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Hyperelliptic integrals modulo p and Cartier-Manin
matrices∗

Alexander Varchenko

Abstract: The hypergeometric solutions of the KZ equations were
constructed almost 30 years ago. The polynomial solutions of the
KZ equations over the finite field Fp with a prime number p of ele-
ments were constructed only recently. In this paper we consider an
example of the KZ equations whose hypergeometric solutions are
given by hyperelliptic integrals of genus g. It is known that in this
case the total 2g-dimensional space of holomorphic (multivalued)
solutions is given by the hyperelliptic integrals. We show that the
recent construction of the polynomial solutions over the field Fp

in this case gives only a g-dimensional space of solutions, that is,
a “half” of what the complex analytic construction gives. We also
show that all the constructed polynomial solutions over the field
Fp can be obtained by reduction modulo p of a single distinguished
hypergeometric solution. The corresponding formulas involve the
entries of the Cartier-Manin matrix of the hyperelliptic curve.

That situation is analogous to an example of the elliptic integral
considered in the classical Y.I. Manin’s paper [6] in 1961.
Keywords: KZ equations, hyperelliptic integrals, Cartier-Manin
matrix, reduction to characteristic p.

1. Introduction

The hypergeometric solutions of the KZ equations were constructed almost
30 years ago, see [7, 8]. The polynomial solutions of the KZ equations over
the finite field Fp with a prime number p of elements were constructed re-
cently in [9]. In this paper we consider an example of the KZ equations whose
hypergeometric solutions are given by hyperelliptic integrals of genus g. It
is known that in this case the total 2g-dimensional space of holomorphic
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solutions is given by the hyperelliptic integrals. We show that the recent con-
struction of the polynomial solutions over the field Fp in this case gives only
a g-dimensional space of solutions, that is, a “half” of what the complex an-
alytic construction gives. We also show that all the constructed polynomial
solutions over the field Fp can be obtained by reduction modulo p of a single
distinguished hypergeometric solution. The corresponding formulas involve
the entries of the Cartier-Manin matrix of the hyperelliptic curve.

That situation is analogous to an example of the elliptic integral consid-
ered in the classical Y.I. Manin’s paper [6] in 1961, see also Section “Manin’s
Result: The Unity of Mathematics” in the book [2] by Clemens.

The paper is organized as follows. In Section 2 we describe the KZ equa-
tions, and construct for them two types of solutions: over C and over Fp. In
Section 3 we show that the solutions, constructed over Fp, form a module, de-
noted by Mg,p, of rank g. In Section 4 useful formulas on binomial coefficients
are collected. In Section 5 a new basis of the module Mg,p is constructed. In
Section 6 the Cartier-Manin matrix of a hyperelliptic curve is defined. In Sec-
tion 7 we introduce a distinguished holomorphic solution of the KZ equations,
reduce its Taylor expansion coefficients modulo p and express this reduction
in terms of the polynomial solutions over Fp and entries of the Cartier-Manin
matrix.

2. KZ equations

2.1. Description of equations

Let g be a simple Lie algebra over the field C, Ω ∈ g⊗2 the Casimir ele-
ment corresponding to an invariant scalar product on g, V1, . . . , Vn finite-
dimensional irreducible g-modules.

The system of KZ equations with parameter κ ∈ C
× on a ⊗n

i=1Vi-valued
function I(z1, . . . , zn) is the system of the differential equations

∂I

∂zi
= 1

κ

∑
j �=i

Ω(i,j)

zi − zj
I, i = 1, . . . , n,(2.1)

where Ω(i,j) is the Casimir element acting in the i-th and j-th factors, see
[4, 8]. The KZ differential equations commute with the action of g on ⊗n

i=1Vi,
in particular, they preserve the subspaces of singular vectors of a given weight.

In [7, 8] the KZ equations restricted to the subspace of singular vectors
of a given weight were identified with a suitable Gauss-Manin differential



Hyperelliptic integrals modulo p and Cartier-Manin matrices 317

equations and the corresponding solutions of the KZ equations were presented
as multidimensional hypergeometric integrals.

Let p be a prime number and Fp the field with p elements. Let gp be the
same Lie algebra considered over Fp. Let V p

1 , . . . , V
p
n be the gp-modules which

are reductions modulo p of V1, . . . , Vn, respectively. If κ is an integer and p

large enough with respect to κ, then one can look for solutions I(z1, . . . , zn) of
the KZ equations in ⊗n

i=1V
p
i ⊗Fp[z1, . . . , zn]. Such solutions were constructed

in [9].
In this paper we address two questions:

A. What is the number of independent solutions constructed in [9] for a
given Fp?

B. How are those solutions related to the solutions over C, that are given
by hypergeometric integrals?

We answer these questions in an example in which the hypergeometric solu-
tions are presented by hyperelliptic integrals.

