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Isomonodromic deformations of logarithmic connections
and stable parabolic vector bundles
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Abstract: We consider irreducible logarithmic connections (E, δ)
over compact Riemann surfaces X of genus at least two. The un-
derlying vector bundle E inherits a natural parabolic structure
over the singular locus of the connection δ; the parabolic struc-
ture is given by the residues of δ. We prove that for the universal
isomonodromic deformation of the triple (X, E, δ), the parabolic
vector bundle corresponding to a generic parameter in the Teich-
müller space is parabolically stable. In the case of parabolic vector
bundles of rank two, the general parabolic vector bundle is even
parabolically very stable.
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1. Introduction

Let (X, D) be a compact Riemann surface of genus g with n (ordered) marked
points D = (x1, · · · , xn). The monodromy functor produces an equivalence
between the category of holomorphic connections (E0 , δ0) on X \D and the
category of equivalence classes of linear representations of π1(X \D, x0). Here
the morphisms are isomorphisms of vector bundles with connections on one
side and conjugation of representations on the other side; this is an example
of Riemann–Hilbert correspondence. Moreover, given (E0, δ0), there exists a
logarithmic connection (E, δ) on X, singular over D, which extends (E0, δ0).
Indeed, one can choose for example a Deligne extension [12].
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The classical Riemann-Hilbert problem takes X to be the projective line
CP1 and asks whether it is possible to choose (E, δ) extending (E0, δ0) such
that E is the trivial holomorphic vector bundle over X = CP1. The answer
to it is no in general; the first counterexample was constructed by Bolibruch
in [2]. However, the Riemann-Hilbert problem is known to have a positive
answer when rank(E0) = 2, or when the connection δ0 is irreducible [27],
[11], [9], [22].

An appropriate formulation for the classical Riemann-Hilbert problem in
higher genus is to ask whether (E , δ) can be chosen such that E is semistable
of degree 0. Indeed, with that formulation, the general negative answer as
well as the sufficient conditions for positive answers remain valid, as proven
in [14] and [15].

On the other hand, the fundamental group π1(X \D, x0) does not depend
on the complex structure of X. Let us consider (X, D) as a fiber of the
universal family of curves over the Teichmüller space Tg,n of genus g surfaces
with n marked points:

(X,D) (X ,D)

p

{t0} Tg,n
The fundamental group of each punctured fiber can be identified with the
fundamental group π1(X \ D, x0), because Tg,n is contractible. Given any
(E, δ) on (X, D), it extends to a flat logarithmic connection (E , δ′) over X ,
singular over D; this flat logarithmic connection (E , δ′) is called the (uni-
versal) isomonodromic deformation of (E, δ) (see Section 4.2). It is called
isomonodromic because with respect to a convenient identification of the fun-
damental group of the fibers, the corresponding family of monodromy repre-
sentations is constant.

We are led to another Riemann–Hilbert type problem: Given any (E, δ),
is there a parameter t ∈ Tg,n such that for the logarithmic connection (E t, δt)
on p−1(t) induced by the isomonodromic deformation, the vector bundle E t is
semistable? The partial answers in [10] and [19] to this question were gener-
alized in [4] to the following. If the genus g of X is at least 2 and δ is irre-
ducible, then for generic parameters t ∈ Tg,n, the vector bundle E t is not only
semistable but stable. In case rank two, the general vector bundle is even very
stable [5]. This remains valid, for an appropriate generalization of the univer-
sal isomonodromic deformation in case δ has irregular singularities [19], [6].
Remark 1.1. Note that the degree of the vector bundle is a topological in-
variant and thus remains constant along the deformation. If one wishes to



194 Indranil Biswas et al.

investigate the above question in the case (E, δ) is reducible, i.e., there is a
subbundle 0 � F � E preserved by δ, then one has to impose that F is not
a destabilizing bundle. Under this additional assumption, the proof in [4] still
applies.

On the other hand, given a logarithmic connection (E, δ) on a curve,
there is a natural parabolic structure on E supported by the singularities
of the connection such that the parabolic structure at a singular point of
the connection is given by the residue of the logarithmic connection at that
point (see Section 2.4). Therefore, underlying the universal isomonodromic
deformation is also a family of parabolic vector bundles parametrized by
Tg,n. Our aim here is to investigate the above questions on stability and very
stability of the general underlying bundle in this context of parabolic vector
bundles (see Sections 2.3 and 6.1).

We prove the following result in two steps (see Theorem 5.2 and Theo-
rem 6.2).

Theorem 1.2. Let X be a compact Riemann surface of genus g ≥ 2, and
let D be a divisor on X. Let δ be a logarithmic connection, singular over
D, on a holomorphic vector bundle E −→ X. Let (E , δ′) be its universal
isomonodromic deformation, with

E −→ X p−→ Tg,n .

Denote E t := E|Xt , where Xt := p−1 (t). Denote by E t
� the corresponding

parabolic vector bundle over Xt with parabolic structure induced by δ′|Et . Then
there are closed analytic subsets

Y ⊂ Y ′ ⊂ Y ′′ ⊂ Tg,n

such that the following statements hold:

• for every t ∈ Tg,n \ Y, the parabolic vector bundle E t
� is parabolically

semistable;
• for every t ∈ Tg,n \ Y ′, the parabolic vector bundle E t

� is parabolically
stable;

• for every t ∈ Tg,n \ Y ′′, the parabolic vector bundle E t
� is parabolically

very stable.

If δ is irreducible, then the analytic subsets Y and Y ′ of Tg,n are proper, and
their codimensions are bounded as follows

codim (Y) ≥ g ; codim (Y ′) ≥ g − 1 .
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If δ is irreducible and E is of rank 2, then the analytic subset Y ′′ is also
proper.

The proof is similar to the non-parabolic case treated in [4] and [5]: the
fact that the sets Y ,Y ′,Y ′′ ⊂ Tg,n are analytically closed is known from [17].
The main issue is proving that these are proper subsets. We proceed with a
deformation-theoretic approach.

