PN,χ(τ, z) −
(PN,χ|g1) (τ, z) is a holomorphic elliptic function, that is a constant function
(with respect to z). We will show that it vanishes below. More precisely, we
will show

(4.13) lim
z→0

{PN,χ(τ, z) − (PN,χ|g1) (τ, z)} = 0.

(i) First, we consider the case χ = χ0. In this case, as for RN,χ part, from
the equations (4.5) and (4.7), we have

RN,χ(z) =
∞∑
j=0

−B2j,χ

(2j)! (2πiz)2j−1 = −ϕ(N)
2πiN

1
z

+ O(z),

and therefore

lim
z→0

{
RN,χ(z) − (γτ + δ)−1RN,χ

(
z

γτ + δ

)}
= 0.

As for QN,χ part, because χ(−1) = 1, we have

QN,χ(τ, 0) = 0.

Hence we have (4.13).

(ii) Second, we consider the case ε = 0, χ �= χ0. In this case, from the
equations (4.5) and (4.7), we have

RN,χ(z) =
∞∑
j=0

−B2j,χ

(2j)! (2πiz)2j−1 = O(z),

hence RN,χ(0) = 0 and therefore we have (4.13).
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(iii) Third, we consider the case ε = 1. In this case, from the equations
(4.5), we have

RN,χ(z) =
∞∑
j=0

−B2j+1,χ

(2j + 1)! (2πiz)
2j = −B1,χ + O(z),

hence RN,χ(0) = −B1,χ = L(0, χ). Therefore, we have

PN,χ(τ, 0) =RN,χ(0) + QN,χ(τ, 0)

=L(0, χ) + 2
∞∑
n=1

∞∑
α=1

χ(α)e(nατ)

=2G̃1,χ(τ).

Thus, as G̃1,χ(τ) = χ(α)(γτ + δ)−1G̃1,χ
(
ατ+β
γτ+δ

)
, we have (4.13).

From the above, now we have PN,χ(τ, z) = (PN,χ|g1) (τ, z) for any g1 ∈
Γ(1)

0 (N).
At the end of this subsection, we give the Laurent expansion of PN,χ at

z = 0. As for RN,χ part, by (4.7), from (4.5), we have

RN,χ(z) =
∞∑
j=0

−B2j+ε,χ

(2j + ε)! (2πiz)2j+ε−1

= − B0,χ

2πi
1
z

+
∞∑
j=0

−B2j+2−ε,χ

(2j + 2 − ε)! (2πiz)
2j+1−ε

= − B0,χ

2πi
1
z

+
∞∑
j=0

L(−1 − 2j + ε, χ)
(2j + 1 − ε)! (2πiz)2j+1−ε.

As for QN,χ part, we have

QN,χ(τ, z) =
∞∑
n=1

∞∑
α=1

χ(α)e(nατ + αz) −
∞∑
n=1

∞∑
α=1

χ(−α)e(nατ − αz)

=
∞∑
n=1

∑
α|n

χ(α)e(nτ + αz) −
∞∑
n=1

∑
α|n

χ(−α)e(nτ − αz)

=
∞∑
n=1

∑
α|n

χ(α)e(nτ) (e(αz) − χ(−1)e(−αz))

=2
∞∑
n=1

∑
α|n

χ(α)e(nτ)
∞∑
j=0

(2πiαz)2j+1−ε

(2j + 1 − ε)!
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=
∞∑
j=0

2(2πi)2j+1−ε

(2j + 1 − ε)!

∞∑
n=1

σ2j+1−ε,χ(n)e(nτ)z2j+1−ε.

Hence we have

PN,χ(τ, z) = −B0,χ

2πi
1
z

+
∞∑
j=0

2(2πi)2j+1−ε

(2j + 1 − ε)!G̃2j+2−ε,χ(τ)z2j+1−ε.

If we use

G̃k,χ(τ) := (k − 1)!
2(2πi)k Gk,χ(τ)

instead of Gk,χ, it is

(2πi)PN,χ(τ, z) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

−ϕ(N)
N

1
z

+
∞∑
k=1

G2k,χ(τ)z2k−1 ( χ = χ0 )
∞∑
k=1

G2k,χ(τ)z2k−1 ( ε = 0, χ �= χ0 )
∞∑
k=0

G2k+1,χ(τ)z2k ( ε = 1 )

.

Especially, we have

(2πi)2 (DPN,χ0) (τ, z) = ϕ(N)
N

1
z2 +

∞∑
k=1

(2k − 1)G2k,χ0(τ)z2k−2.

This is just a generalization of the Weierstrass ℘ function:

℘(τ, z) + G2(τ) = 1
z2 +

∞∑
k=1

(2k − 1)G2k(τ)z2k−2.

Since ϕ(N) =
∑

δ|N μ(δ)Nδ , by (4.3), we have

(4.14) (2πi)2 (DPN,χ0) (τ, z) =
∑
δ|N

μ(δ)δ (℘(δτ, δz) + G2(δτ)) .

5. Maass lifts with levels

5.1. Maass lifts of Jacobi forms

The Maass lifts of Jacobi forms with levels were studied by several researchers,
and finally Ibukiyama [Ib] gave the explicit formula for arbitrary levels with
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characters. In this subsection, we review his work.
The Maass lifts are constructed by using Hecke operators

Vm : Jk,1(N ;χ) � φ �→ φ|Vm ∈ Jk,m(N ;χ),

defined below. Let

φ(τ, z) =
∑

(n,l)∈Z2

c(n, l)e(nτ + lz) ∈ Jk,1(N ;χ)

be a Jacobi form of weight k and index 1. We remark that c(n, l) = 0 when
4n − l2 < 0. By (4.4), we may assume χ(−1) = (−1)k. Moreover we may
assume k > 0, because Jk,1(N ;χ) = {0} if k � 0.

