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Introduction

Let V be a finite dimensional vector space over a field K of characteristic 0.
A reflection is a finite order linear transformation on V' that fixes a hyper-
plane. Such a linear transformation is called real if it is of order 2 and complex
if it is of order > 2. A group G of linear transformations is a finite reflection
group if it is a finite group generated by reflections. In particular, a finite
reflection group generated only by real reflections are called Coxeter group,
otherwise it is called a complex refelction group. The G-action on V induces an
G-action on its dual V* hence on its symmetric algebra S®(V*). C. Chevalley
(for real case) [Ch] and G. C. Shephard and J. A. Todd (for complex case)
[ST] have shown that the ring of invariants S(V*)% is a Z-graded algebra gen-
erated by dimg V homogeneous elements that are algebraically independent.
Notice that, for a finite group, there is the so-called Reynold’s operator to
obtain invariants explicitly.

Now, for an affine Weyl group W, one can consider the W-invariant theta
functions defined on a half space Y of a Cartan subalgebra b of the affine
Lie algebra g whose Weyl group is W. A first attempt has been made to
determine the structure of the ring of such W-invariant theta functions by E.
Looijenga [L] in 1976 whose argument has not been sufficient, as was pointed

out by I. N. Bernstein and O. Schwarzman [BS] in 1978. Indeed, the ring '
of W-invariant theta functions is an Og-module, where H is the Poincaré up-
per half plane {r € C|Im7 > 0}, spanned by the normalized characters
{xatre P, mod cs of simple integrable highest weight modules over g. We re-
mark that each xp is holomorphic on Y, as was shown by M. Gorelik and V.
Kac [GK].

In 1984, V. G. Kac and D. Peterson [KP] has published a long monumental
article on the modular transformations, in particular, the Jacobi transforma-
tion, of the characters of simple integrable highest weight modules over affine
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Lie algebras. In particular, as an application of their results, they presented
a list of the Jacobian of the fundamental characters for affine Lie algebras
except for type Fil), Eél), EéQ), E%l) and Eél), and stated that the ring thJr
of W-invariant theta functions is a polynomial ring over Oy generated by fun-
damental characters {xa, }o<i<;. Unfortunately, their proofs have never been
published (cf. Ref. [35] in [KP]). In 2006, J. Bernstein and O. Schwarzman
in [BS1] and [BS2] presented a detailed version of their announcement [BS],
where their final result is a weak form of what V. Kac and D. Peterson has
announced. Moreover, J. Bernstein and O. Schwarzman excluded two cases:
type Dl(l) and Ag).

In this article, we determine the Jacobian of the fundamental characters
for the affine Lie algebra g of type Ag). In particular, we show that the explicit
form of Jacobian in Table J of [KP] for type Ag) is valid. As a corollary,
it follows that the fundamental characters {xa, }o<i<; of g are algebraically
independent.

This article is organised as follows. As the practical computation requires
many detailed information, Section 1 is devoted to providing root datum,
detailed description on the non-degenerate symmetric invariant bilinear form
restricted on a Cartan subalgebra b and its induced bilinear form on the dual
h*, and the structure of the affine Weyl group of type Ag). In Section 2, we
recall the theta functions associated to the Heisenberg subgroup of the affine
Weyl group of type Ag) and the modular transformation of the normalized
characters of irreducible integrable highest weight g-modules. In Section 3,
After some technical preliminary computations, we study the modular trans-
formations of the Jacobian of the fundamental characters. Finally in Section 4,
we determine the Jacobian of the fundamental characters of type Ag).

This text contains many well-known facts about the characters of inte-
grable highest weight modules over affine Lie algebras for the sake of reader’s
convenience.

1. Preliminaries

In this section, we recall the definition of the affine Lie algebra of type Ag)

and its basic properties. Everything given in this section is completely known,
see e.g., [Kac] and/or [MP]. Nevertheless, in order to fix our convention clearly
and to avoid unnecessary confusion, we collect several explicit data that would
be useful for further computations.
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1.1. Basic data

Here, we fix the enumeration of the vertices in the Dynkin diagram of type
Ag) as follows (cf. [Kac]):

(o) aq Qp—2 ap—1 Qg
A (1>2) O0«=—0—  —O0——0<=0
Qo aq
AP O<=0

In particular, this implies that the corresponding generalized Cartan ma-
trix A = (ai,j)OSi,jSZ is given by

2 =2 0 0
-1 2 -1
0 -1 2
A=
2 -1 0
-1 2 =2
0 0o -1 2

for [ > 2, and

for | = 1. A realization of the generalized Cartan matrix A is a triple (b, IT, I1")
such that

(i) b is an [ + 2-dimensional C-vector space,
(i) IIY = {h;}o<i<i is a linearly independent subset of b,
(iti) IT = {a;}o<i<i is a linearly independent subset of h* := Home(h, C),
and
(iv) (hi,aj) = a;; for any 0 <4,5 <.

Here, (-,-) : h x h* — C is the canonical pairing.
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The labels ag,aq,--- ,a; and co-labels aJ,aY, - ,a) are by definition,
relatively prime positive integers satisfying
ap 0
(053] 0
(a(\]/aa'la 7al\/)A:(0707 70)7 A . = .
aj 0

Explicitly, they are given by the following table:

i Jo[1 [ [i—-1
a |22 2 |1
a 12 2

As a corollary, the Coxeter number i and the dual Coxeter number h"
are shown to be

! 1
hi=Y a;=21+1, AV :=> a =2+1.
i=0 i=0
Let us introduce some special elements ¢ of h, and § of h* by

l l
=Y alh; = ho+2(hi+ - +h) €h, §:= a; =2(a+ - +o_1)+o.
i=0 i=0

By definition, we have
(c,a;) =0, (h;,0) =0,
for any 0 < < [. Now, define the elements d € h and Ay € h* by
(d, i) = i, (hi, Ao) = di0, (d, Ao) = 0.
It can be checked that
(e, No) =ay =1, (d,d) = ag =2.

