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Abstract: In this paper, we give an exposition of the elliptic KZB
connection over the universal elliptic curve and use it to compute
the limit mixed Hodge structure on the unipotent fundamental
group of the first order Tate curve. We also give an explicit al-
gebraic formula for the restriction of the elliptic KZB connection
to the moduli space of non-zero abelian differentials on an elliptic
curve.
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Introduction

The universal elliptic KZB1 connections generalize the connections defined by
the physicists Knizhnik and Zamolodchikov [22] in genus 0 and Bernard [1] in
genus 1. For each n ≥ 1, the universal elliptic KZB connection is an integrable
connection on a bundle of pronilpotent Lie algebras over M1,1+n, the moduli
space of (n + 1)-pointed smooth projective curves of genus 1, regarded as a
stack over C. The fiber of the connection over the point corresponding to

1For Knizhnik–Zamolodchikov–Bernard.
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the (n + 1)-pointed genus 1 curve (E; 0, x1, . . . , xn) is the Lie algebra of the
unipotent completion of πun

1 (Cn(E′, (x1, . . . , xn))), where E′ := E − {0} and

Cn(E′) = (E′)n − fat diagonal

is the configuration space of n points in E′. Explicit constructions of the uni-
versal elliptic KZB connection were given by Calaque, Enriquez and Etingof
(for all n ≥ 1) in [3] and, independently, by Levin and Racinet (for n = 1
only) in [24]. We will generally drop the adjectives “universal” and “elliptic”.
Since we consider only universal elliptic KZB connections, there should be no
confusion.

In mathematics, KZB connections play a role in representation theory [3]
and in the study of periods of mixed elliptic motives [9, 18]. In this paper,
we focus on the KZB connection over M1,2, the n = 1 case. This is the most
important in the theory of mixed elliptic motives.

In this paper, we give a complete exposition of the construction of the KZB
connection in the n = 1 case. We use it to compute the limit mixed Hodge
structure (MHS) on the Lie algebra of the unipotent fundamental group of
the first order Tate curve E∂/∂q (i.e., the restriction of the universal elliptic
curve over the q-disk to the tangent vector ∂/∂q at q = 0) with its identity
removed and with a canonical tangential base point ∂/∂w at its identity.2 In
particular, we show that its periods are multiple zeta values. We also use it
to derive certain formulas which relate this limit MHS to the MHS on the
unipotent fundamental group of P1 − {0, 1,∞}, which we regard as the nodal
cubic with its singular point and identity element removed. We also show that,
when restricted to M1,�1, the moduli space of elliptic curves with a non-zero
abelian differential (equivalently, a non-zero tangent vector at the identity),
the elliptic KZB connection is defined over Q and we give an explicit formula
for this connection in terms of the coordinates on M1,�1/Q.

This paper grew out of notes from a seminar at Duke University dur-
ing the summer of 2007 in which we read the paper of Levin and Racinet
[24]. Because this paper is derived from lecture notes, the style is sometimes
a little expansive and background which might otherwise be omitted is in-
cluded.

The paper is in four parts. The first contains some background material.
The second part is a complete exposition of the elliptic KZB equation. This
exposition follows the approach of Levin and Racinet, which expresses the
elliptic KZB connection in terms of Kronecker’s Jacobi form, F (ξ, η, τ), [21]

2Limit mixed Hodge structures are reviewed in Section 15. Tangential base points
and their relationship to limit MHSs are explained in Section 16.
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and Eisenstein series. This function F was rediscovered by Zagier in [33] and
can be expressed in terms of classical theta functions. Zagier [33] showed that
this Jacobi form is a generating function for the periods of modular forms
of level 1, a fact whose relevance is still not completely understood in the
context of mixed elliptic motives.

During the seminar, we were unable to verify some of the computations
in the Levin-Racinet paper without modifying several factors of automorphy.
Such differences may have arisen because of differing conventions. This paper
uses the modified factors of automorphy. Because of this, and because it is not
likely that the paper of Levin and Racinet will be published, complete proofs
of the modular behaviour and integrability of the elliptic KZB connection are
given in Part 2.

Levin and Racinet define Hodge and weight filtrations on the fibers of the
elliptic KZB connection. In Part 3, we prove that with these filtrations, the
KZB connection is an admissible variation of MHS isomorphic to the canonical
variation of MHS whose fiber over [E, x] is the Lie algebra of πun

1 (E−{0}, x)
with its canonical MHS. This allows us to explicitly compute the limit MHS
on the fiber associated to a tangent vector at the identity of the nodal cu-
bic. In particular, we prove that its periods are multiple zeta values. The
explicit formula for the KZB connection allows us to compute a formula for
the canonical map of Lie algebras induced by the homomorphism

πun
1 (P1 − {0, 1,∞}, ∂/∂w) → πun

1 (E′
∂/∂q, ∂/∂w)

and also for the logarithm of the monodromy action

πun
1 (E′

∂/∂q, ∂/∂w) → πun
1 (E′

∂/∂q, ∂/∂w).

Here w is the parameter in P1 − {0, 1,∞} and q is the coordinate exp(2πiτ)
in the q-disk.

For applications to elliptic and modular motives, it is important to know
that the elliptic KZB connection is defined over Q. Levin and Racinet [24]
state this as a result and sketch a proof of it. In Part 4 we elaborate on their
computations and give an explicit formula for the restriction of the KZB
connection to M1,�1 and show that its canonical extension to M1,�1 is also
defined over Q. The story for M1,2 is more complicated and has been verified
by Ma Luo. It will appear in his Duke PhD thesis.

Background material on the topology of moduli spaces of elliptic curves
(viewed as orbifolds) and their associated mapping class groups is not in-
cluded. It can be found, for example, in [15]. The books of Serre [27] and
Silverman [29] are excellent references for background material on modular
forms.
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0.1. Some conventions

We use the topologist’s convention for path multiplication: if α, β : [0, 1] → X
are paths in a topological space with α(1) = β(0), then αβ : [0, 1] → X is the
path obtained by first traversing α and then β.

The adjoint action of an element u of the enveloping algebra of a Lie
algebra g on an element x of g will often be denoted by u · x. This will be
extended to power series u of elements of g when it makes sense. For example
if t ∈ g, then

et · x =
∞∑
n=0

adn
t (x)/n!

If δ is a derivation of g, then δ(f · u) = δ(f) · u + f · δ(u).
We will be sloppy and denote the generic element of SL2(Z) by

γ =
(
a b
c d

)

So, unless otherwise mentioned, the entries of γ are a, b, c and d.
We will use the terms “local system” and “locally constant sheaf” inter-

changeably. Local systems of vector spaces over a smooth manifold correspond
to vector bundles with a flat (i.e., integrable) connection. Sometimes we will
abuse terminology and refer to such a local system as a “flat bundle”.

Part 1. Background

In this part, we present the background needed to understand the univer-
sal elliptic KZB connection. In parts 3 and 4, the reader will also need to
be familiar with the basics of Deligne’s theory of mixed Hodge structures.
Introductory references are listed in Section 15.

1. The universal elliptic curve

The material in this section is standard. We will assume that the reader is
familiar with the construction of M1,1 as the orbifold quotient of the upper
half plane

h := {τ ∈ C : Im τ > 0}
by SL2(Z), the construction of its Deligne-Mumford compactification M1,1
(as an orbifold), the construction of the standard line bundle L over M1,1, and
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its extension L to M1,1. Denote their kth powers by Lk and Lk, respectively.
In particular, their inverses will be denoted by L−1 and L−1. This material
is classical and can be found, for example, in the first four sections of [15].

The group SL2(Z) acts on Z2 by right multiplication:(
a b
c d

)
:
(
m n

)
�→

(
m n

)(
a b
c d

)
.

Denote the corresponding semi-direct product SL2(Z) �Z2 by Γ. This is the
set SL2(Z) × Z2 with multiplication:

(γ1, v1)(γ2, v2) = (γ1γ2, v1γ2 + v2)

where γ1, γ2 ∈ SL2(Z) and v1, v2 ∈ Z2.
The group Γ acts on X := C× h on the left:

(m,n) : (ξ, τ) �→
(
ξ +

(
m n

)(
τ
1

)
, τ

)

and
γ : (ξ, τ) �→

(
(cτ + d)−1ξ, γτ

)
where γ ∈ SL2(Z).

The quotient Γ\X is the universal elliptic curve E ; the map Γ\X →
SL2(Z)\h induced by the projection X → h is the projection E → M1,1.

The universal elliptic curve can be compactified using the Tate curve to
obtain a proper orbifold map E → M1,1 whose fiber over q = 0 is the nodal
cubic. Its pullback to the q-disk D, with the double point removed, is the
quotient of C∗ × D by the group action Z× C∗ × D → C∗ × D defined by

n : (w, q) �→
{

(qnw, q) q �= 0,
(w, q) q = 0.

Note that, although this group action is not continuous, the quotient (en-
dowed with the quotient topology) is Hausdorff and is a complex manifold.
The fiber over q = 0 is the group C∗. The zero section (aka, the identity
section) passes through it at w = 1.

Proposition 1.1. The normal bundle of the zero section of E is L−1.
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Proof. The line bundle L−1 is the quotient of C× h by the action(
a b
c d

)
: (ξ, τ) �→

(
(cτ + d)−1ξ, γτ

)
.

The identity C×h → C×h is equivariant with respect to the natural inclusion
SL2(Z) → SL2(Z) � Z2 and thus induces a quotient mapping L−1 → E that
commutes with the projections to M1,1. This projection extends over q = 0.
This is well known and follows from the result of Exercise 47 in [15, §5.2].

Corollary 1.2. A neighbourhood of the zero section of L−1 is biholomorphic
with a neighbourhood of the identity section of E → M1,1.

Denote by L′ the complex manifold obtained by removing the 0-section
from a holomorphic line bundle L.

Corollary 1.3. The moduli space M′
1,�1 of pairs (E,�v), where E is a stable

elliptic curve and �v is a (possible vanishing) tangent vector at the identity is
naturally isomorphic with L−1. In particular, the moduli space of smooth el-
liptic curves and a non-zero tangent vector at the identity M1,�1 is isomorphic
to L′

−1.

1.1. Fundamental groups

A non-zero point x of an elliptic curve E determines (and is determined by)
an orbifold map [E, x] : C → E ′.

Proposition 1.4. The fundamental group of E ′ with respect to the base point
[E, x] is an extension

1 → π1(E′, x) → π1(E ′, [E, x]) → SL2(Z) → 1.

In particular, it is isomorphic to an extension of SL2(Z) by a free group of
rank 2.

Proof. The function R2 × h → C × h defined by (u, v, τ) �→ (u + vτ, τ) is
a homeomorphism. It induces a homeomorphism (R/Z)2 × h → Eh which
restricts to give a homeomorphism(

(R/Z)2 − {0}
)
× h → E ′

h,

where Eh denotes the universal elliptic curve Z2\
(
C×h

)
over h and E ′

h denotes
Eh with the 0-section removed. It follows that E ′

h is homotopy equivalent to
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each of its fibers E′
τ . In particular, the inclusion (E′, x) → (E ′

h, (E, x)) induces
an isomorphism on fundamental groups.

The result follows from covering space theory as the covering E ′
h → E ′ is

Galois with Galois group SL2(Z).

Corollary 1.5. For each point [E, x] of E ′, there is a natural action of
π1(E ′, [E, x]) on π1(E′, x).

Proof. Since π1(E′, x) is a normal subgroup of π1(E ′, [E, x]), one has the con-
jugation action g : γ �→ gγg−1 of π1(E ′, [E, x]) on π1(E′, x).

Denote the C∗ bundle obtained from Lk by removing the 0-section by L′
k.

Its (orbifold) fundamental group is a central extension

0 → Z → π1(L′
k, ∗) → SL2(Z) → 1.

Remark 1.6. It is well-known that π1(L′
−1) is naturally isomorphic to each of

the following groups:

(i) the braid group B3 on 3-strings;
(ii) the fundamental group of C2 with the cusp x2 = y3 removed;
(iii) the fundamental group of the complement of the trefoil knot;
(iv) the inverse image S̃L2(Z) of SL2(Z) in the universal covering group

S̃L2(R) of SL2(R).

Details can be found, for example, in [15].
Proposition 1.1 implies that if E is an elliptic curve and �v is a non-zero

tangent vector at 0 ∈ E, there is a natural homomorphism

π1(L′
−1, [E,�v]) → π1(E ′, [E,�v]).

Composing this with the action above we obtain an action

π1(L′
−1, [E,�v]) → Autπ1(E′, �v).

Denote the element of π1(E′, �v) that corresponds to moving once around
the identity in the positive direction by co. Denote by zo the image in π1(L′

−1,

[E,�v]) ∼= S̃L2(Z) of the positive generator of the fundamental group of the
fiber L′

−1,E
∼= C∗ over [E] of the projection L′

−1 → M1,1.

Proposition 1.7. This action of π1(L′
−1, [E,�v]) on π1(E′, �v) fixes co.

Proof. Observe that co is the image of zo under the continuous mapping
L′
−1 → E ′. The result follows as zo is central in S̃L2(Z).
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Since π1(L′
−1, [E,�v]) acts on π1(E′, �v), we can form the semi-direct prod-

uct
π1(L′

−1, [E,�v]) � π1(E′, �v).

Lemma 1.8. The element c−1
o zo is central in π1(L′

−1, [E,�v]) � π1(E′, �v).

Proof. Note that zo acts on π1(E′, �v) by conjugation by co. Since zo is central
in π1(L′

−1, [E,�v]) and since each element of π1(L′
−1, [E,�v]) fixes co, we see

that c−1
o zo commutes with each element of π1(L′

−1, [E,�v]).
If g ∈ π1(E′, �v), then

gc−1
o zog

−1 = gc−1
o

(
zog

−1z−1
o

)
zo = gc−1

o

(
cog

−1c−1
o

)
zo = c−1

o zo.

This semi-direct product can be realized as the fundamental group of the
pullback E ′

L of E ′ to L′
−1. This has a (continuous) section. Since E ′

L is a C∗

covering of E ′, we obtain:

Proposition 1.9. The kernel of the natural homomorphism

π1(E ′
L, [E,�v]) ∼= π1(L′

−1, [E,�v]) � π1(E′, �v) → π1(E ′, [E,�v])

is the infinite cyclic subgroup generated by c−1
o zo. This homomorphism induces

an isomorphism(
π1(L′

−1, [E,�v]) � π1(E′, �v)
)
/〈c−1

o zo〉 → π1(E ′, [E,�v]).

In mapping class group notation, this result says that there is a natural
isomorphism

Γ1,2 ∼=
(
Γ1,�1 � π1(E′, �v)

)
/Z.

In the Hodge and Galois worlds, the copy of Z is a copy of Z(1).

1.2. The local system H

This is the local system (i.e., locally constant sheaf) over M1,1 whose fiber
over [E] ∈ M1,1 is H1(E;C). We identify it, via Poincaré duality H1(E) →
H1(E), with the local system R1π∗C over M1,1 associated to the universal
elliptic curve π : E → M1,1. This has fiber H1(E;C) over [E] ∈ M1,1.

We consider two ways of framing (i.e., trivializing) the pullback of H to
h. Denote the universal elliptic curve over h by Eh → h. It is the quotient
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of C × h by the standard action of Z2 given above. The first homology of
Eτ := C/(Z ⊕ τZ) is naturally isomorphic to Λτ := Z ⊕ τZ. Let a,b be the
basis of H1(Eτ ;Z) that corresponds to the basis 1, τ of Λτ .

Denote the dual basis of H1(Eτ ;C) ∼= Hom(H1(Eτ ),C) by ǎ, b̌. Then,
under Poincaré duality,

ǎ = −b and b̌ = a.

Denote the element dξ of H1(Eτ ,C) by wτ . Then

wτ = ǎ + τ b̌ = τa − b.

The two framings a,b and 2πib̌, ωτ of H over h are related by

(
2πib̌ wτ

)
=

(
b̌ ǎ

)(
2πi τ
0 1

)
=

(
a b

)(
2πi τ
0 −1

)
.

Remark 1.10. The local system H underlies a polarized variation of Hodge
structure over h of weight −1. The Hodge subbundle F 0H of the correspond-
ing flat bundle H = H⊗Q Oh is O(h)ω.

2. Unipotent completion

Suppose that π is a discrete group and that R is a commutative ring. Denote
the group algebra of π over R by Rπ. This is an R-algebra. The augmentation
is the homomorphism ε : Rπ → R that takes each γ ∈ π to 1. Its kernel,
denoted J , is called the augmentation ideal. The powers of J define a topology
on Rπ. A base of neighbourhoods of 0 consist of the powers of J :

Rπ ⊇ J ⊇ J2 ⊇ J3 ⊇ · · ·

The completion of Rπ in this topology is called the J-adic completion of π
and is denoted by Rπ∧. In concrete terms:

Rπ∧ = lim−→
n

Rπ/Jn.

Denote its augmentation ideal by J∧.
The group algebra also has a “coproduct”

Δ : Rπ → Rπ ⊗Rπ.
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This is an augmentation preserving algebra homomorphism, which is contin-
uous in the J-adic topology. It thus induces a ring homomorphism

Δ : Rπ∧ → Rπ∧⊗̂Rπ∧.

Now suppose that R is a field F of characteristic zero. Note that each
element of 1 + J∧ is a unit. Define

P(F ) = {x ∈ Fπ∧ : ε(x) = 1 and Δx = x⊗ x}

and
p = {x ∈ Fπ∧ : Δx = x⊗ 1 + 1 ⊗ x}.

Elements of p are said to be primitive; elements of P are said to be group-like.
Proposition 2.1. (i) P(F ) is a subgroup of the group 1 + J∧;
(ii) p is a Lie algebra, with bracket [u, v] = uv − vu, which lies in J∧;
(iii) The logarithm and exponential mappings

J∧ exp
1 + J∧

log

are continuous bijections, which induce continuous bijections

p
exp P(F )log

.

The third part implies that the exponential map

exp : (p,BCH) → P

is a group isomorphism, where the multiplication on p is defined using the
Baker-Campbell-Hausdorff formula [28]:

BCH(u, v) := log(euev) = u + v + 1
2[u, v] + · · ·

Proof. The first two assertions are easily verified, as is the first part of the
third assertion. To prove the last assertion, note that since exp is continuous,
exp Δ(x) = Δ exp(x) for all x ∈ J∧. Now, x ∈ J∧ is primitive if and only if

Δx = x⊗ 1 + 1 ⊗ x.

Since x⊗ 1 and 1 ⊗ x commute, this holds if and only if

Δ exp(x) = exp(Δ(x)) = exp(x⊗ 1) exp(1 ⊗ x) = exp(x) ⊗ exp(x).

