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Introduction

Let V be a finite dimensional vector space over a field K of characteristic 0.
A reflection is a finite order linear transformation on V that fixes a hyper-
plane. Such a linear transformation is called real if it is of order 2 and complex
if it is of order > 2. A group G of linear transformations is a finite reflection
group if it is a finite group generated by reflections. In particular, a finite
reflection group generated only by real reflections are called Coxeter group,
otherwise it is called a complex refelction group. The G-action on V induces an
G-action on its dual V ∗, hence on its symmetric algebra S•(V ∗). C. Chevalley
(for real case) [Ch] and G. C. Shephard and J. A. Todd (for complex case)
[ST] have shown that the ring of invariants S(V ∗)G is a Z-graded algebra gen-
erated by dimK V homogeneous elements that are algebraically independent.
Notice that, for a finite group, there is the so-called Reynold’s operator to
obtain invariants explicitly.

Now, for an affine Weyl group W , one can consider the W -invariant theta
functions defined on a half space Y of a Cartan subalgebra h of the affine
Lie algebra g whose Weyl group is W . A first attempt has been made to
determine the structure of the ring of such W -invariant theta functions by E.
Looijenga [L] in 1976 whose argument has not been sufficient, as was pointed
out by I. N. Bernstein and O. Schwarzman [BS] in 1978. Indeed, the ring T̃ h

+

of W -invariant theta functions is an OH-module, where H is the Poincaré up-
per half plane {τ ∈ C| Im τ > 0 }, spanned by the normalized characters
{χΛ}Λ∈P+ mod Cδ of simple integrable highest weight modules over g. We re-
mark that each χΛ is holomorphic on Y , as was shown by M. Gorelik and V.
Kac [GK].

In 1984, V. G. Kac and D. Peterson [KP] has published a long monumental
article on the modular transformations, in particular, the Jacobi transforma-
tion, of the characters of simple integrable highest weight modules over affine
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Lie algebras. In particular, as an application of their results, they presented
a list of the Jacobian of the fundamental characters for affine Lie algebras
except for type F

(1)
4 , E

(1)
6 , E

(2)
6 , E

(1)
7 and E

(1)
8 , and stated that the ring T̃ h

+

of W -invariant theta functions is a polynomial ring over OH generated by fun-
damental characters {χΛi}0≤i≤l. Unfortunately, their proofs have never been
published (cf. Ref. [35] in [KP]). In 2006, J. Bernstein and O. Schwarzman
in [BS1] and [BS2] presented a detailed version of their announcement [BS],
where their final result is a weak form of what V. Kac and D. Peterson has
announced. Moreover, J. Bernstein and O. Schwarzman excluded two cases:
type D

(1)
l and A

(2)
2l .

In this article, we determine the Jacobian of the fundamental characters
for the affine Lie algebra g of type A(2)

2l . In particular, we show that the explicit
form of Jacobian in Table J of [KP] for type A

(2)
2l is valid. As a corollary,

it follows that the fundamental characters {χΛi}0≤i≤l of g are algebraically
independent.

This article is organised as follows. As the practical computation requires
many detailed information, Section 1 is devoted to providing root datum,
detailed description on the non-degenerate symmetric invariant bilinear form
restricted on a Cartan subalgebra h and its induced bilinear form on the dual
h∗, and the structure of the affine Weyl group of type A

(2)
2l . In Section 2, we

recall the theta functions associated to the Heisenberg subgroup of the affine
Weyl group of type A

(2)
2l and the modular transformation of the normalized

characters of irreducible integrable highest weight g-modules. In Section 3,
After some technical preliminary computations, we study the modular trans-
formations of the Jacobian of the fundamental characters. Finally in Section 4,
we determine the Jacobian of the fundamental characters of type A

(2)
2l .

This text contains many well-known facts about the characters of inte-
grable highest weight modules over affine Lie algebras for the sake of reader’s
convenience.

1. Preliminaries

In this section, we recall the definition of the affine Lie algebra of type A
(2)
2l

and its basic properties. Everything given in this section is completely known,
see e.g., [Kac] and/or [MP]. Nevertheless, in order to fix our convention clearly
and to avoid unnecessary confusion, we collect several explicit data that would
be useful for further computations.
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1.1. Basic data

Here, we fix the enumeration of the vertices in the Dynkin diagram of type
A

(2)
2l as follows (cf. [Kac]):

α0 α1 αl−2 αl−1 αl

A
(2)
2l (l ≥ 2)

α0 α1

A
(2)
2 <

In particular, this implies that the corresponding generalized Cartan ma-
trix A = (ai,j)0≤i,j≤l is given by

A =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

2 −2 0 · · · · · · · · · 0

−1 2 −1 . . . ...

0 −1 2 . . . . . . ...
... . . . . . . . . . . . . . . . ...
... . . . . . . 2 −1 0
... . . . −1 2 −2
0 · · · · · · · · · 0 −1 2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
for l ≥ 2, and

A =
(

2 −4
−1 2

)

for l = 1. A realization of the generalized Cartan matrix A is a triple (h,Π,Π∨)
such that

(i) h is an l + 2-dimensional C-vector space,
(ii) Π∨ = {hi}0≤i≤l is a linearly independent subset of h,
(iii) Π = {αi}0≤i≤l is a linearly independent subset of h∗ := HomC(h,C),

and
(iv) 〈hi, αj〉 = ai,j for any 0 ≤ i, j ≤ l.

Here, 〈·, ·〉 : h× h∗ → C is the canonical pairing.
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The labels a0, a1, · · · , al and co-labels a∨0 , a
∨
1 , · · · , a∨l are by definition,

relatively prime positive integers satisfying

(a∨0 , a∨1 , · · · , a∨l )A = (0, 0, · · · , 0), A

⎛⎜⎜⎜⎜⎝
a0
a1
...
al

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
0
0
...
0

⎞⎟⎟⎟⎟⎠ .

Explicitly, they are given by the following table:

i 0 1 · · · l − 1 l

ai 2 2 · · · 2 1
a∨i 1 2 · · · 2 2

As a corollary, the Coxeter number h and the dual Coxeter number h∨

are shown to be

h :=
l∑

i=0
ai = 2l + 1, h∨ :=

l∑
i=0

a∨i = 2l + 1.

Let us introduce some special elements c of h, and δ of h∗ by

c :=
l∑

i=0
a∨i hi = h0+2(h1+· · ·+hl) ∈ h, δ :=

l∑
i=0

aiαi = 2(α0+· · ·+αl−1)+αl.

By definition, we have

〈c, αi〉 = 0, 〈hi, δ〉 = 0,

for any 0 ≤ i ≤ l. Now, define the elements d ∈ h and Λ0 ∈ h∗ by

〈d, αi〉 = δi,0, 〈hi,Λ0〉 = δi,0, 〈d,Λ0〉 = 0.

It can be checked that

〈c,Λ0〉 = a∨0 = 1, 〈d, δ〉 = a0 = 2.

For later purpose, we recall the definition of i-th fundamental weight
Λi ∈ h∗, the element of h∗ satisfying

〈hi,Λj〉 = δi,j (0 ≤ i, j ≤ l), 〈d,Λi〉 = 0.

Clearly, one has
〈c,Λi〉 = a∨i .
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1.2. Bilinear forms on h and h∗

Here, we recall the bilinear form I on h∗ and I∗ on h that are called normalized
invariant forms by V. Kac [Kac] in an explicit manner.

On h:

I∗(hi, hj) = aj
a∨j

· ai,j (0 ≤ i, j ≤ l),

I∗(hi, d) = 0 (0 < i ≤ l),
I∗(h0, d) = a0 = 2, I∗(d, d) = 0.

In particular, we have
I∗(c, d) = 2.