For later purpose, we recall the definition of i-th fundamental weight
A; € b*, the element of h* satisfying

(hi, Aj) = 0,4 (0<4,5 <), (d,A;) = 0.

Clearly, one has
<Cv AZ> = 0/;/
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1.2. Bilinear forms on h and h*

Here, we recall the bilinear form I on h* and I* on § that are called normalized
invariant forms by V. Kac [Kac| in an explicit manner.

On h:

In particular, we have

On h*:

I(ai,aj): %'ai,j (OSZ>j Sl)a

1

I(Oéi,A0>:O (0<Z§l),

1
I(Oéo,Ao) = aal = 5, I(Ao,Ao) = 0

We also have
I(Ag,0) = 1.
The above bilinear forms are introduced in such a way that the linear
map v : (h, I*) — (b*, I) defined by
CL;/Z/(hi) = a;Q, I/(C) = (5, I/(d) = CL()AQ = 2A0

becomes an isometry.

1.3. Affine Lie algebra of type Ag)

Let g = g(A) be the Kac-Moody Lie algebra attached with the generalized
Cartan matrix A which is introduced in Subsection 1.1. Since A is sym-
metrizable, it is defined to be the Lie algebra over the complex number field
C generated by ¢;, f; (0 <7 <) and b, with the following defining relations:

(1) [ei, f]] = 6i,jhi fOI“ 0 S Z,] S l,
(ii) [h,h'] =0 for h,h' € b,
(iii) [h,e;] = (h,au)eq, [h, fi] = —(h,a;)fi for he€bhand 0 <i<I,
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(iv) (ade;) % (e;) =0, (ad fi)~®*H(f;) =0 for0<i#j<lI.

The Lie algebra g is called the affine Lie algebra of type Ag). The vector
space b is regarded as a commutative subalgebra of g, which is called the
Cartan subalgebra of g.

It is well-known that g admits the root space decomposition:

a=ba (Do)

acA

where g, 1= {X € g|[h,X] = (h,a)X for every h € h} is the root space
associated to a € h*, and A := {a € b* \ {0} |go # {0}} is the set of all
roots. An element o € A is called a real root if I(c, ) > 0, and the set of
all real roots is denoted by A™. Set A" := A\ A". An element o € A" is
called an imaginary root. The explicit forms of real and imaginary roots will
be given in the next subsection.

For aw € A", define a reflection r, € GL(h*) by

ra(A) == A — <I(oz2, a)l/_l(a), )\> a

for A € b*. Let W be the Weyl group of g, that is, W is a subgroup of GL(h*)
generated by r, (a € A”). It is known that the action of W on h* preserves
the set of roots A. The detailed structure of the Weyl group W will be given
in the next subsection also.

1.4. Affine Weyl group
Here, we describe the structure of the Weyl group of type Ag), paying at-
tention to the fact that the lattice of the translation part is not an even
lattice.
To describe its structure, we regard the 0-th node as the special vertex,
namely, the complementary subdiagrams

aq (e%)] a2 a1 aq

Cy (1>2) O—O— —O0O——0<=0
aq
Ay O

will be called the finite part of the Dynkin diagram of type Ag).
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Let by be the subspace of h defined by

l
[]f = @Chl
i=1

This can be viewed as the Cartan subalgebra of the finite part. In particular,
we fix the splitting of h as follows:

(1) h=hs @ (Ccd Cd).

This is an orthogonal decomposition with respect to the normalized invariant
form introduced in the previous subsection. We denote the canonical projec-
tion to the first component by *: h — bhy. Similarly, we set

!
hjc = @ (Cai
i=1
and the canonical projection to the first component of the decomposition
(2) b* = b} ® (C5 @ CAo)

will be denoted by the same symbol = : h* — b%. It should be noticed that
the image of the restriction of v : h — h* to by is 3.

Now, we recall the root system of the finite part. Although most of the
informations can be found in [Bour] for example, we describe this to fix the
convention.

We identify b and b7 via the isometry v. An orthonormal basis {¢; }1<i<
of b} with respect to I should be so chosen that the root system Ay of the
finite part and the set of simple roots IT; = {«; }1<i<; has the next description:

Ei —&; 1< l,
Ap={Fei T ejhcjaU{F2eh<ics, = ! )
2¢; 1=1.
B. Forl=1,A;={£2}. O

In particular, the sets AT, A}fl and A}“’ s of positive roots, positive long
roots and short roots, respectively are given by

A7 ={ei+ejhcicia U {2eh<ix,
A}:l = {26i}1§i§l7 AIS - {Ei :|: 6]}1SZ<]SZ
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We remark that w,; = A; = Z§:1 gj for 1 < ¢ <[ is the i-th fundamental
weight of hy. The highest root 6 € b} can be written as

0=36—apay =0 — 2a9 = 2¢eq,
and its coroot 0¥ € by as

2 v0) = ih- v(0Y) = 19 =¢
1(0,0) & 2’ b

Let Wy be a subgroup generated by r,, for o; € II;. This group is iso-
morphic to the Weyl group of type Cj-type. That is, W; = &, x (Z/2Z)".
The set of real roots A" of g is described as follows: for [ > 2,
AT =ATCUATCU AT,

Are = {Ia+(2r—1)8)|a€ A, reZ},
where (AT :={a+rd|laec A, relZ},
A ={a+2ri|lae Ay, reZ},

and for [ =1,
ATE :A;'E U A;"57

re.__ f1 _
where AF = {3(a+2r—1))|acAsrel},
AT ={a+2rd|lae Ay, relZ}.

The set of imaginary roots can be described as
A™ =75\ {0}.