This paper is the final one in a series examining the behaviour of “generic
properties” such as stability under isomonodromic deformation; the general
gist is that isomonodromic deformation is in some sense transversal to the
unstable locus. In previous papers, the connection was also allowed to have
singularities, but these were basically independent of the structure examined.
in the set-up considered here, the parabolic structure and the singularities of
the connection are intertwined; the genericity result still holds, however.

2. Logarithmic connections and parabolic bundles

In this section, we recall the definition of the Atiyah bundle for a vector
bundle over a pointed curve, and how the Atiyah exact sequence can be
used to define logarithmic connections on the vector bundle on the one hand,
and infinitesimal deformations of the vector bundle on the pointed curve on
the other hand. We further recall that if a vector bundle is endowed with a
logarithmic connection, then it has a natural parabolic structure defined by
the residues of the connection.

2.1. Logarithmic connections and the Atiyah bundle

Let X be a compact connected Riemann surface of genus g, with g ≥ 2. Fix
a finite nonempty subset

D = {x1, · · · , xn} ⊂ X

of distinct ordered points of cardinality n ≥ 1. We will employ the convention
of denoting by TZ the holomorphic tangent bundle of a complex manifold Z.
Let

TX (− logD) = TX(−D) := TX ⊗OX OX(−D)

be the logarithmic tangent bundle of X.
Take a holomorphic vector bundle E over X of rank r. For any i ≥ 0,

let Diffi (E, E) be the holomorphic vector bundle on X defined by the sheaf
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of holomorphic differential operators, of order at most i, from the sheaf of
holomorphic sections of E to itself. In other words,

Diffi (E, E) = Hom(J i(E), E) = E ⊗ J i(E)∨ ,

where J i(E) it the i-th jet bundle for E. Consider the symbol homomorphism

(2.1) σ1 : Diff1 (E, E) −→ TX ⊗ End(E) .

We recall the construction of σ1. Take any x ∈ X and any w ∈ T∨
xX. Let

fw be a holomorphic function defined around x such that fw (x) = 0 and
dfw (x) = w. Let Dx be a holomorphic section of Diff1 (E, E) defined around
x. Then for any v ∈ Ex, we have

(2.2) w (σ1 (Dx (x)) (v)) = Dx (fw · v′) (x) ,

where v′ is a holomorphic section of E defined around x such that v′ (x) = v;
note that both sides of (2.2) are elements of Ex. The homomorphism σ1 is
evidently surjective. The logarithmic Atiyah bundle is defined as

AtD(E) := σ−1
1 (TX(−D) ⊗ IdE) ⊂ Diff1 (E, E) .

It fits in the logarithmic Atiyah exact sequence

(2.3) 0 −→ End(E) −→ AtD(E) σ−→ TX(−D) −→ 0 ,

where σ is the restriction of the symbol homomorphism σ1 in (2.1). Therefore,
a holomorphic section of AtD(E) over an open subset U ⊂ X is a holomorphic
differential operator

(2.4) DU : E|U −→ (E ⊗KX ⊗OU (D))|U ,

where KX = (TX)∗ is the holomorphic cotangent bundle of X, satisfying
the following Leibniz condition:

DU (f · s) = f ·DU (s) + s⊗ df

for every holomorphic function fU on U and every holomorphic section s of
E over U .

We recall that a logarithmic connection on E singular over D is a holo-
morphic splitting of the exact sequence in (2.3), meaning a holomorphic ho-
momorphism

δ : TX(−D) −→ AtD(E)
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such that σ ◦ δ = IdTX(−D), where σ is the homomorphism in (2.3) [12] (see
also [3]).

So a logarithmic connection δ on E singular over D corresponds to a
holomorphic differential operator over X

DX : E −→ E ⊗KX ⊗OU (D)

as in (2.4) satisfying the Leibniz condition.
We have the following:

1. The infinitesimal deformations of the n-pointed compact Riemann sur-
face (X, D) are parametrized by H1(X, TX(−D)).

2. The infinitesimal deformations of the above triple

(X, D, E)

are parametrized by H1(X, AtD(E)).
3. The map

H1(X, TX(−D)) −→ H1(X, AtD(E))

corresponding to isomonodromic deformation is the one induced by the
connection

δ : TX(−D) −→ AtD(E) .

Here (1) is standard, (2) is a consequence of the results in [20] and (3) is
explained in [4].

2.2. Residue of a logarithmic connection

Take any xj ∈ D. There is a canonical homomorphism

(2.5) φj : AtD(E)xj
−→ End(E)xj = End

(
Exj

)

which we will now describe. Consider the commutative diagram of homomor-
phisms of vector spaces

0 End
(
Exj

) αj
AtD(E)xj

σ (xj)

a

TX(−D)xj

b

0

0 End
(
Exj

) cj
Diff1 (E, E)xj

σ1 (xj)
(TX ⊗ End(E))xj

0 ,

(2.6)
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where σ and σ1 are the homomorphisms in (2.3) and (2.1) respectively, and
the top exact row is the restriction of the exact sequence in (2.3) to the point
xj while the bottom exact row is the restriction of the Atiyah exact sequence
to the point xj ; both the rows in (2.6) are exact. The homomorphism a in (2.6)
is given by the natural inclusion of the coherent sheaf AtD(E) in Diff1 (E, E),
while b is induced by a. Note that b = 0, as xj is a point of D. This implies
that σ1 (xj) ◦ a = b ◦ σ (xj) = 0. Now from the exactness of the bottom row
in (2.6) it follows that image (a) ⊂ image (cj), and hence there is a unique
homomorphism

φj : AtD(E)xj
−→ End

(
Exj

)
such that a = cj ◦ φj . This produces the homomorphism in (2.5).

From the commutativity of the diagram in (2.6) we conclude that φj ◦αj

coincides with the identity map of End
(
Exj

)
. From this it follows immediately

that the restriction of σ (xj) to

kernel (φj) ⊂ AtD(E)xj

is an isomorphism with TX(−D)xj
. Using this isomorphism of kernel (φj)

with TX(−D)xj
we have a decomposition

(2.7) AtD(E)xj
= End

(
Exj

)
⊕ kernel (φj) = End

(
Exj

)
⊕ TX(−D)xj

.