On h∗:

I(αi, αj) = a∨i
ai

· ai,j (0 ≤ i, j ≤ l),

I(αi,Λ0) = 0 (0 < i ≤ l),

I(α0,Λ0) = a−1
0 = 1

2 , I(Λ0,Λ0) = 0.

We also have
I(Λ0, δ) = 1.

The above bilinear forms are introduced in such a way that the linear
map ν : (h, I∗) → (h∗, I) defined by

a∨i ν(hi) = aiαi, ν(c) = δ, ν(d) = a0Λ0 = 2Λ0

becomes an isometry.

1.3. Affine Lie algebra of type A
(2)
2l

Let g = g(A) be the Kac-Moody Lie algebra attached with the generalized
Cartan matrix A which is introduced in Subsection 1.1. Since A is sym-
metrizable, it is defined to be the Lie algebra over the complex number field
C generated by ei, fi (0 ≤ i ≤ l) and h, with the following defining relations:

(i) [ei, fj ] = δi,jhi for 0 ≤ i, j ≤ l,
(ii) [h, h′] = 0 for h, h′ ∈ h,
(iii) [h, ei] = 〈h, αi〉ei, [h, fi] = −〈h, αi〉fi for h ∈ h and 0 ≤ i ≤ l,
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(iv) (ad ei)−ai,j+1(ej) = 0, (ad fi)−ai,j+1(fj) = 0 for 0 ≤ i �= j ≤ l.

The Lie algebra g is called the affine Lie algebra of type A
(2)
2l . The vector

space h is regarded as a commutative subalgebra of g, which is called the
Cartan subalgebra of g.

It is well-known that g admits the root space decomposition:

g = h⊕
(⊕
α∈Δ

gα

)
,

where gα := {X ∈ g | [h,X] = 〈h, α〉X for every h ∈ h} is the root space
associated to α ∈ h∗, and Δ := {α ∈ h∗ \ {0} | gα �= {0}} is the set of all
roots. An element α ∈ Δ is called a real root if I(α, α) > 0, and the set of
all real roots is denoted by Δre. Set Δim := Δ \ Δre. An element α ∈ Δim is
called an imaginary root. The explicit forms of real and imaginary roots will
be given in the next subsection.

For α ∈ Δre, define a reflection rα ∈ GL(h∗) by

rα(λ) := λ−
〈 2
I(α, α)ν

−1(α), λ
〉
α

for λ ∈ h∗. Let W be the Weyl group of g, that is, W is a subgroup of GL(h∗)
generated by rα (α ∈ Δre). It is known that the action of W on h∗ preserves
the set of roots Δ. The detailed structure of the Weyl group W will be given
in the next subsection also.

1.4. Affine Weyl group

Here, we describe the structure of the Weyl group of type A
(2)
2l , paying at-

tention to the fact that the lattice of the translation part is not an even
lattice.

To describe its structure, we regard the 0-th node as the special vertex,
namely, the complementary subdiagrams

α1 α2 αl−2 αl−1 αl

Cl (l ≥ 2)

α1
A1

will be called the finite part of the Dynkin diagram of type A
(2)
2l .
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Let hf be the subspace of h defined by

hf :=
l⊕

i=1
Chi.

This can be viewed as the Cartan subalgebra of the finite part. In particular,
we fix the splitting of h as follows:

(1) h = hf ⊕ (Cc⊕ Cd).

This is an orthogonal decomposition with respect to the normalized invariant
form introduced in the previous subsection. We denote the canonical projec-
tion to the first component by · : h � hf . Similarly, we set

h∗f :=
l⊕

i=1
Cαi

and the canonical projection to the first component of the decomposition

(2) h∗ = h∗f ⊕ (Cδ ⊕ CΛ0)

will be denoted by the same symbol · : h∗ � h∗f . It should be noticed that
the image of the restriction of ν : h → h∗ to hf is h∗f .

Now, we recall the root system of the finite part. Although most of the
informations can be found in [Bour] for example, we describe this to fix the
convention.

We identify hf and h∗f via the isometry ν. An orthonormal basis {εi}1≤i≤l

of h∗f with respect to I should be so chosen that the root system Δf of the
finite part and the set of simple roots Πf = {αi}1≤i≤l has the next description:

Δf = {±εi ± εj}1≤i,j≤l ∪ {±2εi}1≤i≤l, αi =
{
εi − εi+1 i < l,

2εi i = l.

N.B. For l = 1, Δf = {±2ε1}.

In particular, the sets Δ+
f , Δ+

f,l and Δ+
f,s of positive roots, positive long

roots and short roots, respectively are given by

Δ+
f = {εi ± εj}1≤i<j≤l ∪ {2εi}1≤i≤l,

Δ+
f,l = {2εi}1≤i≤l, Δ+

f,s = {εi ± εj}1≤i<j≤l.
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We remark that 	i := Λi =
∑i

j=1 εj for 1 ≤ i ≤ l is the i-th fundamental
weight of hf . The highest root θ ∈ h∗f can be written as

θ = δ − a0α0 = δ − 2α0 = 2ε1,

and its coroot θ∨ ∈ hf as

θ∨ = 2
I(θ, θ)ν

−1(θ) =
l∑

i=1
hi, ν(θ∨) = 1

2θ = ε1.

Let Wf be a subgroup generated by rαi for αi ∈ Πf . This group is iso-
morphic to the Weyl group of type Cl-type. That is, Wf

∼= Sl � (Z/2Z)l.
The set of real roots Δre of g is described as follows: for l ≥ 2,

Δre =Δre
s ∪ Δre

m ∪ Δre
l ,

where

⎧⎪⎪⎨⎪⎪⎩
Δre

s :=
{1

2(α + (2r − 1)δ)
∣∣α ∈ Δf,l, r ∈ Z

}
,

Δre
m := {α + rδ |α ∈ Δf,s, r ∈ Z },

Δre
l := {α + 2rδ |α ∈ Δf,l, r ∈ Z },

and for l = 1,

Δre =Δre
s ∪ Δre

l ,

where
{

Δre
s :=

{1
2(α + (2r − 1)δ)

∣∣α ∈ Δf , r ∈ Z
}
,

Δre
l := {α + 2rδ |α ∈ Δf , r ∈ Z }.

The set of imaginary roots can be described as

Δim = Zδ \ {0}.

For detail, see [Kac].
Now, we can describe the Weyl group W . As c = h0 + 2θ∨, one has

rα0rθ(λ) = rα0(λ− 〈θ∨, λ〉θ) = λ− λ(θ∨)θ − 〈h0, λ− 〈θ∨, λ〉θ〉α0

= λ + 1
2〈c, λ〉θ −

(
〈θ∨, λ〉 + 1

2〈c, λ〉
)
δ

= λ + 〈c, λ〉ν(θ∨) −
(
I(λ, ν(θ∨)) + 1

2〈c, λ〉I(ν(θ∨), ν(θ∨))
)
δ,
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for λ ∈ h∗. Set

M := Zν(Wf · θ∨) =
l⊕

i=1
Zεi,

and, for α ∈ h∗f,R := M ⊗Z R, we define tα ∈ EndC(h∗) by

tα(λ) := λ + 〈c, λ〉α−
(
I(λ, α) + 1

2〈c, λ〉I(α, α)
)
δ.

It is known that the assignment of the lattice M to EndC(h∗) defined by
α to tα gives an injective group homomorphism M ↪→ W . Furthermore, one
has

W ∼= Wf �M ∼=
(
Sl � (Z/2/Z)l

)
�M.

We note that the lattice M is an odd lattice. This fact is essential in the
following discussion.

2. Main theorem

Let g be the affine Lie algebra of type A
(2)
2l recalled in the previous section.