The object of our study is the following systems of equations. For a pos-
itive integer g and z = (z1, . . . , z2g+1) ∈ C

2g+1, we study the column vectors
I(z) = (I1(z), . . . , I2g+1(z)) satisfying the system of differential and algebraic
linear equations:

∂I

∂zi
= 1

2
∑
j �=i

Ω(i,j)

zi − zj
I, i = 1, . . . , 2g + 1, I1(z) + · · · + I2g+1(z) = 0,(2.2)

where

Ω(i,j) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

...
i ...

j

i · · · −1 · · · 1 · · ·
...

...
j · · · 1 · · · −1 · · ·

...
...

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

and all other entries equal zero.
The system of equations (2.2) is the system of the KZ differential equa-

tions with parameter κ = 2 associated with the Lie algebra sl2 and the
subspace of singular vectors of weight 2g − 1 of the tensor power (C2)⊗(2g+1)

of two-dimensional irreducible sl2-modules, up to a gauge transformation, see
this example in [11, Section 1.1].
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2.2. Solutions of (2.2) over C

Consider the master function

Φ(t, z1, . . . , z2g+1) =
2g+1∏
a=1

(t− za)−1/2(2.3)

and the 2g + 1-vector of hyperelliptic integrals

I(γ)(z) = (I1(z), . . . , I2g+1(z)),(2.4)

where

Ij =
∫

Φ(t, z1, . . . , z2g+1)
dt

t− zj
, j = 1, . . . , 2g + 1.(2.5)

The integrals are over an element γ of the first homology group γ of the
hyperelliptic curve with equation

y2 = (t− z1) . . . (t− z2g+1).

Starting from such γ, chosen for given {z1, . . . , z2g+1}, the vector I(γ)(z) can
be analytically continued as a multivalued holomorphic function of z to the
complement in C

n to the union of the diagonal hyperplanes zi = zj .

Theorem 2.1. The vector I(γ)(z) satisfies the KZ equations (2.2).

Theorem 2.1 is a classical statement probably known in the 19th century.
Much more general algebraic and differential equations satisfied by analogous
multidimensional hypergeometric integrals were considered in [7, 8]. Theo-
rem 2.1 is discussed as an example in [11, Section 1.1].

Theorem 2.2 ([10, Formula (1.3)]). All solutions of the KZ equations (2.2)
have this form. Namely, the complex vector space of solutions of the form
(2.4) is 2g-dimensional.

This theorem follows from the determinant formula for multidimensional
hypergeometric integrals in [10], in particular, from [10, Formula (1.3)].

2.3. Solutions of KZ equations (2.2) over Fp

We always assume that the prime number p satisfies the inequality

p ≥ 2g + 1.(2.6)
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Define the master polynomial

Φp(t, z1, . . . , z2g+1) =
2g+1∏
a=1

(t− za)(p−1)/2 ∈ Fp[t, z](2.7)

and the 2g + 1-vector of polynomials

P (z) = (P1(t, z), . . . , P2g+1(t, z)),(2.8)

Pj(t, z) = 1
t− zj

Φp(t, z1, . . . , z2g+1).

Consider the Taylor expansion

P (t, z) =
∑(p−1)/2+gp−g−1

i=0
P i(z)ti,(2.9)

P i(z) = (P i
1(z), . . . , P i

2g+1(z)),

with P i
j (z) ∈ Fp[z].

Theorem 2.3 ([9]). For every positive integer l, the vector P lp−1(z) satisfies
the KZ equations (2.2).

This statement is a particular case of [9, Theorem 2.4]. Cf. Theorem 2.3
with [3]. See also [12, 13].

Theorem 2.3 gives exactly g solutions P p−1(z), . . . , P gp−1(z). We denote

Im(z) = (Im1 (z), . . . , Im2g+1(z)),

where

Im(z) := P (g−m)p−1(z), m = 0, . . . , g − 1.(2.10)

3. Linear independence of solutions Im(z)

Denote Fp[zp] := Fp[zp1 , . . . , z
p
2g+1]. The set of all solutions I(z) ∈ Fp[z]2g+1 of

the KZ equations (2.2) is a module over the ring Fp[zp] since equations (2.2)
are linear and ∂zpi

∂zj
= 0 in Fp[z] for all i, j. Denote by

Mg,p =
{ g−1∑
m=0

cm(z)Im(z) | cm(z) ∈ Fp[zp]
}
,

the Fp[zp]-module generated by Im(z), m = 0, . . . , g − 1.
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Theorem 3.1. Let p ≥ 2g + 1. The solutions Im(z), m = 0, . . . , g − 1, are
linearly independent over the ring Fp[zp], that is, if

∑g−1
m=0 cm(z)Im(z) = 0 for

some cm(z) ∈ Fp[zp], then cm(z) = 0 for all m.