The fiber TX(−D)xj
is identified with C using the Poincaré adjunction for-

mula [16, p. 146]. More explicitly, for any holomorphic coordinate z around
xj with z (xj) = 0, the evaluation of the section z ∂

∂z of TX(−D) at the
point xj is independent of the choice of the holomorphic coordinate function
z; the above identification between TX(−D)xj

and C sends this independent
element of TX(−D)xj

to 1 ∈ C.
Let δ : TX(−D) −→ AtD(E) be a logarithmic connection on E singular

over D. For any xj ∈ D, consider

(2.8) δ (xj) (1) ∈ AtD(E)xj
= End

(
Exj

)
⊕ C ;

here the above identification TX(−D)xj
= C is being used. Let

(2.9) Res (δ) (xj) ∈ End
(
Exj

)

be the component of δ (xj) (1) in the direct summand End
(
Exj

)
in (2.8). This

endomorphism Res (δ) (xj) is called the residue of δ at the point xj .
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The residue is called resonant if it admits two eigenvalues whose difference
is a non-zero integer. The connection δ is said to be resonant if it possesses a
resonant residue.

Let DX : E −→ E⊗KX⊗OX(D) be a holomorphic differential operator
over X as in (2.4) associated to a logarithmic connection δ on E. For any point
xj ∈ D, consider the composition

E
DX−→ E ⊗KX ⊗OX(D) −→ (E ⊗KX ⊗OX(D))xj = Exj ;

the fiber (KX ⊗OX(D))xj is identified with C using the Poincaré adjunction
formula. This composition is OX–linear, and hence it produces an endomor-
phism Rj ∈ End(Exj ). This endomorphism Rj coincides with the residue
Res (δ) (xj) in (2.9).

2.3. Parabolic bundles and the notion of stability

Let E be a holomorphic vector bundle over X of positive rank. A quasi-
parabolic structure on E over the divisor D is a strictly decreasing filtration
of subspaces

(2.10) Exj = E1
j � E2

j � · · · � E
nj

j � E
nj+1
j = 0

for every 1 ≤ j ≤ n. A parabolic structure on E over D is a quasiparabolic
structure as above together with n decreasing sequences of real numbers

0 ≤ α1
j < α2

j < · · · < α
nj

j < 1 , 1 ≤ j ≤ n ;

the real number αi
j is called the parabolic weight of the subspace Ei

j in the
quasiparabolic filtration. The multiplicity of a parabolic weight αi

j at xj is
defined to be the dimension of the complex vector space Ei

j/E
i+1
j . A parabolic

vector bundle is a vector bundle with a parabolic structure. We shall refer to
the collection of weights and respective multiplicities at each puncture as the
parabolic data of a parabolic vector bundle. More details on parabolic bundles
can be found in [25], [24].

Let
E� =

(
E, {Ei

j}, {αi
j}
)

be a parabolic bundle as above. The parabolic degree of E� is defined to be

par-deg (E�) = degree(E) +
n∑

j=1

nj∑
i=1

αi
j dim

(
Ei

j/E
i+1
j

)

[25, p. 214, Definition 1.11], [24, p. 78].
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Take any holomorphic subbundle F ⊂ E. For each xj ∈ D, the fiber Fxj

has a filtration obtained by intersecting the quasiparabolic filtration of Exj

with the subspace Fxj . The parabolic weight of a subspace S ⊂ Fxj in this
filtration is the maximum of the numbers

{αi
j | S ⊂ Ei

j ∩ Fxj} .

This way, the parabolic structure on E produces a parabolic structure on the
subbundle F . The resulting parabolic bundle will be denoted by F�.

A parabolic vector bundle E� =
(
E, {Ei

j}, {αi
j}
)

is called stable (respec-
tively, semistable) if for all subbundles F � E of positive rank the inequality

par-deg (F�)
rank (F�)

<
par-deg (E�)
rank (E�)

(
respectively, par-deg (F�)

rank (F�)
≤ par-deg (E�)

rank (E�)
)

holds [25].

2.4. Parabolic structure from a logarithmic connection

Let
δ : TX(−D) −→ AtD(E)

be a logarithmic connection on E, singular over D. Using the residues of
δ defined in (2.9), we will construct a parabolic structure on E. To each
eigenvalue λ of Res (δ) (xj), we associate

λ := {� (λ)} := � (λ) − �� (λ) ∈ [0, 1[ ,

the fractional part of its real part. Let xj ∈ D and let

0 ≤ λ1
j < λ2

j < · · · < λ
nj

j < 1

be the fractional parts of the real parts of the eigenvalues of Res (δ) (xj). Let
F i
j ⊂ Exj be the sum of the generalized eigenspaces corresponding to those

eigenvalues λ of Res (δ) (xj) such that {� (λ)} = λi
j . The parabolic weights

of E at xj are the eigenvalues {λi
j}

nj

i=1. The subspace of Exj corresponding to
the parabolic weight λi

j is
⊕

k≥i F
k
j . Note that according to this definition, the

parabolic structure at xi is determined by the semisimple part Resss (δ) (xj)
(with respect to the Jordan decomposition) of the residue at xi. If

� (λ) = {� (λ)} ∈ [0, 1[
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for each eigenvalue for each residue of δ, then δ is the called the Deligne
extension of the restriction of δ to E|X\D.
Remark 2.1. We note that degree(E)+

∑n
j=1 trace (Res (δ) (xj)) = 0 [26, p. 16,

Theorem 3]. Therefore,

(2.11) par-deg (E�) := degree(E) +
n∑

j=1

nj∑
i=1

λi
j ∈ Z ,

where E� is the parabolic vector bundle constructed from (E, δ).

3. Infinitesimal deformations of parabolic bundles

We shall now establish the space of infinitesimal deformations of parabolic
bundles on pointed curves, where the base is allowed to vary. Moreover, we
are going to take into account the information of a further subbundle, which
shall later be used for testing of parabolic stability.