That is, x ∈ J∧ is primitive if and only if expx is group-like.
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Since ε(γ) = 1 for all γ ∈ π, there is a homomorphism π → 1+J∧. By the
definition of the coproduct Δ, the image of this homomorphism lands in P(F ).
Thus, the inclusion π → Fπ induces a natural homomorphism π → P(F )

Definition 2.2. Suppose that H1(π;F ) is finite dimensional (e.g., π is finitely
generated). The homomorphism π → P(F ) is called the unipotent (or Malcev)
completion of π over F . The prounipotent group P is denoted πun. The Lie
algebra of the unipotent completion is the Lie algebra p. It is also called the
Malcev Lie algebra associated to π.

Unipotent completion can be viewed as a functor from the category of
groups to the category of prounipotent groups over F :

π P(F )

There is also the functor π p that assigns to a group, the Lie algebra of
its unipotent completion over F . There are therefore natural homomorphism

Aut π → AutP and Aut π → Aut p.

Remark 2.3. When π is the fundamental group of an algebraic variety, p

carries additional structure: If π is the fundamental group of a complex alge-
braic variety and F = Q, then p has a natural mixed Hodge structure; if π
is the fundamental group of a smooth algebraic variety defined over Q with
Q-rational base point, then the absolute Galois group GQ acts on p⊗Q�.

2.1. The unipotent completion of a free group

Suppose that π is the free group 〈x1, . . . , xn〉 generated by the set {x1, . . . , xn}.
Consider the ring

F 〈〈X1, . . . , Xn〉〉

of formal power series in the non-commuting indeterminants Xj . Define an
augmentation

ε : F 〈〈X1, . . . , Xn〉〉 → F

by sending a power series to its constant term. The augmentation ideal ker ε
is the maximal ideal I = (X1, . . . , Xn).

Define a coproduct

Δ : F 〈〈X1, . . . , Xn〉〉 → F 〈〈X1, . . . , Xn〉〉⊗̂F 〈〈X1, . . . , Xn〉〉



Notes on the universal elliptic KZB connection 241

by defining each Xj to be primitive:

ΔXj := Xj ⊗ 1 + 1 ⊗Xj .

There is a unique group homomorphism

π → F 〈〈X1, . . . , Xn〉〉

that takes xj to exp(Xj). This extends to a ring homomorphism

θ : Fπ → F 〈〈X1, . . . , Xn〉〉.

Since ε(xj) = 1 = ε(exp(Xj)), θ is augmentation preserving, and therefore
extends to a continuous homomorphism

θ̂ : Fπ∧ → F 〈〈X1, . . . , Xn〉〉

As in the case of completed group algebras, one can define primitive and
group-like elements of F 〈〈X1, . . . , Xn〉〉. As there, an element of 1+I is group-
like if and only if it is the exponential of a primitive element. Since exp(Xj)
is group-like, it is easy to check that θ̂ preserves both the product and the
coproduct. (One says that it is a homomorphism of complete Hopf algebras.)

It is easy to use universal mapping properties to prove:
Proposition 2.4. The homomorphism θ̂ is an isomorphism of complete Hopf
algebras.
Corollary 2.5. The restriction of θ̂ induces a natural isomorphism

dθ : p → L(X1, . . . , Xn)∧

of topological Lie algebras.
Proof. This follows immediately from the fact that θ̂ induces an isomorphism
on primitive elements and the well-known fact that the set of primitive ele-
ments of the power series algebra F 〈〈X1, . . . , Xn〉〉 is the completed free Lie
algebra L(X1, . . . , Xn)∧.

There is a weaker version of the construction of the unipotent completion
of a free group, which will be relevant later. Suppose that

θ : π → F 〈〈X1, . . . , Xn〉〉

is a homomorphism that satisfies θ(xj) = exp(Uj), where Uj ∈ J∧ and Uj ≡
Xj mod (J∧)2. Then it is not difficult to show that θ induces a continuous
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isomorphism
θ̂ : Fπ∧ → F 〈〈X1, . . . , Xn〉〉

and, by restriction, a Lie algebra isomorphism

dθ : p → L(X1, . . . , Xn)∧

and a group isomorphism

P → expL(X1, . . . , Xn)∧.

3. Factors of automorphy

Suppose that G is a group that acts on a space (or set) X on the left. Suppose
that V is a left G-module (or left G-space, etc.). A function M : G × X →
AutV (written (g, x) �→ Mg(x)) is a factor of automorphy if the function

V ×X → V ×X, g : (v, x) �→ (Mg(x)v, gx)

is an action. This is equivalent to the condition

Mgh(x) = Mg(hx)Mh(x) all g, h ∈ G, x ∈ X.

Note that the projection V ×X → X is G-equivariant; G-equivariant sections
of this projection correspond to functions f : X → V satisfying f(gx) =
Mg(x)f(x) and, by definition, to sections of the “bundle” G\(X × V ) →
G\X.3 Such bundles are flat in the sense that they give rise to a locally
constant sheaf. An open set in G\X corresponds to a G-invariant open set U
in X. The set of constant sections of the bundle over this set is, by definition,
the set of G-invariant locally constant sections of V × X → X. When V is
a real or complex vector space, this bundle has a natural flat connection ∇
which is characterized by the property that a local section s is constant if and
only if ∇s = 0. In such cases, we will refer to the bundle G\(V ×X) → X as
being a flat bundle.

Three examples that will be generalized and combined to form P are:

Example 3.1. Fix k ∈ Z. Let G = SL2(Z), X = h, V = C, and Aγ(τ) =
(cτ +d)k. The (orbifold) quotient of C×h → h is the line bundle Lk → M1,1.

3More precisely, G-invariant sections of V ×X → X correspond to section of the
stack bundle G\\(V ×X) → G\\X.
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Note that the fibered product E ×M1,1 E → M1,1 of the universal elliptic
curve is the quotient of C× C× h by the SL2(Z) � (Z2 ⊕ Z2)-action(

(m,n), (r, s)
)

: (ξ, η, τ) =
(
ξ + mτ + n, η + rτ + s, τ

)
and

γ : (ξ, τ) �→
(
(cτ + d)−1ξ, (cτ + d)−1η, γτ

)
where γ ∈ SL2(Z).

Example 3.2. Suppose that G = SL2(Z)�(Z2⊕Z2) and that X = C×C×h,
where the G-action is the one defined above. Let V = C. Define

Aγ(ξ, η, τ) =
{

(cτ + d)e
(
cξη/(cτ + d)

)
γ ∈ SL2(Z),

e(τ)−mre(ξ)−re(η)−m γ =
(
(m,n), (r, s)

)
where e(u) = exp(2πiu). This is a well-defined factor of automorphy. The
quotient

G\
(
C×X) → G\X

is a line bundle
N → E ×M1,1 E

over the self product over M1,1 of the universal elliptic curve. The restriction
of N to the zero section M1,1 is the line bundle L = L1. (Just look at the
factor of automorphy when ξ = η = 0.)

Remark 3.3. Later (Prop. 8.1) we will see that the restriction of N to the
fiber E2 over [E] is the pullback of the Poincaré line bundle over E × E to
E × E along the map (ξ, η) �→ (ξ,−η).

The next example gives an alternative description of the local system H.

Example 3.4. Let G = SL2(Z), X = h and V = C2. Then

Mγ(τ) =
(

(cτ + d)−1 0
2πic cτ + d

)

is a factor of automorphy. The resulting bundle is the vector bundle associated
to the local system H → M1,1 defined in Section 1.2. To see this, we set

t = ωτ/2πi ∈ H1(Eτ ,C).
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Then a and t comprise a framing of the pullback Hh of H to h, which gives
an isomorphism C2 × h → Hh via

(3.1) (u, v, τ) �→
(
(a, τ) (t, τ)

)(
u
v

)

Here, (a, τ) denotes a viewed as an element of H1(Eτ ). Likewise, (t, τ) denotes
the element ωτ/2πi of H1(Eτ ).

Since Λγτ = (cτ+d)Λτ , multiplication by (cτ+d) induces an isomorphism

Eτ → Eγτ .

This induces the identification of the fibers of Hh over τ and γτ . For conve-
nience, set a = (a, τ) ∈ H1(Eτ ) and a′ = (a, γτ) ∈ H1(Eγτ ). Similarly with
b and b′, and with t and t′. Then

2πit′ = ωγτ = (cτ + d)−1ωτ = 2πi(cτ + d)−1t

and (
a′ ωγτ

)
= (cτ + d)−1

(
a′ b′

)(
cτ + d aτ + b

0 −(cτ + d)

)

= (cτ + d)−1
(
a b

)(
d b
c a

)(
cτ + d aτ + b

0 −(cτ + d)

)

= (cτ + d)−1
(
a b

)(
(cτ + d)d τ
(cτ + d)c −1

)

= (cτ + d)−1
(
a ωτ

)(
1 τ
0 −1

)(
(cτ + d)d τ
(cτ + d)c −1

)

=
(
a ωτ

)(
cτ + d 0
−c (cτ + d)−1

)

from which we conclude that(
a t

)
=

(
a′ t′

)
Mγ(τ).

Equation (3.1) now implies that the bundle with factor of automorphy Mγ(τ)
is isomorphic to H as the following points correspond:

((u
v

)
, τ

)
↔

(
a t

)(
u
v

)
↔

(
a′ t′

)
Mγ(τ)

(
u
v

)
↔

(
Mγ(τ)

(
u
v

)
, γτ

)
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Note that t and a are both invariant under τ �→ τ + 1. It follows that H is
trivial over the q-disk.

Since the bundle H exists over M1,1, this computation gives a conceptual
proof that Mγ(τ) is a factor of automorphy.
Remark 3.5. It is useful to keep in mind that

a ∈ H1(Eτ ,Z) and 〈a, t〉 = −(2πi)−1 ∈ Z(−1).

Note that t spans a line sub-bundle of H := H ⊗C OM1,1 . This line bundle
is the Hodge bundle F 1H and is isomorphic to L. The factor of automorphy
of H implies that the quotient of H by F 1 is isomorphic to L−1, so that we
have an exact sequence

0 → L → H → L−1 → 0.

Later we will see that this splits, even over M1,1. (Cf. Remark 19.2 and the
last paragraph of Section 19.2.)

4. Some Lie theory

Let C〈〈t, a〉〉 be the completion of the free associative algebra generated by
the indeterminants t and a. It is a topological algebra. Denote the closure of
the free Lie algebra L(t, a) in C〈〈t, a〉〉 by p. It is a topological Lie algebra.

Define a continuous action C〈〈t, a〉〉 × p → p of C〈〈t, a〉〉 on p by

f(t, a) : x �→ f(t, a) · x := f(adt, ada)(x)

for all x ∈ p.
For later use, we record the following fact:

Proposition 4.1. Suppose that A : [a, b] → L(X1, . . . , Xn)∧ is smooth.4 If
X : [a, b] → C〈〈X1, . . . , Xn〉〉 satisfies the initial value problem

X ′ = AX, X(0) = 1,

then X(t) is group-like for all t ∈ [a, b].

Proof. This follows from standard Lie theory. It can also be proved directly as
follows. Since the diagonal Δ is linear, since Δ is an algebra homomorphism,

4That is, each coefficient of the power series A(t) is a smooth function of t ∈ [a, b].
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and since A is primitive, we have

(
ΔX

)′ = Δ
(
X ′) = Δ(AX) = (ΔA)(ΔX) = (A⊗ 1 + 1 ⊗ A)ΔX.

On the other hand,

(X ⊗X)′ = X ′ ⊗X + X ⊗X ′ = (AX) ⊗X + X ⊗ (AX)
= (A⊗ 1 + 1 ⊗ A)(X ⊗X).

Thus both ΔX and X ⊗X satisfy the IVP

Y ′ = (A⊗ 1 + 1 ⊗ A)Y, Y (0) = 1 ⊗ 1,

where Y : [a, b] → C〈〈X1, . . . , Xn〉〉 ⊗C〈〈X1, . . . , Xn〉〉. It follows that ΔX =
X ⊗X for all t.

4.1. Two identities

For later use we recall two standard identities. To avoid confusion, we shall
denote composition of endomorphisms φ and ψ of p by φ ◦ ψ.

Recall that if V is a vector space and u, φ ∈ EndV , then in EndV we
have

exp(adφ)(u) = eφ ◦ u ◦ e−φ.

Applying this in the case where V = p, we see that for all δ ∈ Der p and
φ ∈ C〈〈t, a〉〉,

exp(φ) · δ = eφ ◦ δ ◦ e−φ.

In particular, if ω is a 1-form on a manifold that takes values in p, then

(4.1) e(−mt) ◦ ω ◦ e(mt) = e(−mt) · ω,

where e(u) := exp(2πiu).

Lemma 4.2. Suppose that u ∈ C〈〈t, a〉〉. If δ is a continuous derivation of
C〈〈t, a〉〉, then

e−uδ(eu) = 1 − exp(− adu)
adu

δ(u) and δ(eu)e−u = exp(adu) − 1
adu

δ(u).
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Proof. The functions e−suδ(esu) and 1−exp(−s adu)
adu

δ(u) both satisfy the differ-
ential equation

X ′(s) = δ(u) − adu(X).

Since both functions vanish when s = 0, they are equal for all s ∈ C. In
particular, they are equal when s = 1. This proves the first identity. The
second is proved similarly using the differential equation Y ′ = δ(u)+adu(Y ).

5. Connections and monodromy

Suppose that Γ is a discrete group, G is a Lie (or proalgebraic) group and
that X is a topological space. Suppose that Γ acts on X on the left. (Think of
this action as being discontinuous and fixed point free, but it does not have to
be.) Suppose that the action of Γ lifts to the trivial right principal G-bundle
G×X → X:

γ : (g, x) �→
(
Mγ(x)g, γx

)
where Mγ : X → G is a factor of automorphy.

5.1. Connections

Denote the Lie algebra of G by g. Sections of the bundle G × X → X will
be identified with functions X → G in the obvious way. A Lie algebra valued
1-form

ω ∈ E1(X) ⊗ g

defines a connection on the trivial bundle G×X → X by the formula

∇f = df + ωf

where f is a locally defined function X → G.

Proposition 5.1. The connection ∇ is Γ-invariant if and only if for all
γ ∈ Γ,

γ∗ω = Ad(Mγ)ω − dMγM
−1
γ .

The connection ∇ is flat if and only if ω satisfies

dω+ 1
2[ω, ω] = 0.
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Example 5.2. The sections a and b of the Hodge bundle Hh over h are flat.
Since they give local framings of the associated vector bundle H := H⊗C O,
there is a flat connection on H, which is characterized by the property that
∇a = ∇b = 0. Since t = ωτ/2πi = (τa − b)/2πi, we have

2πi∇t = ∇(τa − b) = adτ.

It follows that, in terms of the framing a, t of H, the connection is given by

∇ = d + (2πi)−1a ∂

∂t ⊗ dτ.

5.2. Parallel transport

Every path α : [0, 1] → X has a horizontal lift α̃ : [0, 1] → G that starts at
1 ∈ G. In other words, the section

t �→
(
α̃(t), α(t)

)
∈ G×X

is a flat section of the bundle that projects to α and begins at (1, α(0)).5
The function α̃ is the unique solution of the ODE

dα̃ = −(α∗ω)α̃, α̃(0) = 1.

Note that the uniqueness of solutions of ODEs implies that the horizontal lift
of α that begins at g ∈ G is t �→ α̃(t)g.

Denote the value of the lift α̃ at t = 1 by T (α). The function

T : α �→ T (α)

is called the (parallel) transport function associated to ∇. When ∇ is flat,
T (α) depends only on the homotopy class of α relative to its endpoints.

An immediate consequence of the uniqueness of solutions to IVPs:

Lemma 5.3. If α and β are composable paths, then T (αβ) = T (β)T (α).

To make the transport multiplicative, we will work with T (α)−1. A for-
mula for the transport and the inverse transport can be given using Chen’s
iterated integrals. First a basic fact from ODE.

5Note that this does not require the connection to be flat.
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Lemma 5.4. Suppose that R is a topological algebra (such as C〈〈t, a〉〉 or
gln(C)) and that A : [a, b] → R is a smooth function. A function X : [a, b] →
R× is a solution of the IVP

X ′ = −AX, X(0) = 1

if and only Y = X−1(t) is a solution of the IVP

Y ′ = Y A, Y (0) = 1.

Proof. Suppose that X satisfies X ′ = −AX and X(0) = I. Then

0 = X−1(XX−1)′ = X−1(X(X−1)′
)
−X−1(AXX−1) = (X−1)′ −X−1A.

The opposite direction is proved similarly.

Recall that if ω1, . . . , ωr are 1-forms on a manifold X taking values in
an associative algebra A, and if γ is a piecewise smooth path in X then one
defines the iterated integral

(5.1)
∫
γ
ω1ω2 . . . ωr =

∫
0≤t1≤···≤tr≤1

f1(t1)f2(t2) . . . fr(tr)dt1dt2 . . . dtr

where γ∗ωj = fj(t)dt. See [5, 11] for more background.

Corollary 5.5 (Transport Formula). The inverse transport is given by

T (α)−1 = 1 +
∫
α
ω +

∫
α
ωω +

∫
α
ωωω + · · ·

Proof. This follows from Chen’s transport formula (cf. [5, 11]) and the pre-
vious lemma.

For future use, we record the following standard fact.

Proposition 5.6. If the connection ∇ is Γ-invariant, then for all paths α :
[0, 1] → X and all γ ∈ Γ

T (γ ◦ α) = Mγ

(
α(1)

)
T (α)Mγ

(
α(0)

)−1
.
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Figure 1: The cocycle relation cγμ = cγ ·
(
ρ(γ) ◦ cμ

)
.

5.3. Monodromy

Suppose that the connection d+ω is Γ-invariant and flat. Our task in this sec-
tion is to explain how to compute the associated monodromy representation
from the transport function T of ω and the factor of automorphy M .

By covering space theory, the choice of a point xo ∈ X determines a
surjective homomorphism

ρ : π1(Γ\X, x̄o) → Γ

whose kernel is π1(X, xo), where x̄o denotes the image of xo in Γ\X.
To each γ ∈ π1(Γ\X), let cγ be its lift to a path in X that begins at xo.

Note that its end point is ρ(γ) ·xo and that the homotopy class of cγ depends
only upon γ.

Lemma 5.7. If γ, μ ∈ π1(Γ\X, x̄o), then cγμ = cγ ·
(
ρ(γ) ◦ cμ

)
.

Here · denotes path multiplication and ◦ denotes composition. The proof
is best given by the picture Figure 1.

To obtain a homomorphism (instead of an anti-homomorphism), we need
to take inverses. Define

Θxo : π1(Γ\X, x̄o) → G

by
Θxo(γ) = T (cγ)−1Mρ(γ)(xo).