Proof. For m = 0, . . . , g − 1, the coordinates of the vector Im(z) are homo-
geneous polynomials in z of degree (p− 1)/2 + mp− g and

Imj (z) =
∑

Imj;�1,...,�2g+1z
�1
1 . . . z

�2g+1
2g+1 ,

where the sum is over the elements of the set

Γm
j = {(�1, . . . , �2g+1) ∈ Z

2g+1
≥0 |

2g+1∑
i=1

�i = (p− 1)/2 + mp− g,

0 ≤ �j ≤ (p− 3)/2, 0 ≤ �i ≤ (p− 1)/2 for i �= j}

and

Imj;�1,...,�2g+1 = (−1)(p−1)/2+mp−g

(
(p− 3)/2

�j

)∏
i�=j

(
(p− 1)/2

�i

)
∈ Fp.

Notice that all coefficients Imj;�1,...,�2g+1
are nonzero. Hence each solution Im(z)

is nonzero.
We show that already the first coordinates Im1 (z), m = 0, . . . , g − 1, are

linearly independent over the ring Fp[z].
Let Γ̄m

1 ⊂ F
2g+1
p be the image of the set Γm

1 under the natural projection
Z

2g+1 → F
2g+1
p . The points of Γ̄m

1 are in bijective correspondence with the
points of Γm

1 . Any two sets Γ̄m
1 and Γ̄m′

1 do not intersect, if m �= m′. (The sets
Γ̄m

1 are analogs in F
2g+1
p of the Newton polytopes of the polynomials Im1 (z).)

For any m and any nonzero polynomial cm(z) ∈ Fp[zp1 , . . . , z
p
2g+1], consider

the nonzero polynomial cm(z)Im1 (z) ∈ Fp[z1, . . . , z2g+1] and the set Γm
1,cm of

points � ∈ Z
2g+1 such that the monomial z�11 . . . z

�2g+1
2g+1 enters cm(z)

Im1 (z) with nonzero coefficient. Then the natural projection of Γm
1,cm to F

2g+1
p

coincides with Γ̄m
1 . Hence the polynomials Im1 (z), m = 0, . . . , g−1, are linearly

independent over the ring Fp[zp].

4. Binomial coefficients modulo p

In this section we collect useful formulas on binomial coefficients.
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4.1. Lucas’s theorem

Theorem 4.1 ([5]). For non-negative integers m and n and a prime p, the
following congruence relation holds:

(
m

n

)
≡

k∏
i=0

(
mi

ni

)
(mod p),(4.1)

where m = mkp
k + mk−1p

k−1 + · · · + m1p + m0 and n = nkp
k + nk−1p

k−1 +
· · · + n1p + n0 are the base p expansions of m and n respectively. This uses
the convention that

(m
n

)
= 0 if m < n.

Lemma 4.2. For a ∈ Z>0, we have(
2a
a

)
�≡ 0 (mod p)

if and only if the base p expansion of a = a0 + a1p+ a2p
2 + · · ·+ akp

k has the
property:

ai ≤
p− 1

2 for i = 0, . . . , k.

In that case (
2a
a

)
≡

k∏
i=0

(
2ai
ai

)
(mod p).(4.2)

The lemma is a corollary of Lucas’s theorem.

4.2. Useful identities

For 0 ≤ k ≤ (p− 3)/2, we have(
(p− 3)/2

k

)
=

(
(p− 1)/2

k

)
(p− 3)/2 − k + 1

(p− 1)/2(4.3)

=
(

(p− 1)/2
k

)
p− 2k − 1

p− 1 ≡
(

(p− 1)/2
k

)
(2k + 1) (mod p),

and for 0 ≤ k ≤ (p− 1)/2(
(p− 3)/2
k − 1

)
=

(
(p− 1)/2

k

)
k

(p− 1)/2(4.4)
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=
(

(p− 1)/2
k

)
2k

p− 1 ≡
(

(p− 1)/2
k

)
(−2k) (mod p).

For a positive integer k,
(
−1/2
k

)
= (−1/2)(−1/2 − 1) · · · (−1/2 − (k − 1))

k!(4.5)

= (−2)−k 1 · 3 · 5 · ... · (2k − 1)
k! = (−1)k2−k (2k)!/(2 · 4 · 6 · 8 · ... · 2k)

k!

= (−1)k2−k (2k)!/(2kk!)
k! = (−4)−k

(
2k
k

)
,

and for 0 ≤ k ≤ (p− 1)/2
(

(p− 1)/2
k

)
≡ (−4)−k

(
2k
k

)
(mod p),(4.6)

more precisely, identity (4.6) is an identity in Fp.