For detail, see [Kac].
Now, we can describe the Weyl group W. As ¢ = hg + 26V, one has

rauro(\) = Tag (A = (0¥, M0) = A = A(0V)0 — (ho, A — (6”, M@)o
S At sle - (<9V, n+5le )\)) 5

=X (e A(8) = (TOuv(67) + 5 (e NT("),v(6))
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for A € h*. Set
M :=Zv(W;-0Y) = @Zez,

and, for a € b} 1= M @z R, we define ¢, € Endc(b ) by

fa(V) = A+ (e N — (I()\, a) + %(c, /\>I(a,a)> 5

It is known that the assignment of the lattice M to Endc(h*) defined by
a to t, gives an injective group homomorphism M < W. Furthermore, one
has
W=Wrx M= (6 x(Z/2/7)") x M.

We note that the lattice M is an odd lattice. This fact is essential in the
following discussion.

2. Main theorem
Let g be the affine Lie algebra of type AS) recalled in the previous section.
2.1. Formal characters

Let ny be the subalgebra of g generated by {e;}o<i<i (vesp. {fi}o<i<i). We
have the so-called triangular decomposition: g=n; & hdn_.

Let V' be a h-diagonalizable module, i.e., V' = D, ¢p- Vi where V) := {ve
Vihov = (h,\)v h € b} Set P(V) :={\ € h*|V\ # {0}}. Let O be the
BGG category of g-modules, that is, it is the subcategory of g-modules whose
objects are h-diagonalizable g-modules V' = P, V satisfying

(i) dimV) < oo for any A € P(V),
(ii) there exists A1, Ag, -+, A € h* such that P(V) C Ui_; (A — Z>oll).

A typical object of this category is a so-called highest weight module defined
as follows. We say that a g-module V is a highest weight module with highest
weight A € h* if

(i) dim VA =1

(ii)) ny. Vi = {0} and V = U(g).Vj.

In particular, the last condition implies that V' = U(n_).V, as a vector space
and

PV) = {\ € b*[Vi £ {0}} C A — ZsolL
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A typical example is given as follows. For A € h*, let Cy = Cvp be the one
dimensional module over by := ) & ny defined by

h.owpy = <h,A>UA (h S h), ny.vp = 0.

The induced g-module M(A) := Indg Cy is called the Verma module with
highest weight A. It can be shown that for any highest weight g-module V' with
highest weight A € bh*, there exists a surjective g-module map M(A) — V.
The smallest among such V' can be obtained by taking the quotient of M (A)
by its maximal proper submodule and the resulting g-module is the irreducible
highest g-module with highest weight A, denoted by L(A).

Let € be the formal linear combination of e* (A € h*) with the next
condition: 3y exe* € € = 3N, X, -+ ,; A € h* such that

T

{Aea # 0} € [ J(\i = ZsoI).

i=1

We introduce the ring structure on & by e* - et := e 4,
The formal character of V' € O is, by definition, the element chV € &
defined by
chV = Z (dim V).
AEP(V)
ch(-) can be viewed as an additive function defined on O with values in &.
For example, The formal character of the Verma module M (A) is given by

ChM(A) _ 6A H (1 _ e—a)—mult(oz)7

OCEA+

where Ay is the set of positive roots of g and mult(a) = dimg, is the
multiplicity of the root a. Set e(w) = (—1)"*) where I(w) is the length of
an element w € W. For A € Py := {A € b*[(hi,A) € Z>0|0 < i <[}, the
character of L(A) is known as Weyl-Kac character formula and is given by

Pwew e(w)er o

hL(A) =
S D)

where p € h* is the so-called Weyl vector, i.e., it satisfies (h;, p) = 1 for any
0 <i<land (d,p) = 0. In particular, for A = 0, as L(0) = C is the trivial
representation, one obtains the so-called denominator identity:

(3) Z E(w)ew(p) =ef H (1-— efo‘)mu“(o‘).

weWw acA L
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This implies that the Weyl-Kac character formula can be rephrased as follows:

ZwGW €(w>ew(/\+p)
Ywew e(w)erte)

(4) chL(A) =

2.2. Normalized characters of type Ag)
For A € Py with (¢,A) = k € Z>¢, the normalized character x, of the
irreducible highest weight g- module L(A) with highest weight A is defined
by

XA i= e ™%hL(A),

where the number my, called the conformal anomaly, is defined by

e LA+ At p)  (p.p)
AT T+ RY) 2hY

with Y = 2] + 1 being the dual Coxeter number of Ag). Here, the bilinear
form is normalized as in §1.2 (cf. Chapter 6 of [Kac|). For A € Py with
(e, Ay =k, set

I(At+p,Atp) 5

Antp = Z €(w)€w(A+p)7 2(k+hY)
weWw

This is a W anti-invariant. By (4), one has

Apny
5 = ——F
(5) W=y

We regard this normalized character xa as a function defined on a certain
subset of B as follows. For A € h*, e* can be viewed as a function defined on
b: eM(h) := e N Tt is shown in [GK] that the normalized character y, for
A € P, can be viewed as a holomorphic function on a complex domain

Y = {h € bh[Re (h,6) > 0}.

We introduce a coordinate system on b as follows. Set €; := v=1(g;) for 1 <
i < I, where v : h — b* is the isometry defined in §1.2. Then, {e¢}1<i<
is an orthonormal basis of b with respect to I* bixh3- For h € Y, define
z € by, 7,t € Casin [Kacl:

(6)  h=2mv—-1 (z — v Y (Ag) + tl/_l(é)) =2mV/—1 <z - %Td + tc) ,
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and write z = 25:1 z;€;. With this coordinate system, we see that

Y 5 Hx by xCS3HxC xC;
h — (1,2,t) — (7,(21,22, -, 21), 1),

(7)

where H is the upper half plane {7 € C|Im(7) > 0 }. We write xa(7, 2,t) :=

xa(h).
For k € Z~g, set

PP = {Neb*(c,\) =k, X€ M},

and for A € P¥, set

I
O):=e "2 0 Z etV
aeM

This is the classical theta function of degree k. Its value on h € b is
given by

(8) O(T, z,t) = VIR N VIR G2 STk (2)),

yEM+Ek—1X

Now, we recall the modular transformations of the classical theta functions.
Recall that SL(2,7Z) is the group generated by

0 -1 11
() ()
As SL(2,7) acts on the complex domain Y by
a b atr+b  z cl*(z, z)
. t) = t—
(c d> (7.2,%) <c7'+d’c7'+d’ 2(07'—1—(1))7

This action induces a right action of SL(2,Z) on Oy as follows: for g €
SL(2,Z) and F € Oy,

Fly(1,2,t) == F(g.(T, 2,1)).