(i) First, for m ∈ N, let

Δ(N ;m) :=
{ (

α β
γ δ

)
∈ Mat(2 × 2,Z)

∣∣∣ αδ − βγ = m, (α,N) = 1
γ ≡ 0 (mod N)

}

and define

(φ|Vm) (τ, z) := 1
m

∑
[g]∈Γ(1)

0 (N)\Δ(N ;m)

χ ((g)11) (φ|k,1C (g)) (τ, z),

where (g)11 means the (1,1)-component of the matrix g. Since
{ (

α β
0 δ

)
∈ Mat(2 × 2,Z)

∣∣∣∣∣ α, δ ∈ N, αδ = m, (α,N) = 1,
β ∈ Z, 0 � β < δ

}

is a complete set of representatives of a coset SL(2,Z)\Δ(N ;m), the Fourier
expansion of φ|Vm is given by

(φ|Vm) (τ, z) =
∑

(n,l)∈Z2

⎛⎝ ∑
α|(n,l,m)

χ(α)αk−1c

(
nm

α2 ,
l

α

)⎞⎠ e(nτ + lz)

and therefore φ|Vm ∈ Jk,m(N ;χ).

(ii) Second, for m = 0, let

(φ|V0) (τ) :=c(0, 0)G̃k,χ(τ)
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=c(0, 0)
(

1
2L(1 − k, χ) +

∞∑
n=1

σk−1,χ(n)e(nτ)
)
.

It is clear that φ|V0 ∈ Jk,0(N ;χ).

Thus the Maass lift of φ defined by

(ML(φ)) (Z) :=
∞∑

m=0
(φ|Vm) (τ, z)

has the Fourier expansion

(ML(φ)) (Z) = c(0, 0)
2 L(1 − k, χ)

+
∑′

(n,m)∈N2
0

∑
l∈Z

⎛⎝ ∑
α|(n,l,m)

χ(α)αk−1c

(
nm

α2 ,
l

α

)⎞⎠ e(nτ + lz + mω).

Therefore ML(φ) ∈ FMk(N ;χ) as a formal series of Jacobi forms. As Con-
jecture 12 has not been proven, we could not show the convergence of ML(φ)
just like as section 3. Nevertheless, we can show that ML(φ) converges on H2

by direct calculation. Hence we have ML(φ) ∈ M
(2)
k (N ;χ).

5.2. Maass lifts of weak Jacobi forms

Now we apply the idea of Ibukiyama’s Maass lifts to weak Jacobi forms.
Our procedure is just like the case of level 1. In the case of level 1 we use
the Weierstrass ℘ function, which is a meromorphic Jacobi form of index 0
with level 1. In the case of level N , we use the function PN,χ, which is a
meromorphic Jacobi form of index 0 with level N and character χ.

Let
φ(τ, z) =

∑
(n,l)∈Z2

c(n, l)e(nτ + lz) ∈ J
weak
k,1 (N ;χ)

be a weak Jacobi form of weight k and index 1 with level N and character χ.
We remark that c(n, l) = 0 when n < 0. By (4.4), we may assume χ(−1) =
(−1)k. Here we add the assumption k > 0. As in the case without levels, we
have c(0, l) = 0 except for l = −1, 0, 1 and we have c(0,−1) = c(0, 1). For
m ∈ N, we don’t change the definition of Vm. Namely,

(φ|Vm) (τ, z) := 1
m

∑
[g]∈Γ(1)

0 (N)\Δ(N ;m)

χ(α) (φ|k,1C (g)) (τ, z)



Maass lifts of weak Jacobi forms 401

=
∑

(n,l)∈Z2

⎛⎝ ∑
α|(n,l,m)

χ(α)αk−1c

(
nm

α2 ,
l

α

)⎞⎠ e(nτ + lz).

Then we have φ|Vm ∈ Jweak
k,m (N ;χ). For m = 0, we need to modify the defini-

tion of φ|V0. We define

(φ|V0) (τ, z) := c(0, 0)G̃k,χ(τ) + c(0, 1)
(
D

k−1 PN,χ

)
(τ, z).

Then we have

(φ|V0) (τ, z) =c(0, 0)
2 L(1 − k, χ) + c(0, 1)

(
D

k−1 RN,χ

)
(z)

+
∑

(n,l)∈N×Z

⎛⎝ ∑
α|(n,l)

χ(α)αk−1c

(
0, l

α

)⎞⎠ e(nτ + lz).

The Maass lift of a weak Jacobi form φ is defined by

(ML(φ)) (Z) :=
∞∑

m=0
(φ|Vm) (τ, z).

It has the Fourier expansion

(ML(φ)) (Z) = c(0, 0)
2 L(1 − k, χ) + c(0, 1)

(
D

k−1 RN,χ

)
(z)

+
∑′

(n,m)∈N2
0

∑
l∈Z

⎛⎝ ∑
α|(n,l,m)

χ(α)αk−1c

(
nm

α2 ,
l

α

)⎞⎠ e(nτ + lz + mω)

(5.1)

and therefore the Fourier coefficients of ML(φ) has the symmetry under the
exchange of the variables τ and ω. Nevertheless, if φ �∈ Jk,1(N ;χ), we have
ML(φ) �∈ FM

weak
k (N ;χ), because φ|V0 is not a holomorphic but a meromor-

phic Jacobi form. To identify this ML(φ), we consider the product of two
formal series of Jacobi forms Δ10(NZ)� k

2 � and (ML(φ)) (Z), where �k2� means
the least integer greater than or equal to k

2 . Since Δ10(NZ) ∈ M
(2)
10 (N ;χ0)

and PN,χ has at most a pole of order 1 at each z ∈ 1
NZ + τZ, we have

(5.2)
(
Δ10(NZ)

)� k
2 �((ML(φ)) (Z)

)
∈ FM

weak
10� k

2 �+k
(N ;χ).
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Therefore, if we could show the convergence of the left hand side of (5.2), we
know ML(φ) is a meromorphic Siegel modular form.