5. Solutions Jm(z)

5.1. Sets Δr
s

We introduce sets that are used later. For r = 0, . . . , g−1, s = 0, . . . , g, define

Δr
s = {(�3, . . . , �2g+1) ∈ Z

2g−1
≥0 |(5.1)

0 ≤
2g+1∑
i=3

�i + s− rp ≤ (p− 1)/2, �i ≤ (p− 1)/2}.

5.2. Definition

Introduce the vectors Jm(z) ∈ Fp[z]2g+1, m = 0, . . . , g − 1, by the formula

Jm(z) =
m∑
l=0

Im−l(z)zlp1

(
g −m− 1 + l

g −m− 1

)
,(5.2)

that is,

J0(z) = I0(z),



Hyperelliptic integrals modulo p and Cartier-Manin matrices 323

J1(z) = I0(z)zp1

(
g − 1
g − 2

)
+ I1(z),

J2(z) = I0(z)z2p
1

(
g − 1
g − 3

)
+ I1(z)zp1

(
g − 2
g − 3

)
+ I2(z),

and so on.

Lemma 5.1. For m = 0, . . . , g − 1, the vector Jm(z) is a solution of the
KZ equations (2.2). Moreover, the Fp[zp]-module spanned by Jm(z), m =
0, . . . , g − 1, coincides with the Fp[zp]-module Mg,p spanned by Im(z), m =
0, . . . , g − 1.

For the vector P (t, z) in (2.9), consider the Taylor expansion

P (t + z1, z) =
∑(p−1)/2+gp−g−1

i=0
P̃ i(z)ti(5.3)

with Taylor coefficients P̃ i(z).

Lemma 5.2. For m = 0, . . . , g − 1, we have

Jm(z) = P̃ (g−m)p−1(z),(5.4)

cf. formula (2.10).

Proof. We have P (t, z) =
∑(p−1)/2+gp−g−1

i=0 P i(z)ti, hence

P (t + z1, z) =
∑(p−1)/2+gp−g−1

i=0
P i(z)(t + z1)i

=
∑(p−1)/2+gp−g−1

i=0
P i(z)

i∑
j=0

(
i

j

)
tjzi−j

1 .

If p � |(i + 1), then
( i
(g−m)p−1

)
≡ 0 (mod p) by Lucas’s theorem. Hence

P̃ (g−m)p−1(z) = P (g−m)p−1(z)
(

(g −m)p− 1
(g −m)p− 1

)

+P (g−m+1)p−1(z)zp1

(
(g −m + 1)p− 1

(g −m)p− 1

)

+P (g−m+2)p−1(z)z2p
1

(
(g −m + 2)p− 1

(g −m)p− 1

)
+ . . .
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= Im(z) + Im−1(z)zp1

(
g −m

g −m− 1

)
+ Im−2(z)z2p

1

(
g −m + 1
g −m− 1

)
+ . . . ,

where the last equality holds also by Lucas’s theorem. This gives the
lemma.

5.3. Formula for Jm(z)

Denote λ = (λ1, . . . , λ2g+1), where λ1 = 0, λ2 = 1, and

λj = zj − z1

z2 − z1
.(5.5)

Theorem 5.3. For m = 0, . . . , g − 1, we have

Jm(z) = (z2 − z1)(p−1)/2+mp−gKm(λ),(5.6)

where

Km(λ) =
∑

�∈Δm
g

Km
� (λ),(5.7)

Δm
g is defined in (5.1), and

Km
� (λ) = (−1)(p−1)/2+mp−g

(
(p− 1)/2∑2g+1

i=3 �i + g −mp

) 2g+1∏
i=3

(
(p− 1)/2

�i

)
(5.8)

× λ�3
3 . . . λ

�2g+1
2g+1 (1,−2

2g+1∑
i=3

�i − 2g, 2�3 + 1, . . . , 2�2g+1 + 1).

Using (4.6) we may rewrite formula (5.8) as

Km
� (λ) = (−1)(p−1)/24−2

∑2g+1
i=3 �i−g+mp(5.9)

×
(

2
∑2g+1

i=3 �i + 2g − 2mp∑2g+1
i=3 �i + g −mp

)∏2g+1

i=3

(
2�i
�i

)
λ�3

3 . . . λ
�2g+1
2g+1

× (1,−2
2g+1∑
i=3

�i − 2g, 2�3 + 1, . . . , 2�2g+1 + 1).

Proof. We have

P ((z2 − z1)x + z1, z) = (z2 − z1)(p−1)/2+gp−g−1x(p−1)/2(x− 1)(p−1)/2
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×
2g+1∏
j=3

(x− λj)(p−1)/2
(1
x
,

1
x− 1 ,

1
x− λ3

, . . . ,
1

x− λ2g+1

)

and

P ((z2 − z1)x + z1, z) =
∑(p−1)/2+gp−g−1

i=0
P̃ i(z)(z2 − z1)ixi.