Note that Θxo(γ)−1 is the element of the fiber G over xo that is identified with
the point T (cγ) in the fiber G over ρ(γ) · xo. It is thus the result of parallel
transporting 1 ∈ G about the loop γ.
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Proposition 5.8. The monodromy representation π1(Γ\X, x̄o) → G of the
flat bundle Γ\(G×X) → Γ\X with respect to the identification above is

Θxo : π1(Γ\X, x̄o) → G.

Proof. Just trace through the identifications. But to reassure the reader, we
show that Θxo is a group homomorphism. (We’ll drop ρ and the xo below.) If
γ, μ ∈ π1(Γ\X, x̄o), then

Θ(γμ) = T (cγμ)−1Mγμ(xo)
= T (cγ · (γ ◦ cμ))−1Mγμ(xo)
= T (cγ)−1T (γ ◦ cμ)−1Mγ(μ · xo)Mμ(xo)
= T (cγ)−1Mγ(xo)T (cμ)−1Mγ(μ · xo)−1Mγ(μ · xo)Mμ(xo)
= Θ(γ)Θ(μ).

Combining this with the transport formula above, we obtain a formula
for the monodromy in terms of ω and the factor of automorphy.

Corollary 5.9. For all x ∈ X and γ ∈ π1(Γ\X, x̄),

Θx(γ) =
(

1 +
∫
cγ

ω +
∫
cγ

ωω +
∫
cγ

ωωω + · · ·
)
Mγ(x).

Part 2. The universal elliptic KZB connection

6. The bundle PPP over E′

Before we define the universal elliptic KZB connection, we need to define the
bundle PPP over E ′ on which it lives.

6.1. The flat bundle PPPtop

The bundle PPP with the KZB connection will be the de Rham realization of a
topological local system PPPtop. To provide context, we first construct it.

Denote by Y the universal covering space of E ′. This is also the universal
covering space of E ′

h =
(
C × h) − Λh. Choose a base point [Eo, xo] of E ′

and a lift yo of it to Y . This determines an isomorphism of Aut(Y/E ′) with
π1(E ′, [Eo, xo]).
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Denote the unipotent completion of π1(E′
o, xo) over C by Po. The natural

action

π1(E ′, [Eo, xo]) × π1(E′
o, xo) → π1(E′

o, xo), (g, γ) �→ gγg−1

determines a left action of π1(E ′, [Eo, xo]) on Po. We can therefore form the
quotient

π1(E ′, [Eo, xo])\
(
Po × Y

)
by the diagonal π1(E ′, [Eo, xo])-action. This is a flat right principal Po-bundle
which we shall denote by PPPtop → E ′. Its fiber over [E, x] is naturally isomor-
phic to the unipotent completion of π1(E′, x).

Since the Lie algebra po of Po can be viewed as a group with multiplication
defined by the Baker-Campbell-Hausdorff formula, we can (and will) view
PPPtop as a local system of Lie algebras. (Cf. the comment following Prop. 2.1.)

6.2. The bundle PPP

Here we construct a bundle PPP over E on which the universal elliptic KZB
connection lives. Its fiber over each point of E ′ is the Lie algebra

p := L(t, a)∧.

Denote the corresponding group exp p by P. It is prounipotent. The univer-
sal elliptic KZB connection on it is constructed in Section 9. It is flat. In
Section 14 we will prove that it is isomorphic to the flat bundle PPP.

The bundle PPP will be constructed as the quotient of p×C× h by a lift of
the action of SL2(Z) � Z2 on C× h to p× C× h.

The (completed) universal enveloping algebra of p is the power series
algebra C〈〈t, a〉〉. The adjoint action defines the ring homomorphism

C〈〈t, a〉〉 → End p

that takes f(t, a) to f(adt, ada) ∈ End p. This restricts to a homomorphism
C〈〈t, a〉〉× → Aut p.

We use the notation of Section 3. Take G = Γ := SL2(Z)�Z2, X = C×h,
and V = p. Note that Γ acts on p×X via the projection Γ → SL2(Z) using
the factor of automorphy Mγ(τ) defined in (6.1).

The bundle PPP is defined using factors of automorphy M̃γ(ξ, τ) which live
in the group SL2(R) � C〈〈t, a〉〉×, where SL2(R) acts on C〈〈t, a〉〉 via its
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left action on the generators via the factor of automorphy Mγ(τ) defined in
Example 3.4. Specifically, Mγ(τ) is defined by

(6.1) Mγ(τ) :
{
a �→ (cτ + d)−1a + 2πict
t �→ (cτ + d)t.

The general factor of automorphy is defined by

(6.2) M̃γ(ξ, τ) =
{
Mγ(τ) ◦ e

( cξt
cτ+d

)
γ ∈ SL2(Z);

e(−mt) (m,n) ∈ Z2.

Here e(u) := exp(2πiu). This is a factor of automorphy for Γ as

e(cξt −mt) ◦Mγ(τ) = M̃γ

(
ξ + (m,n)γ(τ, 1)T , τ

)
◦ e(−mt),

where γ ∈ SL2(Z) and (m,n) ∈ Z2.6

Proposition 6.1. This is a well-defined factor of automorphy.

Proof. The first task is to show that M̃ is well-defined on Γ × C× h — that
is, it is compatible with the relation in Γ = SL2(Z) � Z2. This relation is

(m,n) ◦ γ = γ ◦ (m,n)(·γ),

where γ ∈ SL2(Z), ◦ denotes composition in Γ and · denotes the right action
of SL2(Z) on Z2. If

γ =
(
a b
c d

)
then we have to show that

e(−mt) ◦ M̃γ(ξ, τ) = M̃γ(ξ + (m,n)γ(τ, 1)T , τ) ◦ e
(
− (ma + nc)t

)
.

Since
Mγ(τ) ◦ e(φ) = e(Mγ(τ) · φ) ◦Mγ(τ)

for all φ ∈ C〈〈t, a〉〉, and since Mγ(τ) : t �→ (cτ + d)t (see above), we have

e(−mt) ◦Mγ(τ) = Mγ(τ) ◦ e
( −mt
cτ + d

)
.

6Denote left multiplication by φ ∈ C〈〈t,a〉〉 by Lφ. For M ∈ AutH, we have
M ◦ LM−1φ = Lφ ◦M . In particular, Mγ(τ) ◦ Lt/(cτ+d) = Lt ◦Mγ(τ).
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Thus, the left-hand side expands to

e(−mt) ◦ M̃γ(ξ, τ) = e(−mt) ◦Mγ(τ) ◦ e
(

cξt
cτ + d

)
= Mγ(τ) ◦ e

(
cξt −mt
cτ + d

)
The right-hand side expands to

M̃γ(ξ + (ma + nc)τ + (mb + nd), τ) ◦ e
(
− (ma + nc)t

)
= Mγ(τ) ◦ e

(
c
(
ξ + (ma + nc)τ + (mb + nd)

)
t

cτ + d

)
◦ e

(
− (ma + nc)t

)
= Mγ(τ) ◦ e

(
cξt −mt
cτ + d

)
,

which equals the left-hand side. It follows that M̃ is a well-defined function
on Γ × C× h.

Since M̃ defines a homomorphism Z2 → Q〈〈t〉〉×, to complete the proof
we need only check that the restriction of M̃ to SL2(Z)×C× h is a factor of
automorphy. We will use the fact that Mγ(τ) is a factor of automorphy.

Let

γ1 =
(
a b
c d

)
, γ2 =

(
p q
r s

)
and γ1γ2 =

(
e f
g h

)
.

Set (ξ′, τ ′) = γ2(ξ, τ) = (ξ/(rτ + s), γ2τ). Then

M̃γ1(ξ′, τ ′)M̃γ2(ξ, τ)

= Mγ1(γ2τ) ◦ e
(

cξ′t
cτ ′ + d

)
◦Mγ2(τ) ◦ e

(
rξt

rτ + s

)
= Mγ1(γ2τ)Mγ2(τ) ◦ e

(
cξ′t

(cτ ′ + d)(rτ + s)

)
◦ e

(
rξt

rτ + s

)
= Mγ1γ2(τ) ◦ e

(
cξt

(rτ + s)
(
c(pτ + q) + d(rτ + s)

) + rξt
rτ + s

)

= Mγ1γ2(τ) ◦ e
((

c + r(gτ + h)
)
ξt

(rτ + s)(gτ + h)

)
= Mγ1γ2(τ) ◦ e

(
gξt

gτ + h

)
= M̃γ1γ2(ξ, τ).
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Remark 6.2. The bundle PPP is a bundle of free Lie algebras. Its quotient by the
commutator subalgebra of each fiber is the bundle over h with framing t, a
and factor of automorphy Mγ(τ). So it is isomorphic to H by Example 3.4,
as it should be.

7. Eisenstein series and Bernoulli numbers

Define the Bernoulli numbers Bn by

x

ex − 1 =
∞∑
n=0

Bn
xn

n! .

Recall that B0 = 1, B1 = −1/2 and that B2k+1 = 0 when k > 0.
There are several ways to normalize Eisenstein series G2k : h → C. We

will use the normalization used by Zagier [33]:

G2k(τ) = 1
2

(2k − 1)!
(2πi)2k

∑
λ∈Z⊕Zτ

λ	=0

1
λ2k = −B2k

4k +
∞∑
n=1

σ2k−1(n)qn,

(properly summed when k = 1), where q = e(τ) and σk(n) =
∑

d|n d
k. In

particular

G2k|q=0 = −B2k

4k = (2k − 1)!
(2πi)2k ζ(2k).

When k > 1, G2k is a modular form for SL2(Z) of weight 2k:

Gk(γτ) = (cτ + d)kGk(τ), γ ∈ SL2(Z).

And G2 satisfies

G2(γτ) = (cτ + d)2G2(τ) + ic(cτ + d)/4π.

(Cf. [33, p. 457], bottom of page, and [33, p. 459], near bottom of page.)
The role of G2(τ) in this work should be clarified by the following result,

which follows from the transformation law for G2 above.
Lemma 7.1. If SL2(Z) acts on C× h by γ : (ξ, τ) �→

(
ξ/(cτ + d), γτ

)
, then

the form
dξ

ξ
− 2 · 2πiG2(τ) dτ

is SL2(Z)-invariant.
This 1-form represents a generator of H1(L′

−1,Z(1)) ∼= Z.
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7.1. Some useful identities

The following well-known identities are used later in the paper. Since

1
2 coth

(
u/2

)
= 1

2
eu/2 + e−u/2

eu/2 − e−u/2 = 1
2
eu + 1
eu − 1 = 1

2 + 1
u

u

eu − 1 =
∞∑

m=0

B2m

(2m)!u
2m−1,

we have

(7.1) 1
u
− u/4

sinh2(u/2)
= 1

u
+ u

2
d

du
coth

(
u/2) =

∞∑
m=1

(2m− 1) B2m

(2m)!u
2m−1.

Rearranging gives the useful alternative form

(7.2)
∞∑

m=0
(2m− 1) B2m

(2m)! u
2m−1 = − u/4

sinh2(u/2)
.

8. The Jacobi form F (ξ, η, τ )

There are two versions of the function F (u, v, τ), one used by Levin-Racinet
[24], the other by Zagier [33].7 Denote them by F (ξ, η, τ) and F Zag(u, v, τ),
respectively. Zagier’s function is defined by

F Zag(u, v, τ) := θ′(0, τ)θ(u + v, τ)
θ(u, τ)θ(v, τ) ,

where θ is the classical theta function

θ(u, τ) :=
∑
n∈Z

(−1)nq
1
2 (n+ 1

2 )2e(n+ 1
2 )u, q = e(τ)

and θ′ is its derivative with respect to u.
Their periodicity properties imply that u = 2πiξ, v = 2πiη. Since

F (ξ, η, τ) = 1
ξ

+ 1
η

mod holomorphic functions

and
FZag(u, v, τ) = 1

u
+ 1

v
mod holomorphic functions

7Calaque-Enriquez-Etingof [3] do not explicitly use the Jacobi form F . How-
ever, their connection is expressed in terms of the function k(z, x|τ), which is
FZag(z, x, τ) − 1/x. See their Section 1.2.
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near the origin, it follows that

F (ξ, η, τ) = 2πiF Zag(2πiξ, 2πiη, τ).

It satisfies the symmetry condition

F (ξ, η, τ) = F (η, ξ, τ) = −F (−ξ,−η, τ).

8.1. Expansions

We use the formulas in [33], but write them using F in place of F Zag.8
Set q = exp(2πiτ). Then

F (ξ, η, τ) = πi
[
coth(πiξ) + coth(πiη)

]
+ 4π

∞∑
n=1

(∑
d|n

sin
[
2π

(n
d
ξ + dη

)])
qn.

(8.1)

F (ξ, η, τ) = 1
ξ

+ 1
η
− 2

∞∑
r,s=0

(2πi)1+max{r,s}
(

∂

∂τ

)min{r,s}
G|r−s|+1(τ) ξ

r

r!
ηs

s! .

(8.2)

8.2. Derivatives

Differentiating these with respect to η yields:

1
η

+ η
∂F

∂η
(ξ, η, τ) = −2

∑
r≥0
s≥1

(2πi)1+max{r,s}
(

∂

∂τ

)min{r,s}
G|r−s|+1(τ) ξ

r

r!
ηs

(s− 1)!

=
(1
η
− (πi)2η

sinh2(πiη)

)

+ 8π2η
∞∑
n=1

(∑
d|n

d cos
[
2π

(n
d
ξ + dη

)])
qn.(8.3)

Comparing the result of differentiating this with respect to ξ and (8.2)
with respect to τ , we obtain the heat equation:

2πi∂F
∂τ

(ξ, η, τ) = ∂2F

∂ξ∂η
(ξ, η, τ).

8Note the conflict in notation: Zagier sets ξ = expu and η = exp v, which
conflicts with the variables (ξ, η) used by Levin-Racinet: 2πi(ξ, η) = (u, v). See [33,
p. 455].
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8.3. Elliptic and modularity properties

The elliptic property, [33, p. 456] is:

(8.4) F (ξ + mτ + n, η, τ) = e(−mη)F (ξ, η, τ) (m,n) ∈ Z2.

Here, as previously, e(x) = exp(2πix). Zagier states a more general form of
this, which follows from this one using the symmetry property of F (ξ, η, τ).

The modularity property is:

(8.5) F (ξ/(cτ + d), η/(cτ + d), γτ) = (cτ + d)e
(
cξη/(cτ + d)

)
F (ξ, η, τ).

In particular

F (ξ, η, τ + 1) = F (ξ, η, τ) = F (ξ + 1, η, τ).

Proposition 8.1. The function F induces a meromorphic section of the line
bundle N → E ×M1,1

E that was constructed in Example 3.2. The divisor of
the section is [Γι]− [01]− [02], where Γι is the graph in E×E of the involution
ι that takes a point of E to its inverse.

Proof. Since F (ξ, η, τ) is meromorphic on C2 for each τ ∈ h, divF has no
vertical components over M1,1. The polar locus of F over M1,1 contains
[01] + [02] with multiplicity one on every fiber over M1,1. The zero divisor
of F over M1,1 contains [Γι] with multiplicity one on the generic fiber over
M1,1. Since the class of divF in H2(E2

τ ) is constant and since divF has
no vertical components, it suffices to show that the class of divF is exactly
[Γι] − [01] − [02] on an open set of fibers and also over q = 0.

Identity (8.1) implies that

1
πi

F (ξ, η)|q=0 = w + 1
w − 1 + u + 1

u− 1

where w = exp(2πiξ) and u = exp(2πiη). The coordinates on the normaliza-
tion of E0 × E0 are (w, u). The identity sections are w = 1 and u = 1. The
involution is given by w = 1/w. It is easily checked that

w + 1
w − 1 + u + 1

u− 1 = 0

implies that wu = 1. It follows that the restriction of divF to E0 × E0 is
[Γι]− [01]− [02]. But this implies that the divisor of F is [Γι]− [01]− [02] on
all nearby fibers. The result follows.
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This result can also be proved using the formula for F in terms of theta
functions.

8.4. The Weierstrass ℘ function

Recall that

℘(z, τ) = 1
z2 +

∑
λ∈Z⊕Zτ

λ	=0

[ 1
(z − λ)2 − 1

λ2

]
.

The next result follows from the standard identity

℘(z, τ) = 1
z2 +

∞∑
m=2

(2m− 1)
( ∑

λ∈Z⊕Zτ
λ	=0

1
λ2m

)
z2m−2

= 1
z2 +

∞∑
m=2

2(2πi)2m

(2m− 2)!G2m(τ)z2m−2

= 1
z2 +

∞∑
m=1

2(2πi)2m+2

(2m)! G2m+2(τ)z2m.

Lemma 8.2. Suppose that x, y are commuting indeterminants. Then

1
2

xy

x + y

((
℘(x, τ) − 1

x2
)
−

(
℘(y, τ) − 1

y2
))

=
∑
m≥1

(2πi)2m+2

(2m)! G2m+2(τ)
∑

j+k=2m+1
j,k>0

(−1)jxjyk

in the ring O(h)[[x, y]] of formal power series with coefficients in O(h).

8.5. The addition formula

The following identity is used in the proof of the integrability of the elliptic
KZB connection.

Proposition 8.3 (Addition Formula).

F (ξ, η1, τ)∂F
∂η

(ξ, η2, τ) − F (ξ, η2, τ)∂F
∂η

(ξ, η1, τ)

= F (ξ, η1 + η2, τ)
(
℘(η1, τ) − ℘(η2, τ)

)
.
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9. The universal elliptic KZB connection

This is a Γ-invariant flat connection constructed by Calaque, Enriquez and
Etingof [3] and by Levin and Racinet [24] on the bundle

(9.1) p× C× h → C× h.

So it descends to a flat connection on the bundle PPP → E ′. It has regular
singularities along the universal lattice:

Λh := {(mτ + n, τ) ∈ C× h}.

It therefore descends to a meromorphic connection on the bundle PPP → E
with regular singularities along the zero-section. In Section 12 we show that
the natural extension of this connection to the q-disk has regular singularities
along the nodal cubic.

In this section we will follow Levin-Racinet (with modifications).

9.1. Derivations

We have already explained the algebra homomorphism

C〈〈t, a〉〉 → End p, f(t, a) �→ {x �→ f(t, a) · x},

where f(t, a) ·x := f(adt, ada)(x). We will view p as a Lie subalgebra of Der p
via the adjoint action ad : p → Der p, which is an inclusion as p has trivial
center. Every derivation δ can be written uniquely in the form

δ = δ(a) ∂

∂a + δ(t) ∂

∂t .

Consequently, there is a linear isomorphism

p
∂

∂t ⊕ p
∂

∂a
�−→ Der p.