Theorem 15. If the left hand side of (5.2) converges absolutely and locally
uniformly on H2, then ML(φ) is a meromorphic Siegel modular form.

However, we do not have any good general method to show the conver-
gence as far as the author knows.

6. Convergence of our Mass lifts

In this section, we will show that ML(φ) is a meromorphic Siegel modular
form when N = 2, 3 and χ is the principle character.

6.1. Sketch of the proof

Since we assume χ(−1) = (−1)k, k is even when χ is the principle charac-
ter χ0. Let

(6.1) (ML∗(φ)) (Z) :=
(
Δ10(NZ)

) k
2
(
(ML(φ)) (Z)

)
.

In this section, first we show the following proposition.

Proposition 16. If N = 2 or N = 3, we have

ML∗(φ) ∈ FM
+
6k(N ;χ0).

By using this proposition and Theorem 13, we know that ML∗(φ) is a
(holomorphic) Siegel modular form when N = 2, 3 and χ is the principle
character. This means that ML(φ) is a meromorphic Siegel modular form. In
this section we also give a proof of Theorem 13.

6.2. Proof of Proposition 16

Let p be a prime number. In this subsection we write p instead of N , because
our proof holds for any prime N for the most part.

Since ML∗(φ) ∈ FM
weak
6k (p;χ0), the only thing we need to show in this sub-

section is that the Fourier coefficients of ML∗(φ) at each cusp satisfy the con-
dition of Jacobi forms and (Sym+). From Lemma 9, a complete set of repre-
sentatives of a coset Γ(J)

0 (N)\Sp(2,Z)J is given by {C (g0) , C (g1) , . . . }, where
{g0, g1, . . . } is a complete set of representatives of a coset Γ(1)

0 (N)\SL(2,Z).
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When N is a prime number p, a complete set of representatives of a coset
Γ(1)

0 (p)\SL(2,Z) is given by {g0, g1, . . . , gp}, where

g0 := E2 =
(

1 0
0 1

)
, g1 :=

(
0 −1
1 0

)
,

and

gt :=
(

0 −1
1 t− 1

)
= g1

(
1 t− 1
0 1

)
(t = 2, . . . , p).

Therefore, it is enough to calculate the Fourier coefficients of ML∗(φ) at C (g0)
and C (g1).

(A) As for C (g0), we have nearly finished the calculation. We have

R
(
Γ(1)

0 (p);C (g0)
)

=
{

g =
(
α β
γ δ

)
∈ Mat(2 × 2,Z)

∣∣∣ det g ∈ {1,−1}
}

easily. Let

(6.2) (ML∗(φ)) (Z) =
∞∑

m=0
φm(τ, z)e(mω)

and

φm(τ, z) =
∞∑
n=0

∑
l∈Z

c0(n, l,m)e(nτ + lz).

We put c0(n, l,m) = 0 for m < 0 or for n < 0.

Lemma 17. We have

c0(n, l,m) = c0(n,−l,m)(6.3)

and

c0(n, l,m) = c0(n + xl + x2m, l + 2xm,m)(6.4)

for any n, l,m, x ∈ Z. Namely, ML∗(φ) is C
((−1 0

0 −1
))

-invariant and U (x, 0)-
invariant.
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Proof. Since ML∗(φ) ∈ FM
weak
6k (p;χ0), each φm ∈ Jweak

6k,m(p;χ0) and therefore
φm is C

((−1 0
0 1

))
-invariant and U (x, 0)-invariant.

Lemma 18. We have

(6.5) c0(n, l,m) = c0(m, l, n)

for any n, l,m ∈ Z. Namely, ML∗(φ) is S-invariant.

Proof. This is a direct conclusion from ML∗(φ) ∈ FM
weak
6k (p;χ0).

On the Lemmas 17 and 18, we remark that

C

((
−1 0
0 −1

))
= R

((
−1 0
0 1

))
, U (x, 0) = R

((
1 x
0 1

))

and

S = R

((
0 1
1 0

))
.

Since these
(−1 0

0 1
)
, ( 1 x

0 1 ) and ( 0 1
1 0 ) generate R

(
Γ(1)

0 (p);C (g0)
)
, ML∗(φ) is

R
(
Γ(1)

0 (p);C (g0)
)
-invariant.

(B) As for C (g1), we need a bit hard calculation. We have

R
(
Γ(1)

0 (p);C (g1)
)

=
{

g =
(
α β
γ δ

)
∈ Mat(2 × 2,Z)

∣∣∣∣∣ det g ∈ {1,−1}
γ ≡ 0 (mod p)

}

easily. On

((ML∗(φ)) |6kC (g1)) (Z) =
∞∑

m=0
(φm|6k,mC (g1)) (τ, z)e(mω),

let

(φm|6k,mC (g1)) (τ, z) =
∞∑
n=0

∑
l∈Z

c1(n, l,m)e
(
nτ

p
+ lz

)
.

We put c1(n, l,m) = 0 for m < 0 or for n < 0.

Lemma 19. We have

c1(n, l,m) = c1(n,−l,m)(6.6)
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and

c1(n, l,m) = c1
(
n + xpl + x2pm, l + 2xm,m

)
(6.7)

for any n, l,m, x ∈ Z. Namely, ML∗(φ)|6kC (g1) is C
((−1 0

0 −1
))

-invariant and
U (x, 0)-invariant.

Proof. Since ML∗(φ) ∈ FM
weak+
6k (p;χ0), each φm ∈ Jweak

6k,m(p;χ0) and there-
fore φm|6k,mC (g1) is C (g1)−1 Γ(J)

0 (p)C (g1)-invariant. It is easy to see that
C
((−1 0

0 −1
))

∈ C (g1)−1 Γ(J)
0 (p)C (g1) and U (x, 0) ∈ C (g1)−1 Γ(J)

0 (p)C (g1) for
any x ∈ Z.