Hence Jm(z) = P̃ (g−m)p−1(z) equals the coefficient of x(g−m)p−1 in

x(p−1)/2(x− 1)(p−1)/2
2g+1∏
j=3

(x− λj)(p−1)/2(1
x
,

1
x− 1 ,

1
x− λ3

, . . . ,
1

x− λ2g+1

)

multiplied by (z2 − z1)(p−1)/2+mp−g. We have

(z2 − z1)−(p−1)/2−mp+gJm
1 (z)

= (−1)(p−1)/2+mp−g
∑(

(p− 1)/2
�2

)
. . .

(
(p− 1)/2
�2g+1

)
λ�3

3 . . . λ
�2g+1
2g+1 ,

where the sum is over the set

Δ = {(�2, . . . , �2g+1) ∈ Z
2g
≥0 |

2g+1∑
i=2

�i = mp− g + (p− 1)/2,

�j ≤ (p− 1)/2, j = 2, . . . , 2g + 1}.

Expressing �2 from the conditions defining Δ we write

(z2 − z1)−(p−1)/2−mp+gJm
1 (z) = (−1)(p−1)/2+mp−g

×
∑(

(p− 1)/2∑2g+1
i=3 �i + g −mp

)(
(p− 1)/2

�3

)
. . .

(
(p− 1)/2
�2g+1

)
λ�3

3 . . . λ
�2g+1
2g+1 ,

where the sum is over the set

Δm
g = {(�3, . . . , �2g+1) ∈ Z

2g−1
≥0 | 0 ≤

2g+1∑
i=3

�i + g −mp ≤ (p− 1)/2,

�i ≤ (p− 1)/2, i = 3, . . . , 2g + 1}.

Similarly we have

(z2 − z1)−(p−1)/2−mp+gJm
2 (z) = (−1)(p−1)/2+mp−g
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×
∑(

(p− 3)/2
�2

)(
(p− 1)/2

�3

)
. . .

(
(p− 1)/2
�2g+1

)
λ�3

3 . . . λ
�2g+1
2g+1 ,

where the sum is over the set

Δ′ = {(�2, . . . , �2g+1) ∈ Z
2g
≥0 |

2g+1∑
i=2

�i = mp− g + (p− 1)/2,

�2 ≤ (p− 3)/2 and �i ≤ (p− 1)/2 for i > 2}.

Expressing �2 from the conditions defining Δ′ we write

(z2 − z1)−(p−1)/2−mp+gJm
2 (z)

= (−1)(p−1)/2+mp−g
∑(

(p− 3)/2∑2g+1
i=3 �i + g −mp− 1

)

×
(

(p− 1)/2
�3

)
. . .

(
(p− 1)/2
�2g+1

)
λ�3

3 . . . λ
�2g+1
2g+1 ,

where the sum is over the set

Δ′′ = {(�3, . . . , �2g+1) ∈ Z
2g−1
≥0 | 0 ≤

2g+1∑
i=3

�i + g −mp− 1 ≤ (p− 3)/2,

�j ≤ (p− 1)/2, j = 3, . . . , 2g + 1}.

For j = 3, . . . , 2g + 1, we have

(z2 − z1)−(p−1)/2−mp+gJm
j (z) = (−1)(p−1)/2+mp−g

×
∑(

(p− 3)/2
�j

)∏2g+1

i=2, i�=j

(
(p− 1)/2

�i

)
λ�3

3 . . . λ
�2g+1
2g+1 ,

where the sum is over the set

Δ′′′ = {(�2, . . . , �2g+1) ∈ Z
2g
≥0 |

2g+1∑
i=2

�i = mp− g + (p− 1)/2,

�j ≤ (p− 3)/2 and �i ≤ (p− 1)/2, i �= j}.

Expressing �2 from the conditions defining Δ′′′ we write

(z2 − z1)−(p−1)/2−mp+gJm
j (z)
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= (−1)(p−1)/2+mp−g
∑(

(p− 1)/2∑2g+1
i=3 �i + g −mp

)

×
(

(p− 3)/2
�j

)∏2g+1

i=3, i�=j

(
(p− 1)/2

�i

)
λ�3

3 . . . λ
�2g+1
2g+1 ,

where the sum is over the set

Δ̄′′′′ = {(�3, . . . , �2g+1) ∈ Z
2g−1
≥0 | 0 ≤

2g+1∑
i=3

�i + g −mp ≤ (p− 1)/2,

�j ≤ (p− 3)/2 and �i ≤ (p− 1)/2, i �= j}.

Using identities (4.3), (4.4) we may rewrite Jm
j (z), j = 2, . . . , 2g + 1, in the

form indicated in the theorem.

6. Cartier-Manin matrix

Consider the hyperelliptic curve X with equation

y2 = x(x− 1)(x− λ3) . . . (x− λ2g+1),

where λ3, . . . , λ2g+1 ∈ Fp, while, in the previous section, λ3, . . . , λ2g+1 were
rational functions in z, see fromula (5.5).