The next formula is a simple application of the Poisson resummation formula:

Proposition 2.1 (cf. Theorem 13.5 in [Kac]). Let A € P*. One has

0, <_17z’t_ M)
T T 27



350 Kenji Iohara and Yoshihisa Saito

l —_
it _ 2nV/=IIR)
L E e k Ou(T, 2, 1),
n€P* mod C+kM

- ()
==
ONT+2,2,t) = eQﬂTﬁI(X’X)G,\(T, 2, ).

In particular, when k is even, one also has

TV —1

ONTH+1,2,t) =€ F

I(X;) @/\ (7_7 z, t) .

In fact, the lattice M is not an even lattice.

For k € Z>y, let Pf := P_ N P* be the set of dominant integral weights of
level k. As an application of the above proposition, V. Kac and D. Peterson
[KP] proved that the C-span of {Aary,}ac Prmodcs admits an action of a
certain subgroup of SL(2,Z), so does the C-span of the normalized characters

{X/\ (7—7 2, t)})\EP: mod Cd*

Theorem 2.1 ([KP]). Let g be the affine Lie algebra of type Ag?). For A € Pf
(k € Zso), one has

(L2 e

T T 2T

) = Z a()‘aU)XM(TvZ7t)>

,uGP_f mod Cé

where the matriz (a()\,u))AMEpf mod Cs 1S given by

a(\ ) = (V=D)¥ (k+ 20+ 1)z

2/ T (3T 5, w(FTP))
Y E(w)eXp<_ k2l + 1 )

weS; X (Z/QZ)l

One also has
AT+ 2,2,t) = e4ﬂmm*x)\(r, z,t).

Remark 2.1. For later purpose, we recall the modular transformations of
the denominator:

—

NI

(L ) (L)

2T V-1
77\/—_1> AT, 2,1).

[(1+1)

A(T+2,2,t) =exp (
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Remark 2.2. It can be checked that, for w = on € Wy (0 € &;,n =
(1, -+ ,m) € {£1}), one has det b;(w) = sgn(o) [T, 7.

Notice that, for each k € Zx(, the C-span of the normalized characters
xa (A € PF mod C§) is [g-stable, where I'p is the subgroup of SL(2,7)
generated by S and T72.

In the following, we recall an expansion of y in terms of the classical theta
functions. An element A € P(L(A)) is called maximal if A\+¢ ¢ P(L(A)), and
let max(A) be the set of all maximal elements of P(L(A)). Hence, we have a
decomposition of P(L(A)):

PLA) = || {A—nd|neZso).

A€max(A)
For A € max(A), set
o0 I
A= e~ma(9 Z(dimc L(A)Afné)e_msa where ma (A) == ma — o )

n=0

Furthermore, we extend the definition of ¢} to an arbitrary A € h* as follows.
If (A + C8) Nmax(A) = 0, we set ¢y := 0. Otherwise, there exists a unique
p € max(A) such that A — p € C. Hence, we set ¢} = cﬁ.

Similarly to the case of classical theta functions, we regard the series c} as
a (formal) function on Y. By the definition, this function depends only on the
variable 7 € H. The following proposition is well-known in the representation

theory of affine Lie algebras. For example, see [Kac], in detail.

Proposition 2.2 ([Kac]). Let k > 0 be a positive integer and A € P¥.

(i) The series ¢t = cA(7) converges absolutely on the upper half plane H

to a holomorphic function.
(ii) The normalized character xa has the following expansion in terms of
the classical theta functions:

XA = Z Cﬁ\\@,\.

A€ Pk mod (kM+C4)

The holomorphic function ¢4 (7) is called the string function of A € h*.
2.3. Ring of Theta functions

For a € b} g, we define p, € Endc(h*) by

pa(h) = h+ 21V =17 ().
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Set
N - b},R X b},R X V _].R
and define a group structure on N by
(a, Byu) - (o, B u) = (a+d, B+ u+u +7v—1{I(a, ") — I(c, 3)}).
The group N is called Heisenberg group. This group acts on h by

(o, B,u).h = tg(h) + 2nv/ 1w () + {u — 7v/~11(a, B)}c.

This N action preserves the complex domain Y. We note that (a,0,0).h =
pal(h) and (0, 8,0).h = tz(h). We consider the subgroup Nz of N generated
by («,0,0), (0, 3,0) with o, 5 € M and (0,0, u) with u € 27/—1Z, i.e.,

Nz ={(o,B,u) € N|a,f € M, u+mvV—1I(a, f) € 21/ —1Z}.

Let Oy be the ring of holomorphic functions on Y. We define the right
N-action on Oy by

Flapa (h) = F((a,,u)h)  F e Oy.

Definition 2.1. For k € Z>¢, define

= {F SOl (@) Flh+a)=eF(h) YheY andaeC.

(1) F‘(a,@u) =F V(a,ﬁ,u) € Nz, }

and set
= @thk
k=0
An element F' of Thy is called a theta function of degree k.

Remark 2.3. The ring Th is a Z-graded algebra over the ring ﬁo = Oy,
the ring of holomorphic functions on the upper half plane H.