9.2. The formula

The connection is defined by a 1-form

ω ∈ Ω1(C× h, log Λ)⊗̂End p

via the formula
∇f = df + ωf



Notes on the universal elliptic KZB connection 261

where f : C× h → p is a (locally defined) section of (9.1). Specifically,

ω = 1
2πidτ ⊗ a ∂

∂t + ψ + ν

where

ψ =
∑
m≥1

((2πi)2m+1

(2m)! G2m+2(τ)dτ ⊗
∑

j+k=2m+1
j,k>0

(−1)j [adj
t(a), adk

t (a)] ∂
∂a

)

and

ν = tF (ξ, t, τ) · a dξ + 1
2πi

(1
t + t∂F

∂t (ξ, t, τ)
)
· a dτ.

Note that each term takes values in Der p. Later we will show that its restric-
tion to a punctured first order neighbourhood of the identity section takes
values in a smaller subalgebra.
Remark 9.1. Each term of the lower central series ofPPP is preserved by the con-
nection. The connection thus induces a connection on the bundle of abelian-
izations, which is isomorphic to H (cf. Remark 6.2). Example 5.2 implies that
this induced connection on H is the natural connection.

9.3. Modularity

Recall that Γ = SL2(Z) � Z2. In this section we shall prove:

Proposition 9.2. The universal elliptic KZB connection is SL2(Z) � Z2-
invariant. That is,

γ∗ω = Ad
(
M̃γ

)
· ω − dM̃γM̃

−1
γ

for all γ ∈ SL2(Z) � Z2.

It suffices to check that the connection is invariant under Z2 and SL2(Z).
These are proved in the two following subsections.

9.3.1. Ellipticity: invariance under Z2

Lemma 9.3. For all δ ∈ Der p we have

e(−mt) · δ = δ + 1 − e(−m adt)
adt

δ(t).
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Proof. For all x ∈ p(
e(−mt) · δ

)
(x) = e(−mt)δ

(
e(mt)(x)

)
(Equation 4.1)

= e(−mt)δ(e(mt))(x) + e(−mt)e(mt)δ(x)

= δ(x) + 1 − e(−m adt)
2πim adt

δ(2πimt) · x (Lemma 4.2)

= δ(x) + 1 − e(−m adt)
adt

δ(t) · x

=
(
δ + 1 − e(−m adt)

adt
δ(t)

)
(x).

Corollary 9.4. If (m,n) ∈ Z2, then

(m,n)∗
( 1

2πia
∂

∂tdτ
)
− e(−mt) ·

( 1
2πia

∂

∂tdτ
)

= − 1
2πi

1 − e(−mt)
t (a)dτ.

Proof. Apply the previous lemma with δ = a ∂
∂t .

Corollary 9.5. If a, b ∈ N, then

e(−mt) · [ta · a, tb · a] ∂
∂a = [ta · a, tb · a] ∂

∂a .

Proof. This follows directly from the previous lemma as the derivation

[ta · a, tb · a] ∂
∂a

annihilates t.

Corollary 9.6. If (m,n) ∈ Z2, then (m,n)∗ψ = e(−mt) · ψ = ψ.

Lemma 9.7. For all (m,n) ∈ Z2

(m,n)∗ν − e(−mt) · ν = 1
2πi

1 − e(−m adt)
adt

(a)dτ.

Proof. Write ν = ν1 + ν2, where

ν1 = tF (ξ, t, τ) · a dξ and ν2 = 1
2πi

(1
t + t∂F

∂t (ξ, t, τ)
)
· a dτ.
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Then

(m,n)∗ν1 − e(−mt) · ν1

= tF (ξ + mτ + n, t) · a d(ξ + mτ + n) − te(−mt)F (ξ, t) · a dξ

= te(−mt)F (ξ, t) · a (dξ + mdτ) − te(−mt)F (ξ, t) · a dξ

= mte(−mt)F (ξ, t) · a dτ.

Note that

∂F

∂t (ξ + mτ + n, t) = ∂

∂t
(
e(−mt)F (ξ, t)

)
= e(−mt)∂F

∂t (ξ, t) − 2πime(−mt)F (ξ, t).

Thus

2πi
(
(m,n)∗ν2 − e(−mt) · ν2

)
=

(1
t + t∂F

∂t (ξ + mτ + n, t, τ)
)
· a dτ − e(−mt)

(1
t + t∂F

∂t (ξ, t, τ)
)
· a dτ

= −2πimte(−mt)F (ξ, t) · a dτ + 1
t
(
1 − e(−mt)

)
· a dτ.

If (m,n) ∈ Z2, then the results above imply that

(m,n)∗ω = e(−mt) · ω(ξ, τ).

Since e(−mt) does not depend on (ξ, τ), de(−mt) = 0 and ω is invariant
under Z2.

9.3.2. Modularity: invariance under SL2(Z) Let

γ =
(
a b
c d

)
∈ SL2(Z).

Recall that Mγ(τ) is defined by

a �→ (cτ + d)−1a + 2πict
t �→ (cτ + d)t.(9.2)
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Its inverse is the linear map

a �→ (cτ + d)a − 2πict
t �→ (cτ + d)−1t.(9.3)

Lemma 9.8. If γ ∈ SL2(Z) and a, b ∈ N, then

e(cξt/(cτ + d)) · [ada
t(a), adb

t(a)] ∂
∂a = [ada

t(a), adb
t(a)] ∂

∂a .

Proof. This follows from (4.1) as the derivation δ = [ada
t(A), adb

t(A)] ∂
∂a van-

ishes on t.

Lemma 9.9. If γ ∈ SL2(Z) and a, b ∈ N, then

Ad(Mγ(τ))[ada
t(A), adb

t(a)] ∂
∂a = (cτ + d)a+b−1[ada

t(A), adb
t(A)] ∂

∂a .

Proof. Set δ = [ada
t(a), adb

t(a)] ∂
∂a . Since Mγ(τ)−1(t) = (cτ + d)−1t, δ ◦

M−1
γ (t) = 0. Consequently, Ad(Mγ(τ))δ is of the form f(t, a) ∂

∂a . The co-
efficient f(t, a) is computed as follows:

Ad(Mγ(τ))δ(a)
= Mγ(τ) ◦ δ ◦Mγ(τ)−1(a)
= Mγ(τ) ◦ δ

(
(cτ + d)a − 2πict

)
= (cτ + d)Mγ(τ)

(
[ada

t(a), adb
t(a)]

)
= (cτ + d)a+b+1[ada

t
(
(cτ + d)−1a + 2πict

)
, adb

t
(
(cτ + d)−1a + 2πict

)
]

= (cτ + d)a+b−1[ada
t(a), adb

t(a)].

Corollary 9.10. If γ ∈ SL2(Z), then γ∗ψ = Ad(M̃γ)ψ.

Proof. This follows as, for each k ≥ 1, the expression

G2k+2(τ)dτ ⊗
∑

a+b=2k+1
a,b>0

[ada
t(a), adb

t(a)] ∂
∂a

is multiplied by (cτ + d)2k by both γ∗ and M̃γ(ξ, τ).
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Lemma 9.11. Set ν1 = tF (ξ, t, τ) · adξ. Then

γ∗ν1 − M̃γ(ξ, τ)ν1 = −2πict dξ − cξt
cτ + d

e(cξt)F (ξ, (cτ + d)t, τ) · a dτ.

Proof. First,

M̃γ(ξ, τ)ν1 = M̃γ(ξ, τ)
[
tF (ξ, t, τ) · a

]
dξ

= e(cξt)(cτ + d)tF (ξ, (cτ + d)t, τ) ·
(
(cτ + d)−1a + 2πict

)
dξ

= e(cξt)tF (ξ, (cτ + d)t, τ) · a dξ + 2πict dξ

as the value of tF (ξ, (cτ +d)t, τ) at t = 0 is (cτ +d)−1. This and the modular
property of F (ξ, t, τ) then yield:

γ∗ν1 = tF (ξ/(cτ + d), t, γτ) · aγ∗dξ

= (cτ + d)te(cξt)F (ξ, (cτ + d)t, τ) · a
(

dξ

cτ + d
− cξdτ

(cτ + d)2
)

= te(cξt)F (ξ, (cτ + d)t, τ) · a
(
dξ − cξdτ

cτ + d

)
= M̃γ(ξ, τ)ν1 − 2πict dξ − cξt

cτ + d
e(cξt)F (ξ, (cτ + d)t, τ) · a dτ.

As a special case of the general formula, we have:

Lemma 9.12. In Der p we have:

e(cξ adt)
( 1

2πia
∂

∂t

)
= 1

2πia
∂

∂t + 1
2πi

1 − e(cξt)
t · a.

Lemma 9.13. Set

ν2 = 1
2πi

(1
t + t∂F

∂t (ξ, t, τ)
)
· a dτ.

Then

γ∗ν2 − M̃γ(ξ, τ)ν2 = 1
2πi

1 − e(cξt)
t · a dτ

(cτ + d)2

+ cξt
cτ + d

e(cξt)F (ξ, (cτ + d)t, τ) · a dτ.
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Proof. First note that the modularity property of F (ξ, t, τ) implies that

∂F

∂t (ξ/(cτ + d), t, γτ)

= (cτ + d) ∂

∂t
[
e(cξt)F (ξ, (cτ + d)t, τ)

]
= (cτ + d)e(cξt)

[
cξF (ξ, (cτ + d)t, τ) + (cτ + d)∂F

∂t (ξ, (cτ + d)t, τ)
]
.

Thus

2πiγ∗ν2 =
(1

t + t∂F
∂t (ξ/(cτ + d), t, γτ)

)
· a d

(
aτ + b

cτ + d

)
=

(1
t + (cτ + d)2e(cξt)t∂F

∂t (ξ, (cτ + d)t, τ)

+ cξt(cτ + d)e(cξt)F (ξ, (cτ + d)t, τ)
)
· a dτ

(cτ + d)2 .

Since

M̃γ(ξ, τ)(t) = (cτ + d)t and M̃γ(ξ, τ)(a) = e(cξt) · a/(cτ + d) + 2πict

we have

2πiM̃γ(ξ, τ)ν2

=
( 1

(cτ + d)t + (cτ + d)t∂F
∂t (ξ, (cτ + d)t, τ)

)
·
(
e(cξt) · a/(cτ + d) + 2πict

)
dτ

= e(cξt)
(1

t + (cτ + d)2t∂F
∂t (ξ, (cτ + d)t, τ)

)
· a dτ

(cτ + d)2

as 1
η + η ∂F

∂η (ξ, η, τ) is holomorphic in η and vanishes at η = 0 by (8.3).
The previous lemma implies that

(
e(cξ adt) − 1

)( 1
2πia

∂

∂t

)
= 1

2πi

(1 − e(cξt)
t

)
· a.

Now assemble the pieces to obtain the result.

Combining the last two computations, we obtain:

Corollary 9.14. For all γ ∈ SL2(Z),

γ∗ν − M̃γν = 1 − e(cξt)
2πit · a dτ

(cτ + d)2 − 2πict dξ.



Notes on the universal elliptic KZB connection 267

Lemma 9.15. For all γ ∈ SL2(Z),

dM̃γM̃
−1
γ = e(cξt) ·

(
dMγM

−1
γ

)
+ 2πict dξ.

Proof. Since M̃γ(ξ, τ) = e(cξt)Mγ(τ), we have

dM̃γM̃
−1
γ = d

(
e(cξt)Mγ

)
M−1

γ e(−cξt)
=

(
e(cξt)dMγ + 2πicte(cξt)Mγdξ

)
M−1

γ e(−cξt)
= e(cξt) ·

(
dMγM

−1
γ

)
+ 2πict dξ.

Lemma 9.16. For all γ ∈ SL2(Z), we have

γ∗
( 1

2πia
∂

∂tdτ
)
−Mγ

( 1
2πia

∂

∂tdτ
)

+ dMγM
−1
γ = 0.

Proof. This is best done using matrices with respect to the basis {a, t} of H.
We have

1
2πia

∂

∂tdτ = 1
2πi

(
0 1
0 0

)
dτ

and

Mγ(τ) =
(

(cτ + d)−1 0
2πic cτ + d

)
, Mγ(τ)−1 =

(
cτ + d 0
−2πic (cτ + d)−1

)
.

So

dMγM
−1
γ =

(
−c(cτ + d)−2 0

0 c

)(
cτ + d 0
−2πic (cτ + d)−1

)
dτ

=
(

−c 0
−2πic2(cτ + d) c

)
dτ

cτ + d

and

Mγ

( 1
2πia

∂

∂tdτ
)

= 1
2πi

(
(cτ + d)−1 0

2πic cτ + d

)(
0 1
0 0

)(
cτ + d 0
−2πic (cτ + d)−1

)
dτ
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= 1
2πi

(
−2πic (cτ + d)−1

−(2πic)2(cτ + d) 2πic

)
dτ

cτ + d

= 1
2πi

(
0 1
0 0

)
dτ

(cτ + d)2 +
(

−c 0
−2πic2(cτ + d) c

)
dτ

cτ + d

= γ∗
( 1

2πia
∂

∂tdτ
)

+ dMγM
−1
γ .

Final computation: For all γ ∈ SL2(Z), we have:

γ∗ω − M̃γω + dM̃γM̃
−1
γ

= γ∗
(
ν + a

2πi
∂

∂tdτ
)
− M̃γ

(
ν + a

2πi
∂

∂tdτ
)

+ e(cξt) ·
(
dMγM

−1
γ

)
+ 2πict dξ

= γ∗
( a

2πi
∂

∂tdτ
)

+ 1 − e(cξt)
2πit · a dτ

(cτ + d)2 − e(cξt) ·Mγ

( a
2πi

∂

∂tdτ
)

+ e(cξt) ·
(
dMγM

−1
γ

)
= e(cξt) ·

(
γ∗

( 1
2πia

∂

∂tdτ
)
−Mγ

( 1
2πia

∂

∂tdτ
)

+ dMγM
−1
γ

)
= 0.

9.4. Integrability

Proposition 9.17. The 1-form ω is closed.

Proof. It is clear that

d

( 1
2πidτ ⊗ a ∂

∂t + ψ

)
= 0

as these terms do not depend upon ξ. The heat equation implies that

2πi dν = 2πi adt dF (ξ, adt, τ)(a) ∧ dξ + d

( 1
adt

+ adt
∂F

∂t (ξ, adt, τ)
)

(a) ∧ dτ

= adt

(
2πi ∂F

∂τ
(ξ, adt, τ) − ∂2F

∂ξ∂t(ξ, adt, τ)
)

(a)dτ ∧ dξ

= 0,

so that dω = 0.
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The proof of the vanishing of [ω, ω] is quite involved. For this we employ
the elegant calculus developed by Levin and Racinet in [24, §3.1].

9.4.1. The Levin-Racinet calculus For U, V ∈ L(a, t)∧, define

xrys ◦ (U, V ) = [tr · U, ts · V ].

This extends linearly to an action f(x, y) ◦ (U, V ) of polynomials and power
series f(x, y) in commuting indeterminants on ordered pairs of elements of
L(t, a). When U and V are equal, one has the identity f(x, y) ◦ (U,U) =
−f(y, x) ◦ (U,U), so that

(9.4) f(x, y) ◦ (U,U) = 1
2
(
f(x, y) − f(y, x)

)
◦ (U,U).

As an example of how this notation is used, note that Lemma 8.2 implies that

(9.5) 2πiψ = 1
2

xy

x + y

(
℘(x) − 1

x2 − ℘(y) + 1
y2

)
◦ (a, a) ∂

∂a ⊗ dτ.

Two more identities will be needed in the proof of the vanishing of [ω, ω].

Lemma 9.18. Suppose that U, V ∈ L(t, a)∧.

(i) (Jacobi identity) If f(x, y) ∈ C[[x, y]], then

adt
(
f(x, y) ◦ (U, V )

)
= (x + y)f(x, y) ◦ (U, V ).

(ii) If δ is a continuous derivation of C〈〈t, a〉〉 and g(x) ∈ C[[x]], then

δ
(
g(adt)V

)
= g(adt)δ(V ) +

(
g(x + y) − g(y)

x

)
◦ (δ(t), V ).

Proof. The first identity encodes the Jacobi identity and is left as an easy
exercise. To prove the second, note that both sides are linear in g, so that, by
continuity, it suffices to prove the result when g is a monomial xn. This holds
trivially when n ≤ 1. The general case follows by induction using the Jacobi
identity.

9.5. Integrability

The following computation completes the proof of integrability.

Lemma 9.19. The 2-form [ω, ω] vanishes, so that ω is integrable.
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Proof. Note that

πi [ω, ω] =
[
dτ ⊗ a ∂

∂t + 2πi ψ

+ dτ ⊗
( 1

adt
+ adt

∂F

∂t (ξ, adt, τ)
)

(a), adt F (ξ, adt, τ)(a) ⊗ dξ

]
.

The expression (9.5) implies that the coefficient of dτ ∧ dξ is

[a ∂

∂t , tF (t)(a)] + 1
2
[ xy

x + y

(
℘(x) − 1

x2 − ℘(y) + 1
y2

)
◦ (a, a) ∂

∂a , tF (t)(a)
]

+
[1
t + tF ′(t)(a), tF (t)(a)

]
where F (z) denotes F (ξ, z, τ) and F ′(z) denotes ∂F/∂z(ξ, z, τ). We’ll com-
pute these three terms, one at a time.

Since [δ, adv] = adδ(v), Lemma 9.18 and equation (9.4) imply that the first
term is

[a ∂

∂t , tF (t) · a] =
((x + y)F (x + y) − yF (y)

x

)
◦ (a, a)

= 1
2

((y2 − x2

xy

)
F (x + y) − y

x
F (y) + x

y
F (x)

)
◦ (a, a).

The identity [δ, adv] = adδ(v) and the Jacobi identity (Lemma 9.18) imply
that the second term is

1
2 adtF (t)

(
xy

x + y

(
℘(x) − 1

x2 − ℘(y) + 1
y2

)
◦ (a, a)

)
= 1

2xyF (x + y)
(
℘(x) − 1

x2 − ℘(y) + 1
y2

)
◦ (a, a)

= 1
2

((x2 − y2

xy

)
F (x + y) + xy(℘(x) − ℘(y))F (x + y)

)
◦ (a, a)

The addition formula, Proposition 8.3, implies that the third term is((1
x

+ xF ′(x)
)
yF (y)

)
◦ (a, a)

=
(y
x
F (y) + xyF ′(x)F (y)

)
◦ (a, a)



Notes on the universal elliptic KZB connection 271

= 1
2
(y
x
F (y) − x

y
F (x) + xy

(
F ′(x)F (y) − F ′(y)F (x)

))
◦ (a, a)

= 1
2
(y
x
F (y) − x

y
F (x) − xy

(
℘(x) − ℘(y)

)
F (x + y)

)
◦ (a, a).

These three terms clearly sum to 0.