Following [1] define the g × g Cartier-Manin matrix C(λ) = (Cr
s (λ))g−1

s,r=0
of that curve. Namely, for s = 0, . . . , g − 1, expand

xg−s−1(x(x− 1)(x− λ3) . . . (x− λ2g+1)
)(p−1)/2 =

∑
k
Qk

sx
k

with Qk
s ∈ Fp and set

Cr
s (λ) := Q(g−r)p−1

s , r = 0, . . . , g − 1.(6.1)

The Cartier-Manin matrix represents the action of the Cartier operator on the
space of holomorphic differentials of the hyperelliptic curve. That operator is
dual to the Frobenius operator on the cohomology group H1(X,OX), see for
example, [1].

Lemma 6.1. We have

Cr
s (λ) =

∑
�∈Δr

s

Cr
s; �(λ),(6.2)
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where Δr
s is defined in (5.1) and

Cr
s; �(λ) = (−1)(p−1)/2+rp−s

(
(p− 1)/2∑2g+1

i=3 �i + s− rp

)
(6.3)

×
2g+1∏
i=3

(
(p− 1)/2

�i

)
λ�3

3 . . . λ
�2g+1
2g+1 .

The lemma is proved by straightforward calculation similar to the proof
of Theorem 5.3.

We may rewrite (6.3) as

Cr
s; �(λ) = (−1)(p−1)/24−2

∑2g+1
i=3 �i−s+rp(6.4)

×
(

2
∑2g+1

i=3 �i + 2s− 2rp∑2g+1
i=3 �i + s− rp

) 2g+1∏
i=3

(
2�i
�i

)
λ�3

3 . . . λ
�2g+1
2g+1 .

7. Comparison of solutions over C and Fp

Now we will

1. distinguish one holomorphic solution of the KZ equations,
2. expand it into the Taylor series,
3. for any p ≥ 2g + 1 reduce this Taylor series modulo p,
4. observe in that reduction of the Taylor series all the polynomial solu-

tions, that we have constructed and nothing more.

7.1. Distinguished holomorphic solution

Recall that holomorphic solutions of our KZ equations have the form I(z) =
(I1(z), . . . , I2g+1(z)), where

Ij(z) =
∫
γ

dt√
(t− z1) . . . (t− z2g+1)

1
t− zj

and γ is an oriented curve on the hyperelliptic curve with equation y2 =
(t− z1) . . . (t− z2g+1). Assume that z3, . . . , z2g+1 are closer to z1 than to z2:

∣∣∣zj − z1

z2 − z1

∣∣∣ < 1
2 , j = 3, . . . , 2g + 1.
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Choose γ to be the circle
{
t ∈ C |

∣∣ t−z1
z2−z1

∣∣ = 1
2
}

oriented counter-clockwise,
and multiply the vector I(z) by the normalization constant 1/2π.

We call this solution I(z) the distinguished solution.

7.2. Rescaling

Change variables, t− z1 = (z2 − z1)x, and write

I(z1, . . . , z2g+1) = (z2 − z1)−1/2−gL(λ3, . . . , λ2g+1),(7.1)

where

(λ3, . . . , λ2g+1) =
(z3 − z1

z2 − z1
, . . . ,

z2g+1 − z1

z2 − z1

)
,

L(λ) = (L1, . . . , L2g+1),

Lj = 1
2π

∫
|x|=1/2

dx√
x(x− 1)(x− λ3) . . . (x− λ2g+1)

1
x− λj

,

and we set 1
x−λ1

:= 1
x , 1

x−λ2
:= 1

x−1 .
The function L(λ) is holomorphic at the point λ = 0. Hence

L(λ) =
∑

(k3,...,k2g+1)∈Z2g−1
≥0

Lk3,...,k2g+1λ
k3
3 . . . λ

k2g+1
2g+1 ,

where the coefficients lie in Z[ 12 ]2g+1. Hence for any p ≥ 2g + 1, this power
series can be projected to a formal power series in Fp[λ]2g+1.

We relate this power series and the polynomial solutions Jm(z), m =
0, . . . , g − 1, constructed earlier.