2.1. Formal characters

Let n± be the subalgebra of g generated by {ei}0≤i≤l (resp. {fi}0≤i≤l). We
have the so-called triangular decomposition: g = n+ ⊕ h⊕ n−.

Let V be a h-diagonalizable module, i.e., V =
⊕

λ∈h∗ Vλ where Vλ := {v ∈
V |h.v = 〈h, λ〉v h ∈ h }. Set P(V ) := {λ ∈ h∗|Vλ �= {0}}. Let O be the
BGG category of g-modules, that is, it is the subcategory of g-modules whose
objects are h-diagonalizable g-modules V =

⊕
λ∈h∗ Vλ satisfying

(i) dimVλ < ∞ for any λ ∈ P(V ),
(ii) there exists λ1, λ2, · · · , λr ∈ h∗ such that P(V ) ⊂ ⋃r

i=1(λi − Z≥0Π).

A typical object of this category is a so-called highest weight module defined
as follows. We say that a g-module V is a highest weight module with highest
weight Λ ∈ h∗ if

(i) dimVΛ = 1
(ii) n+.VΛ = {0} and V = U(g).VΛ.

In particular, the last condition implies that V = U(n−).VΛ as a vector space
and

P(V ) := {λ ∈ h∗|Vλ �= {0}} ⊂ Λ − Z≥0Π.
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A typical example is given as follows. For Λ ∈ h∗, let CΛ = CvΛ be the one
dimensional module over b+ := h⊕ n+ defined by

h.vΛ = 〈h,Λ〉vΛ (h ∈ h), n+.vΛ = 0.

The induced g-module M(Λ) := Indg

b+
CΛ is called the Verma module with

highest weight Λ. It can be shown that for any highest weight g-module V with
highest weight Λ ∈ h∗, there exists a surjective g-module map M(Λ) � V .
The smallest among such V can be obtained by taking the quotient of M(Λ)
by its maximal proper submodule and the resulting g-module is the irreducible
highest g-module with highest weight Λ, denoted by L(Λ).

Let E be the formal linear combination of eλ (λ ∈ h∗) with the next
condition:

∑
λ cλe

λ ∈ E ⇒ ∃λ1, λ2, · · · , ;λr ∈ h∗ such that

{λ|cλ �= 0} ⊂
r⋃

i=1
(λi − Z≥0Π).

We introduce the ring structure on E by eλ · eμ := eλ+μ.
The formal character of V ∈ O is, by definition, the element chV ∈ E

defined by
chV =

∑
λ∈P(V )

(dimVλ)eλ.

ch(·) can be viewed as an additive function defined on O with values in E .
For example, The formal character of the Verma module M(Λ) is given by

chM(Λ) = eΛ ∏
α∈Δ+

(1 − e−α)−mult(α),

where Δ+ is the set of positive roots of g and mult(α) = dim gα is the
multiplicity of the root α. Set ε(w) = (−1)l(w) where l(w) is the length of
an element w ∈ W . For Λ ∈ P+ := {Λ ∈ h∗| 〈hi,Λ〉 ∈ Z≥0|0 ≤ i ≤ l}, the
character of L(Λ) is known as Weyl-Kac character formula and is given by

chL(Λ) =
∑

w∈W ε(w)ew(Λ+ρ)−ρ∏
α∈Δ+(1 − e−α)mult(α) ,

where ρ ∈ h∗ is the so-called Weyl vector, i.e., it satisfies 〈hi, ρ〉 = 1 for any
0 ≤ i ≤ l and 〈d, ρ〉 = 0. In particular, for Λ = 0, as L(0) = C is the trivial
representation, one obtains the so-called denominator identity:

(3)
∑
w∈W

ε(w)ew(ρ) = eρ
∏

α∈Δ+

(1 − e−α)mult(α).
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This implies that the Weyl-Kac character formula can be rephrased as follows:

(4) chL(Λ) =
∑

w∈W ε(w)ew(Λ+ρ)∑
w∈W ε(w)ew(ρ) .

2.2. Normalized characters of type A
(2)
2l

For Λ ∈ P+ with 〈c,Λ〉 = k ∈ Z≥0, the normalized character χΛ of the
irreducible highest weight g- module L(Λ) with highest weight Λ is defined
by

χΛ := e−mΛδchL(Λ),

where the number mΛ, called the conformal anomaly, is defined by

mΛ := I(Λ + ρ,Λ + ρ)
2(k + h∨) − I(ρ, ρ)

2h∨ ,

with h∨ = 2l + 1 being the dual Coxeter number of A(2)
2l . Here, the bilinear

form is normalized as in §1.2 (cf. Chapter 6 of [Kac]). For Λ ∈ P+ with
〈c,Λ〉 = k, set

AΛ+ρ :=
∑
w∈W

ε(w)ew(Λ+ρ)− I(Λ+ρ,Λ+ρ)
2(k+h∨) δ

.

This is a W anti-invariant. By (4), one has

(5) χΛ = AΛ+ρ

Aρ
.

We regard this normalized character χΛ as a function defined on a certain
subset of h as follows. For λ ∈ h∗, eλ can be viewed as a function defined on
h: eλ(h) := e〈h,λ〉. It is shown in [GK] that the normalized character χΛ for
Λ ∈ P+ can be viewed as a holomorphic function on a complex domain

Y := {h ∈ h|Re 〈h, δ〉 > 0 }.

We introduce a coordinate system on h as follows. Set εi := ν−1(εi) for 1 ≤
i ≤ l, where ν : h → h∗ is the isometry defined in §1.2. Then, {εi}1≤i≤l

is an orthonormal basis of h∗f with respect to I∗|h∗
f
×h∗

f
. For h ∈ Y , define

z ∈ hf , τ, t ∈ C as in [Kac]:

(6) h = 2π
√
−1
(
z − τν−1(Λ0) + tν−1(δ)

)
= 2π

√
−1
(
z − 1

2τd + tc

)
,
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and write z =
∑l

i=1 ziεi. With this coordinate system, we see that

Y
∼−→ H× hf × C

∼→ H× C
l × C;

h �−→ (τ, z, t) �→ (τ, (z1, z2, · · · , zl), t),
(7)

where H is the upper half plane { τ ∈ C | Im(τ) > 0 }. We write χΛ(τ, z, t) :=
χΛ(h).

For k ∈ Z>0, set

P k := {λ ∈ h∗| 〈c, λ〉 = k, λ ∈ M},

and for λ ∈ P k, set
Θλ := e−

I(λ,λ)
2k δ

∑
α∈M

etα(λ).

This is the classical theta function of degree k. Its value on h ∈ h is
given by

(8) Θλ(τ, z, t) = e2π
√
−1kt ∑

γ∈M+k−1λ

eπ
√
−1kτI(γ,γ)+2π

√
−1kI(γ,ν(z)).

Now, we recall the modular transformations of the classical theta functions.
Recall that SL(2,Z) is the group generated by

S :=
(

0 −1
1 0

)
, T :=

(
1 1
0 1

)
.

As SL(2,Z) acts on the complex domain Y by(
a b
c d

)
.(τ, z, t) =

(
aτ + b

cτ + d
,

z

cτ + d
, t− cI∗(z, z)

2(cτ + d)

)
,

This action induces a right action of SL(2,Z) on OY as follows: for g ∈
SL(2,Z) and F ∈ OY ,

F |g(τ, z, t) := F (g.(τ, z, t)).

The next formula is a simple application of the Poisson resummation formula:

Proposition 2.1 (cf. Theorem 13.5 in [Kac]). Let λ ∈ P k. One has

Θλ

(
−1
τ
,
z

τ
, t− I∗(z, z)

2τ

)
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=
(

τ√
−1

) 1
2 l

k−
1
2 l

∑
μ∈P k mod Cδ+kM

e−
2π

√
−1I(λ,μ)
k Θμ(τ, z, t),

Θλ(τ + 2, z, t) = e
2π

√
−1

k
I(λ,λ)Θλ(τ, z, t).