3.1. Infinitesimal deformations with fixed base curve

Fix a pair (X, D) as before. Let E� =
(
E, {Ei

j}, {αi
j}
)

be a parabolic vector
bundle on X with parabolic structure over the divisor D. Let
(3.1) Endp (E�) ⊂ End(E) = E ⊗ E∨

denote the coherent subsheaf that preserves the quasiparabolic filtration over
every point of D. So, Endp (E�) coincides with End(E) over the complement
X \D. For each point xj ∈ D, the image of Endp(E)xj in

End
(
Exj

)
= End(E)xj

consists of all endomorphisms that preserve the quasiparabolic filtration over
xj . In other words, for a section s of Endp (E�), we have

s
(
Ei

j

)
⊆ Ei

j

for all xj in the domain of definition of s and all 1 ≤ i ≤ nj (as in (2.10)).
Let
(3.2) Endp,j(E) ⊂ End

(
Exj

)

be the image of Endp(E)xj in End
(
Exj

)
. We have a short exact sequence of

coherent sheaves on X

(3.3) 0 −→ Endp (E�)
β0−→ End(E) −→

n⊕
j=1

End(E)xj/Endp,j(E) −→ 0 .
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It is known that the infinitesimal deformations of E� are parametrized by
H1(X, Endp (E�)) [28, Section 5].

3.2. Infinitesimal deformations with varying base curve

Consider the homomorphism φj constructed in (2.5). The composition

AtD(E)xj

φj−→ End(E)xj −→ End(E)xj/Endp,j(E)

will be denoted by φ̂j ; the above map End(E)xj −→ End(E)xj/Endp,j(E) is
the quotient by the subspace in (3.2). Note that this composition homomor-
phism is surjective. Let

Atp(E) ⊂ AtD(E)
be the coherent subsheaf that fits in the following short exact sequence:

(3.4) 0 −→ Atp(E) −→ AtD(E) ⊕j φ̂j−→
n⊕

j=1
End(E)xj/Endp,j(E) −→ 0 .

Therefore, using (2.3) we have the following commutative diagram with exact
rows and columns:

0 0

0 Endp (E�)

β

End(E)
⊕n

j=1 End(E)xj/Endp,j(E) 0

0 Atp(E)

σ′

AtD(E)

σ

⊕n
j=1 End(E)xj/Endp,j(E) 0

TX(−D) TX(−D)

0 0

(3.5)

where σ′ is the restriction of σ in (2.3). We note that a holomorphic section
of Atp(E) over an open subset U ⊂ X is a holomorphic differential operator
of order one

DU : E|U −→ E|U
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satisfying the following conditions:

• the symbol of DU is a holomorphic section of TX(−D) over U (so DU

is a section of AtD(E) over U), and
• for every holomorphic section s of E|U , and every xj ∈ D ∩ U , if
s (xj) ∈ Ei

j ⊂ Exj , then DU (s) (xj) ∈ Ei
j . Here we used the notation

in (2.10).

Lemma 3.1. The infinitesimal deformations of the triple (X, D, E�), with
parabolic data of fixed type (fixed parabolic weights and their multiplicities),
are parametrized by H1(X, Atp(E)). The homomorphism

β∗ : H1(X, Endp (E�)) −→ H1(X, Atp(E)) ,

induced by β in (3.5), corresponds to the map of infinitesimal deformations
where the pair (X, D) is kept fixed. The homomorphism

σ′
∗ : H1(X, Atp(E)) −→ H1(X, TX(−D)) ,

induced by σ′ in (3.5), is the forgetful map that sends any infinitesimal defor-
mation of (X, D, E�) to the infinitesimal deformation of (X, D) obtained by
simply forgetting E�.

Proof. This lemma is standard. Consider the sheaf of groups on X given
by the local automorphisms of E that preserve the parabolic structure (this
means that the quasiparabolic structure is preserved, because the parabolic
weights do not move). The corresponding sheaf of Lie algebras is Endp (E�).
More generally consider the sheaf of groups on X given by the local au-
tomorphisms of the pair (X, E) that preserve the parabolic structure. The
corresponding sheaf of Lie algebras is Atp(E). The lemma can be derived from
these observations.

The homomorphism

H1(X, Atp(E)) −→ H1(X, AtD(E))

given by the inclusion Atp(E) ↪→ AtD(E) in (3.4) is the forgetful map that
sends any infinitesimal deformation of (X, D, E�) to the infinitesimal defor-
mation of (X, D, E) obtained by simply forgetting the parabolic data.
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3.3. Infinitesimal deformations of parabolic bundles with a
subbundle

Fix a pair (X, D). As before, let E� =
(
E, {Ei

j}, {αi
j}
)

be a parabolic vector
bundle on X with parabolic structure over D. Fix a subbundle 0 �= F � E.

Let
EndF

p (E�) ⊂ Endp(E�)

be the subsheaf that preserves F . The infinitesimal deformations of the pair

(E�, F )

(keeping the pair (X, D) fixed) are parametrized by

H1
(
X, EndF

p (E�)
)
.

The homomorphism

H1
(
X, EndF

p (E�)
)
−→ H1(X, Endp(E�)) ,

given by the inclusion of EndF
p (E�) in Endp(E�), corresponds to the forgetful

map of infinitesimal deformations that forgets the subbundle F ; recall that
H1(X, Endp(E�)) is the space of infinitesimal deformations of E�. The kernel
of this forgetful homomorphism corresponds to infinitesimal deformations of
F keeping E� fixed.

Let

(3.6) AtFp (E) ⊂ AtD(E)

be the coherent subsheaf whose sections over any open subset U ⊂ X are all
holomorphic differential operators

DU : E|U −→ E|U

satisfying the following two conditions:

• for every holomorphic section s of E|U , and every xj ∈ U , if

s (xj) ∈ Ei
j ⊂ Exj ,

then DU (s) (xj) ∈ Ei
j , and

• DU (s) is a section of F |U if s is a holomorphic section of F |U .
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Therefore, we actually have

(3.7) AtFp (E) ⊂ Atp(E) .

We have the following short exact sequence of vector bundles on X:

(3.8) 0 −→ EndF
p (E�) −→ AtFp (E) −→ TX(−D) −→ 0 .

Lemma 3.1 has the following straightforward generalization:

Lemma 3.2. The infinitesimal deformations of the quadruple

(X, D, E�, F )

with parabolic data of fixed type are parametrized by

H1
(
X, AtFp (E)

)
.