7.3. Taylor expansion of L(λ)

Lemma 7.1. We have

L(0, . . . , 0) = (−1)g
(
−1/2
g

)
(1,−2g, 1, . . . , 1).(7.2)

Proof. We have 1
2π = − (−1)−1/2

2πi and

L1(0, . . . , 0) = −(−1)−1/2

2πi

∫
|x|=1/2

(x− 1)−1/2 dx

xg+1
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= 1
2πi

∫
|x|=1/2

∞∑
k=0

(−1)kxk
(
−1/2
k

)
dx

xg+1

= 1
2πi

∫
|x|=1/2

∞∑
k=0

(−1)kxk
(
−1/2
k

)
dx

xg+1 = (−1)g
(
−1/2
g

)
,

L2(0, . . . , 0) = −(−1)−1/2

2πi

∫
|x|=1/2

(x− 1)−3/2 dx

xg

= − 1
2πi

∫
|x|=1/2

(1 − x)−3/2 dx

xg

= − 1
2πi

∫
|x|=1/2

∞∑
k=0

(−1)kxk
(
−3/2
k

)
dx

xg

= (−1)g
(
−3/2
g − 1

)
= (−1)g

(
−1/2
g

)
(−2g).

The coordinates Lj(0, . . . , 0) for j > 2 are calculated similarly.

Lemma 7.2. We have

L(λ) =
∑

(k3,...,k2g+1)∈Z2g−1
≥0

Lk3,...,k2g+1λ
k3
3 . . . λ

k2g+1
2g+1 ,(7.3)

where

Lk3,...,k2g+1 = (−1)g
(

−1/2
k3 + · · · + k2g+1 + g

) 2g+1∏
i=3

(
−1/2
ki

)
(7.4)

× (1,−2k3 − · · · − 2k2g+1 − 2g, 2k3 + 1, . . . , 2k2g+1 + 1).

Proof. The proof is similar to the proof of Lemma 7.1.

Using formula (4.5) we may reformulate (7.4) as

Lk3,...,k2g+1 = 4−2(k3+···+k2g+1)−g(7.5)

×
(

2(k3 + · · · + k2g+1 + g)
k3 + · · · + k2g+1 + g

)(
2k3

k3

)
. . .

(
2k2g+1

k2g+1

)

× (1,−2k3 − · · · − 2k2g+1 − 2g, 2k3 + 1, . . . , 2k2g+1 + 1).
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7.4. Coefficients, nonzero modulo p

Given (k3, . . . , k2g+1) ∈ Z
2g−1
≥0 , let

ki = k0
i + k1

i p + · · · + kai p
a, 0 ≤ kji ≤ p− 1, i = 3, . . . , 2g + 1,

be the p-ary expansions. Assume that a is such that not all numbers kai ,
i = 3, . . . , 2g + 1, are equal to zero. By Lemma 4.2, the product

∏2g+1
i=3

(2ki
ki

)
is not congruent to zero modulo p if and only if

kji ≤
p− 1

2 for all i, j.(7.6)

Assume that condition (7.6) holds. Then for any j = 0, . . . , a, we have

2g+1∑
i=3

kji ≤ (2g − 1)p− 1
2 = gp− g − p− 1

2 < gp.

Define the shift coefficients (m0, . . . ,ma+1) as follows. Namely, put m0 = g.
We have

∑2g+1
i=3 k0

i + g < gp. Hence there exists a unique integer m1, 0 ≤
m1 < g, such that

0 ≤
2g+1∑
i=3

k0
i + g −m1p < p.

We have
∑2g+1

i=3 k1
i + m1 < gp. Hence there exists a unique integer m2, 0 ≤

m2 < g, such that

0 ≤
2g+1∑
i=3

k1
i + m1 −m2p < p,

and so on. We have 0 ≤ mj < g for all j = 1, . . . , a + 1.
We say that a tuple (k3, . . . , k2g+1) is admissible if it has property (7.6)

and its shift coefficients (m0, . . . ,ma+1) satisfy the system of inequalities

2g+1∑
i=3

kji −mj+1p + mj ≤
p− 1

2 , j = 0, . . . , a.(7.7)

Theorem 7.3. We have Lk3,...,k2g+1 �≡ 0 (mod p) if and only if the tuple
(k3, . . . , k2g+1) is admissible. The tuple (k3, . . . , k2g+1) is admissible, if and
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only if (kj3, . . . , k
j
2g+1) ∈ Δmj+1

mj for j = 0, . . . , a, where the sets Δr
s are defined

in (5.1). If the tuple (k3, . . . , k2g+1) is admissible, then modulo p we have

Lk3,...,k2g+1λ
k3
3 . . . λ

k2g+1
2g+1 ≡ (−1)a(p−1)/2

(
2ma+1

ma+1

)
(7.8)

×
( a∏

j=1
C

mj+1

mj ;kj
3,...,k

j
2g+1

(λpj

3 , . . . , λpj

2g+1)
)
Km1

k0
3 ,...,k

0
2g+1

(λ3, . . . , λ2g+1),

where Cr
s; �(λ) are terms of the Cartier-Manin matrix expansion in (6.2) and

Km
� (λ) are the terms of the expansion in (5.6) of the solution Jm(z).