In particular, when k is even, one also has

Θλ(τ + 1, z, t) = e
π
√

−1
k

I(λ,λ)Θλ(τ, z, t).

In fact, the lattice M is not an even lattice.
For k ∈ Z≥0, let P k

+ := P+∩P k be the set of dominant integral weights of
level k. As an application of the above proposition, V. Kac and D. Peterson
[KP] proved that the C-span of {AΛ+ρ}Λ∈P k

+ modCδ admits an action of a
certain subgroup of SL(2,Z), so does the C-span of the normalized characters
{χλ(τ, z, t)}λ∈P+

k
mod Cδ.

Theorem 2.1 ([KP]). Let g be the affine Lie algebra of type A
(2)
2l . For λ ∈ P k

+
(k ∈ Z>0), one has

χλ

(
−1
τ
,
z

τ
, t− I∗(z, z)

2τ

)
=

∑
μ∈P k

+ mod Cδ

a(λ, μ)χμ(τ, z, t),

where the matrix (a(λ, μ))λ,μ∈P k
+ mod Cδ is given by

a(λ, μ) = (
√
−1)l2(k + 2l + 1)−

1
2 l

×
∑

w∈Sl�(Z/2Z)l
ε(w) exp

(
−2π

√
−1I(λ + ρ, w(μ + ρ))

k + 2l + 1

)
.

One also has

χλ(τ + 2, z, t) = e4π
√
−1mλχλ(τ, z, t).

Remark 2.1. For later purpose, we recall the modular transformations of
the denominator:

Aρ

(
−1
τ
,
z

τ
, t− I∗(z, z)

2τ

)
=
(

τ√
−1

) 1
2 l

(
√
−1)−l2Aρ(τ, z, t),

Aρ(τ + 2, z, t) = exp
(
l(l + 1)

3 π
√
−1
)
Aρ(τ, z, t).
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Remark 2.2. It can be checked that, for w = ση ∈ Wf (σ ∈ Sl, η =
(η1, · · · , ηl) ∈ {±1}l), one has det h∗

f
(w) = sgn(σ)

∏l
i=1 ηi.

Notice that, for each k ∈ Z≥0, the C-span of the normalized characters
χλ (λ ∈ P k

+ mod Cδ) is Γθ-stable, where Γθ is the subgroup of SL(2,Z)
generated by S and T 2.

In the following, we recall an expansion of χΛ in terms of the classical theta
functions. An element λ ∈ P(L(Λ)) is called maximal if λ+δ �∈ P(L(Λ)), and
let max(Λ) be the set of all maximal elements of P(L(Λ)). Hence, we have a
decomposition of P(L(Λ)):

P(L(Λ)) =
⊔

λ∈max(Λ)
{λ− nδ |n ∈ Z≥0}.

For λ ∈ max(Λ), set

cΛλ := e−mΛ(λ)δ
∞∑
n=0

(
dimC L(Λ)λ−nδ

)
e−nδ, where mΛ(λ) := mΛ − I(λ, λ)

2k .

Furthermore, we extend the definition of cΛλ to an arbitrary λ ∈ h∗ as follows.
If (λ + Cδ) ∩ max(Λ) = ∅, we set cΛλ := 0. Otherwise, there exists a unique
μ ∈ max(Λ) such that λ− μ ∈ Cδ. Hence, we set cΛλ := cΛμ .

Similarly to the case of classical theta functions, we regard the series cΛλ as
a (formal) function on Y . By the definition, this function depends only on the
variable τ ∈ H. The following proposition is well-known in the representation
theory of affine Lie algebras. For example, see [Kac], in detail.

Proposition 2.2 ([Kac]). Let k > 0 be a positive integer and Λ ∈ P k
+.

(i) The series cΛλ = cΛλ (τ) converges absolutely on the upper half plane H

to a holomorphic function.
(ii) The normalized character χΛ has the following expansion in terms of

the classical theta functions:

χΛ =
∑

λ∈P k mod (kM+Cδ)
cΛλΘλ.

The holomorphic function cΛλ (τ) is called the string function of λ ∈ h∗.

2.3. Ring of Theta functions

For α ∈ h∗f,R, we define pα ∈ EndC(h∗) by

pα(h) = h + 2π
√
−1ν−1(α).
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Set
N = h∗f,R × h∗f,R ×

√
−1R

and define a group structure on N by

(α, β, u) · (α′, β′, u′) = (α + α′, β + β′, u + u′ + π
√
−1{I(α, β′) − I(α′, β)}).

The group N is called Heisenberg group. This group acts on h by

(α, β, u).h = tβ(h) + 2π
√
−1ν−1(α) + {u− π

√
−1I(α, β)}c.

This N action preserves the complex domain Y . We note that (α, 0, 0).h =
pα(h) and (0, β, 0).h = tβ(h). We consider the subgroup NZ of N generated
by (α, 0, 0), (0, β, 0) with α, β ∈ M and (0, 0, u) with u ∈ 2π

√
−1Z, i.e.,

NZ = {(α, β, u) ∈ N |α, β ∈ M, u + π
√
−1I(α, β) ∈ 2π

√
−1Z }.

Let OY be the ring of holomorphic functions on Y . We define the right
N -action on OY by

F |(α,β,u) (h) = F ((α, β, u).h) F ∈ OY .

Definition 2.1. For k ∈ Z≥0, define

T̃ hk :=
{
F ∈ OY

∣∣∣∣∣ (1) F |(α,β,u) = F ∀ (α, β, u) ∈ NZ,

(2) F (h + ac) = ekaF (h) ∀h ∈ Y and a ∈ C.

}
,

and set

T̃ h :=
∞⊕
k=0

T̃ hk.

An element F of T̃ hk is called a theta function of degree k.

Remark 2.3. The ring T̃ h is a Z-graded algebra over the ring T̃ h0 = OH,
the ring of holomorphic functions on the upper half plane H.

A typical example of an element of T̃ hk for k ∈ Z>0 is the classical theta
function Θλ of degree k, i.e., λ ∈ P k.

Remark 2.4. It follows from (8) that

Θλ+kα+aδ = Θλ for every α ∈ M and a ∈ C.

Thus, a classical theta function of degree k depends only on the finite set
P k mod (kM + Cδ).
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Let D be the Laplacian on Y :

D = 1
4π2

(
2 ∂

∂t

∂

∂τ
−

l∑
i=1

∂2

∂z2
i

)
.

For k ∈ Z≥0, set

Thk :=
{

{F ∈ T̃ hk |D(F ) = 0 } k > 0,
C k = 0.

V. Kac and D. Peterson showed the following proposition.

Proposition 2.3 ([KP]). Let k be a positive integer.
(i) The set {Θλ|λ ∈ P k mod kM + Cδ } is a C-basis of Thk.
(ii) The map: OH⊗CThk → T̃ hk defined by f⊗F �→ fF is an isomorphism

of OH-modules. In other words, T̃ hk is a free OH-module with basis
{Θλ |λ ∈ P k mod (kM + Cδ) }.

As the finite Weyl group Wf acts on Y , it induces the right action of Wf

on OY :
F |w(h) := F (w · h) for F ∈ OY and w ∈ Wf .

For any k ∈ Z≥0, this right Wf -action on OY restricts to a right Wf -action
on T̃ hk. Thus, we set

T̃ h
+
k :={F ∈ T̃ hk |F |w = F ∀w ∈ Wf},

T̃ h
−
k :={F ∈ T̃ hk |F |w = det h∗

f
(w)F ∀w ∈ Wf},

Th±
k :=T̃ h

±
k ∩ Thk.