The homomorphism

H1
(
X, AtFp (E)

)
−→ H1(X, Atp(E))

given by the inclusion AtFp (E) ↪→ Atp(E) in (3.7) corresponds to the forgetful
homomorphism that forgets F .

We note that the homomorphism

H1
(
X, AtFp (E)

)
−→ H1(X, AtD(E))

given by the inclusion AtFp (E) ↪→ AtD(E) in (3.6) corresponds to the for-
getful homomorphism that forgets F as well as the parabolic structure on
E (recall that the infinitesimal deformations of the triple (X, D, E) are
parametrized by H1(X, AtD(E))).

4. Isomonodromic deformations

We will now recall the universal isomonodromic deformation of a given initial
logarithmic connection, and how it encodes the infinitesimal deformation at
the initial parameter of the underlying parabolic vector bundle.
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4.1. The initial connection

Take (X, D) as before. As in Section 2.4, let E be a holomorphic vector
bundle over X of rank r, and let

δ : TX(−D) −→ AtD(E)

be a logarithmic connection on E, singular over D. Let E� be the parabolic
vector bundle defined by the parabolic structure on E given by the residues
of the logarithmic connection δ (see Section 2.4).

Lemma 4.1. The image δ (TX(−D)) ⊂ AtD(E) is contained in the subsheaf
Atp(E) ⊂ AtD(E) in (3.4).

Proof. Take any point xj ∈ D. From the construction of the parabolic struc-
ture using Res (δ) (xj) it follows that Res (δ) (xj) preserves the quasiparabolic
filtration of E� over xj . This means that

Res (δ) (xj) ∈ Endp,j(E) ⊂ End(E)xj .

From the definition of residue, given in (2.9), it now follows that

δ (TX(−D)) ⊂ Atp(E) .

This completes the proof.

4.2. The universal isomonodromic deformation

For (X, D) as before, fix an ordering of the points of D. Let Tg,n be the
Teichmüller space for (X, D). We briefly recall its construction, details can be
found for example in [21]. Let Cg,n denote the space of all complex structures
on X, and let Diff denote the group of all diffeomorphisms of X that fix D
pointwise. Let

Diff0 ⊂ Diff

be the connected component containing the identity element. Then we have

Tg,n = Cg,n/Diff0 .

This Tg,n is a contractible complex manifold of complex dimension 3g−3+n.
Note that there is a base point

(4.1) t0 ∈ Tg,n
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defined by the given complex structure on X.
There is a universal n-pointed Riemann surface (X , (s1, · · · , sn)) over

Tg,n. This means that

(4.2) p : X −→ Tg,n

is a holomorphic family of Riemann surfaces such that any fiber p−1 (t) is the
Riemann surface associated to t, and si : Tg,n −→ X , for 1 ≤ i ≤ n , are
disjoint sections of the projection p in (4.2). The n-pointed Riemann surface
(p−1 (t) , (s1(t), · · · , sn(t))) is represented by the point t ∈ Tg,n. Moreover,
if t0 denotes the base point in (4.1), we have the following identification of
n-pointed Riemann surfaces:

(
p−1 (t0) , (s1 (t0) , · · · , sn (t0))

)
= (X, (x1, · · · , xn)) = (X, D)

(recall that we have fixed an ordering of the points of D).
Since Tg,n is contractible, the inclusion map

(4.3) X \D ↪→ X \ D

as the fiber over t0, where D := (�n
i=1si (Tg,n)), is a homotopy equivalence.

As in Section 2.4, let E be a holomorphic vector bundle on X or rank r,
and let

(4.4) δ : TX(−D) −→ AtD(E)

be a logarithmic connection on E, singular over D. There exists a vector
bundle E on X , endowed with a flat logarithmic connection δ̃, singular over
D, such that the restriction of

(
E , δ̃

)
to p−1 (t0) = X is identified with (E, δ),

where t0 is the base point in (4.1). Let us briefly recall the construction (see
[18, Section 3] for details).

Let
ρ : π1 (X \D, x0) −→ GL (Ex0)

be the monodromy representation for the flat connection δ; here x0 ∈ X\D is
a fixed base point. Since the inclusion map in (4.3) is a homotopy equivalence,
we have a homomorphism

π1 (X \ D, x0) = π1 (X \D, x0)
ρ−→ GL (Ex0)

which will be denoted by ρ̃. This ρ̃ produces a holomorphic vector bundle Ẽ
over the complement X \ D equipped with a flat holomorphic connection δ̃
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[12]. Using an argument of Malgrange [23] generalizing Deligne extensions in
this context, this holomorphic vector bundle Ẽ admits an extension E to X
as a holomorphic vector bundle such that

• the connection δ̃ extends to a logarithmic connection δ′ on E , and
• the restriction of (E , δ′) to p−1 (t0) = X is identified with (E, δ), where
t0 is the point in (4.1).

The pair (E , δ′) is unique and admits a universal property with respect
to germs of isomonodromic deformations of the same initial connection. It
is therefore called the universal isomonodromic deformation in [18]. In the
current work, we will refer to the pair (E , δ′) simply as the isomonodromic
deformation of the logarithmic connection (E, δ) on X.

For any t ∈ Tg,n, the Riemann surface p−1 (t) will be denoted by Xt. The
restriction of the holomorphic vector bundle E to Xt will be denoted by E t.
The restriction of the logarithmic connection δ′ to E t will be denoted by δt.

4.3. The underlying infinitesimal deformation of the parabolic
bundle

We adopt the notation of Section 4.2. As shown in Section 2.4, the logarithmic
connection δt produces a parabolic structure on E t. The resulting parabolic
vector bundle on Xt will be denoted by E t

�. Let

(4.5) E� −→ X p−→ Tg,n

be the above family of parabolic vector bundles constructed from δ′ (which
in turn is constructed from δ).

Lemma 4.2. Let (E , δ) be the isomonodromic deformation of (E, δ). Then
for each 1 ≤ i ≤ n, the collection of parabolic weights and their multiplicities
of E t

� at the parabolic point si (t) ∈ Xt is independent of t.