A typical example of an element of Thy for k € Z~ is the classical theta
function ©y of degree k, i.e., A € P*.

Remark 2.4. It follows from (8) that
Oxtkatas = O  for every a € M and a € C.

Thus, a classical theta function of degree k depends only on the finite set
P* mod (kM + C§).
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Let D be the Laplacian on Y:

1 (.00 & &2
D=—|(2——— — .
472 < ot ot ;&z?)
FOI"]{EZZ(J, set

F € Thy |D(F) = k
Thk:_{{ € Thy|D(F) =0} >0,

k=0
V. Kac and D. Peterson showed the following proposition.

Proposition 2.3 ([KP]). Let k be a positive integer.
(i) The set {©x|\ € P* mod kM + C§} is a C-basis of Thy.
(i) The map: Oy @cThy, — Thy, defined by fQF — fF is an isomorphism
of Og-modules. In other words, ﬁzk is a free Og-module with basis
{6\ € P*mod (kM + C6) }.

As the finite Weyl group Wy acts on Y, it induces the right action of Wy
on Oy:
Fly(h):==F(w-h) for F € Oy and w € Wy.

For any k € Z>q, this right W-action on Oy restricts to a right W -action
on Thy. Thus, we set

f“vh;: —{F €Thy|Fl,=F Ywe W},
Thy, :={F € Thy,| |,y = dety: (w)F ¥Yw e Wy},
ThE :=Thy N Thy,

~+ ~+
An element of Th = @yez., Thy, is called a Wy-invariant (resp. Wy anti-
invariant). For k € Z~, set

Pt ={A € P*|(h;,A) € Zoo}.

Let A € P*. Obviously, the element A, , introduced in §2.2 is a W;
anti-invariant. On the other hand, set

Sp = O Z e = Z Oy (n)-

weW ’u)fGWf

Then, it is an element of Thz.
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Another important example of Wy-invariants is the normalized character
Xa- Indeed, Proposition 2.2 (ii) tells us that y, is an element of Thy. In
addition, thanks to the description (5) of x4, it is invariant under the action

of Wy. Therefore, one has y € ﬁ,j
Proposition 2.4 ([KP]). Let k be a non-negative integer.

(i) The set {Sa| A € PF modCd '} is a C-basis of Thi .
(i) For k > 2l +1, the set {Ax| X\ € P¥, modC§} is a C-basis of Thy, .
(iii) The map <I>k in Proposition 2.3 is Wy-equivariant. Therefore, the Og-

modules Th,C are free over {xa|A € P¥modCs} (resp. {A\|X €
P, modCd}).

As the map P¥ — PEPIFL N s X + p is bijective, (5) and the above
proposition implies

Corollary 2.1. The space of Wy anti-invariants Th isa free TNh+—m0dule
over A,.

As P modC§ is the monoid generated by {A;}o<i<; and (¢, A;) = a,
it can be shown that the Poincaré series Pﬁﬁ (T) of the graded Oy-algebra

ﬁz+ is given by

l
—~ 4 oV —
P—+(T) := > ranko, (Th, )T" =1 —1%)~"

By the same computation, this implies

l

(9) S dime(Th)TY = TJ(1 - 7))

k€Z>o i=0

For each 7 € H, let Y, be the subset of Y that corresponds to {7} x
hs x C via the isomorphism Y = H x h; x C discussed in (7), ty, : Y; —
Y the corresponding embedding. The above computation leads to the next
conjecture:

Conjecture 2.1 (cf. [KP]). Let g be the affine Lie algebra of type A( ),

(i) ForeachT€eH, Th' ly, is a polynomial ring generated by {13 (xa,)}o<i<i
over C. .
(ii) The graded ring Th is a polynomial algebra over Oy generated by

{xas fo<i<i-
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2.4. Jacobian of fundamental characters

Let A € Py be a dominant integral weight. For an integer 0 < i < [, we define
the directional derivative 0;xa by

(Oixa)(7, 2, t) = lim

s—0

xa(h + 27/ —1sh;) — xa(h)
. )
Asc=ho+23._ hy, it follows that
l
(80XA)(T7Z>t) =27y _1<C>A>XA(Ta Zat) - QZaiXA(T7 z, t)

i=1

Hence, the Jacobian of the fundamental characters is, by definition,

Xo Oixo - OiXo

2x1 Oixa1 - Oxa
J(7,2,t) == det(djxa, )i =01, 1 = 2V —1 : : .

2xvi Owxa - O

It can be easily seen that this determinant is an element of ﬁ;l 41, L.e., there
exists a holomorphic function F' € Oy such that J(7,2,t) = F(7)A,(T, 2, 1).

In the rest of this article, we will determine this function F' and prove
Conjecture 2.1.

Remark 2.5. A weaker statement is proved by I. Bernstein and O. Schwarz-
mann [BS1] and [BS2] for any affine root systems except for Dl(l) and AS).

3. Preliminary computations

In this section, we study the modular transformations and leading terms of
the Jacobian of certains characters.

3.1. Explicit formulas on a(A, u)

Asaf =1and af =2 for 0 < i <1, one sees that

(i) P! mod Cé = {Ao} and
(ii) PJQr mod C6 = {2A0} U {A; hi<i<u-
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First, we compute a(Ag, Ag). By Theorem 2.1 and the denominator iden-
tity, we have

a(Ao, Ao) = (V=1)" (2( + 1))_%lw§w e(w) exp <—7T\/_1ZI_|(_“1(P)aP)>

= (VD @+ ) T (e - e h) (—Zf[)
aEA}r

2 I(p
= 2! *%l(l + 1)7%l H sin( (P, ) 7r> .
aEAJf

21+ 1)

Hence, by §1.4 and the well-known formula
n—1
) k n
(10) H sin <5W> = on 1
k=1

for n € Z1, it follows that
I sin ( Ip.a) 7T>
et 2(0+1)
!