Moreover, the following lemma holds.

Lemma 20. We have

(6.8) c1(n, l,m) = c1
(
n, l + 2xn,m + xpl + x2pn

)
for any n, l,m, x ∈ Z. Namely, ML∗(φ)|6kC (g1) is R

(( 1 0
px 1

))
-invariant.

However, we need much calculation to show this lemma. Therefore, now
we proceed our story without the proof of this lemma and we will show this
lemma at the end of this subsection. On the Lemmas 19 and 20, since the
group generated by these

(−1 0
0 1

)
, ( 1 x

0 1 ) and
( 1 0
px 1

)
coincides with

R
(
Γ(1)

0 (p);C (g0)
)

when p = 2, 3, (ML∗(φ)) |6kC (g1) is R
(
Γ(1)

0 (p);C (g1)
)
-

invariant.
Up to this point we have shown ML∗(φ) ∈ FM

weak+
6k (N ;χ0). Next we will

show ML∗(φ) ∈ FM
+
6k(N ;χ0). We will continue to see the Fourier coefficients

of ML∗(φ) at C (g0) and C (g1).

(A) As for C (g0), from the equation (6.1), we have c0(n, l,m) = 0 if
min{m,n} < pk

2 . From Lemmas 17 and 18, we have the following lemma.

Lemma 21. If (n, l,m) ∈ Z3 satisfies c0(n, l,m) �= 0 and |l| > min{m,n},
then there exists (n′, l′,m′) ∈ Z3 such that 4nm−l2 = 4n′m′−l′2, c0(n, l,m) =
c0 (n′, l′,m′) and |l| > |l′|.

This lemma induces the following proposition immediately.

Proposition 22. If (n, l,m) ∈ Z3 satisfies c0(n, l,m) �= 0, then there exists
(n′, l′,m′) ∈ Z3 such that 4nm − l2 = 4n′m′ − l′2, c0(n, l,m) = c0(n′, l′,m′)
and |l| � min{m,n}. Hence 4mn− l2 � 0.
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(B) As for C (g1), since

Δ∗
10(Z) := (Δ10(pZ)) |kC (g1) = p−10Δ10

(
τ
p z

z pω

)
,

we have c1(n, l,m) = 0 if min{m, pn} < pk
2 . From Lemmas 19 and 20, we

have the following lemma.

Lemma 23. If (n, l,m) ∈ Z3 satisfies c1(n, l,m) �= 0 and |l| > min{m,n},
then there exists (n′, l′,m′) ∈ Z3 such that 4nm − pl2 = 4n′m′ − pl′2,
c1(n, l,m) = c1(n′, l′,m′) and |l| > |l′|.

This lemma induces the following proposition immediately.

Proposition 24. If (n, l,m) ∈ Z3 satisfies c1(n, l,m) �= 0, then there exists
(n′, l′,m′) ∈ Z3 such that 4nm− pl2 = 4n′m′ − pl′2, c1(n, l,m) = c1(n′, l′,m′)
and |l| � min{m,n}. Hence, if p = 2 or p = 3, we have 4mn− pl2 � 0.

Up to this point we have shown ML∗(φ) ∈ FM
+
6k(N ;χ0) except the proof

of Lemma 20. Now we give its proof.
First, we calculate (ML(φ)) |kC (g1) explicitly. For φ ∈ Jweak

k,1 (p;χ0), we
put

φ(τ, z) = (φ|k,1C (g0)) (τ, z) =
∑

(n,l)∈Z2

a0(n, l)e (nτ + lz)

and

(φ|k,1C (g1)) (τ, z) =
∑

(n,l)∈Z2

a1(n, l)e
(
nτ

p
+ lz

)
.

Just like Lemmas 17 and 19, the following lemma holds.

Lemma 25. We have

a0(n, l) = a0(n,−l), a0(n, l) = a0
(
n + xl + x2, l + 2x

)
,

a1(n, l) = a1(n,−l) and a1(n, l) = a1
(
n + xpl + x2p, l + 2x

)
for any n, l,m, x ∈ Z. Hence a0(n, l) only depends on 4n− l2 and a1(n, l) only
depends on 4n− pl2.

Hence, hereafter, we write a0
(
4n− l2

)
and a1

(
4n− pl2

)
instead of a0(n, l)

and a1(n, l), respectively.
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(i) First, we discuss the case m ∈ N. By (3.12), a complete set of representa-
tives of a coset Γ(1)

0 (p)\Δ(m) is given by⎧⎪⎨⎪⎩ gt

(
α β
0 δ

)
∈ Mat(2 × 2,Z)

∣∣∣∣∣
t ∈ {0, 1, . . . , p},

α, δ ∈ N, αδ = m,
0 � β < δ

⎫⎪⎬⎪⎭
=
{ (

α β
0 δ

)
∈ Mat(2 × 2,Z)

∣∣∣∣∣ α, δ ∈ N, αδ = m,
0 � β < δ

}
⋃{

g1

(
α β
0 δ

)
∈ Mat(2 × 2,Z)

∣∣∣∣∣ α, δ ∈ N, αδ = m,
0 � β < pδ

}
.

Hence a complete set of representatives of a coset Γ(1)
0 (p)\Δ(p;m)g1 is given

by
Δ0(p;m) ∪ Δ1(p;m),

where

Δ0(p;m) =
{(

α β
0 δ

)
∈ Mat(2 × 2,Z)

∣∣∣∣∣ α, δ ∈ N, αδ = m, 0 � β < δ,
δ ≡ 0 (mod p), (β, p) = 1

}

Δ1(p;m) =
{

g1

(
α pβ
0 δ

)
∈ Mat(2 × 2,Z)

∣∣∣∣∣ α, δ ∈ N, αδ = m,
(δ, p) = 1, 0 � β < δ

}
.