Proof. For any xt0 in Xt \ (�n
i=1si(t)) and any path from x0 to xt0 in X \D, the

holonomy of δ′ yields an isomorphism Ex0 � E t
xt

0
identifying the monodromy

ρ of δ with the monodromy of δt. Different choices of paths yield conjugated
monodromy representations. However, the conjugacy class of the local mon-
odromy of δt around si(t) does not depend on t ∈ Tg,n. On the other hand,
the parabolic data at si(t) is entirely encoded by the conjugacy class of the
local monodromy of δt around si(t). Indeed, the semisimple part of the local
monodromy at si(t) is conjugated to exp (Resss (δt) (si(t))) (see for example
[8, Theorem 1]).
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In Lemma 3.1 we saw that the infinitesimal deformations of the triple
(X, D, E�), with parabolic data of fixed type (fixed parabolic weights and
their multiplicities), are parametrized by H1(X, Atp(E)). On the other hand,
for any t ∈ Tg,n, we have

TtTg,n = H1

⎛
⎝Xt, TXt ⊗OXt

⎛
⎝−

n∑
j=1

sj (t)

⎞
⎠
⎞
⎠ .

In particular, we have Tt0Tg,n = H1(X, TX(−D)), where t0 is the base point
in (4.1). Let

(4.6) γ : H1(X, TX(−D)) = Tt0Tg,n −→ H1(X, Atp(E))

be the classifying homomorphism corresponding to the family of parabolic
vector bundles in (4.5) constructed from δ′ (which in turn is constructed
from δ).

In Lemma 4.1 we saw that δ (TX(−D)) ⊂ Atp(E). Let

(4.7) δ∗ : H1(X, TX(−D)) −→ H1(X, Atp(E))

be the homomorphism induced by δ : TX(−D) −→ Atp(E).

Lemma 4.3. The homomorphism γ in (4.6) coincides with the homomor-
phism δ∗ in (4.7).

Proof. Lemma 4.3 is straightforward to prove; the case without parabolic
structure is dealt with in [4, p. 131]. In the presence of parabolic structure it
remains valid after appropriate modifications.

5. The isomonodromic deformation contains stable parabolic
bundles

We are now ready to prove the first main result: if the initial connection is ir-
reducible, the vector bundle corresponding to a generic fiber of the parameter
space in its (universal) isomonodromic deformation is parabolically stable.

5.1. A criterion for extending a subbundle to the isomonodromy
family

Let δ be a logarithmic connection on E as in (4.4). Assume that δ is irreducible
in the sense that no nonzero subbundle E′ � E is preserved by δ.
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Let F ⊂ E be a subbundle. We have the commutative diagram of sheaves
on X:

0 0

0 EndF
p (E�) AtFp (E) TX(−D) 0

0 Endp(E�)

γ0

β
Atp(E)

γ1

σ′
TX(−D) 0

Endp(E�) /EndF
p (E�) Endp(E�) /EndF

p (E�)

0 0

(5.1)

where the top short exact sequence is the one in (3.8) and the short exact
sequence at the bottom is the one in (3.5). Consider the composition homo-
morphism

(5.2) TX(−D) δ−→ Atp(E) γ1−→ Endp (E�) /EndF
p (E�)

(Lemma 4.1 says that the image of δ is in Atp(E)); this composition homo-
morphism will be denoted by f0. Since F is not preserved by the connection
δ by the irreducibility assumption, we have

f0 �= 0 .

Let

(5.3) L ⊂ Endp (E�) /EndF
p (E�)

be the holomorphic line subbundle generated by the image f0 (TX(−D)). We
note that L coincides with the inverse image, in Endp (E�) /EndF

p (E�), of the
torsion part

((
Endp (E�) /EndF

p (E�)
)
/f0 (TX(−D))

)
torsion

⊂
(
Endp (E�) /EndF

p (E�)
)
/f0 (TX(−D))
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under the quotient map

Endp (E�) /EndF
p (E�) −→

(
Endp (E�) /EndF

p (E�)
)
/f0 (TX(−D)) .

Now define

Endδ
p (E�) := γ−1

0 (L) ⊂ Endp (E�) and Atδp(E) := γ−1
1 (L) ⊂ Atp(E) ,

(5.4)

where L is the line subbundle in (5.3), and γ0, γ1 are the homomorphisms
in (5.1). Note that from (5.1) we have the following commutative diagram of
sheaves on X:

0 0

0 EndF
p (E�) AtFp (E)

μ

TX(−D) 0

0 Endδ
p (E�) Atδp(E)

γ′

σ′′
TX(−D) 0

L L

0 0

(5.5)

where σ′′ and γ′ respectively are the restrictions of the homomorphisms σ′

and γ1 constructed in (5.1).
From the definition of Atδp(E) in (5.4) it follows immediately that the

image of the connection homomorphism TX(−D) δ−→ Atp(E) is contained
in the subbundle Atδp(E). Let

(5.6) ξ : TX(−D) −→ L

be the homomorphism given by the composition f0 in (5.2).
Consider the family of parabolic bundles

E� −→ X p−→ Tg,n

constructed in (4.5) using δ′ (which is constructed from δ). From the commu-
tative diagram in (5.5) we can now deduce the following proposition.
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Proposition 5.1. If the subbundle F ⊂ E extends to a subbundle F of E
over the first order infinitesimal neighborhood of the point t0 ∈ Y, where
Y is a closed analytic subset of Tg,n, then the homomorphism defined by the
composition

Tt0Y ↪→ Tt0Tg,n = H1(X, TX(−D)) ξ∗−→ H1(X, L) ,

induced by ξ in (5.6), vanishes identically.

Proof. Assume that the subbundle F ⊂ E extends to the first order infinites-
imal neighborhood of t0 ∈ Y ⊂ Tg,n. Consequently, we have a classifying
homomorphism

cl(X,D,E�,F ) : Tt0Y −→ H1
(
X, AtFp (E)

)

to the space of infinitesimal deformations of

(X, D, E�, F )

(that is of quadruples given by curve, punctures, parabolic bundle and sub-
bundle in the isomonodromic deformation). Denoting forgetful morphisms
simply by “◦”, and also adopting a similar notation for the other classifying
maps, by Lemma 3.2 and Lemma 4.3, the following diagram of homomor-
phisms is commutative:

H1
(
X,AtFp (E)

)
μ∗

◦

H1
(
X,Atδp(E)

) γ′
∗

◦

H1(X,L) .