An element of T̃ h
±

:=
⊕

k∈Z≥0
T̃ h

±
k is called a Wf -invariant (resp. Wf anti-

invariant). For k ∈ Z>0, set

P k
++ := {Λ ∈ P k | 〈hi,Λ〉 ∈ Z>0}.

Let Λ ∈ P k. Obviously, the element AΛ+ρ introduced in §2.2 is a Wf

anti-invariant. On the other hand, set

SΛ := e−
I(Λ,Λ)

2k δ
∑
w∈W

ew(λ) =
∑

wf∈Wf

Θwf (Λ).

Then, it is an element of Th+
k .
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Another important example of Wf -invariants is the normalized character
χΛ. Indeed, Proposition 2.2 (ii) tells us that χΛ is an element of T̃ hk. In
addition, thanks to the description (5) of χΛ, it is invariant under the action
of Wf . Therefore, one has χΛ ∈ T̃ h

+
k .

Proposition 2.4 ([KP]). Let k be a non-negative integer.

(i) The set {SΛ|Λ ∈ P k
+ modCδ } is a C-basis of Th+

k .
(ii) For k ≥ 2l + 1, the set {Aλ|λ ∈ P k

++ modCδ } is a C-basis of Th−
k .

(iii) The map Φk in Proposition 2.3 is Wf -equivariant. Therefore, the OH-
modules T̃ h

±
k are free over {χΛ|Λ ∈ P k

+ modCδ } (resp. {Aλ|λ ∈
P k

++ modCδ }).
As the map P k

+ → P k+2l+1
++ ;λ �→ λ + ρ is bijective, (5) and the above

proposition implies

Corollary 2.1. The space of Wf anti-invariants T̃ h
−

is a free T̃ h
+
-module

over Aρ.

As P+ modCδ is the monoid generated by {Λi}0≤i≤l and 〈c,Λi〉 = a∨i ,
it can be shown that the Poincaré series P

T̃ h
+(T ) of the graded OH-algebra

T̃ h
+

is given by

P
T̃ h

+(T ) :=
∑

k∈Z≥0

rankOH
(T̃ h

+
k )T k =

l∏
i=0

(1 − T a∨i )−1.

By the same computation, this implies

(9)
∑

k∈Z≥0

dimC(Th+
k )T k =

l∏
i=0

(1 − T a∨i )−1.

For each τ ∈ H, let Yτ be the subset of Y that corresponds to {τ} ×
hf × C via the isomorphism Y ∼= H × hf × C discussed in (7), ιYτ : Yτ ↪→
Y the corresponding embedding. The above computation leads to the next
conjecture:

Conjecture 2.1 (cf. [KP]). Let g be the affine Lie algebra of type A
(2)
2l .

(i) For each τ ∈H, T̃ h
+|Yτ is a polynomial ring generated by {ι∗Yτ

(χΛi)}0≤i≤l

over C.
(ii) The graded ring T̃ h

+
is a polynomial algebra over OH generated by

{χΛi}0≤i≤l.
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2.4. Jacobian of fundamental characters

Let Λ ∈ P+ be a dominant integral weight. For an integer 0 ≤ i ≤ l, we define
the directional derivative ∂iχΛ by

(∂iχΛ)(τ, z, t) := lim
s→0

χΛ(h + 2π
√
−1shj) − χΛ(h)
s

.

As c = h0 + 2
∑l

i=1 hi, it follows that

(∂0χΛ)(τ, z, t) = 2π
√
−1〈c,Λ〉χΛ(τ, z, t) − 2

l∑
i=1

∂iχΛ(τ, z, t).

Hence, the Jacobian of the fundamental characters is, by definition,

J(τ, z, t) := det(∂jχΛi)i,j=0,1,··· ,l = 2π
√
−1

∣∣∣∣∣∣∣∣∣∣
χ0 ∂1χ0 · · · ∂lχ0
2χ1 ∂1χ1 · · · ∂lχ1
...

...
...

2χl ∂1χl · · · ∂lχl

∣∣∣∣∣∣∣∣∣∣
.

It can be easily seen that this determinant is an element of T̃ h
−
2l+1, i.e., there

exists a holomorphic function F ∈ OH such that J(τ, z, t) = F (τ)Aρ(τ, z, t).
In the rest of this article, we will determine this function F and prove

Conjecture 2.1.

Remark 2.5. A weaker statement is proved by I. Bernstein and O. Schwarz-
mann [BS1] and [BS2] for any affine root systems except for D

(1)
l and A

(2)
2l .

3. Preliminary computations

In this section, we study the modular transformations and leading terms of
the Jacobian of certains characters.

3.1. Explicit formulas on a(λ, μ)

As a∨0 = 1 and a∨i = 2 for 0 < i ≤ l, one sees that

(i) P 1
+ mod Cδ = {Λ0} and

(ii) P 2
+ mod Cδ = {2Λ0} ∪ {Λi}1≤i≤l.
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First, we compute a(Λ0,Λ0). By Theorem 2.1 and the denominator iden-
tity, we have

a(Λ0,Λ0) = (
√
−1)l2(2(l + 1))−

1
2 l
∑

w∈Wf

ε(w) exp
(
−π

√
−1I(w(ρ), ρ)

l + 1

)

= (
√
−1)l2(2(l + 1))−

1
2 l
∏

α∈Δ+
f

(e
1
2α − e−

1
2α)
(
−π

√
−1

l + 1 ρ

)

= 2l2−
1
2 l(l + 1)−

1
2 l
∏

α∈Δ+
f

sin
(
I(ρ, α)
2(l + 1)π

)
.

Hence, by §1.4 and the well-known formula

(10)
n−1∏
k=1

sin
(
k

n
π

)
= n

2n−1

for n ∈ Z>1, it follows that

∏
α∈Δ+

f

sin
(
I(ρ, α)
2(l + 1)π

)

=
∏

1≤i<j≤l

sin
(

j − i

2(l + 1)π
)

sin
(

j + i

2(l + 1)π
) l∏

i=1
sin
(

i

l + 1π
)

= 2−l2+ 1
2 l · (l + 1)

1
2 l,

thus we obtain

(11) a(Λ0,Λ0) = 1.

Next, for level 2 case, we set

λi =
{

2Λ0 i = 0,
Λi 0 < i ≤ l.

By Remark 2.2, for λ + ρ =
∑l

i=1 miεi and μ + ρ =
∑l

i=1 niεi, we have

∑
w∈Sl�(Z/2Z)l

ε(w) exp
(
−2π

√
−1I(λ + ρ, w(μ + ρ))

2l + 3

)
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=
∑
σ∈Sl

ε(σ)
l∏

r=1

(
exp
(
−2π

√
−1

2l + 3 minσ−1(r)

)
− exp

(
2π

√
−1

2l + 3 mrnσ−1(r)

))

= (−2
√
−1)l

∑
σ∈Sl

ε(σ)
l∏

r=1

(
2 sin

(2mrnσ−1(r)

2l + 3 π

))

= (−2
√
−1)l det

(
sin
(2mrns

2l + 3 π

))
1≤r,s≤l

.

As Λi + ρ =
∑

k≤i(l + 2 − k)εk +
∑

k>i(l + 1 − k)εk and

det
(

sin
(2mrns

2l + 3 π

))
1≤r,s≤l

= det
(

sin
(2ml+1−rnl+1−s

2l + 3 π

))
1≤r,s≤l

,

to compute a(λi, λj), it suffices to compute the (−1)i+j times (l+1−i, l+1−j)-
entry of the cofactor matrix of the matrix

M2 :=
(

sin
( 2rs

2l + 3π
))

1≤r,s≤l+1
.