Therefore, we have

((φ|Vm) |k,mC (g1)) (τ, z)

= 1
m

∑
g∈Δ0(p;m)

χ0
((

gg−1
1

)
11

)
(φ|k,1C (g)) (τ, z)

+ 1
m

∑
g∈Δ1(p;m)

χ0
((

gg−1
1

)
11

)
(φ|k,1C (g)) (τ, z).

Now we calculate this sum.

(ia) As for the sum of Δ0(p;m), it appears only when p|m. Hence we put
m = pm′. Then we have

1
m

∑
g∈Δ0(p;m)

χ0
((

gg−1
1

))
(φ|k,1C (g)) (τ, z)
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=mk−1 ∑
αδ=m

δ≡0 (mod p)

δ−1∑
β=0

χ0(−β)δ−kφ

(
ατ + β

δ
, αz

)

=mk−1 ∑
αδ=m′

pδ−1∑
β=0

χ0(−β)(pδ)−kφ

(
ατ + β

pδ
, αz

)

=mk−1 ∑
αδ=m′

p−1∑
β=0

δ−1∑
j=0

χ0(−pj − β)(pδ)−kφ

(
ατ + pj + β

pδ
, αz

)

=mk−1 ∑
αδ=m′

p−1∑
β=0

δ−1∑
j=0

χ0(−β)(pδ)−k
∑
n,l∈Z

a0
(
4n− l2

)
e
(
n
ατ + pj + β

pδ
+ αlz

)

=mk−1 ∑
αδ=m′

p−1∑
β=0

χ0(−β)p−kδ−k+1 ∑
n,l∈Z

a0
(
4δn− l2

)
e
(
n
ατ + β

p
+ αlz

)

=
∑
α|m′

p−1∑
β=0

χ0(−β)p−1αk−1 ∑
n,l∈Z

a0

(4nm′

α
− l2

)
e
(
n
ατ + β

p
+ αlz

)

=
∑
α|m′

αk−1 ∑
n,l∈Z

a0

(4nm
α

− l2
)

e (nατ + αlz)

− 1
p

∑
α|m′

αk−1 ∑
n,l∈Z

a0

(4nm′

α
− l2

)
e
(
αnτ

p
+ αlz

)

=
∑
n,l∈Z

∑
α|(n,l,m′)

αk−1a0

(
4nm− l2

α2

)
e (nτ + lz)

− 1
p

∑
n,l∈Z

∑
α|(n,l,m′)

αk−1a0

(
4nm′ − l2

α2

)
e
(
nτ

p
+ lz

)
.

(ib) As for the sum of Δ1(p;m), we have

1
m

∑
g∈Δ1(p;m)

χ0
((

gg−1
1

))
(φ|k,1C (g)) (τ, z)

=mk−1 ∑
αδ=m
(δ,p)=1

δ−1∑
β=0

χ0(δ)δ−k (φ|k,1C (g1))
(
ατ + pβ

δ
, αz

)

=mk−1 ∑
αδ=m
(δ,p)=1

δ−1∑
β=0

χ0(δ)δ−k
∑
n,l∈Z

a1
(
4n− pl2

)
e
(
n

p

ατ + pβ

δ
+ αlz

)
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=mk−1 ∑
αδ=m
(δ,p)=1

χ0(δ)δ−k+1 ∑
n,l∈Z

a1
(
4δn− pl2

)
e
(
nατ

p
+ αlz

)

=
∑
n,l∈Z

∑
α|(n,l,m)

χ0

(
m

α

)
αk−1a1

(
4nm− pl2

α2

)
e
(
nτ

p
+ lz

)
.

Hence, on the Fourier expansion

((φ|Vm) |k,mC (g1)) (τ, z) =
∑
n,l∈Z

c2(n, l,m)e
(
nτ

p
+ lz

)
,

we have

(6.9) c2(n, l,m) = cA(n, l,m) + cB(n, l,m) + cC(n, l,m) + cD(n, l,m),

where

cA(n, l,m) =

⎧⎪⎪⎨⎪⎪⎩
∑

α|(n′,l,m′)
αk−1a0

(
4nm− pl2

pα2

)
(n ≡ m ≡ 0 (mod p))

0 (otherwise)
,

cB(n, l,m) =

⎧⎪⎪⎨⎪⎪⎩
−1
p

∑
α|(n,l,m′)

αk−1a0

(
4nm− pl2

pα2

)
(m ≡ 0 (mod p))

0 (m �≡ 0 (mod p))
,

cC(n, l,m) =
∑

α|(n,l,m)
αk−1a1

(
4nm− pl2

α2

)

and

cD(n, l,m) =

⎧⎪⎪⎨⎪⎪⎩
−

∑
α|(n,l,m′)

αk−1a1

(
4nm− pl2

α2

)
(m ≡ 0 (mod p))

0 (m �≡ 0 (mod p))
.

(ii) Second, we discuss the case m = 0. By the equation (4.14), we have

(2πi)2 (DPp,χ0) (τ, z) = ((℘(τ, z) + G2(τ)) − p (℘(pτ, pz) + G2(pτ))) .

Hence we have

((DPp,χ0) |2,0C (g1)) (τ, z)
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= 1
(2πi)2

((
℘(τ, z) + G2(τ) + 2πi1

τ

)

−p

( 1
p2℘

(
τ

p
, z

)
+ 1

p2G2

(
τ

p

)
+ 2πi 1

pτ

))

= 1
(2πi)2

(
(℘(τ, z) + G2(τ)) − 1

p

(
℘

(
τ

p
, z

)
+ G2

(
τ

p

)))

=

⎛⎝(D p1) (z) +
∞∑
n=1

∑
α|n

α (e(nτ + αz) + e(nτ − αz))

⎞⎠
− 1

p

⎛⎝(D p1) (z) +
∞∑
n=1

∑
α|n

α

(
e
(
nτ

p
+ αz

)
+ e

(
nτ

p
− αz

))⎞⎠ .