Part 3. Hodge theory and applications

The main goal of this section is to show that the elliptic KZB connection
underlies an admissible variation of mixed Hodge structure (MHS) over E ′ =
M1,2 and to show that this variation is isomorphic to the variation of MHS
whose fiber over [E, x] is the Lie algebra of the unipotent fundamental group
of (E′, x). We use this to show that the periods of the limit MHS on the fiber
of PPP over [E∂/∂q, ∂/∂w] are multizeta values and to derive an explicit formula
for the natural morphism of MHS

πun
1 (P1 − {0, 1,∞}, ∂/∂w) → πun

1 (E′
∂/∂q, ∂/∂w).

As preparation, we show that the KZB connection extends to a mero-
morphic connection over M1,2 with regular singularities and pronilpotent
monodromy about the boundary divisors. To fill a gap in the literature, we
prove, in Section 14, that the local system associated to the universal ellip-
tic KZB connection on PPP is the local system PPPtop. It can be used to prove
the analogous result for the KZB connection over M1,1+n. This complements
results in [24, §4] and [3, §4.3].

Throughout, p = L(t, a)∧ and P is the corresponding prounipotent group.
Set

Der0 p = {δ ∈ Der p : δ([t, a]) = 0}.
This is the infinitesimal analogue of the mapping class group Γ1,�1.

The reader is assumed to be familiar with the basics of Deligne’s theory
of mixed Hodge structures [7]. A good introductory reference is the book [30]
by Steenbrink and Peters. Another good introductory reference is Carlson’s
paper [4]. An exposition of the construction of the mixed Hodge structure on
the unipotent fundamental group of a smooth variety can be found in [11].

10. Extending PPP to M1,2

The punctured universal elliptic curve E ′ is isomorphic to M1,2 and is the
complement of a normal crossing divisor in M1,2. This divisor has two com-
ponents: the zero section and the nodal cubic. The flat bundle P over E ′ has
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prounipotent monodromy about each, and thus extends naturally to a bundle
over M1,2 with regular singularities and (pro) nilpotent residues along each
component.

This extension is easily described. First, the complement of the Tate curve
in M1,2 is the universal elliptic curve E , which is a quotient of C × h. The
bundle PPP defined in Section 6.2 is defined over E , not just over E ′. We take
this to be the extension across the zero section.

To extend PPP across the Tate curve, recall from Example 3.4 that the
holomorphic vector bundle H := H ⊗C OD∗ associated to H is trivial on the
punctured q-disk D∗. The framing t, a of H over D∗ determines an extension
H of H to the entire q-disk D that is framed by t and a. The formula for the
natural connection on H in Example 5.2 implies it extends to a meromorphic
connection on H with a regular singular point at the cusp q = 0 and with
nilpotent residue. This implies that H is Deligne’s canonical extension of H
to M1,1. (Cf. [6].)

Since p = L(t, a)∧, this determines an extension of p×C×D∗ → C×D∗

to C × D; its fiber over q ∈ D is the free Lie algebra generated by the fiber
of H over q, which is naturally isomorphic to L(t, a)∧. The pullback of the
universal elliptic curve over M1,1 to D minus the double point P of the nodal
cubic is the quotient of C× h by the subgroup

Γ :=
(

1 Z

0 1

)
� Z2

of SL2(Z) � Z2.
The action of Γ on p × C × h induces an action of Γ on p × C × D. The

pullback of PPP to ED∗ thus extends to a bundle PPP over ED (minus the double
point P of the nodal cubic) as the quotient of this action.

Formulas (8.1), (8.2) and (8.3) imply that this extension has regular sin-
gularities along the identity section and along the nodal cubic q = 0.

Proposition 10.1. The meromorphic extension of the elliptic KZB connec-
tion defined above has regular singularities along the two boundary compo-
nents of M1,2: the nodal cubic E0 and the identity section. It has pronilpotent
residue at each codimension 1 boundary point.

11. Restriction to E′
τ

Fix τ ∈ h. The first task in proving that the universal elliptic KZB connection
has the expected monodromy is to check that its restriction to the fiber E′

τ

of E ′ → M1,1 induces an isomorphism of π1(E′
τ , x)un with P.
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The restriction of the universal elliptic KZB connection to E′
τ is

∇ = d + ν1 = d + tF (ξ, t, τ) · a dξ.

Identify p with the image of the adjoint action ad : p → Der p which is
injective as p has trivial center. With this identification, ∇ takes values in p.
Fix x ∈ C−Λτ . The associated monodromy representation ρx : π1(E′

τ , x) → P
is given by (cf. Cor. 5.9)

ρx(γ) =
(

1 +
∫
cγ

ν1 +
∫
cγ

ν1ν1 +
∫
cγ

ν1ν1ν1 + · · ·
)
e(−m(γ)t)

where ρ(γ) =
(
m(γ), n(γ)

)
∈ Z2. (That is, the class of γ in H1(E′

τ ) is n(γ)a+
m(γ)b.)
Proposition 11.1. If [γ] = na + mb ∈ H1(E′

τ ), then

Θx(γ) ≡ 1 + (mτ + n)a − 2πimt mod (t, a)2.

Proof. Observe that

ν1 = tF (ξ, t, τ) · a dξ

= t
(1

t + 1
ξ

+ holomorphic in ξ

)
· a dξ

≡ a dξ mod (t, a)2

and that Resξ=0 ν1 ≡ [t, a] mod (t, a)3. It follows that Θx(a) ≡ 1 + a mod
(t, a)2 and that

Θx(b) ≡ (1 + τa)e(−t) ≡ 1 + τa − 2πit mod (t, a)2.

Corollary 11.2. The universal elliptic KZB connection induces the identifi-
cation

Ca ⊕ Ct → H1(Eτ ;C)
that takes a to a and 2πit to τa − b, the Poincaré dual of ωτ .

This corresponds to the framing of the bundle H given in Example 3.4.
(This statement can also be deduced from Remark 9.1.)

The universal connection induces an isomorphism of the unipotent com-
pletion of π1(E′

τ , x) with P for all (x, τ) ∈ Eh. This is a special case of [3,
Prop. 2.2].



274 Richard Hain

Corollary 11.3. The monodromy of the restriction of the universal elliptic
KZB connection to the fiber E′

τ of E ′ over [Eτ ] ∈ M1,1 is a homomorphism
π1(E′

τ , x) → P that induces an isomorphism π1(E′
τ , x)un → P.

11.1. A better framing of H

To get rid of the powers of 2πi in the formulas, we replace 2πi dτ by dq/q and
set

(11.1) T = 2πi t and A = (2πi)−1a.

Remark 11.4. There is a conceptual reason the basis A, T is a good choice.
Denote the fiber of the universal elliptic curve ED → D over q ∈ D by Eq. For
each nonzero tangent vector �v of 0 ∈ D, there is a limit MHS on H1 of the
fiber, which we denote by H1(E�v) and think of as the homology of the fiber
over �v. This MHS is an extension

0 → Q(1) → H1(E�v) → Q(0) → 0

which splits when �v = ∂/∂q. In this case, the copy of Q(1) is spanned by A
and the copy of Q(1) is spanned by T . As will become apparent in Part 4, this
limit MHS has a Q-DR form. The basis A, T is a Q-DR basis of H1(E∂/∂q).
The basis above is the extension of this basis to a framing of the bundle HD in
which F 0H is trivialized by T . The basis a, b is a Q-Betti basis of H1(E�v)tro.

In this frame [t, a] = [T,A],

1
2πidτ ⊗ a ∂

∂t = dq

q
⊗ A

∂

∂T

and the terms in the KZB connection become:

ψ =
∑
m≥1

(
G2m+2(τ)

(2m)!
dq

q
⊗

∑
j+k=2m+1

j,k>0

(−1)j [adj
T (A), adk

T (A)] ∂

∂A

)
,

and

ν = TFZag(2πiξ, T, τ) · Adq

q
+

( 1
T

+ T
∂

∂T
FZag(2πiξ, T, τ)

)
· Adq

q

Remark 11.5. The periodicity properties (8.4) and (8.5) of F and the formulas
for the factors of automorphy (6.1) and (6.2) imply that the connection is
pulled back from a connection on the trivial bundle L(A, T )∧ × C∗ × D →
C∗×D along the map C×h → C∗×D defined by (ξ, τ) �→ (w, q) := (e(ξ), e(τ)).
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12. Restriction to the first-order Tate curve

In this section we compute the restriction of the universal elliptic KZB connec-
tion to the first order Tate curve. This allows us to see that the connection has
regular singularities along the nodal cubic. Restricting further to the the reg-
ular locus P1 − {0, 1,∞} of the nodal cubic minus its identity is the first step
in computing the image of π1(P1 − {0, 1,∞}, �v)un in the limit mixed Hodge
structure on the unipotent fundamental group of the first order smoothing of
the Tate curve.

The restriction of the natural extension of the KZB connection to the
boundary divisor q = 0 is the image of ω under the restriction mapping

Ω1
E(log(M1,1 ∪ E0)) → Ω1

E(log(M1,1 ∪ E0)) ⊗O(E) OE0 ,

where E0 ∼= Gm is the fiber E0 of E over q = 0 with the double point
removed. The identity section of E is identified with M1,1. In concrete terms
the restriction mapping is given by

G(ξ, q)dξ
ξ

+ H(ξ, q)dq
q

�→ G(ξ, 0)dξ
ξ

+ H(ξ, 0)dq
q

where G and H are holomorphic functions of (ξ, q), and then setting w = e(ξ).
Formula (8.1) implies that

F (ξ, η)|q=0 = πi

(
e(ξ) + 1
e(ξ) − 1 + e(η) + 1

e(η) − 1

)
= πi

(
w + 1
w − 1 + coth(πiη)

)

where w := e(ξ) is the parameter in the normalization P1 of the nodal cubic
E0. From this and the identity (8.3), it follows that when q = 0

1
η

+ η
∂F

∂η
(ξ, η)|q=0 = 1

η
− (πi)2η

sinh2(πiη)
= 1

η
− π2η

sin2(πη) ,

which is holomorphic at η = 0.
The restriction of the connection to a first order neighbourhood of E0 is

given by the 1-form:

ω0 = dq

q
⊗ A

∂

∂T
+ ψ0 + ν0,
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where

ψ0 =
∑
m≥1

( 1
(2m)!G2m+2|q=0

dq

q
⊗

∑
j+k=2m+1

j,k>0

(−1)j [adj
T (A), adk

T (A)]
)

∂

∂A

= −
∑
m≥1

((2m + 1)B2m+2

(2m + 2)!
dq

q
⊗

∑
j+k=2m+1

j>k>0

(−1)j [adj
T (A), adk

T (A)]
)

∂

∂A

and, using the identity (7.1),

ν0 = T

2

(
w + 1
w − 1 + eT + 1

eT − 1

)
· A dw

w
+ T/4

sinh2(T/2)
· A dq

q

= [T,A] dw

w − 1 +
(

T

eT − 1

)
· A dw

w
+

( 1
T

− T/4
sinh2(T/2)

)
· A dq

q

= [T,A] dw

w − 1 +
(

T

eT − 1

)
· A dw

w
+

∞∑
m=1

(2m− 1) B2m

(2m)! ad2m−1
T A

dq

q

At this stage, it is convenient to define ε2m ∈ Der2m p (the derivations of
p of degree 2m) by9

(12.1) ε2m =

⎧⎨⎩−A ∂
∂T m = 0;

ad2m−1
T (A) −∑

j+k=2m−1
j>k>0

(−1)j [adj
T (A), adk

T (A)] ∂
∂A m > 0.

Assembling the pieces, we see that the restriction of the KZB connection
form to a first order neighbourhood of the Tate curve is

(12.2) ω0 = [T,A] dw

w − 1 +
(

T

eT − 1

)
· A dw

w
+

∞∑
m=0

(2m− 1) B2m

(2m)!ε2m
dq

q
.

12.1. Monodromy logarithms

The residue of the connection at (w, q) acts on the fiber L(A, T )∧ of p over
it as a derivation. At each point (w, 0), where w �= 0, 1, the residue of the

9These derivations occur in the work [32] of Tsunogai on the action of the absolute
Galois group on the fundamental group of a once punctured elliptic curve. They
also occur in the paper of Calaque et al. [3, §3.1].
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connection (12.2) is

(12.3) Nq =
∑
m≥0

(2m− 1) B2m

(2m)! ε2m.

The residue Nw of the connection of each point along the identity section
w = 1 is

Nw = ad[T,A] .

Since the KZB connection is flat and since the two boundary components
intersect transversely at (w, q) = (1, 1), [Nq, Nw] = 0. This implies that each
ε2n annihilates [T,A], and therefore lies in

Der0 p := {δ ∈ Der p : δ([T,A]) = 0}.

Proposition 12.1 (Tsunogai [32]). For all m ≥ 0, ε2m ∈ Der0 p. When
m > 1, ε2m is a highest weight vector of weight 2m − 2 for the natural sl2-
action; that is, it is annihilated by A∂/∂T .

It can be shown that ε2m is a highest weight vector of the unique copy of
S2mH in GrW−2m Der0 p.

The following computation follows from identity (7.2) and the fact that

ε2m(T ) = (ad2m−1
T A) · T = − ad2m

T (A) = −T 2m · A.

Proposition 12.2. The value of Nq on T is

Nq(T ) = 1
4

(
T 2

sinh2(T/2)

)
·A.

12.2. Pullback to P1 − {0, 1,∞}

We can pullback the connection to P1 along the “map” E′
0 = P1 − {0, 1,∞} →

E∂/∂q to the fiber of E over the tangent vector ∂/∂q. Just set dq to zero to
get:

(12.4) ωE′
0

= [T,A] dw

w − 1 +
(

T

eT − 1

)
· A dw

w
.

Since
T

eT − 1 + T

e−T − 1 + T = 0,
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it follows that the residues R0, R1 and R∞ of ωE′
0

at 0, 1,∞ are:

(12.5) R0 =
(

T

eT − 1

)
· A, R1 = [T,A], R∞ =

(
T

e−T − 1

)
· A

13. Restriction to M1,�1

In this section, we compute the restriction of the universal elliptic KZB con-
nection to the first order neighbourhood M1,�1 of the 0-section of E . In alge-
braic terms, this restriction map is induced by the OE -module homomorphism

Ω1
E(logM1,1) → Ω1

E(logM1,1) ⊗OE
OM1,1

Here we are identifying the zero-section of E with M1,1. This computation
will allow us to see that the restricted connection takes values in Der0 p.

In concrete terms the restriction mapping is given by

G(ξ, τ)dξ
ξ

+ H(ξ, τ)dτ �→ G(0, τ)dξ
ξ

+ H(0, τ)dτ

where G and H are holomorphic functions of (ξ, τ). The restricted connection
is thus given by the 1-form

ω′ = dq

q
⊗ A

∂

∂T
+ ψ + ν ′

where

ν ′ = [t, a]dξ
ξ

+ 1
2πi

(1
t + t∂F

∂t (0, t, τ)
)
· a dτ

= [T,A]
(
dξ

ξ
− 2G2(τ)dq

q

)
−

∑
m≥1

2
(2m)!G2m+2(τ) dq

q
⊗ ad2m+1

T (A).

Note that both terms in this last expression are SL2(Z)-invariant and that
the term ψ remains unchanged as it does not depend on ξ:

ψ =
∑
m≥1

( 2
(2m)!G2m+2(τ)dq

q
⊗

∑
j+k=2m+1

j>k>0

(−1)j [adj
T (A), adk

T (A)] ∂

∂A

)
.
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Proposition 13.1. The restriction of the KZB connection to M1,�1 is given
by the SL2(Z)-invariant 1-form

(13.1) ω′ = −dq

q
⊗ε0−

(
2G2(τ)dq

q
−dξ

ξ

)
⊗ε2−

∞∑
m=2

2
(2m− 2)!G2m(τ)dq

q
⊗ε2m

on Der0 L(A, T )∧ × C× h → C× h.

This gives an alternative computation of Nq:

Nq = Resq=0 ω
′ =

∞∑
m=0

(2m− 1) B2m

(2m)!ε2m.

14. Rigidity

We have not yet proved that PPP with the KZB connection is isomorphic to the
flat bundle PPPtop defined in Section 6.1. This will be resolved in this section
by proving that both have the same monodromy representation.

The punctured universal elliptic curve E ′ is the moduli space M1,2. Choose
a base point [Eo, xo] of M1,2, where xo �= 0. There is a natural isomorphism

π1(M1,2, [Eo, xo]) ∼= π0 Diff+(Eo, xo, 0) ∼= Γ1,2,

where Γ1,2 is the mapping class group of a genus 1 curve with 2 marked points.
The restriction of the universal elliptic KZB connection to Eo defines a

homomorphism π1(E′
o, xo) → Aut p whose image lies in the subgroup P =

exp p which acts on p via the adjoint action. Corollary 11.3 implies that it
induces an isomorphism πun

1 (E′
o, xo) → P.

Identify P with πun
1 (E′

o, xo) via this isomorphism. Then one has the mon-
odromy representations

ρKZB : Γ1,2 → AutP and ρtop : Γ1,2 → AutP

of PPP and PPPtop. To prove that PPPtop and PPP are isomorphic, we have to prove
that ρKZB = ρtop. Observe that if γ ∈ π1(E′

o, xo), then ρtop(γ) and ρKZB(γ)
are both conjugation by the image of γ in P as the restriction of PPP and PPPtop

to E′
o are isomorphic.
To prove that ρKZB = ρtop it is useful to consider a more abstract situ-

ation. Suppose that N is a normal subgroup of a discrete group Γ. Denote
the unipotent completion of N by N .10 The homomorphism Γ → AutN that

10One can use any field over char 0, but we will take C.
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takes g ∈ Γ to n �→ gng−1 induces a homomorphism φ : G → AutN . The
restriction of φ to N takes n ∈ N to ιθ(n), where θ : N → N is the natural
homomorphism and ιu denotes conjugation by u ∈ N .

Lemma 14.1. If N has trivial center, φ is the unique homomorphism Γ →
AutN whose restriction to N is n �→ ιθ(n).

Proof. The condition that N have trivial center implies that the centralizer
of im θ in AutN is trivial: if σ ∈ AutN , then

σιθ(n)σ
−1 = ισ(θ(n)).

So σ centralizers im θ if and only if ιθ(n) = ισ(θ(n)) for all n ∈ N . Since im θ is
Zariski dense in N and since N has trivial center, this implies that σ = id.

Suppose now that α : Γ → AutN is a homomorphism whose restriction
to N is n �→ ιθ(n). If g ∈ Γ, then

α(g)ιθ(n)α(g)−1 = α(g)α(n)α(g)−1 = α(gng−1)
= ιgng−1 = · · · = φ(g)ιθ(n)φ(g)−1

for all n ∈ N . So α(g)−1φ(g) centralizes im θ and is therefore trivial.

Applying the lemma with Γ = Γ1,2, N = π1(E′
o, xo), N = P and φ = ρtop

establishes the equality of ρKZB and ρtop.