Tt0Y

cl(X,D,E�,F )

cl(X,D)

cl(X,D,E�)

H1(X, Atp(E))

◦

Tt0Tg,n H1(X, TX(−D))
ξ∗

δ∗

(in the above diagram “◦” denotes the homomorphisms of cohomologies in-
duced by the natural inclusions of coherent sheaves). The result now simply
follows from the fact that the top row is exact according to (5.5).

Theorem 5.2. Let X be a compact Riemann surface of genus g ≥ 2, and let
D be a divisor on X. Let δ be an irreducible logarithmic connection, singular
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over D, on a holomorphic vector bundle E −→ X. Consider the family of
parabolic vector bundles

E� −→ X p−→ Tg,n

underlying the isomonodromic deformation of (E, δ) as in Section 4.3, and
denote, for any t ∈ Tg,n, by E t

� the corresponding parabolic vector bundle
over Xt = p−1 (t) with parabolic structure over the divisor (s1(t), · · · , sn(t)).
Denote

Y := {t ∈ Tg,n | E t
� is not parabolically semistable.}

Y ′ := {t ∈ Tg,n | E t
� is not parabolically stable.}

Then Y and Y ′ are closed analytic subsets of Tg,n, whose codimensions are
bounded as follows:

codim (Y) ≥ g ; codim (Y ′) ≥ g − 1 .

Proof. The mechanics of the proof of this theorem are identical to the proofs
of Proposition 5.3 of [4, p. 138] (concerning Y) and Proposition 5.4 of [4,
p. 139] (concerning Y ′) up to some minor modifications. We will therefore be
brief. The fact that Y and Y ′ defined as in the statement are closed analytic
subsets of Tg,n follows from [17]. Indeed, one can write Y ′ as a union of strata
corresponding to types k of nontrivial Harder-Narasimhan filtrations, and the
results of [17] tell us that the union of strata corresponding to types greater
or equal to a fixed k forms a closed subset. On the other hand, within the
moduli space of semi-stable objects, stable ones form an open subset. Let
0 �= F ⊂ E be a destabilizing subbundle, i.e.,

par-deg (F�)
rank (F�)

>
par-deg (E�)
rank (E�)

,

(respectively, par-deg (F�)
rank (F�)

≥ par-deg (E�)
rank (E�)

).

Then, as is Section 5.1, we have a short exact sequence of sheaves on X

(5.7) 0 −→ TX(−D) ξ−→ L −→ T δ −→ 0 ,

where T δ is a torsion sheaf because ξ �= 0 by irreducibility of δ.
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We will show that

(5.8) degree(L) < 0 , (respectively, degree(L) ≤ 0)

in the stable (respectively, semistable) case.
For this first consider the Harder-Narasimhan filtration of the parabolic

endomorphism bundle End(E�) = E� ⊗ E∗
� . Let W� ⊂ End(E�) is the part

of this filtration for nonnegative parabolic weights. Then all the successive
quotients of the Harder-Narasimhan filtration of the quotient parabolic bun-
dle End(E�)/W� have negative parabolic degree. On the other hand, when E�

is parabolic semistable, for the socle filtration of End(E�), all the successive
quotients of the filtration have parabolic degree to be zero. In the stable case,
L is a subsheaf of the quotient parabolic bundle End(E�)/W�, and hence
the parabolic degree of L with the induced parabolic structure is negative.
This implies that the degree of L is negative. In the semistable case, L is a
subsheaf of the quotient of the socle filtration, so the parabolic degree of L
with the induced parabolic structure is nonpositive. Hence the degree of L is
nonpositive in this case. Also form the result on p. 705 of [1] it follows that
that the degree of L must be negative, in the stable case, and negative or
zero, in the semi-stable case.

From the long exact sequence associated to the short exact sequence (5.7),
one then deduces

dim
(
ξ∗H1(X, TX(−D))

)
≥ g(5.9)

(respectively, dim
(
ξ∗H1(X, TX(−D))

)
≥ g − 1) .

Up to replacing t0 by a generic element of Y respectively, Y ′, we may assume
that in the infinitesimal neighborhood of t0 in Y respectively, Y ′, the destabi-
lizing subbundle F , which we take to be maximal, in the Harder-Narasimhan
sense, extends; this follows from the picture of Y respectively, Y ′ as a union
of strata. Then Proposition 5.1, in combination with (5.9), yields the desired
estimate for the codimension.

6. Infinitesimal deformations of parabolic Higgs bundles

This section is dedicated to prove our second main result: in the rank two
case, if the initial connection is irreducible, the vector bundle corresponding
to a generic fiber of the parameter space in the (universal) isomonodromic
deformation is parabolically very stable. We shall proceed in a way similar
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to what lead to the first main result. Namely, after recalling the basic defi-
nitions, we will establish the deformation theory of parabolic Higgs bundles
over varying base curves, as well as the obstruction space of deformations
of non-zero nilpotent Higgs fields. These results will then be applied to the
isomonodromic deformation.

Let (X, D) be as before a compact Riemann surface of genus g ≥ 2
endowed with n ordered marked points. Let E� be a vector bundle E −→ X
endowed with a parabolic structure over D as before. However, from now on
we will always assume that

rank(E) = 2 .

For each xj ∈ D, the parabolic filtration of Exj in (2.10) then is of length
nj ≤ 2.