Therefore we have((
D

k−1 Pp,χ0

)
|k,0C (g1)

)
(τ, z)

=D
k−2 ((DPp,χ0) |2,0C (g1)) (τ, z)

=

⎛⎝(Dk−1 p1
)

(z) +
∞∑
n=1

∑
α|n

αk−1 (e(nτ + αz) + e(nτ − αz))

⎞⎠
− 1

p

⎛⎝(Dk−1 p1
)

(z) +
∞∑
n=1

∑
α|n

αk−1
(
e
(
nτ

p
+ αz

)
+ e

(
nτ

p
− αz

))⎞⎠ .

Furthermore, we have(
G̃k,χ0 |kg1

)
(τ)

=G̃k(τ) − 1
p
G̃k

(
τ

p

)

=

⎛⎝1
2ζ(1 − k) +

∞∑
n=1

∑
α|n

αk−1e(nτ)

⎞⎠− 1
p

⎛⎝1
2ζ(1 − k) +

∞∑
n=1

∑
α|n

αk−1e
(
nτ

p

)⎞⎠ .

Hence we have

((φ|V0) |k,0C (g1)) (τ, z)

=a0(0)
(
G̃k,χ0 |kg1

)
(τ) + a0(−1)

((
D

k−1 Pp,χ0

)
|k,0C (g1)

)
(τ, z)
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=
(

1 − 1
p

)(
a0(0)

2 ζ(1 − k) + a0(−1)
(
D

k−1 p1
)

(z)
)

+

⎛⎝ ∞∑
n=1

∑
α|n

αk−1 (a0(0)e(nτ) + a0(−1) (e(nτ + αz) + e(nτ − αz)))

⎞⎠
− 1

p

( ∞∑
n=1

∑
α|n

αk−1

(
a0(0)e

(
nτ

p

)
+ a0(−1)

(
e
(
nτ

p
+ αz

)
+ e

(
nτ

p
− αz

))))

=
(

1 − 1
p

)(
a0(0)

2 ζ(1 − k) + a0(−1)
(
D

k−1 p1
)

(z)
)

+

⎛⎝ ∞∑
n=1

∑
l∈Z

∑
α|(n,l)

αk−1a0

(
−l2

α2

)
e(nτ + lz)

⎞⎠
− 1

p

⎛⎝ ∞∑
n=1

∑
l∈Z

∑
α|n

αk−1a0

(
−l2

α2

)
e
(
nτ

p
+ lz

)⎞⎠ .

Therefore we have

((ML(φ)) |kC (g1)) (Z)

=
(

1 − 1
p

)(
a0(0)

2 ζ(1 − k) + a0(−1)
(
D

k−1 p1
)

(z)
)

+
∑′

(n,m)∈N2
0

∑
l∈Z

c2(n, l,m)e
(
nτ

p
+ lz + mω

)
,

where c2(n, l,m) is defined by above (6.9). We put

((ML(φ)) |kC (g1)) (Z) = φ̃(ω, z) + Fφ(Z),

where

φ̃(ω, z) :=
(

1 − 1
p

)(
a0(0)

2 ζ(1 − k) + a0(−1)
(
D

k−1 p1
)

(z)
)

+
∞∑

m=1

∑
l∈Z

c2(0, l,m)e (mω + lz)
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and

Fφ(Z) :=
∞∑
n=1

∞∑
m=0

∑
l∈Z

c2(n, l,m)e
(
nτ

p
+ lz + mω

)
.

As for Fφ, we have

c2(n, l,m) = c2
(
n, l + 2xn,m + xpl + x2pn

)
directly form the equation (6.9). Namely, Fφ(Z) is R

(( 1 0
px 1

))
-invariant as a

formal power series.
As for φ̃(ω, z), we have

φ̃(ω, z) =
(

1 − 1
p

)(
a0(0)

2 ζ(1 − k) + a0(−1)
(
D

k−1 p1
)

(z)
)

+
(

1 − 1
p

) ∞∑
m=1

∑
l∈Z

∑
α|(m,l)

αk−1a0

(
−l2

α2

)
e (mpω + lz)

+
∞∑

m=1

∑
l∈Z

∑
α|(m,l)

αk−1a1

(
−pl2

α2

)
e (mω + lz)

−
∞∑

m=1

∑
l∈Z

∑
α|(m,l)

αk−1a1

(
−pl2

α2

)
e (mpω + lz)

=
(

1 − 1
p

)(
a0(0)

2 ζ(1 − k) + a0(−1)
(
D

k−1 p1
)

(z)
)

+
(

1 − 1
p

)
a0(0)

∞∑
m=1

σk−1(m)e (mpω)

+
(

1 − 1
p

)
a0(−1)

∞∑
m=1

∑
α|m

αk−1 (e (mpω + αz) + e (mpω − αz))

+ a1(0)
∞∑

m=1
σk−1(m)e (mω)

+ a1(−p)
∞∑

m=1

∑
α|m

αk−1 (e (mω + αz) + e (mω − αz))

− a1(0)
∞∑

m=1
σk−1(m)e (mpω)

− a1(−p)
∞∑

m=1

∑
α|m

αk−1 (e (mpω + αz) + e (mpω − αz)) .
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Hence, when k > 2, we have

φ̃(ω, z) =a0(0)
(

1 − 1
p

)
G̃k(pω)

+ a0(−1)
(

1 − 1
p

) 1
(2πi)2

(
D

k−2 ℘(pω, z)
)

+ a1(0)
(
G̃k(ω) − G̃k(pω)

)
+ a1(−p) 1

(2πi)2
(
D

k−2 ℘(ω, z) − D
k−2 ℘(pω, z)

)
(6.10)

and when k = 2, we have

φ̃(ω, z) =a0(0)
(

1 − 1
p

)
G̃2(pω)

+ a0(−1)
(

1 − 1
p

) 1
(2πi)2 (℘(pω, z) + G2(pω))