Theorem 14.2. The exponential mapping induces an isomorphism of the
locally constant sheaf over E ′ of flat sections of the universal elliptic KZB
connection on PPP with the locally constant sheaf PPPtop over E ′. Equivalently,
the diagram

π1(E ′, [E, xo])
ρKZB

Aut p
∼=

π1(E ′, [E, xo])
ρtop AutP

commutes.

Remark 14.3. A similar argument can be used to prove that the local sys-
tem associated to the KZB connection over M1,1+n constructed in [3] is the
canonical local system whose fiber over [E, 0, x1, . . . , xn] is the unipotent com-
pletion of the fundamental group of the configuration space of n points on E′

with base point (x1, . . . , xn).
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Any other connection on the extension of PPP to M1,2 with regular singu-
larities with pronilpotent residue and conjugate monodromy representation
differs from the KZB connection by a holomorphic map M1,2 → Aut p. Since
Aut p is an affine group and since M1,2 is complete, the change of gauge must
be constant.

Corollary 14.4. The universal elliptic KZB connection is the unique mero-
morphic connection on p×C×h (up to a constant change of gauge) satisfying:

(i) it is SL2(Z)�Z2 invariant with the same factors of automorphy as the
elliptic KZB connection,

(ii) it has poles along {(z, τ) ∈ C×h : z ∈ Λτ} and is holomorphic elsewhere,
(iii) its natural extension to PPP over M1,2 has regular singularities with

pronilpotent residues,
(iv) for any one [E, x] ∈ M1,2, the restriction of the connection to E ′ induces

an isomorphism π1(E′, x)un → P.

One consequence of this rigidity result is that the canonical extension of
the connection constructed by Calaque, Enriquez and Etingof [3] over M1,2
equals the connection constructed by Levin and Racinet in [24].

15. Hodge theory

In this section we show that, with appropriate filtrations, PPP is an admissi-
ble variation of mixed Hodge structure (MHS) over E ′. We assume that the
reader is familiar with the definition of mixed Hodge structures. We begin
by recalling the definition of an admissible variation of MHS over a smooth
variety. Further details can be found in [31] and [20].

15.1. Admissible variations of mixed Hodge structure

Suppose that X is a smooth projective variety (or orbifold) and that U =
X −D is the complement of a normal crossing divisor D in X.

(i) Suppose that V is a local system of finite dimensional Q-vector spaces
over U . For simplicity, we assume that the local monodromy operator
at each smooth point P of D is unipotent. This holds for each finite
dimensional quotient of PPP.

(ii) Let V be Deligne’s canonical extension of the flat vector bundle V⊗QOU

to X. It is a holomorphic vector bundle with a connection

∇ : V → V ⊗ Ω1
X(logD)



282 Richard Hain

with regular singularities along D. It is characterized by the property
that the residue of the connection at each smooth point of D is nilpotent.

(iii) Suppose that F •V is a decreasing filtration of V by holomorphic vector
bundles over X and that these satisfy “Griffiths transversality”:

∇ : F pV → F p−1V ⊗ Ω1
X(logD) =: F p(V ⊗ Ω1

X(logD)
)
.

That is, ∇ respects the Hodge filtration.
(iv) There is an increasing filtration W• of V. It induces a filtration W•V of

V by flat sub-bundles.
(v) Suppose that for each x ∈ U the restriction of F •V and W•V to the

fiber Vx of V over x define a MHS on Vx.

When X is a curve, these data (a “pre-variation” of MHS) form an admissible
variation of MHS if for each P ∈ D, there is a relative weight filtration M•
of the fiber VP of V over P and its nilpotent endomorphism N = ResP ∇.11

This means that:

(i) M• is an increasing filtration of VP satisfying N(MrVP ) ⊆ Mr−2VP and
N(WmVP ) ⊆ WmVP for all m and r,

(ii) for each m and each k, Nk induces an isomorphism

Nk : GrMm+k GrWm VP → GrMm−k GrWm VP .

In this case, for each P ∈ D and each choice of non-zero tangent vector
�v ∈ TPX, there is a canonical MHS on the fiber VP of V over P . This MHS
will be denoted V�v. It has weight filtration M•; its Hodge filtration is the
restriction of F •V to VP . The Q-structure on VP is spanned by the elements

lim
t→0

(t/c)−Nv(t) ∈ VP ,

where N = ResP ∇, t is a local holomorphic parameter on X centered at
P , �v = c∂/∂t, and v(t) is a flat section of V defined in an angular sector
containing a ray tangent to �v. Each WmVP is a sub-MHS.

When X has dimension > 1, the pre-variation is admissible if its restric-
tion to each curve in X is admissible. We will also refer to pro-objects of the
category of admissible variations of MHS as admissible variations.

11Background material on relative weight filtrations can be found in [31] and
[14].
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15.2. The variation PPP

We now show that the KZB equation gives rise to an admissible variation of
MHS. Denote the maximal ideal (T,A) of Q〈〈T,A〉〉 by I. As in [24], define
Hodge and weight filtrations on Q〈〈T,A〉〉 in the natural way by setting

W−nQ〈〈T,A〉〉 = In and F−pQ〈〈T,A〉〉 = {x ∈ Q〈〈T,A〉〉 : degA(x) ≤ p}.

We also define a relative weight filtration M• on Q〈〈T,A〉〉 by

M−2mQ〈〈T,A〉〉 = {x ∈ Q〈〈T,A〉〉 : degA(x) ≥ m}.

These filtrations are multiplicative. By restriction, they induce Hodge, weight
and relative weight filtrations on p and thus on Der p. They also induce fil-
trations on the bundle p× C× h over C× h.

Theorem 15.1. The Hodge and weight filtrations on p × C × h descend to
Hodge and weight filtrations of the local system PPP → E ′. With these filtrations,
the local system PPP over E ′ = M1,2 and its restriction to M1,�1 are admissi-
ble variations of MHS whose weight graded quotients are direct sums of Tate
twists of SmH. The MHS on the fiber over [E, x] is the canonical MHS on
the Lie algebra of the unipotent completion of π1(E′, x). The relative weight
filtration of the limit MHS associated to the tangent vector �v = ∂/∂q + ∂/∂w
at the identity of the nodal cubic is M•. In addition, there is a natural homo-
morphism

π1(P1 − {0, 1,∞}, ∂/∂w)un → π1(E′
λ∂/∂q, ∂/∂w)un

whose image is invariant under monodromy and which is a morphism of MHS
for all λ ∈ C∗

Proof. It suffices to consider the case where the base is E ′. The factor of auto-
morphy M̃γ(ξ, τ) (Cf. (6.2)) preserves both the Hodge and weight filtrations
on p × C × h. They therefore descend to filtrations of the bundle PPP over E ′.
Next observe that each component of the universal elliptic KZB connection
is a 1-form that takes values in F−1W0 Der0 p. This implies that, over E ′, the
connection satisfies Griffiths transversality and that the weight bundles are
sub-local systems of PPP . The weight filtration is defined over Q as it is defined
in terms of the lower central series filtration of p.

As explained in Section 10, the natural extension of the universal elliptic
KZB connection to the q-disk has regular singular points along the nodal
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cubic and along the identity section. The extension of the Hodge and weight
bundles to the q-disk are the quotients of the bundles

(F pp) × C∗ × D and (Wmp) × C∗ × D

over C∗×D (with coordinates (w, q)) by the factor of automorphy. These are
well defined as M̃(m,n)(q) = e−mT , which lies in F 0W0M0 Der0 p.

The residue at each point of the identity section is Nw := ad[T,A]. It
lies in F−1W−2M−2 Der0 p, which implies that the Hodge, weight and (where
relevant) the relative weight filtrations extend across the identity section.

According to (12.3) the residue of the connection at each point of the
nodal cubic is

Nq =
∑
m≥0

(2m− 1) B2m

(2m)! ε2m ∈ Der0 p.

It is easy to check that for each m ≥ 0, ε2m ∈ F−1M−2W−2m Der0 p for all
m ≥ 0, so that

Nq ∈ F−1M−2W0 Der0 p.

Moreover,
GrW• Nq : GrW• C〈〈T,A〉〉 → GrW• C〈〈T,A〉〉

is ε0. Set H = CA ⊕ CT . Since GrW−mC〈〈T,A〉〉 = SmH placed in weight
−m and since GrW• Nq = −ε0 = A∂/∂T ∈ sl(H), it follows easily from the
representation theory of sl(H) that Nk

q induces an isomorphism

GrW−m+k C〈〈T,A〉〉 → GrW−m−k C〈〈T,A〉〉.

This implies that M• is the relative weight filtration of Nq and for Nq + Nw,
which completes the proof that PPP is an admissible variation of MHS over
M1,2.

To prove that the MHS on the fiber of PPP over [E] ∈ M1,1 is its canonical
MHS (as defined in [12] or [19]) we consider the restriction PPPE of PPP to the
fiber E′. The above discussion implies that this is an admissible variation
of MHS over E′. In fact, it is clearly a unipotent variation of MHS. Fix a
base point x ∈ E′. Theorem 14.2 implies that the fiber p(E, x) of PPPE over
x is naturally isomorphic to the Lie algebra of the unipotent completion of
π1(E′, x). The monodromy representation θx : p(E, x) → End p(E, x) of PPPE

is the adjoint action. Since the center of p(E, x) is trivial (p is free of rank
2), θx is injective. Denote p(E, x) with its canonical MHS by p(E, x)can and
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p(E, x) with the MHS given by the elliptic KZB connection via Theorem 14.2
by p(E, x)KZB. The main theorem of [19] implies that

θx : p(E, x)can → End p(E, x)KZB

is a morphism of MHS. On the other hand, since p(E, x)KZB is a Lie algebra
in the category of pro-MHS,

θx : p(E, x)KZB → End p(E, x)KZB

is also a morphism of MHS. Since θx is injective, this implies that the MHSs
p(E, x)can and p(E, x)KZB are equal.

The final statement follows from the construction [13] of limit mixed
Hodge structures on homotopy groups. It will be explained in greater detail
in [16].

We can now prove that Nq annihilates the Rα.

Corollary 15.2. The derivation Nq annihilates R0, R1 and R∞.

An elementary proof is given in Appendix A. Here we sketch a more
conceptual proof.

Sketch of Proof. Since Nq annihilates R1 = [T,A], and since R0 +R1 +R∞ =
0, it suffices to show that Nq(R0) = 0.

Denote the limit MHS on Qπ1(P1 − {0, 1,∞}, w)∧ associated to the tan-
gent vector ∂/∂w ∈ T1P

1 by Qπ1(P1 − {0, 1,∞}, ∂/∂w)∧ and the limit MHS
on Qπ1(E′

q, x)∧ associated to the tangent vector λ∂/∂q + ∂/∂w of E at the
identity of the nodal cubic. One has the commutative diagram

Cπ1(P1 − {0, 1,∞}, ∂/∂w)∧ ΘKZ
C〈〈R0, R1〉〉

Cπ1(E′
λ∂/∂q, ∂/∂w)∧

Θλ
C〈〈T,A〉〉

where the left hand vertical mapping is the one given by Theorem 15.1, the
right hand vertical map is given by the formulas for R0 and R1, and where the
top horizontal map is the standard isomorphism given by the KZ-connection.
The result follows as the image of ΘKZ is invariant under monodromy and as
the logarithm of monodromy acting on C〈〈T,A〉〉 is Nq.
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As noted in Remark 11.4, the limit MHS on H1(Eτ ) is an extension of
Z by Z(1). The basis T , A splits both the Hodge and monodromy weight
filtrations. The following statement follows directly from Corollary 11.2.
Lemma 15.3. The limit MHS on H1(Eτ ) associated to the tangent vector
λ∂/∂q of the origin of the q-disk has complex basis A and T and integral basis
spanned by a and −b, where

−b = T − log λA and a = 2πiA,

so that the corresponding period matrix is(
1 − log λ
0 2πi

)

Denote it by H1(Eλ∂/∂q).

16. Pause for a picture

Suppose that f : Y → X is a family of varieties which is locally topologically
trivial over the Zariski open subset X ′ = X − S of X, where S is a normal
crossing divisor. Suppose that P ∈ S and that �v is a non-zero tangent vector
at P that is not tangent to S. Suppose that V is an admissible variation of
MHS over X ′ whose fiber over x ∈ X ′ is a given topological invariant of the
fiber Yx of f over x. It is useful to think of the limit MHS of V associated to
�v as the MHS on that invariant of the “fiber Y�v of f over �v.” For example, we
would like to think of the limit MHS of H associated to the tangent vector
�v = λ∂/∂q at the origin of the q-disk as being H1(Eλ∂/∂q), and the limit
MHS of PPP associated to the tangent vector �v = ∂/∂q+ ∂/∂w of the universal
elliptic curve at the identity of the nodal cubic as a MHS on the Lie algebra
p(E∂/∂q, ∂/∂w) of the unipotent fundamental group of (E′

∂/∂q, ∂/∂w). The
goal of this section is to explain how to make this more precise using real
oriented blowups.

16.1. Real oriented blowups and tangential base points

The real oriented blowup of a Riemann surface X at a finite subset S will be
denoted by BloS X. This is a bordered Riemann surface with one boundary
circle for each point of S. There is a continuous projection π : BloS X → X
that induces a biholomorphism

BloS X − ∂ BloS X −→ X − S
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Figure 2: Blo0 Eq as a quotient of Â|q|.

The fiber of π over P ∈ S is the quotient of (TPX)−{0} by the multiplicative
group of positive real numbers.

Example 16.1. The real oriented blowup of the unit disk at the origin is
[0, 1) × S1. The projection to the disk is (r, θ) �→ reiθ. As explained in Ap-
pendix B, there is a natural identification of Blo0,∞ P1 with [0, 1] × S1.

Each non-zero vector �v ∈ TPX determines an element [�v] ∈ BloP X. Set
X ′ = X − {P}. The fundamental group π1(X ′, �v) is defined to be
π1(BloP X, [�v]). (cf. [8].) When t > 0, π1(X ′, �v) and π1(X ′, t�v) are canonically
isomorphic. It is important to note that the MHSs on their unipotent com-
pletions will not be isomorphic except when the local monodromy operator
associated to �v acts trivially on πun

1 (X ′, �v).

16.2. The fiber of E over ∂/∂q

We now sketch the construction of the fiber E∂/∂q of E over ∂/∂q. Full details
can be found in Appendix B.

Suppose that q ∈ D∗. The fiber of the universal elliptic curve over q is
Eq := C∗/qZ. For 0 < r < 1, set

Ar := {w ∈ C∗ : r1/2 ≤ |w| ≤ r−1/2} and Âr := Blo1 Ar.

Denote their outer and inner boundaries by ∂+Ar and ∂−Ar, respectively. The
elliptic curve Eq is the quotient of A|q| obtained by identifying w ∈ ∂+A|q|
with qw ∈ ∂−A|q|. Similarly, Blo1 Eq is a quotient of Âq. See Figure 2.

The homology class a corresponds to the class of the positively oriented
unit circle α; the homology class b corresponds to a path β from w to qw,
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Figure 3: The “nearby fiber” Blo1 E′
∂/∂q.

where w ∈ ∂+A|q|. Note that these have intersection number +1. From this it
is evident that a, the class of α, is the vanishing cycle. The Picard Lefschetz
transformation is also evident: as q travels once around D∗ in the positive
direction, a remains invariant, but b, the class of β changes to b + a. This
can also be seen from the formula

T = τa − b = a
2πi log q − b.

Let γ be the boundary circle at w = 1 of Âr.
As r → 0, Ar “converges to” Blo0,∞ P1 and Âr “converges to” Bl0,1,∞ P1.

So Ereiθ and Bl1 Ereiθ “converge” to the surfaces obtained by identifying the
boundary circles of Blo0,∞ P1 and Bl0,1,∞ P1 at 0 and ∞ by multiplication eiθ.
The resulting surface will be denoted by Eeiθ∂/∂q. See Figure 3. In Appendix B
we show that the universal family of elliptic curves over D∗ extends to a family
of tori over Blo0 D whose fiber over [eiθ∂/∂q] is Eeiθ∂/∂q.

The curve γ represents the commutator of two generators of
π1(Bl1(E∂/∂q, [∂/∂w])). This is consistent with the fact that

Resw=1 ωE′
0

= [T,A] = 1
2πi [T, a] = 1

2πi [τa − b, a] = 1
2πi [a,b].

17. The KZ-equation and the Drinfeld associator

The quotient map

C〈〈X0, X1, X∞〉〉/(X0 + X1 + X∞) → C〈〈X0, X1〉〉

is an isomorphism. We will identify these two rings. Recall that the KZ-
connection on P1 − {0, 1,∞} is given by

ωKZ = dw

w
X0 + dw

w − 1X1 ∈ H0(Ω1
P1(log{0, 1,∞})

)
⊗̂C〈〈X0, X1〉〉.
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Figure 4: The 6 tangent vectors.

The form ωKZ defines a flat connection on the trivial bundle

C〈〈X0, X1〉〉 × P1 − {0, 1,∞} → P1 − {0, 1,∞}

by the formula
∇f = df − fωKZ .

Its transport function induces a transport function

{paths in P1 − {0, 1,∞}} → {group-like elements of C〈〈X0, X1〉〉}

in P1 − {0, 1,∞}. It takes the path γ in P1 − {0, 1,∞} to

(17.1) T (γ) = 1 +
∫
γ
ωKZ +

∫
γ
ωKZωKZ +

∫
γ
ωKZωKZωKZ + · · ·

Since ωKZ is clearly integrable, the connection is flat and T (γ) depends only
on the homotopy class of γ relative to its endpoints.

There are six standard tangent vectors of P1−{0, 1,∞}. Two are anchored
at each of 0, 1,∞. They lie in one orbit under the action of the symmetric
group S3 on P1 − {0, 1,∞} and are thus determined by the two vectors at
w = 0, which are ±∂/∂w. These have the property that their reduction mod
p is non-zero for all prime numbers p.

The (KZ/de Rham) version of the Drinfeld associator is the invertible
power series Φ(X0, X1) ∈ C〈〈X0, X1〉〉 obtained by taking the regularized
value of the transport (17.1) above on the path [0, 1]. It begins:

Φ(X0, X1) = 1 − ζ(2)[X0, X1] + ζ(3)[X0, [X0, X1]] + ζ(1, 2)[[X0, X1], X1]
− ζ(4)[X0, [X0, [X0, X1]]] − ζ(1, 3)[X0, [[X0, X1], X1]]

− ζ(1, 1, 2)[[[X0, X1], X1], X1] + 1
2ζ(2)2[X0, X1]2 + · · ·
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where, for positive integers n1, . . . , nr, where nr > 1,

ζ(n1, . . . , nr) =
∑

0<k1<···<kr

1
kn1

1 kn2
2 . . . knr

r

.