- I () o () T (57)

1<i<j<l i=1
= 2Pl (14 1)7!

)

thus we obtain
(11) CL(Ao,Ao) =1.

Next, for level 2 case, we set

. 2A i=0,
A, 0<i<l.

By Remark 2.2, for A+ p = 2221 mie; and p+ p = Zézl nie;, we have

21/ —1I(A + p,w(n + p))
2, clwew <_ 20+3 )

WES, X (Z/2L)!
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=2 ¢clo) ﬁ ex 27T\/_m —ex QW\/_m n
IR A N W ol +3 T

l

=(-2v=1)' Y (o) ]] <2 sin (%W»

)
€S, =1
1)’

2myng
= (—2v/—1)"det <51n< MR 7T>> :
2l 1<r,s<l

As Ni +p =2 0<i(l+2 = k)ep + 2poi(l + 1 — k)eg and

2 2 _ _
det (sin ( s 7T>> = det (sin (—mHl 41 sw)) ,
20+3 1<r,s<l 20+3 1<r,s<l

to compute a(\;, \;), it suffices to compute the (—1)"+7 times (I4+-1—4,[+1—7)-
entry of the cofactor matrix of the matrix

2rs
My = (sin( 7r>) .
? 20+3 1<r,s<l+1

With the aid of Cj-type denominator identity (cf. [Kr]), i.e., the identity

l

!
det(Xi] — X;j)lgz"jgl = (H Xz‘)il H (1 — XZX H X2 — 1
i=1 1<i<j<l i=1
in C[X;™, -+, X!, one can show that

det My = (—1)30 02 (21 4 3)3(+D,
Moreover, it can be shown that
5 1
My = Z(Ql +3)141.

Combining these facts, we obtain

(12)  a(hi,Aj) =

(22‘—&—1)(2]’—1—1)7) 0<ij<)

2
Vi3 " ( 220 + 3)
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3.2. Modular transformation of Jacobians

For 0 <i <1, set

XAo  O1Xao 0 OiXag

J(T, 2,t) = 2m/—1 2X:)\i1 al)f/\il 8”9“ (1,2,t) e Hx by x C,
2X.,\il 31>.<Ail e 3l>;>\il

where i1, ig, - - - 4 are integers such that i; < i < --- <idjand {i1, iz, -+ i} =

{0,1,--- 1} \ {i}. Note that
JO(T7 z,t) = J(71, 2,t).

Since these determinants are W anti-invariant and their degrees are
St gal = 20+ 1, it follows that Ji(7,2,t) € Thy,; = OnA,, ie., there
exist holomorphic functions F* € Oy such that

(13) JH(r, 2,t) = FY (1) Ay(T, 2, 1).

Below, we determine these holomorphic functions { F*(7) }o<i<; explicitly. For
this purpose, we compute the modular transformations of Ji(7, 2, 1).
Let A € P;. Recall that, by Theorem 2.1, there exists a unitary matrix

(a()“'u))/\,uePf’*) mod ¢ Such that

X (ijtl(zz))z > alh w)xa(T, 2, 1),

2T
uePf’A>

Differentiating both sides of this formula, we obtain

1 2 I*(z,2)
(9ixx) <—;7;,t— 97 )
=7 Z a()\,,u)(az’Xu)(Tvzvt)

(e, A)
MEP+

+27r\/—_1[*(z,aiv)<c,)\) Z a(X\, 1) x (7, 2, 1),

(e,X)
HeP,

for any 0 < i <.
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Set Mg = (a()\i,)\j))ogm‘gl. Let MS = ((Ms)ivj)ogi,jgl be the cofactor
matrix of Mg. For 0 < i <[ let 0 < 41 < i3 < -+ < 7; be non-negative
integers such that {iy,d9,---,4} = {0,1,--- 1} \ {i}. By direct calculation,

one obtains

p (-2 )

'’ 2T
= 271'\/ —la(Ao, Ao)Tl
XAo O1X Ao EE DX Ao
y 2370, A xay 2 a(Nis A)oxay o 20y alXg, M),
Z' a(Xi, Ni)Xay 2o a(Nip Aj)Oixy o 20 alNgs Aj)dix,

—TZZ 1) (Mg); ; J2 (7, 2, t).

On the other hand, it can be checked that M2 = I;;;. Recall the super de-

. : . o +3 +3
nominator identity of type B(0,n), i.e., the next identity in C[X; ?,--- X, ?]:

(14) det( X4 X e

n
= (H Xi)*nJr% H (1-X;X;) H (1+X,).
i=1 1<i<j<n i=1
With the aid of this formula, we can show

H»l)

Lemma 3.1. det Mg = (—1)( 2

Proof. Setting w = exp (272?1?), n=1+1and X; = w2 (1<i<l+1)
n (14), we have

(20 + 3)2) det (M)

= dot (w0 4 w—(z’—%)(j—a)K "
]S

EER —(+1) o o s L
= (Hw"ﬁ) [T Q—w™ w2 —w2)J](1+w"2).
i=1

1<<i<j<i+1 i=1
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Now, by direct computation, it follows that

<Hw12> H (1— w1 (w2 —w]*E)H(l—i—wl*ﬁ)

1<<i<j<i+1 i=1

:(_ )(z+1> 2(l+1)2

S . I+1 .
. z—i—y—l)_(]—z) (22—1 7r>
< 11 sm(iﬂ sin 7 ) I cos I
I<i<i<it] 20+ 3 20+ 3 b} 20+3 2

, I+1
—(—1)('3) . g0+ ﬁsin( ' w) .
3

By (10), we obtain

. 2042 ; 3(+1)
det(Ms) = (21 +3)"30+D . (—1)('5). 2(””2<H““<25+3 >>

= (—)(%, O
Hence, we obtain

(Msg)iy = (—1)

L) 2 ‘<(2Z’—|—1)(2j—|—1) >
"\ 2@+ )