+ a1(0)
(
G̃2(ω) − G̃2(pω)

)
+ a1(−p) 1

(2πi)2 (℘(ω, z) + G2(ω) − ℘(pω, z) −G2(pω)) .(6.11)

Therefore, in either case, we have

φ̃(ω, z) = φ̃(ω, z + pxω),

namely, φ̃(ω, z) is R
(( 1 0

px 1
))

-invariant as a meromorphic function.
Now we recall that

Δ∗
10(Z) := (Δ10(pZ)) |kC (g1) = p−10Δ10

(
τ
p z

z pω

)

is R
(( 1 0

px 1
))

-invariant both as a formal power series and as a holomorphic
function. Then (Δ∗

10(Z))
k
2 Fφ(Z) is R

(( 1 0
px 1

))
-invariant as a formal power

series and (Δ∗
10(Z))

k
2 φ̃(ω, z) is R

(( 1 0
p 1
))

-invariant as a holomorphic function.
Hence, by using the uniqueness of the Fourier expansion, we have

(Δ∗
10(Z))

k
2 ((ML(φ)) |kC (g1)) (Z) = (Δ∗

10(Z))
k
2 Fφ(Z) + (Δ∗

10(Z))
k
2 φ̃(ω, z)

is R
(( 1 0

px 1
))

-invariant as a formal power series. Here we complete the proof.
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Remark. When p = 2, 3, since ML(φ) is a meromorphic Siegel modular
form in actual fact, φ̃(ω, z) should be not only R

(( 1 0
p 1
))

-invariant but also
SC

(
Γ(1)

0 (p)
)
S-invariant. For k > 2, it is almost trivial form the equation

(6.10). However, for k = 2, it may not be trivial from the equation (6.11).
Here we calculate the equation (6.11) more precisely. By the equation (4.4),
we have

J
weak
2,1 (p;χ0) = M

(1)
4 (p;χ0)φ−2,1 ⊕M

(1)
2 (p;χ0)φ0,1.

Here φ−2,1(τ, 0) = 0 and dimCM
(1)
2 (p;χ0) = 1 when p = 2, 3, namely

M
(1)
2 (p;χ0) = CG̃2,χ0(τ). Since

G̃2,χ0(τ) = G̃2(τ) − pG̃2(pτ)

and (
G̃2,χ0 |2g1

)
(τ) = G̃2(τ) − 1

p
G̃2

(
τ

p

)
,

we have
lim

τ→i∞
G̃2,χ0(τ) = −p lim

τ→i∞

(
G̃2,χ0 |2g1

)
(τ)

and therefore

a0(0) + 2a0(−1) = −p (a1(0) + 2a1(−p)) .

Hence we have

φ̃(ω, z) = (a0(0) + 2a0(−1))
(

1 − 1
p

)
G̃2(pω)

+ a0(−1)
(

1 − 1
p

) 1
(2πi)2℘(pω, z)

+ (a1(0) + 2a1(−p))
(
G̃2(ω) − G̃2(pω)

)
+ a1(−p) 1

(2πi)2 (℘(ω, z) − ℘(pω, z))

=a0(−1)
(

1 − 1
p

) 1
(2πi)2℘(pω, z)

+ (a1(0) + 2a1(−p))
(
G̃2(ω) − pG̃2(pω)

)
+ a1(−p) 1

(2πi)2 (℘(ω, z) − ℘(pω, z)) ,

which is SC
(
Γ(1)

0 (p)
)
S-invariant.
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6.3. Proof of Theorem 13

The idea of the proof of Theorem 13 is essentially given in [Ao2]. Here we will
show Theorem 13 according to [Ao2]. For k ∈ Z, we define

FWk(N ;χ) :=
{

(fm)∞m=0 ∈
∞∏

m=0
M

(1)
k (N ;χ)

∣∣∣∣∣ (Sym)
}

where (Sym) means the following condition:

(Sym) : On the Fourier expansion fm(τ) =
∑∞

n=0 a0(n,m)e (nτ) ,
a0(n,m) = (−1)kχ(−1)a0(m,n) holds for any n,m ∈ Z.

Since we have

FWk(N ;χ) =

⎧⎨⎩S2
(
M

(1)
k (N ;χ)

)
(symmetric tensor) ((−1)kχ(−1) = 1)

A2
(
M

(1)
k (N ;χ)

)
(alternating tensor) ((−1)kχ(−1) = −1)

,

we can determine the structure of FWk(N ;χ). For r ∈ N ∪ {0}, we define a
map Dr by

Dr : FM
+
k (N ;χ) � (φm(τ, z))∞m=0 �−→ ((Dr φm) (τ, 0))∞m=0 ∈

∞∏
m=0

Hol(H),

and then define a space FM
+
k (N ;χ)[r] by

FM
+
k (N ;χ)[r] :=

{
F ∈ FM

+
k (N ;χ)

∣∣∣∣∣ Ds F = 0
for any 0 � s < r

}
.

When r = 0, D0 is a restriction map

D0 : FM+
k (N ;χ) z=0−−−−−−→ FWk(N ;χ)

and FM
+
k (N ;χ)[0] = FM

+
k (N ;χ). Easily we have

Dr : FM
+
k (N ;χ)[r] −→ FWk+r(N ;χ)

and the kernel of this linear map Dr is

kerDr = FM
+
k (N ;χ)[r + 1].
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Hence we have

(6.12) dimC FM
+
k (N ;χ) =

∞∑
r=0

dimC

(
Dr

(
FM

+
k (N ;χ)[r]

))
.

The idea used in [Ao2] is to estimate the right hand side of (6.12) cleverly.
Since our proof is a slight modification of the method used in [Ao2], here

we give a proof only for the case N = p ∈ {2, 3}, χ = χ0 and k ∈ 2Z.
Continuing from the previous subsection, we put

g0 := E2 =
(

1 0
0 1

)
, g1 :=

(
0 −1
1 0

)
.