With the aid of Cl-type denominator identity (cf. [Kr]), i.e., the identity

det(Xj
i −X−j

i )1≤i,j≤l = (
l∏

i=1
Xi)−l

∏
1≤i<j≤l

(1 −XiXj)(Xi −Xj)
l∏

i=1
(X2

i − 1).

in C[X±1
1 , · · · , X±1

l ], one can show that

detM2 = (−1)
1
2 l(l+1)2−(l+1)(2l + 3)

1
2 (l+1).

Moreover, it can be shown that

M2
2 = 1

4(2l + 3)Il+1.

Combining these facts, we obtain

(12) a(λi, λj) = 2√
2l + 3

cos
((2i + 1)(2j + 1)

2(2l + 3) π

)
(0 ≤ i, j ≤ l).
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3.2. Modular transformation of Jacobians

For 0 ≤ i ≤ l, set

J i(τ, z, t) := 2π
√
−1

∣∣∣∣∣∣∣∣∣∣
χΛ0 ∂1χΛ0 · · · ∂lχΛ0

2χλi1
∂1χλi1

· · · ∂lχλi1...
...

...
2χλil

∂1χλil
· · · ∂lχλil

∣∣∣∣∣∣∣∣∣∣
(τ, z, t) ∈ H× hf × C,

where i1, i2, · · · il are integers such that i1 < i2 < · · · < il and {i1, i2, · · · , il} =
{0, 1, · · · , l} \ {i}. Note that

J0(τ, z, t) = J(τ, z, t).

Since these determinants are W anti-invariant and their degrees are∑l
i=0 a

∨
i = 2l + 1, it follows that J i(τ, z, t) ∈ T̃ h

−
2l+1 = OHAρ, i.e., there

exist holomorphic functions F i ∈ OH such that

(13) J i(τ, z, t) = F i(τ)Aρ(τ, z, t).

Below, we determine these holomorphic functions {F i(τ)}0≤i≤l explicitly. For
this purpose, we compute the modular transformations of J i(τ, z, t).

Let λ ∈ P+. Recall that, by Theorem 2.1, there exists a unitary matrix
(a(λ, μ))

λ,μ∈P 〈c,λ〉
+ mod Cδ

such that

χλ

(
−1
τ
,
z

τ
, t− I∗(z, z)

2τ

)
=
∑

μ∈P 〈c,λ〉
+

a(λ, μ)χμ(τ, z, t).

Differentiating both sides of this formula, we obtain

(∂iχλ)
(
−1
τ
,
z

τ
, t− I∗(z, z)

2τ

)
= τ

∑
μ∈P 〈c,λ〉

+

a(λ, μ)(∂iχμ)(τ, z, t)

+ 2π
√
−1I∗(z, α∨

i )〈c, λ〉
∑

μ∈P 〈c,λ〉
+

a(λ, μ)χμ(τ, z, t),

for any 0 < i ≤ l.
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Set MS := (a(λi, λj))0≤i,j≤l. Let M̃S =
(
(M̃S)i,j

)
0≤i,j≤l

be the cofactor
matrix of MS . For 0 ≤ i ≤ l, let 0 ≤ i1 < i2 < · · · < il be non-negative
integers such that {i1, i2, · · · , il} = {0, 1, · · · , l} \ {i}. By direct calculation,
one obtains

J i

(
−1
τ
,
z

τ
, t− I∗(z, z)

2τ

)
= 2π

√
−1a(Λ0,Λ0)τ l

×

∣∣∣∣∣∣∣∣∣∣
χΛ0 ∂1χΛ0 · · · ∂lχΛ0

2
∑

j a(λi1 , λj)χλj

∑
j a(λi1 , λj)∂1χλj · · · ∑j a(λi1 , λj)∂lχλj

...
...

...
2
∑

j a(λil , λj)χλj

∑
j a(λil , λj)∂1χλj · · · ∑

j a(λil , λj)∂lχλj

∣∣∣∣∣∣∣∣∣∣
= τ l

l∑
j=0

(−1)i+j(M̃S)i,jJ j(τ, z, t).

On the other hand, it can be checked that M2
S = Il+1. Recall the super de-

nominator identity of type B(0, n), i.e., the next identity in C[X± 1
2

1 , · · ·X± 1
2

n ]:

det(Xj− 1
2

i + X
−j+ 1

2
i )1≤i,j≤n(14)

= (
n∏

i=1
Xi)−n+ 1

2
∏

1≤i<j≤n

(1 −XiXj)(Xi −Xj)
n∏

i=1
(1 + Xi).

With the aid of this formula, we can show

Lemma 3.1. detMS = (−1)(
l+1
2 ).

Proof. Setting ω = exp
(

2π
√
−1

2l+3

)
, n = l + 1 and Xi = ωi− 1

2 (1 ≤ i ≤ l + 1)
in (14), we have

(2l + 3)
1
2 (l+1) det(Ms)

= det
(
ω(i− 1

2 )(j− 1
2 ) + ω−(i− 1

2 )(j− 1
2 )
)

1≤i,j≤l+1

=
(

l+1∏
i=1

ωi− 1
2

)−(l+ 1
2 ) ∏

1≤<i<j≤l+1
(1 − ωi+j−1)(ωi− 1

2 − ωj− 1
2 )

l+1∏
i=1

(1 + ωi− 1
2 ).
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Now, by direct computation, it follows that

(
l+1∏
i=1

ωi− 1
2

)−(l+ 1
2 ) ∏

1≤<i<j≤l+1
(1 − ωi+j−1)(ωi− 1

2 − ωj− 1
2 )

l+1∏
i=1

(1 + ωi− 1
2 )

=(−1)(
l+1
2 ) · 2(l+1)2

×
∏

1≤i<j≤l+1
sin
(
i + j − 1
2l + 3 π

)
sin
(

j − i

2l + 3π
) l+1∏

i=1
cos
(2i− 1

2l + 3 · π2

)

=(−1)(
l+1
2 ) · 2(l+1)2

(
l+1∏
i=1

sin
(

i

2l + 3π
))l+1

.

By (10), we obtain

det(MS) = (2l + 3)−
1
2 (l+1) · (−1)(

l+1
2 ) · 2(l+1)2

(2l+2∏
i=1

sin
(

i

2l + 3π
)) 1

2 (l+1)

= (−1)(
l+1
2 ).

Hence, we obtain

(M̃S)i,j = (−1)(
l+1
2 )(MS)i,j

= (−1)(
l+1
2 )a(λi, λj)

= (−1)(
l+1
2 ) 2√

2l + 3
cos
((2i + 1)(2j + 1)

2(2l + 3) π

)
.

Thus, we obtain the next formula:

(−1)iJ i|S(τ, z, t)(15)

= (−1)iJ i

(
−1
τ
,
z

τ
, t− I∗(z, z)

2τ

)

= τ l(−1)(
l+1
2 ) 2√

2l + 3

l∑
j=0

cos
((2i + 1)(2j + 1)

2(2l + 3) π

)
(−1)jJ j(τ, z, t).

By definition, the conformal anomaly of the weights Λ0, λi(0 ≤ i ≤ l) are
given by

mΛ0 = − 1
24 l, mλi = 1

2(2l + 3)(2(l + 1)i− i2) − l(l + 1)
6(2l + 3) ,
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which implies

mΛ0 +
l∑

i=0
mλi = 1

24 l(2l + 1).

Thus, we obtain the next formula:

(−1)iJ i|T 2(τ, z, t) = (−1)iJ i(τ + 2, z, t)

= exp
(

4π
√
−1
( 1

24 l(2l + 1) −mλi

))
(−1)iJ i(τ, z, t).