Thus, we obtain the next formula:

(15)  (=1)"J's(7,2,t)
AL )
2

l (2i +1)(2 + 1 .y
v ( *221]5 )7T>(—1)]J](T,z,t).

l+1

= Tl(—

By definition, the conformal anomaly of the weights Ag, A\;(0 < ¢ <) are
given by

1 1 N (Y
- = (214 1)i —i?) =
man = ol = gy B DI =) — oy
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which implies
l
1
ma, + kai = ﬁl(% + 1).
i=0

Thus, we obtain the next formula:

(1) -
(1) g (7, 2,1) = (— 1) T (7 + 2, 2,1)

1 o
= exp (47r\/—1 <241(2l +1)— m&-)) (=1)*J (T, 2, ).
3.3. Leading terms of Jacobians

In this subsection, we compute the leading degree of each Jacobian J(7, z,t)
(0 <i<1) as a g-series, where q := e™ =17, Let

Pr={Xeb}|(hi, ) €Z 1<Vi<l}
Pl={Xebi|(hi,\) €Zsq 1<Vi<I}

be the set of integral (resp. dominant integral) weights of h¢. The Weyl group
acts on Pf, hence on its group algebra

C[P!] = { Z cxe?

AePf

i) C) € (C,
i) #{\|en # 0} < oc.

For A\ € P/ set ay := 2 wew; e(w)e® ™. The set {axi5}\cps spans the set
+

of set of Wy anti-invariants C[P/]""¢ and it satisfies a,\) = e(w)ay. For

A € P/ set Xf\c = PP 1t follows that X{ € C[P7)"s is the Weyl character

5
formula for the finite root system Ay when A € Pf:.
Now, regard e* (A € Pf) as functions on h; defined by h +— e"N. We

rewrite the anti-invariant Ay, (A € P;}) of the affine Weyl group W:

6_2(k+2l+1)ﬂ\/?1tAA+p(T, 2, t)

. _
_ Z £(w) Z qm!(kmm)aw(up)l 27V =1z, (k2041 atw(A+7))
weW; aceM
— 2 —
_ Z qm\(k+2l+l)a+A+pl Z £ (w)e2mV L (k2L )t A 47))

aceM wve
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_ Z qZ(k+21+l)I('y ) Z zm/ T(z,w((k+21+1)7))
weW
YEM+ e k+2l+1 !
L(k420+1)1(~,
— Z Ak ro1i1)y (2mv/—12)q 3 ( M (y 7)7
A+p
YEM+ it

where |8|? := I(3,3) for 5 € b%. In particular, for A = 0, Ag, A; (0 <i<l),
the first few terms of this formula are given as follows.

(A =0):
_2(2l+1)7r\/_tq T+ 4 (T 1)
= az(2mv—12) — aKIJrﬁ(Zm/—lz)q% + 0z, 17,4527V —12)g q:
ayx; +p(27r\/ 12)¢> + O(q2),
(A = A())Z
e—4(l+1)7r\/—_1tq—2—141(2l+1)AA0+p(7_’ )
= az(2mv—12) — a2X1+ﬁ(27T\/ —1z)q+ aQA—1+A—2+ﬁ(27r\/ —12)¢* + O(¢®),

(A = 2A0)2

1(1+1)(21+1)
—22l43)mv/ -1t —
( ) q 12(21+3) A2A0+p(7—7 z t)

= ap(2mV=12) — agx, 527V =12)q> Pt R, s g (2TV 12)¢ +O(g?),

2Byt s~ G A pip(T 20 1)
1
= aA_,;—Q—ﬁ(Qﬂ—V_lz) — aK1+K_+p(27T\/—1Z) q?2
/— 5 .
+ a2(A1+A2)+p(27T Z) 2 j_ (q ) 1=
v i +p(27r\/ 12)q2 + O(¢?) 7> 1.

Thus, the normalized characters have the next expansions:

e 47"\/7tq6(2l+3) X2Ao (7-, 2, t)

= 1@y T2)gE + (o) @rvT2)g
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+ (0 = X — e 1) @rV=12)g + O(¢?)
and, for 0 <1 </,
3i(i—2(1+1))+1(1+1)
e—47r\/—_1t 46(;z+3§ - XAz(T Py t)
1
Xo-(2mV=T12) + (o — X +A)(27T\/ 1z)q2
+ (s 0dpds — ) 2mvVT2)a + 0l

f_f _ f f
XA T XA +X— where we set i =0.

3
2

).

Notice that Xi—x
1

Now, we analyze the first few terms of xj,. Recall that the character of
the fundamental representation L(Ag) has the special expression (cf. [KP]):

Sacn )
chL(Ao) = =% le(flw —r

Hence, it follows from the Jacobi triple product identity that
XAo (7- z t)

l
QWth_21lH (H 1+q 2627r\/7(z51))(1+q 2 —27r\/—71<z,€2-)>>.

i=1 \r>0

With this expression, one can derive the leading terms of the normalized
character xa, (7, 2, t) as follows. For r € Z+, thanks to the W-invariance, it
can be shown that

l
H(l +qr7%627r\/7_1(z,5¢>)(1 _i_qrf%ef%r\/—_l(z,gi))
i=1
- ) ‘ [l 1.]
=d" 2)<ZX (2mv—1z)+ Z(ql(r’ihrq’l(” ZX
i=1

[ 111111{12,21 i} ]

21
= Z Z Xfi(%r\/—_lz) qi(r_%),

) Amingi,21—i}—25

ll2j

27r\/—_lz)>

where we set XAg—1 and [z] for x € R signifies the maximal integer < x. Thus,
the leading terms of

72(21+1)m/7_1tq—(m/\0 —mAﬁZ;:O ﬂnj)Ji(T7 z, t)
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is given by the leading terms of