For r ∈ N ∪ {0}, we define

FWk(p;χ)[r] :=
{

(fm)∞m=0 ∈ FWk(p;χ)
∣∣∣∣∣ (FW)r

}
,

where (FW)r means the following condition:

(FW)r :
On the Fourier expansion fm(τ) =

∑∞
n=0 a0(n,m)e (nτ)

and (fm|kC (g1)) (τ) =
∑∞

n=0 a1(n,m)e
(
nτ
p

)
,

a0(n,m) = 0 and a1(n,m) = 0 holds if min{n,m} < r.

For r ∈ N ∪ {0} and

F := (φm)∞m=0 ∈ FM
+
k (p;χ0),

we put
(f r

m)∞m=0 := D
r(F ).

We put their Fourier coefficients

φm(τ, z) = (φm|k,mC (g0)) (τ, z) =
∑

n,l∈Z2

c0(n, l,m)e (nτ + lz) ,

(φm|k,mC (g1)) (τ, z) =
∑

n,l∈Z2

c1(n, l,m)e
(
nτ

p
+ lz

)
,

fm(τ, z) = (fm|k+rC (g0)) (τ, z) =
∑
n∈Z

ar0(n,m)e (nτ) ,

(fm|k+rC (g1)) (τ, z) =
∑
n∈Z

ar1(n,m)e
(
nτ

p

)
.
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Then we have

ar0(n,m) =
∑
l∈Z

c0(n, l,m)lr(6.13)

and

ar1(n,m) =
∑
l∈Z

c1(n, l,m)lr,(6.14)

where we consider lr = 1 when l = r = 0. The following lemma is immediately
induced from F ∈ FM

+
k (p;χ0).

Lemma 26. We have

c0(n, l,m) = c0(n,−l,m),(6.3)
c0(n, l,m) = c0(n + xl + x2m, l + 2xm,m),(6.4)
c0(n, l,m) = c0(m, l, n),(6.5)
c1(n, l,m) = c1(n,−l,m),(6.6)

c1(n, l,m) = c1
(
n + xpl + x2pm, l + 2xm,m

)
(6.7)

and c1(n, l,m) = c1
(
n, l + 2xn,m + xpl + x2pn

)
(6.8)

for any n, l,m, x ∈ Z.

Hence the following proposition holds.

Proposition 27. When r is odd, we have Dr

(
FM

+
k (p;χ0)[r]

)
= {0}.

Proof. By the equations (6.3) and (6.13), we have ar0(n,m) = 0 when r is odd.
By the equations (6.6) and (6.14), we have ar1(n,m) = 0 when r is odd.

The following lemma is induced from lemma 26 in the same way as we
did in the previous section.

Lemma 28. The following two properties hold.

• If (n, l,m) ∈ Z3 satisfies 4nm − l2 � 0 and |l| > min{m,n}, then
there exists (n′, l′,m′) ∈ Z3 such that c0(n, l,m) = c0 (n′, l′,m′) and
min{m,n} > min{m′, n′}.

• If (n, l,m) ∈ Z3 satisfies 4nm − pl2 � 0 and |l| > min{m,n}, then
there exists (n′, l′,m′) ∈ Z3 such that c1(n, l,m) = c1 (n′, l′,m′) and
min{m,n} > min{m′, n′}.
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Hence the following proposition holds.

Proposition 29. Let r ∈ N∪{0} and F ∈ FM
+
k (p;χ0)[2r]. If min{n,m} < r,

then we have c0(n, l,m) = c1(n, l,m) = 0. Hence we have

D2r
(
FM

+
k (p;χ0)[2r]

)
⊂ FWk+2r(p;χ0)[r]

Proof. We will give a proof by induction on r. When r = 0, the assertion is
trivial. When r = 1, if n = 0 or if m = 0, first we have c0(n, l,m) = 0 and
c1(n, l,m) = 0 unless l = 0, since F ∈ FM

+
k (p;χ0). Then, since the equations

(6.13) and (6.14) holds for r = 0, we have c0(n, 0,m) = 0 and c1(n, 0,m) = 0.
Therefore we assume that the assertion holds for r and prove that it also holds
for r+1. First, by the assumption, we have c0(n, l,m) = c1(n, l,m) = 0 when
min{n,m} < r. Then, by lemma 28, we have c0(n, l,m) = 0 and c1(n, l,m) =
0 unless l � r, when min{n,m} = r. Hence, by the equations (6.3), (6.4),
(6.13) and (6.14),

r∑
l=−r

c0(n, l,m)ls = 0 c0(n, l,m) = c0(n,−l,m)

and
r∑

l=−r

c1(n, l,m)ls = 0 c1(n, l,m) = c1(n,−l,m)

holds for s = 0, 2, 4, . . . , 2r. Therefore, by Vthe andermonde’s determinant
formula, we have c0(n, l,m) = 0 and c1(n, l,m) = 0 when min{m,n} = r.

Up to this point, we have the following estimation

Proposition 30. We have the exact sequence

0 → FM
+
k (p;χ0)[2(r + 1)] ↪→ FM

+
k (p;χ0)[2r] D2r−−−−−→ FWk+2r(p;χ0)[r]

for r ∈ {0} ∪ N. Hence we have

(6.15) dimC FM
+
k (p;χ0) �

∞∑
r=0

dimC (FWk+2r(p;χ0)[r]) .

We can calculate the right hand side of the inequality (6.15) explicitly.
Actually, when p ∈ {2, 3}, by using Maass lifts, we have

∞∑
r=0

dimC (FWk+2r(p;χ0)[r]) = dimCM
(2)
k (p;χ0).
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Since dimCM
(2)
k (p;χ0) � dimC FM

+
k (p;χ0), we have

dimC FM
+
k (p;χ0) = dimCM

(2)
k (p;χ0),

that is the goal of this subsection.
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