These are the multiple zeta numbers. They generalize the values of the Rie-
mann zeta function at positive integers. An explicit formula for Φ(X0, X1)
is given in [23, 10].12 All coefficients are rational multiplies of multiple zeta
values.

Several (not all) of its basic properties are summarized in the following
result:

Theorem 17.1 (Drinfeld). The Drinfeld associator Φ satisfies:

(i) Φ(X0, X1)Φ(X1, X0) = 1
(ii) In the ring C〈〈X0, X1, X∞〉〉/(X0 + X1 + X∞) we have

Φ(X0, X1)eiπX1Φ(X1, X∞)eiπX∞Φ(X∞, X0)eiπX0 = 1.

The normalized value of T on the unique real path from w = 0 to w = 1
is Φ(X0, X1). View the symmetric group S3 as Aut{0, 1,∞}. The action of
the automorphisms of P1−{0, 1,∞} on the cusps determines an isomorphism

Aut(P1, {0, 1,∞}) → Aut{0, 1,∞}.

Let it act on {X0, X1, X∞} by permuting the indices. Since the connection
is invariant under the S3-action on P1 − {0, 1,∞}, we have, for example, the
following values of the normalized transport on the real paths:

T norm([1,∞]) = Φ(X1, X∞), T norm([0,∞]) = Φ(X0, X∞),

where [0,∞] is the path from 0 to ∞ along the negative real axis.

17.1. The fundamental groupoid of P1 − {0, 1,∞}

Consider the category whose objects are the 6 tangent vectors of P1 defined
above and whose morphisms are homotopy classes from one tangent vector to

12To get this formula for Φ(X0, X1), one has to reverse the order of all monomials
— equivalently, replace each bracket [U, V ] by its negative −[U, V ]. This is because
Furusho uses the opposite convention for path multiplication.
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Figure 5: The fundamental groupoid of P1 − {0, 1,∞}.

another.13 Denote it by Π(P1, V ). It is generated by the paths shown in the
diagram. As above, a good topological model is to replace P1 − {0, 1,∞} by
the real oriented blow-up of P1 at {0, 1,∞}, which is a 3-holed sphere, and
represent the tangent directions by the corresponding points on the boundary
of the blown up sphere.

Define a functor

Θ : Π(P1, V ) →
{
group-like elements of C〈〈X0, X1〉〉

}
by taking the positively oriented semi-circle about a ∈ {0, 1,∞} to e(Xa/2)
and the real interval from a to b to Φ(Xa, Xb). Drinfeld’s relations imply that
Θ is well-defined.

This restricts to a group homomorphism Θ�v : π1(P1 − {0, 1,∞}, �v) → P
for each of the 6 distinguished tangent vectors �v.

18. The limit MHS on π1(E′
∂/∂q, ∂/∂w)un

The computations of Section 12.2 imply that the restriction ωE′
0

of the KZB
connection to E′

0 = P1 − {0, 1,∞} is obtained from ωKZ by composing it

13That is, the path starts with one tangent vector and ends with the negative
of the second. Such a path γ must also satisfy γ(t) /∈ {0, 1,∞} when 0 < t < 1.
Composition of two such homotopy classes of paths can be defined when the second
path begins at the tangent vector where the first ends.
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with the ring homomorphism

C〈〈X0, X1, X∞〉〉/(X0 + X1 + X∞) ↪→ C〈〈T,A〉〉

defined by

X0 �→ R0 =
(

T

eT − 1

)
· A,

X1 �→ R1 = [T,A],

X∞ �→ R∞ =
(

T

e−T − 1

)
· A,(18.1)

which is well defined as R0 + R1 + R∞ = 0.
Since the periods of ωKZ are understood (they are multiple zeta numbers),

this formula will allow us to compute the periods of ωE′
0

in terms of multiple
zeta numbers.

18.1. The cylinder relation

To construct a well-defined homomorphism

π1(E ′
∂/∂q, ∂/∂w) → P,

we need to find all solutions U ∈ L(T,A)∧ of the equation

(18.2) e−UeλR0eUeλR∞ = 1 in Q〈〈T,A〉〉

for all λ ∈ Q×. This relation will be called the cylinder relation. Note that a
solution to the equation with λ = 1 will be a solution for all λ.

Lemma 18.1. For all λ ∈ C, the relation eT eλR0e−T eλR∞ = 1 holds in P.
That is, U = −T is a solution of the cylinder equation.

Proof. It suffices to prove the relation eTR0e
−T = −R∞. Since φ exp(u)φ−1 =

exp(φuφ−1), we have

eTR0e
−T = eT

([
T

eT − 1

]
· A

)
e−T = eadT

([
T

eT − 1

]
· A

)
=

[
TeT

eT − 1

]
· A =

[ −T

e−T − 1

]
· A = −R∞.
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Proposition 18.2. Every solution of the cylinder relation (18.2) is of the
form

eU = eλR0e−T

for some λ ∈ C.

Proof. Suppose that U is a solution of the cylinder equation. Set V =
log(eUeT ). Then V ∈ L(T,A)∧ and eU = eV e−T . The cylinder relation implies
that

eT e−V eR0eV e−T = e−UeR0eU = e−R∞ = eT eR0e−T

so that e−V eR0eV = eR0 . The result follows as the centralizer of R0 in L(T,A)∧
is CR0.

18.2. The homomorphisms π1(E′
∂/∂q, ∂/∂w) → P

The positive real axis determines two points v0 and v∞ on the real oriented
blowup of P1 at {0, 1,∞} — the point v0 lies on the circle at 0 and v∞ lies
on the circle at ∞. There is a natural U(1) action on each of these circles.

Suppose that λ ∈ C∗. Write it in the form reiθ. View E′
λ∂/∂q as the

quotient of the real oriented blow-up of P1 at {0, 1,∞} by

eiφv∞ ∼ ei(θ−φ)v0.

Denote the image of the two identified circles in Eλ∂/∂q by C. One can check
that as λ moves around the unit circle in the positive direction, the identifi-
cation changes by a positive Dehn twist about C. Note that for each λ there
is a natural inclusion

ι : (P1 − {0, 1,∞}, ∂/∂w) → (E′
λ∂/∂q, ∂/∂w)

where in both cases ∂/∂w is in element of the tangent space of 1 ∈ P1.
To define a homomorphism Θλ : π1(E′

λ∂/∂q, ∂/∂w) → P such that the
diagram

π1(P1 − {0, 1,∞}, ∂/∂w)

ι∗

expL(X0, X1)∧

π1(E′
λ∂/∂q, ∂/∂w) Θλ P

commutes, where the right-hand vertical map is defined by (18.1). We need to
give a “factor of automorphy” for the identification. This is the monodromy
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Figure 6: The path torsor of E′
∂/∂q.

along a “path” from eiφv∞ to ei(θ−φ)v0. In order that Θλ be well defined, this
factor of automorphy has to satisfy the cylinder relation.

For λ ∈ C∗, define this factor of automorphy for Θλ to be

λR0e−T := elog λR0e−T .

That is, the (inverse) monodromy in going from the tangent vector λv0 at
0 ∈ P1 to the tangent vector v∞ at ∞ is λR0e−T .

Give C〈〈A, T 〉〉 the Hodge, weight and relative weight filtrations defined
in Section 15.

Proposition 18.3. The (complete Hopf algebra) homomorphism

Θλ : Qπ1(E′
λ∂/∂q, ∂/∂w)∧ → C〈〈T,A〉〉

is an isomorphism after tensoring the source with C. This and the Hodge
and weight filtrations on C〈〈A, T 〉〉 defined in Section 15 define a MHS on
Qπ1(E′

λ∂/∂q, ∂/∂w)∧. This is the canonical limit MHS on the fiber of the uni-
versal enveloping algebra of PPP corresponding to the tangent vector λ∂/∂q +
∂/∂w at the identity of the nodal cubic. Its relative weight filtration is the one
defined in Section 15.

Proof. Observe that Θλ induces a homomorphism H1(E′
λ∂/∂q,Z) → CT⊕CA.

It takes a to 2πiR0 mod I2 = 2πiA and b to log(λR0e−T ) mod I2 = log λA−
T . The homomorphism Θλ is an isomorphism after complexifying as both its
source and target are free and as it induces an isomorphism on I/I2.



Notes on the universal elliptic KZB connection 295

The homomorphism Θλ defines a MHS on Qπ1(E′
λ∂/∂q, ∂/∂w)∧ by pulling

back the Hodge, weight and relative weight filtrations of C〈〈T,A〉〉. To check
that this is the limit MHS associated to λ∂/∂q, it suffices to check that the
induced MHS on H1(Eλ∂/∂q) by Θλ agrees with the canonical limit MHS.
This follows from the discussion above and the fact that the MHS induced
on the image of Qπ1(P1 − {0, 1,∞}, ∂/∂w)∧ by Θλ is its canonical MHS,
which follows from the computations in Section 12.2. The point being that
the limit MHS on H1(Eλ∂/∂q) corresponding to λ∂/∂q determines the factor
of automorphy. The computations at the beginning of the proof imply that
the MHS on H1(Eλ∂/∂q) induced by Θλ agrees with the limit MHS that was
computed in Lemma 15.3.

Part 4. The Q-de Rham structure

Levin and Racinet [24, §5] sketch an argument to show that the elliptic KZB
connection is defined over Q. This part is an expanded exposition of a special
case of their computation. In particular, we explicitly compute (Thm. 20.2)
the restriction of the canonical extension of the universal elliptic KZB connec-
tion to M1,�1 in terms of the Q-algebraic coordinates on M1,�1. When reading
[24, §5], it is important to note that that the restriction of PPP to an elliptic
curve E is not algebraically trivial. Levin and Racinet trivialize the restric-
tion of PPP to E′. The Q-connection they write down is on the corresponding
trivial extension of PPP|E′ to E. It does not have a regular singular point at 0.
However, it is important in applications, such as those in [18], to know that
the canonical extension PPP and its connection are defined over Q. This has
been verified by Ma Luo and will appear in his Duke PhD thesis.

19. The Q-DR structure on H over M1,�1

The first step is to compute the Q-DR structure on H and its canonical
extension H. Since M1,�1 is the moduli space of elliptic curves endowed with
a non-zero abelian differential, the Hodge bundle F 1H is trivialized by its
tautological section. We show that the canonical extension of H over M1,�1
is trivial and that it and its connection are defined over Q. Material in this
section must surely be well known and classical (19th C).

19.1. M1,�1 as a Q-scheme

As explained in Section 1 (also see [15]), M1,�1 is the quotient L′
−1 of C × h

by the action of SL2(Z) which acts with factor of automorphy (cτ + d)−1. It
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is also the complement in C2 of the discriminant locus Δ = 0, where

Δ = u3 − 27v2.

The quotient mapping C× h → C2 − Δ−1(0) is

(ξ, τ) �→
(
ξ4g2(τ), ξ6g3(τ)

)
,

where
g2(τ) = 20(2πi)4G4(τ) and g3 = 7

3(2πi)6G6(τ).

The point (u, v) corresponds to the pair (Eu,v, ωu,v) where Eu,v is the elliptic
curve y2 = 4x3 −ux− v and ωu,v is the abelian differential dx/y. This elliptic
curve has discriminant (divided by 16) equal to

Δ := u3 − 27v2 = ξ12(g3
2 − 27g2

3) = (2πiξ)12Δ0,

where Δ0 = q
∏

n≥1(1−qn)24 is the Ramanujan τ -function. We will view M1,�1
as the Q-scheme SpecQ[u, v,Δ−1].

19.2. Trivializing H over M1,�1

To trivialize H, we need two linearly independent sections. The first is given
by the abelian differential dx/y. The second by xdx/y, a differential of the
second kind.

Set

ητ = ℘(z, τ)dz =
(

1 + 2
∞∑

m=1

G2m+2(τ)
(2m)! (2πiz)2m+2

)
dz

z2 .

This is a differential of the second kind on Eτ .

Proposition 19.1. If γ ∈ SL2(Z), then ηγτ = (cτ + d)ητ and∫
Eτ

ωτ � ητ = 2πi.

In particular, H1(Eτ ;C) = Cωτ ⊕ Cητ for all τ .

Proof. The first assertion follows easily from the definition of ητ . The second
formula follows from a routine residue computation:

Choose a closed disk D = {z : |z| ≤ R} in Eτ about the origin. Let F be
a holomorphic function on D satisfying F ′(z) = ℘(z). Let ϕ : Eτ → R be a
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smooth function that vanishes outside the annulus A = {z : R/3 < |z| < R/2}
and is identically 1 when |z| < R/3. The 1-form

ψ := ητ − d(ϕF (z))

is smooth and closed. Since it agrees with ητ outside A, it has the same
periods as ητ and thus represents the same cohomology class. Since ωτ ∧ψ is
supported in D, we have

〈ωτ � ητ , Eτ 〉 =
∫
Eτ

ωτ ∧ ψ =
∫
D
dz ∧ ψ =

∫
∂D

zψ =
∫
∂D

z℘(z)dz = 2πi.

Remark 19.2. This implies that the exact sequence

0 → L → H → L−1 → 0

over M1,1 splits; the copy of L−1 in H is spanned locally by ητ . We will see
below that this sequence also splits over M1,1. This splitting also follows from
the vanishing of H1(M1,1,L2) as there are no modular forms of weight 2 and
level 1.

Corollary 19.3. The sections ξ−1ωτ and ξητ of H over C × h are SL2(Z)-
invariant.

For a lattice Λ in C, set

℘Λ(z) := 1
z2 +

∑
λ∈Λ
λ	=0

[ 1
(z − λ)2 − 1

λ2

]
.

The Weierstrass ℘-function ℘(z, τ) defined in Section 8.4 is ℘Λτ (z). One checks
easily that

℘ξ−1Λ(ξ−1z) = ξ2℘Λ(z).

Multiplication by ξ−1 induces an isomorphism Eτ → C/ξ−1Λτ under
which dz and ℘ξ−1Λτ

dz pull back to ξ−1ωτ and ξητ , respectively.

Proposition 19.4. If (u, v) = (ξ4g2(τ), ξ6g3(τ)
)
, then

(i) the map
z �→

[
℘ξ−1Λτ

(z), ℘′
ξ−1Λτ

(z), 1
]

from C/ξ−1Λτ to P2 induces an isomorphism C/ξ−1Λτ → Eu,v;
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(ii) under this isomorphism

dx/y = dz = ξ−1ωτ and xdx/y = ℘ξ−1Λτ
(z)dz;

(iii) under the isomorphism Eτ → C/ξ−1Λτ → Eu,v, dx/y and xdx/y pull
back to ξ−1ωτ and ξητ , respectively.

Corollary 19.5. For each (u, v) ∈ M1,�1, the elements dx/y and xdx/y of
the fiber H1(Eu,v) of H are linearly independent.

Denote these sections of H over M1,�1 by T̂ and Ŝ, respectively. They
trivialize H and determine the extension

H := OM1,�1
Ŝ ⊕OM1,�1

T̂

of H to M1,�1.

Proposition 19.6. The connection on H with respect to this trivialization is

∇0 = d +
(
− 1

12
dΔ
Δ ⊗ T̂ + 3

2
α

Δ ⊗ Ŝ
) ∂

∂T̂
+

(
− u

8
α

Δ ⊗ T̂ + 1
12

dΔ
Δ ⊗ Ŝ

) ∂

∂Ŝ

where α = 2udv−3vdu and Δ = u3−27v2. This form is logarithmic on M1,�1
with nilpotent residue along Δ = 0 and is therefore the canonical extension of
H over M1,�1. It is defined over Q.

Sketch of Proof. We need to understand how the classes dx/y and xdx/y
depend on (u, v). Each of the 1-forms

∂

∂u

(dx
y

)
= 1

2
xdx

y3 ,
∂

∂v

(dx
y

)
= 1

2
dx

y3 ,

∂

∂u

(xdx
y

)
= 1

2
x2dx

y3 ,
∂

∂v

(xdx
y

)
= 1

2
xdx

y3

is a differential of the second kind on each Eu,v. So the cohomology class of
each is a linear combination of the classes of dx/y and xdx/y.

The differentials d(1/y), d(x/y) and d(x2/y), the relation 2ydy = (12x2−
u)dx, and some linear algebra give

(
dx
y3

xdx
y3

x2dx
y3

)
≡ 3

Δ
(
dx
y

xdx
y

)(
3v −u2/6 uv/4
2u −3v u2/6

)
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where ≡ means congruent mod exact forms of the second kind, and thus equal
in cohomology.

Now

∇0
(
T̂ Ŝ

)
= ∇0

(
dx
y

xdx
y

)
= 1

2
(
xdx
y3

x2dx
y3

)
du + 1

2
(
dx
y3

xdx
y3

)
dv

= 3
2Δ

(
dx
y

xdx
y

)(
−u2du/6 + 3vdv uvdu/4 − u6dv/6
−3vdu + 2udv u2du/6 − 3vdv

)

=
(
T̂ Ŝ

)(
− 1

12
dΔ
Δ − uα

8Δ
3α
2Δ

1
12

dΔ
Δ

)

The forms α/Δ and uα/Δ are logarithmic. One can prove this directly.
Alternatively, we can use the fact [6] that a meromorphic form ϕ on C2 has
logarithmic singularities along Δ = 0 if and only if Δϕ and Δdϕ are both
holomorphic along Δ = 0. This holds in our case as

Δd(α/Δ) = −du ∧ dv and Δd(uα/Δ) = udu ∧ dv.

Similarly, one checks that wϕ and wdϕ are holomorphic along the line at
infinity, where w = 0 is a local defining equation of the line at infinity, then ϕ
is logarithmic along the line at infinity. This is easily checked when ϕ is α/Δ
and uα/Δ.

This implies that the sequence

0 → L → H → L−1 → 0

splits over M1,�1. The lift of L−1 in H is OM1,�1
Ŝ.

19.3. Transcendental version

We re-derive the formula for the connection in terms of the coordinates
(ξ, τ) ∈ C×h. This will yield some formulas that are useful in computing the
algebraic version of the universal elliptic KZB connection.

As observed above, if (u, v) = (ξ4g2(τ), ξ6g3(τ)), then dx/y = ξ−1ωτ .
Since T̂ is the class of dx/y, we have

T̂ = ξ−1T.
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Proposition 19.7. We have ητ = (2πi)2(A− 2G2(τ)T ) so that

Ŝ = ξητ = (2πi)2ξ(A− 2G2(τ)T ).

Proof. Using the notation of Example 3.4, we have

(
a t

)(
1

8π2G2(τ)

)
=

(
a′ t′

)(
(cτ + d)−1 0

2πic cτ + d

)(
1

8π2G2(τ)

)

= (cτ + d)−1
(
a′ t′

)(
1

8π2G2(γτ)

)
.

From this it follows that

A− 2G2(τ)T = (cτ + d)−1(A′ − 2G2(γτ)T ′).