(16)

3.3. Leading terms of Jacobians

In this subsection, we compute the leading degree of each Jacobian J i(τ, z, t)
(0 ≤ i ≤ l) as a q-series, where q := eπ

√
−1τ . Let

P f = {λ ∈ h∗f | 〈hi, λ〉 ∈ Z 1 ≤ ∀ i ≤ l }
P f

+ = {λ ∈ h∗f | 〈hi, λ〉 ∈ Z≥0 1 ≤ ∀ i ≤ l }

be the set of integral (resp. dominant integral) weights of hf . The Weyl group
acts on P f , hence on its group algebra

C[P f ] =

⎧⎨⎩ ∑
λ∈P f

cλe
λ

∣∣∣∣∣ i) cλ ∈ C,
ii) �{λ | cλ �= 0} < ∞.

}

For λ ∈ P f , set aλ :=
∑

w∈Wf
ε(w)ew(λ). The set {aλ+ρ}λ∈P f

+
spans the set

of set of Wf anti-invariants C[P f ]−Wf and it satisfies aw(λ) = ε(w)aλ. For
λ ∈ P f , set χf

λ := aλ+ρ

aρ
. It follows that χf

λ ∈ C[P f ]Wf is the Weyl character

formula for the finite root system Δf when λ ∈ P f
+.

Now, regard eλ (λ ∈ P f ) as functions on hf defined by h �→ e〈h,λ〉. We
rewrite the anti-invariant AΛ+ρ (Λ ∈ P+

k ) of the affine Weyl group W :

e−2(k+2l+1)π
√
−1tAΛ+ρ(τ, z, t)

=
∑

w∈Wf

ε(w)
∑
α∈M

q
1

2(k+2l+1) |(k+2l+1)α+w(Λ+ρ)|2e2π
√
−1〈z,(k+2l+1)α+w(Λ+ρ)〉

=
∑
α∈M

q
1

2(k+2l+1) |(k+2l+1)α+Λ+ρ|2 ∑
w∈Wf

ε(w)e2π
√
−1〈z,w((k+2l+1)α+Λ+ρ)〉
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=
∑

γ∈M+ Λ+ρ
k+2l+1

q
1
2 (k+2l+1)I(γ,γ) ∑

w∈Wf

ε(w)e2π
√
−1〈z,w((k+2l+1)γ)〉

=
∑

γ∈M+ Λ+ρ
k+2l+1

a(k+2l+1)γ(2π
√
−1z)q

1
2 (k+2l+1)I(γ,γ),

where |β|2 := I(β, β) for β ∈ h∗f . In particular, for Λ = 0,Λ0, λi (0 ≤ i ≤ l),
the first few terms of this formula are given as follows.

(Λ = 0):

e−2(2l+1)π
√
−1tq−

1
12 l(l+1)Aρ(τ, z, t)

= aρ(2π
√
−1z) − aΛ1+ρ(2π

√
−1z)q

1
2 + aΛ1+Λ2+ρ(2π

√
−1z)q

3
2

− a2Λ2+ρ(2π
√
−1z)q2 + O(q

5
2 ),

(Λ = Λ0):

e−4(l+1)π
√
−1tq−

1
24 l(2l+1)AΛ0+ρ(τ, z, t)

= aρ(2π
√
−1z) − a2Λ1+ρ(2π

√
−1z)q + a2Λ1+Λ2+ρ(2π

√
−1z)q2 + O(q3),

(Λ = 2Λ0):

e−2(2l+3)π
√
−1tq

− l(l+1)(2l+1)
12(2l+3) A2Λ0+ρ(τ, z, t)

= aρ(2π
√
−1z) − a3Λ1+ρ(2π

√
−1z)q

3
2 + a3Λ1+Λ2+ρ(2π

√
−1z)q

5
2 + O(q

7
2 ),

(Λ = λi, i �= 0):

e−2(2l+3)π
√
−1tq

− l(l+1)(2l+1)
12(2l+3) − i(2(l+1)−i)

2(2l+3) AΛi+ρ(τ, z, t)

= aΛi+ρ(2π
√
−1z) − aΛ1+Λi+ρ(2π

√
−1z)q

1
2

+

⎧⎨⎩a2(Λ1+Λ2)+ρ(2π
√
−1z)q 5

2 + O(q3) i = 1
a2Λ1+Λ2+Λi+ρ(2π

√
−1z)q 3

2 + O(q2) i > 1.

Thus, the normalized characters have the next expansions:

e−4π
√
−1tq

l(l+1)
6(2l+3)χ2Λ0(τ, z, t)

= 1 + χf

Λ1
(2π

√
−1z)q

1
2 + (χf

Λ1
)2(2π

√
−1z)q
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+
(
(χf

Λ1
)3 − χf

3Λ1
− χf

Λ1+Λ2

)
(2π

√
−1z)q

3
2 + O(q2)

and, for 0 < i ≤ l,

e−4π
√
−1tq

3i(i−2(l+1))+l(l+1)
6(2l+3) χλi(τ, z, t)

= χf

Λi
(2π

√
−1z) + (χf

Λ1
χf

Λi
− χf

Λ1+Λi
)(2π

√
−1z)q

1
2

+
(
χf

Λ1
(χf

Λ1
χf

Λi
− χf

Λ1+Λi
)
)

(2π
√
−1z)q + O(q

3
2 ).

Notice that χf

Λ1
χf

Λi
− χf

Λ1+Λi
= χf

Λi−1
+ χf

Λi+1
where we set χf

Λl+1
= 0.

Now, we analyze the first few terms of χΛ0 . Recall that the character of
the fundamental representation L(Λ0) has the special expression (cf. [KP]):

chL(Λ0) =
∑

α∈M etα(Λ0)∏∞
r=1(1 − e−rδ)l .

Hence, it follows from the Jacobi triple product identity that

χΛ0(τ, z, t)

= e2π
√
−1tq−

1
24 l

l∏
i=1

(∏
r>0

(1 + qr−
1
2 e2π

√
−1〈z,εi〉)(1 + qr−

1
2 e−2π

√
−1〈z,εi〉)

)
.

With this expression, one can derive the leading terms of the normalized
character χΛ0(τ, z, t) as follows. For r ∈ Z>0, thanks to the Wf -invariance, it
can be shown that

l∏
i=1

(1 + qr−
1
2 e2π

√
−1〈z,εi〉)(1 + qr−

1
2 e−2π

√
−1〈z,εi〉)

= ql(r−
1
2 )
( [ l2 ]∑

j=0
χf

Λl−2j
(2π

√
−1z)+

l∑
i=1

(qi(r−
1
2 )+q−i(r− 1

2 ))
[ l−i

2 ]∑
j=0

χf

Λl−i−2j
(2π

√
−1z)
)

=
2l∑
i=0

⎛⎜⎝[min{i,2l−i}
2 ]∑

j=0
χf

Λmin{i,2l−i}−2j
(2π

√
−1z)

⎞⎟⎠ qi(r−
1
2 ),

where we set χΛ0=1 and [x] for x ∈ R signifies the maximal integer ≤ x. Thus,
the leading terms of

e−2(2l+1)π
√
−1tq

−(mΛ0−mλi
+
∑l

j=0 mλj
)
J i(τ, z, t)
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is given by the leading terms of∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

1 + O(q
1
2 ) ∂1χ

f

Λi

(2π
√
−1z)q

i
2 + O(q

i+1
2 ) · · · ∂lχ

f

Λi

(2π
√
−1z)q

i
2 + O(q

i+1
2 )

2 + O(q
1
2 ) ∂1χ

f

Λ1
(2π

√
−1z)q + O(q

3
2 ) · · · ∂lχ

f

Λ1
(2π

√
−1z)q + O(q

3
2 )

2χf

Λ1
(2π

√
−1z) + O(q

1
2 ) ∂1χ

f

Λ1
(2π

√
−1z) + O(q

1
2 ) · · · ∂lχ

f

Λ1
(2π

√
−1z) + O(q

1
2 )

...
...