1+ O(q%) 81X—(27r\/_z)q2 + O(q 2 )y e alX—(QTF\/_z)qZ n O(q )
24 0(q7) alx_(Qﬂ'\/_lz)q+O(q2) azx_(27r\/_12)q+o(q2)
2xf\—1(2ﬂ¢flz) + O(q%) 61X—(27r\/_1z) + O(q2) 8zx_(27r\/_12) n O(q2)
2X£_—_1(27r\/jlz)+0(q%) 81X£»_1(27r\/jlz)+0(q%) alxi»_l(Qﬂ'\/le)+O(q%)
2 (@rV/TT2) + 0d)  od—@rvET +0) o and—(2rvET) +0(h)
i+1 A1+1 A7‘,+1
zxf\—l(zﬂﬁz) +0(q?) ale\_l(%ﬁz) +0(q?) ale\_l(%ﬁz) +o@d)

In particular, the leading degree with respect to ¢ of this determinant is %z
Therefore, since

(20 + 1) 1 1.
— S I—1)+—I(l+1)— =
o +Z s@ 13 Tl YT 2(+ )= 5t
we have
Ti(r,2,1) o 2EHDTYVT, ;f(;ﬁ;ﬂrm(z D+ 1(141)
(17> Y Y

IOI»—‘

X det(@,—xi (2mvV—12))1<ij<i(1 + O(g2)).

3.4. Functional equations on {F*(7)}o<i<:

By (13) and Remark 2.1, the equations (15), (16) and (17) imply the next
equations:

(-1F (-
e (ﬁ) m Z ( . +;z) (f‘]g; 1)W) (-1 F(),
(=1)'Fi (142, 2,t) = exp <—47r\/jl <mAi + il>> (—1)iFi(7),

s

and also with the computation of the leading term of A, in Subsection 3.3,
one obtain

(19) (—1)iFi(r )mqﬁ;ﬁ;ﬁm(l 1)( 1+ O(q %))
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where o« means the left hand side is proportional to the right hand side up
to a non-zero scalar factor.

4. Determination of Jaocbians
4.1. Some modular forms

For m € Z~o and n € Z/2mZ, let
en,m(T) = qu(k+%) y
keZ

be the classical theta functions. Their modular transformations are given by

O (T + 1) = 20™V710,, 1 (7),

(20) 1 T2 n
()= () 5 e
T 2my/—1 n'€Z/2ml

Here, we recall the Jacobi triple product identity:

(1= p")(1 = p L) (1 = prwt) = 37 (—)pl)ul.
1 1€Z

8

(21)

The Dedekind eta-function is defined as follows:

P 3(m—1)?
n(r) =a [[0—q") = > (=1)mgz("7a)
n=1 meZ
It is a weight % modular form:
0=, (-2 = (55) )
T =e T —— ] = 7).
U (), n{-- 1) "
Following [KP], for M € Z~p and 0 <r < M, set
FM(r) =g @200 I (=g I 0-¢) I (=)

n=0 mod M n=r mod M n=—r mod M
n>0 n>0 n>0

By definition, FO(M)(T) = n(Mr)3, and for 0 < r < M, the Jacobi triple
product identity (21) gives

EM (1) = Orr_oronr(7) — Onrraron (7).
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In particular, one has

(M—2r)?

FM(r41)=¢ ar VIEM)(7),

Assume that M is odd (this is the only case we need). Then, its Jacobi
transformation 7 +— —% is given as follows: for 0 < r < M,

(22) EM) <—1>

-

1

? oyt (T ey (M)

(—1)2 > sin AT e y (7).
T‘/OE<OTI§O](\{2

-
= 2 _
()
Notice that, for 0 < r < M, one has
M
Fyo,(r) = (7).

4.2. Conclusion

It turns out that the functions {n(T)l_lFlflle) (7) }o<i<i enjoys the same prop-

erties as {(—1)"F*(7) }o<i<i, i-e., (18). Thus, we see that
T, 2, 1) o (=1)in(r) L EZE (1) A (7, 2, ).
In particular, since nl_lFl(fllJrg) never vanishes on H, we see that, for any
7 € H, the fundamental characters {xa, }o<i<; are algebraically independent.

In particular, we have proved the validity of the first part of the Conjec-
ture 2.1:

Theorem 4.1. For any 7 € H, we have

ﬁl+

v, = Clov. O (0= i <)),

where vy, : Yy — Y is a natural embedding.

Indeed, both of them are Z-graded C-algebras whose Poincaré series
(cf. (9)) are the same.

Remark 4.1. Let L(c,h) be the irreducible highest weight module over the
Virasoro algebra whose highest weight is (¢, h). For each integer 0 <1 <, set
3(20+1)2 L (20 +1)2 — (21 + 1)?

20+3 L 8(21 + 3)

C221+3 ‘=
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We denote the normalized character trL(CQ’QH&hi)(qLO*iC) by X11+1-i(7). It
turns out that (cf. [IK])

20+3
_ F‘l(Jrlfi) (1)

Xl,l+1—i(7') 77(7_)

In particular, this implies that
T (7, 2,t) oc (=1)'n(7) x1,00-i(T) Ap(T, 2,8).

As for the second part of the Conjecture 2.1, we see that the Oy-algebra

Th' contains the Og-algebra generated by {xa, fo<i<i, that is isomorphic to
a polynomial algebra, as a subalgebra. In addition, as a graded Oy-algebra,

the Poincaré series of Th ' and Oulxa, (0 < i <1)] coincide.
Let ICy be the quotient field of Oy. One has

K @0, Th' 2 Ku[xa, 0<i <)), f®F — fF
On the other hand, by Theorem 4.1, the above isomorphism restricts to
Our @0y Th' = Oy, (0 < <1)].
Since (,eq On,» = Om, this implies

Theorem 4.2. Th' = Omlxa, (0 <7 <1)].

Hence the second part of the Conjecture 2.1 is also valid.
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