Consequently, A − 2G2(τ)T is a section of H that spans a copy of L−1 over
h. But ητ is another such section. It follows that ητ is a holomorphic multiple
of A− 2G2(τ)T . This multiple can be determined by pairing with ωτ . Since

〈T,A− 2G2(τ)T 〉 = 〈ωτ , (2πi)−1a〉 = (2πi)−1

and

〈T, ητ 〉 =
∫
Eτ

ωτ � ητ = 2πi,

it follows that

ητ = (2πi)2(A− 2G2(τ)T ).

There are several ways to prove the second assertion. One is to observe that

〈T̂ , Ŝ〉 = 〈dx
y
,
xdx

y
〉 = 2πi = 〈T, S〉 = 〈ξ−1T, ξS〉 = 〈T̂ , ξS〉.

We’ve already seen in Example 5.2 that the connection ∇0 on H over h

with respect to the framing A, T is given by

∇0 = d + 2πiA ∂

∂T
⊗ dτ.



Notes on the universal elliptic KZB connection 301

Proposition 19.8. With respect to the framing Ŝ and T̂ of H over M1,�1,
the connection on H is

∇0 = d +
((

4πiG2 dτ − dξ

ξ

)
⊗ T̂ + 2πi

(2πiξ)2 dτ ⊗ Ŝ
) ∂

∂T̂

−
(
(2πiξ)2(8πiG2

2 + 2G′
2) dτ ⊗ T̂ +

(
4πiG2 dτ − dξ

ξ

)
⊗ Ŝ

) ∂

∂Ŝ

Proof. Since S/(2πi)2 = A− 2G2T ,

∇0
(
T S/(2πi)2

)
= ∇0

(
T A

)(
1 −2G2
0 1

)
+

(
T A

)(
0 −2G′

2
0 0

)
dτ

=
(
T A

)((
0 0

2πi 0

)(
1 −2G2
0 1

)
+

(
0 −2G′

2
0 0

))
dτ

=
(
T S/(2πi)2

)(
1 2G2
0 1

)(
0 −2G′

2
2πi −4πiG2

)
dτ

=
(
T S/(2πi)2

)(
4πiG2 −(8πiG2

2 + 2G′
2)

2πi −4πiG2

)
dτ

Rescaling, we have

∇0
(
T S

)
=

(
T S

)(
4πiG2 −(2πi)2(8πiG2

2 + 2G′
2)

(2πi)−1 −4πiG2

)
dτ

Denote the 2 × 2 matrix of 1-forms in this expression by Bdτ . Then

∇0
(
T̂ Ŝ

)
= ∇0

(
T S

)(ξ−1 0
0 ξ

)
+

(
T S

)(−ξ−2 0
0 1

)
dξ

=
(
T̂ Ŝ

) [(
ξ 0
0 ξ−1

)
B

(
ξ−1 0
0 ξ

)
dτ +

(
ξ 0
0 ξ−1

)(
−ξ−2 0

0 1

)
dξ

]

=
(
T̂ Ŝ

)(−dξ
ξ + 4πiG2(τ)dτ −2(2πiξ)2(4πiG2(τ)2 +G′

2(τ))dτ
2πi

(2πiξ)2 dτ
dξ
ξ − 4πiG2(τ)dτ

)

Comparing this formula with that in Proposition 19.6, we conclude:

(19.1) dξ

ξ
− 4πiG2(τ)dτ = 1

12
dΔ
Δ and 2πi

(2πiξ)2 dτ = 3α
2Δ .
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Taking the quotient of the two off diagonal entries of the connection matrix,
we conclude that

G4(τ) = 6
5
(
2G2(τ)2 + G′

2(τ)/2πi
)
.

This can also be verified by observing that the RHS is a modular form of
weight 4 and then computing value of both sides at q = 0.

20. The Q-DR structure on PPP over M1,�1

The bundle PPP over M1,�1 is the trivial bundle whose fiber is L(Ŝ, T̂ )∧. We will
define a Q structure on it — that is, a Q structure on its truncations by the
terms of its lower central series.

Some preliminary observations will be helpful. Since the cup product of
the rational differentials dx/y and xdx/y is 2πi, it is natural to multiply their
Poincaré duals by (2πi)−1 to obtain a Q-de Rham basis of the first homology.
Motivated by this, we define

T̂0 = T̂ /2πi and Ŝ0 = Ŝ/2πi.

Since both basis elements of H are multiplied by the same constant, the
formula for the connection on H given in Proposition 19.6 remains valid when
we replace Ŝ by Ŝ0 and T̂ by T̂0.

Set pQ = LQ(Ŝ0, T̂0)∧. Define the Q-structure on PPP to be M1,�1/Q × pQ.
Define derivations ε̂2m of pQ by

ε̂2m =

⎧⎪⎨⎪⎩
−Ŝ0

∂

∂T̂0
m = 0;

T̂ 2m−1
0 · Ŝ0 −

∑
j+k=2m−1

j>k>0
(−1)j [T̂ j

0 · Ŝ0, T̂
k
0 · Ŝ0] ∂

∂Ŝ0
m > 0.

Lemma 20.1. For all m ≥ 0, we have (2πiξ)2m−2ε̂2m = ε2m in Der p.

Proof. First observe that

ε2m(T ) = −T 2m · A and ε2m(A) =
∑

j>k≥0
j+k=2m−1

(−1)j+1[T j · A, T k · A]

and

ε̂2m(T̂0) = −T̂ 2m
0 · Ŝ0 and ε̂2m(Ŝ0) =

∑
j>k≥0

j+k=2m−1

(−1)j+1[T̂ j
0 · Ŝ0, T̂

k
0 · Ŝ0].
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One checks easily that, when m ≥ 1, ε2m(T ) = −T 2m · (A− 2G2T ) and

ε2m(A− 2G2T ) =
∑

j>k≥0
j+k=2m−1

(−1)j+1[T j · (A− 2G2T ), T k · (A− 2G2T )].

The result follows by rescaling as T̂0 = T/(2πiξ) and Ŝ0 = 2πiξ(A− 2G2T ).

The connection ∇0 on H defines, and will be viewed as, a Q-rational
connection on each graded quotient of PPP .

Theorem 20.2. With respect to the framing of PPP over M1,�1 described above,
the universal elliptic KZB-connection ∇ is given by

∇ = ∇0 + 1
12

dΔ
Δ ⊗ ε̂2 +

∑
m≥2

3
(2m− 2)!

p2m(u, v)(3vdu− 2udv)
Δ ⊗ ε̂2m

where Δ = u3 − 27v2 is the discriminant and where p2m(u, v) ∈ Q[u, v] is the
polynomial characterized by (2πiξ)2mG2m(τ) = p2m(u, v). The Hodge bundles
F pPPP are all defined over Q.

The polynomial p2m(u, v) is weighted homogeneous of weight 2m in u
and v, where u is given weight 4 and v is given weight 6. The polynomials of
weight up to 24 are:

p4(u, v) = 1
20u

p6(u, v) = 3
7v

p8(u, v) = 3
10u

2

p10(u, v) = 108
11 uv

p12(u, v) = 756
65 u3 + 16200

91 v2

p14(u, v) = 1296uv2

p16(u, v) = 174636
85 u4 + 1166400

17 uv2

p18(u, v) = 9471168
19 u3v + 256608000

133 v3

p20(u, v) = 25147584
25 u5 + 678844800

11 u2v2
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p22(u, v) = 10671720192
23 u4v + 103296384000

23 uv3

p24(u, v) = 73581830784
65 u6 + 1410877440000

13 u3v2 + 15547365504000
91 v4

Proof. With respect to the framing A, T of PPP , the connection is ∇ = d + ω′

where ω′ is the form (13.1). Since the change of frame is homogeneous, the
transformed connection is of the form ∇ = ∇0 + ω′. We just need to express
ω′ in the frame given by Lie words in Ŝ0, T̂0. Using the identities (19.1) and
the preceding lemma we have

ω′ = −
(

2G2(τ)dq
q

− dξ

ξ

)
⊗ ε2 −

∞∑
m=2

2
(2m− 2)!G2m(τ)dq

q
⊗ ε2m

= 1
12

dΔ
Δ ⊗ ε̂2 −

∑
m≥2

2
(2m− 2)!(2πiξ)

2mG2m(τ) 2πi
(2πiξ)2 dτ ⊗ ε̂2m

= 1
12

dΔ
Δ ⊗ ε̂2 −

∑
m≥2

3
(2m− 2)!

p2m(u, v)α
Δ ⊗ ε̂2m

The last assertion follows from the fact that F pPPP is trivial and consists of
those Lie words whose degree in T̂0 is ≥ −p.

21. The Q-de Rham structure on F 2n+1H1(M1,1, S
2nH)

Here we compute the Q-structure on F 2n+1H1
dR(M1,1, S

2nH). The computa-
tion of the R-de Rham structure on all of H1(M1,1, S

2nH) can be found in
[17, §17.2].

The starting point is the isomorphisms

H0(M1,1,L2n+2) → H0(Ω1
M1,1

(P ) ⊗ F 2nS2nH) → F 2n+1H1(M1,1, S
2nH),

where P denotes the cusp q = 0. The second isomorphism takes a 1-form to
its cohomology class. The first follows from the isomorphisms L ∼= F 1H and
Ω1

M1,1
(P ) ∼= L2, which together induce an isomorphism

L2n+2 ∼= Ω1
M1,1

(P ) ⊗ F 2nS2nH.

We now explain the Q-structure. Recall that if f is a modular form of
weight 2n + 2 of SL2(Z), then

ωf := f(τ)w2ndτ ∈ E1(h) ⊗ S2nH
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is an SL2(Z)-invariant 1-form on h, where w := 2πiT is the section of H×h →
h that takes the value 2πiωτ at τ ∈ h and SL2(Z) acts on H = CA ⊕ CT
via the factor of automorphy (9.2).14 It gives a framing of F 1H over h. The
section w extends to a framing of F 1H over the q-disk.

Denote the space of modular forms of SL2(Z) of weight m whose Fourier
coefficients lie in the subfield F of C by Mm,F . These form a graded ring M∗,F
isomorphic to F [G4, G6].

Proposition 21.1. The Q-structure on F 2n+1H1
dR(M1,1, S

2nH) is

{f(q)w2n dq

q
: f(q) ∈ M2n+2,Q}.

Proof. Embed Eτ into P2 via the mapping

z + Λτ �→ [℘τ (z)/(2πi)2, ℘′
τ (z)/(2πi)3, 1].

The image is the plane cubic y2 = 4x3 − ux− v where

u = g2(τ)/(2πi)4 = 20G4(τ) and v = g3(τ)/(2πi)6 = 7
3G6(τ).

This curve has discriminant Δ0(τ), where Δ0 denotes the normalized cusp
form of weight 12.

With this normalization dx/y = 2πiωτ = w(τ).15 We choose it because
the value of the section w at q = 0 is dw/w, where w is the parameter on
the nodal cubic that maps 0 and ∞ to the node and 1 to the identity. (Cf.
Exercise 47 in [15].)

We regard w as the section dx/y of F 1H over M1,�1 = A2
Q−{u3 − 27v2 =

0}. It is defined over Q. Since x has weight 2 and y weight 3, it has weight
−1 under the Gm action. If h(u, v) ∈ Q[u, v] is a polynomial of weight 2n+ 2
(where u has weight 4 and v weight 6), then

h(u, v)
u3 − 27v2 (2udv − 3vdu)w2n

is a Q-rational, Gm-invariant section of Ω1
M1,�1/Q

(logD) ⊗ F 2nS2nH over
M1,�1/Q, where D denotes the discriminant locus u3 − 27v2 = 0. Since
M1,1/Q = Gm\\M1,�1/Q it descends to a section of Ω1

M1,1/Q
(P ) ⊗ F 2nS2nH.

14Recall the definitions (11.1).
15This would have been a better normalization to use in Part 4.
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The identity (19.1) implies that the pullback of this form along the map
h → M1,�1 defined by τ �→ (20G4(τ), 7G6(τ)/3) is

2
3h

(
20G4(τ), 7G6(τ)/3

)
w2n dq

q
.

The result follows as M2n+2,Q is isomorphic to the polynomials in G4 and G6
with rational coefficients.

Appendix A. Vanishing of N(R0)

Here we give an elementary proof of the vanishing of Nq(R0) established in
Corollary 15.2. It does not use limit mixed Hodge structures. Instead we
deduce the vanishing from an identity involving Bernoulli numbers.

For non-negative integers, define polynomials

ha,b(x, y) = x2a−1y2b − x2by2a−1 + xy(x + y)2b−1(y2a−2 − x2a−2)

= xy(y − x)
(
x2a−2y2b−2 + (x + y)2b−1 ∑

i+j=2a−3
i,j≥0

xiyj
)

in commuting indeterminants x and y. Note that

h0,n(x, y) = −
∑

i+j=2n−1
i,j≥0

[( 2n
i + 1

)
−

(
2n

j + 1

)]
xiyj

for all n ≥ 1.

Theorem A.1. For all n ≥ 1,

∑
a+b=n
a>0

(2a− 1)
(

2n
2a

)
B2aB2b

B2n
ha,b(x, y)

=
∑

i+j=2n−1
i,j≥0

[( 2n
i + 1

)
−

(
2n

j + 1

)]
xiyj ∈ Z[x, y].

Equivalently, ∑
a+b=n
a,b≥0

(2a− 1) B2a

(2a)!
B2b

(2b)! ha,b(x, y) = 0.
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Proof. It suffices to show that

(A.1)
∑
n≥0

∑
a+b=n
a,b≥0

(2a− 1) B2a

(2a)!
B2b

(2b)! ha,b(x, y) = 0.

Observe that

∑
n≥0

∑
a+b=n
a,b≥0

(2a− 1) B2a

(2a)!
B2b

(2b)! u
2a−1v2b

=
(∑

a≥0
(2a− 1) B2a

(2a)!u
2a−1

)(∑
b≥0

B2b

(2b)!v
2b
)

= 4u
sinh2(u/2)

(
v

ev − 1 + v

2

)
= ueu

(eu − 1)2
(

v

ev − 1 + v

2

)
.

Denote this function of (u, v) by F (u, v). The series (A.1) is then

F (x, y) − F (y, x) + x

x + y
F (y, x + y) − y

x + y
F (x, x + y)

which is easily to vanish by elementary algebraic manipulations.

We finish by showing that this identity is equivalent to the vanishing of
Nq(R0). For this we need to relate polynomials to the free Lie algebra L(T,A).
For this we use the Levin-Racinet calculus [24, §3.1]. Recall from Section 9.4.1
that for U, V ∈ L(A, T ),

xrys ◦ (U, V ) = [T r · U, T s · V ].

This extends linearly to an action f(x, y) ◦ (U, V ) of polynomials f(x, y) in
commuting indeterminants on ordered pairs of elements of L(T,A). When U
and V are equal, one has the identity f(x, y) ◦ (U,U) = −f(y, x) ◦ (U,U), so
that

2f(x, y) ◦ (U,U) = (f(x, y) − f(y, x)) ◦ (U,U).

In this case we need only consider polynomials f(x, y) satisfying f(x, y) +
f(y, x) = 0.

The significance of the polynomials ha,b(x, y) is given by:
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Lemma A.2. For all a ≥ 0 and b ≥ 0 with a + b > 0,

2 ε2a(T 2b · A) = ha,b(x, y) ◦ (A,A).

Proof. Observe that ha,b(x, y) = fa,b(x, y) − fa,b(y, x) where

fa,b(x, y) = xa(x + y)2b−1(xa − (−y)a
)
− x2a−1((x + y)2b − y2b).

The result now follows from the easily verified identity

ε2a(T 2b · A) = fa,b(x, y) ◦ (A,A).

Theorem A.1 implies the vanishing of Nq(R0):

Nq(R0) =
∑
a≥0

∑
b≥0

(2a− 1) B2a

(2a)!
B2b

(2b)! ε2a(T
2b · A)

= 1
2
(∑

a≥0

∑
b≥0

(2a− 1) B2a

(2a)!
B2b

(2b)! ha,b(x, y)
)
◦ (A,A)

= 0.

Appendix B. The universal elliptic curve over Bl+0 D

Here we justify the claim, made in Section 16, that the fiber of the universal
elliptic curve over eiθ∂/∂q is obtained from the real oriented blowup of P1 at
{0,∞} by identifying its two boundary components with a suitable twist.

The map [0, 1)×S1 → D that takes (r, θ) to eiθ is the real oriented blowup
Blo0 D → D of the disk. More generally, the map

S1 × [0, 1] → P1 defined by (φ, t) �→ [teiφ, 1 − t]

is Blo0,∞ P1 → P1. With this identification, the inclusion C∗ → Blo0,∞ P1 takes
seiφ to

(
φ, s/(1 + s)

)
.

The fiber of the universal elliptic curve over q = reiθ is the quotient of

A := {(w, q) ∈ C∗ × D∗ :
√
|q| ≤ |w| ≤ 1/

√
|q|}

obtained by glueing w to qw when |w| = 1/
√
|q|. Write w = seiφ so that we

can identify A with

{(s, φ, reiθ) ∈ R× S1 × D∗ :
√
r ≤ s ≤ 1/

√
r}.
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With this identification, (1/
√
r, φ, reiθ) is glued to (

√
r, φ + θ, reiθ).

The function

h(r, s) =
( s

1 + s
−

√
r

1 +
√
r

)( 1
1 +

√
r
−

√
r

1 +
√
r

)−1

induces homeomorphisms h(r, ) : [
√
r, 1/

√
r] → [0, 1] for all r ≥ 0. It has

inverse k(r, ), where

k(r, t) =
√
r − (

√
r − 1)t

1 + (
√
r − 1)t

Define an equivalence relation on B := S1 × S1 × [0, 1) × [0, 1) by

(φ, θ, 1, r) ∼ (φ + θ, θ, 0, r).

Set B = B/∼. The map (φ, θ, t, r) → (r, θ) defines a projection π : B → Blo0 D.
This is a torus bundle over Blo0 D. Its fiber Bθ over (0, θ) ∈ Blo0 D is the
quotient of Blo0,∞ P1 obtained by identifying the two boundary components
by a twist by θ. The inclusion A ↪→ B defined by (s, φ, reiθ) �→ (φ, θ, h(r, s), r)
induces a map ED∗ → B that commutes with the projections to D and is a
homeomorphism into its image.

The map B → C∗ × D that takes (φ, θ, t, r) to (k(r, t)eiφ, reiθ) induces a
map B → ED such that the diagram

B ED

Blo0 D D

commutes. For each θ ∈ S1, the composite C∗ ↪→ Blo0,∞ P1 → Bθ → E0 is
the natural inclusion of the smooth locus of the nodal cubic E0 given by the
parameter w = seiφ. The map Blo0,∞ P1 → Bθ → E0 collapses the boundary
of Blo0,∞ P1 to the double point of E0.
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