Proof. We have Lk3,...,k2g+1 �≡ 0 (mod p) if and only if each of the binomial
coefficients in (7.5) is not divisible by p. For all i = 3, . . . , 2g + 1, we have(2ki
ki

)
�≡ 0 (mod p) if and only if property (7.6) holds.

The p-ary expansion of k3 + · · · + k2g+1 + g is

k3 + · · · + k2g+1 + g =
( 2g+1∑

i=3
k0
i −m1p + g

)
+

( 2g+1∑
i=3

k1
i −m2p + m1

)
p

+ · · · +
( 2g+1∑

i=3
kai −ma+1p + ma

)
pa + ma+1p

a+1.

By Lemma 4.2, the binomial coefficient
(2(k3+···+k2g+1+g)

k3+···+k2g+1+g

)
is not divisible by p

if and only if inequalities (7.7) hold. Thus Lk3,...,k2g+1 �≡ 0 (mod p) if and only
if the tuple (k3, . . . , k2g+1) is admissible.

The statement that the tuple (k3, . . . , k2g+1) is admissible, if and only if
(kj3, . . . , k

j
2g+1) ∈ Δmj+1

mj for j = 0, . . . , a, follows from the definition of the
sets Δr

s.
The last statement of the theorem is a straightforward corollary of Lucas’s

theorem, formulas for Cr
s;�(λ), Km

� (λ), and the fact that 4kp ≡ 4k (mod p) for
any k.

7.5. Decomposition of L(λ) into the disjoint sum of polynomials

Define a set

M = {(m0, . . . ,ma+1) | a ∈ Z≥0, m0 = g,(7.9)
mj ∈ Z≥0, mj < g for j = 1, . . . , a + 1}.
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For any �m = (m0, . . . ,ma+1) ∈ M , define the 2g+1-vector of polynomial
in λ = (λ3, . . . , λ2g+1):

K�m(λ) = (−1)a(p−1)/2
(

2ma+1

ma+1

)
(7.10)

×
( a∏

j=1
Cmj+1

mj
(λpj

3 , . . . , λpj

2g+1)
)
Km1(λ3, . . . , λ2g+1).

Notice that for �m, �m′ ∈ M , �m �= �m′, the set of monomials, entering with
nonzero coefficients the polynomial K�m(λ), does not intersect the set of mono-
mials, entering with nonzero coefficients the polynomial K�m′(λ).

Corollary 7.4. We have

L(λ) ≡
∑

�m∈M
K�m(λ) (mod p).(7.11)

Notice that by Lemma 7.2, L(λ) is a power series in λ with coefficients
in Z

2g+1[1
2
]

independent of p, while the right-hand side in (7.11) is a formal
infinite sum of polynomials in λ with coefficients in F

2g+1
p and with noninter-

secting supports.

7.6. Distinguished solution over C and solutions Jm(z) over Fp

Let us compare the distinguished solution I(z) = (z2 − z1)−1/2−gL(λ(z)) in
(7.1), and the expansion (7.11). For any �m = (m0, . . . ,ma+1) ∈ M , define

J�m(z) = (z2 − z1)(p−1)/2−g+ma+1pa+1+(p+···+pa)(p−1)/2(7.12)

× K�m

(z3 − z1

z2 − z1
, . . . ,

z2g+1 − z1

z2 − z1

)
.

Theorem 7.5. The following statements hold.

(i) For any �m ∈ M , we have J�m(z) ∈ Fp[z]2g+1.
(ii) For any �m ∈ M , the polynomial vector J�m(z) is a solution of the KZ

equations (2.2).
(iii) The Fp[zp]-module spanned by J�m(z), �m ∈ M , coincides with the Fp[zp]-

module Mg,p spanned by Im(z), m = 0, . . . , g − 1.

Proof. We have

J�m(z) = (−1)a(p−1)/2
(

2ma+1

ma+1

)
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×
a∏

j=1
(z2 − z1)((p−1)/2−mj+mj+1p)pjCmj+1

mj

((z3 − z1

z2 − z1

)pj
, . . . ,

(z2g+1 − z1

z2 − z1

)pj)

× (z2 − z1)(p−1)/2−g+m1pKm1
(z3 − z1

z2 − z1
, . . .

z2g+1 − z1

z2 − z1

)
,

where

(z2 − z1)(p−1)/2−g+m1pKm1
(z3 − z1

z2 − z1
, . . .

z2g+1 − z1

z2 − z1

)
= Jm1(z)

is a solution of the KZ equations (2.2), see (5.6), and each factor

(z2 − z1)((p−1)/2−mj+mj+1p)pjCmj+1
mj

((z3 − z1

z2 − z1

)pj
, . . . ,

(z2g+1 − z1

z2 − z1

)pj)

is a polynomial in Fp[zp]. This proves parts (i–ii) of the theorem. Part (iii)
follows from the identity

K�m=(g,m1)(z) =
(

2m1

m1

)
Jm1(z).
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