...
2χf

Λi−1
(2π

√
−1z) + O(q

1
2 ) ∂1χ

f

Λi−1
(2π

√
−1z) + O(q

1
2 ) · · · ∂lχ

f

Λi−1
(2π

√
−1z) + O(q

1
2 )

2χf

Λi+1
(2π

√
−1z) + O(q

1
2 ) ∂1χ

f

Λi+1
(2π

√
−1z) + O(q

1
2 ) · · · ∂lχ

f

Λi+1
(2π

√
−1z) + O(q

1
2 )

...
...

...
2χf

Λl

(2π
√
−1z) + O(q

1
2 ) ∂1χ

f

Λl

(2π
√
−1z) + O(q

1
2 ) · · · ∂lχ

f

Λl

(2π
√
−1z) + O(q

1
2 )

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

.

In particular, the leading degree with respect to q of this determinant is 1
2 i.

Therefore, since

mΛ0 −mλi +
l∑

j=0
mλj = (2i + 1)2

8(2l + 3) + 1
24(l − 1) + 1

12 l(l + 1) − 1
2 i,

we have

J i(τ, z, t) ∝ e2(2l+1)π
√
−1tq

(2i+1)2
8(2l+3) + 1

24 (l−1)+ 1
12 l(l+1)

× det(∂iχf

Λj
(2π

√
−1z))1≤i,j≤l(1 + O(q

1
2 )).

(17)

3.4. Functional equations on {F i(τ )}0≤i≤l

By (13) and Remark 2.1, the equations (15), (16) and (17) imply the next
equations:

(−1)iF i

(
−1
τ

)

=
(

τ√
−1

) 1
2 l 2√

2l + 3

l∑
j=0

cos
((2i + 1)(2j + 1)

2(2l + 3) π

)
(−1)jF j(τ),

(−1)iF i(τ + 2, z, t) = exp
(
−4π

√
−1
(
mλi + 1

24 l
))

(−1)iF i(τ),

(18)

and also with the computation of the leading term of Aρ in Subsection 3.3,
one obtain

(−1)iF i(τ) ∝ q
(2i+1)2
8(2l+3) + 1

24 (l−1)(1 + O(q
1
2 )),(19)
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where ∝ means the left hand side is proportional to the right hand side up
to a non-zero scalar factor.

4. Determination of Jaocbians

4.1. Some modular forms

For m ∈ Z>0 and n ∈ Z/2mZ, let

θn,m(τ) :=
∑
k∈Z

qm(k+ n
2m)2

,

be the classical theta functions. Their modular transformations are given by

θn,m(τ + 1) = e
n2
2mπ

√
−1θn,m(τ),

θn,m

(
−1
τ

)
=
(

τ

2m
√
−1

) 1
2 ∑
n′∈Z/2mZ

e−
nn′
m

π
√
−1θn′,m(τ).

(20)

Here, we recall the Jacobi triple product identity:

(21)
∞∏
k=1

(1 − pk)(1 − pk−1w)(1 − pkw−1) =
∑
l∈Z

(−1)lp(
l
2)wl.

The Dedekind eta-function is defined as follows:

η(τ) = q
1
24

∞∏
n=1

(1 − qn) =
∑
m∈Z

(−1)mq
3
2(m− 1

6)
2

.

It is a weight 1
2 modular form:

η(τ + 1) = e
π
√

−1
12 η(τ), η

(
−1
τ

)
=
(

τ√
−1

) 1
2
η(τ).

Following [KP], for M ∈ Z>0 and 0 ≤ r < M , set

F (M)
r (τ) := q

1
8M (M−2r)2 ∏

n≡0 mod M
n>0

(1−qn)
∏

n≡r mod M
n>0

(1−qn)
∏

n≡−r mod M
n>0

(1−qn).

By definition, F
(M)
0 (τ) = η(Mτ)3, and for 0 < r < M , the Jacobi triple

product identity (21) gives

F (M)
r (τ) = θM−2r,2M (τ) − θM+2r,2M (τ).
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In particular, one has

F (M)
r (τ + 1) = e

(M−2r)2
4M π

√
−1F (M)

r (τ).

Assume that M is odd (this is the only case we need). Then, its Jacobi
transformation τ �→ − 1

τ is given as follows: for 0 < r < M ,

F (M)
r

(
−1
τ

)
(22)

= 2
(

τ

M
√
−1

) 1
2
(−1)r−

1
2 (M+1) ∑

0<r′<M
r′≡0 mod 2

sin
(
rr′

M
π

)
e

1
2 r

′π
√
−1F

(M)
r′
2

(τ).

Notice that, for 0 < r < M , one has

F
(M)
M−r(τ) = F (M)

r (τ).

4.2. Conclusion

It turns out that the functions {η(τ)l−1F
(2l+3)
l+1−i (τ)}0≤i≤l enjoys the same prop-

erties as {(−1)iF i(τ)}0≤i≤l, i.e., (18). Thus, we see that

J i(τ, z, t) ∝ (−1)iη(τ)l−1F
(2l+3)
l+1−i (τ)Aρ(τ, z, t).

In particular, since ηl−1F
(2l+3)
l+1 never vanishes on H, we see that, for any

τ ∈ H, the fundamental characters {χΛi}0≤i≤l are algebraically independent.
In particular, we have proved the validity of the first part of the Conjec-
ture 2.1:

Theorem 4.1. For any τ ∈ H, we have

T̃ h
+∣∣∣

Yτ

= C[ι∗Yτ
(χΛi) (0 ≤ i ≤ l)],

where ιYτ : Yτ ↪→ Y is a natural embedding.

Indeed, both of them are Z-graded C-algebras whose Poincaré series
(cf. (9)) are the same.

Remark 4.1. Let L(c, h) be the irreducible highest weight module over the
Virasoro algebra whose highest weight is (c, h). For each integer 0 ≤ i ≤ l, set

c2,2l+3 := 1 − 3(2l + 1)2

2l + 3 , hi := (2i + 1)2 − (2l + 1)2

8(2l + 3) .
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We denote the normalized character trL(c2,2l+3,hi)(qL0− 1
24 c) by χ1,l+1−i(τ). It

turns out that (cf. [IK])

χ1,l+1−i(τ) =
F

(2l+3)
l+1−i (τ)
η(τ) .

In particular, this implies that

J i(τ, z, t) ∝ (−1)iη(τ)lχ1,l+1−i(τ)Aρ(τ, z, t).

As for the second part of the Conjecture 2.1, we see that the OH-algebra
T̃ h

+
contains the OH-algebra generated by {χΛi}0≤i≤l, that is isomorphic to

a polynomial algebra, as a subalgebra. In addition, as a graded OH-algebra,
the Poincaré series of T̃ h

+
and OH[χΛi (0 ≤ i ≤ l)] coincide.

Let KH be the quotient field of OH. One has

KH ⊗OH
T̃ h

+ ∼= KH[χΛi (0 ≤ i ≤ l)]; f ⊗ F �−→ fF.

On the other hand, by Theorem 4.1, the above isomorphism restricts to

OH,τ ⊗OH
T̃ h

+ ∼= OH,τ [χΛi (0 ≤ i ≤ l)].

Since
⋂

τ∈HOH,τ = OH, this implies

Theorem 4.2. T̃ h
+

= OH[χΛi (0 ≤ i ≤ l)].

Hence the second part of the Conjecture 2.1 is also valid.
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