6.1. Very stable parabolic Higgs bundles

Let us recall the notion of E� being parabolically very stable.
Consider the vector bundle Endp (E�) in (3.1) and define

(6.1) End0
p (E�) ⊂ Endp (E�)

to be the coherent subsheaf defined by the endomorphisms that are nilpotent
with respect to the quasiparabolic filtration over every point of D, i.e., for a
section s of End0

p (E�), we have

s
(
Ei

j

)
⊆ Ei+1

j

for all xj ∈ D in the domain of definition of s and all 1 ≤ i ≤ nj (as in
(2.10)).
Remark 6.1. Since End(E)∨ = End(E) with the isomorphism given by the
bilinear pairing defined by A ⊗ B �−→ trace(AB), we have a fiberwise non-
degenerate pairing

(End(E) ⊗OX(D)) ⊗ (End(E) ⊗OX(D)) −→ OX(2D)

given by trace. For this pairing, the image of Endp (E�)⊗(End0
p (E�)⊗OX(D))

is evidently contained in OX ⊂ OX(2D). It is now straightforward to check
that this restricted pairing produces an isomorphism

(6.2) Endp (E�)∨ = End0
p (E�) ⊗OX(D) .
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A Higgs field on a parabolic vector bundle E� is a holomorphic section of
End0

p (E�)⊗KX⊗OX(D), where End0
p (E�) is the vector bundle constructed in

(6.1). A Higgs bundle is a pair (E�, θ), where E� is a parabolic vector bundle
and θ is a Higgs field on E�. The Higgs field

θ ∈ H0
(
X, End0

p (E�) ⊗ KX ⊗OX(D)
)

is called nilpotent if θ2 = 0. A parabolic Higgs bundle (E�, θ) is called
nilpotent if θ is nilpotent.

A parabolic vector bundle E� is called parabolically very stable if it does
not admit any nonzero nilpotent Higgs field. It can be proved that a parabol-
ically very stable vector bundle E� is automatically parabolically stable. To
prove this, assume that E� is not stable. then there is a line subbundle L ⊂ E
such that

(6.3) par-deg (L�) ≥ par-deg (E�)
2 ,

where L� is the parabolic line bundle given by the parabolic structure on L
induced by the parabolic structure on E�. Denote D′ := {xj ∈ D | E2

j �= {0}}
and

(6.4) DL := {xj ∈ D′ | Lxj = E2
j } .

From (6.3) it follows that

degree (Hom (E/L , L) ⊗OX(DL))
≥ degree(DL) +

∑
D′−DL

(α2
j − α1

j ) −
∑
DL

(α2
j − α1

j ) ≥ 0 .

Then the line bundle Hom (E/L , L) ⊗ KX ⊗ OX(D′) has a non-zero holo-
morphic section by Riemann–Roch theorem. A nonzero holomorphic section
ζ of Hom (E/L , L) ⊗ KX ⊗ OX(D′) defines a nonzero nilpotent Higgs field
on E� using the composition

E −→ E/L
ζ−→ L⊗ KX ⊗OX(D′) −→ E ⊗ KX ⊗OX(D′) ,

where −→ E/L is the quotient map; the other homomorphism

L⊗ KX ⊗OX(D′) −→ E ⊗ KX ⊗OX(D′)

is the tensor product of the inclusion L ↪→ E with the identity map of
KX ⊗OX(D′). Therefore, E� is not parabolically very stable.

Note that the kernel of the above composition homomorphism is pre-
cisely L.
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6.2. Infinitesimal deformations of a parabolic Higgs bundle on a
fixed curve

Let (E�, θ) be a parabolic Higgs bundle of rank 2 over a fixed pointed
curve (X,D). As recalled in Section 3.1, the infinitesimal deformations of
E� are parametrized by H1(X, Endp (E�)). These of course need to be re-
flected in the infinitesimal deformations of the pair (E�, θ). Using Serre du-
ality, and (6.2), the dual of the space of infinitesimal deformations of E� is
H0

(
X, End0

p (E�) ⊗OX(D) ⊗ KX

)
, where KX is the holomorphic cotangent

bundle of X. As shown in [7], this dual space corresponds to the infinitesimal
deformations of Higgs fields θ on a fixed parabolic bundle E�. Let us recall
how these two infinitesimal deformation spaces fit together to construct the
infinitesimal deformation space of pairs (E�, θ).

Let

(6.5) fθ : Endp (E�) −→ End0
p (E�) ⊗ KX ⊗OX(D)

be the homomorphism defined by A �−→ θ◦A−A◦θ. Now we have a two-term
complex C(E�,θ)

• of sheaves on X

C(E�,θ)
0 := Endp (E�)

fθ−→ C(E�,θ)
1 := End0

p (E�) ⊗ KX ⊗OX(D) .

The infinitesimal deformations of

(E�, θ) ,

keeping (X, D) fixed, are parametrized by the hypercohomology H1
(
C(E�,θ)
•

)
[7]. Consider the following short exact sequence of complexes.

0 0

0 End0
p (E�) ⊗ KX ⊗OX(D)

Endp (E�)
fθ End0

p (E�) ⊗ KX ⊗OX(D)

Endp (E�) 0

0 0
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It produces an exact sequence of hypercohomologies

H0
(
X, End0

p (E�) ⊗ KX ⊗OX(D)
)

a−→ H1
(
C(E�,θ)
•

)
b−→ H1(X, Endp (E�)) .

The above homomorphism a corresponds to changing the Higgs field keeping
E� fixed, and b corresponds to the forgetful map that sends an infinitesimal
deformation of (E�, θ) to the corresponding infinitesimal deformation of E�

by simply forgetting θ.

6.3. Infinitesimal deformations of a parabolic Higgs bundle on
moving curve

In Section 6.2, we recalled the infinitesimal deformation space of parabolic
Higgs fields with fixed pointed base curve. On the other hand, in Section 3.2,
we stated that the infinitesimal deformation space of the triple (X,D,E�) is
given by H1(X,Atp(E)). We shall now explain how these two spaces fit to-
gether to form the infinitesimal deformation space of the quadruple
(X,D,E�, θ).

There is a natural homomorphism

η : Atp(E)(6.6)

−→ Diff1
X

(
End0

p (E�) ⊗ KX ⊗OX(D), End0
p (E�) ⊗ KX ⊗OX(D)

)
,

where Atp(E) is constructed in (3.4). To construct η, consider the homomor-
phism

AtD(E) −→ Diff1
X (End(E) ⊗ KX , End(E) ⊗ KX)

constructed in [5, p. 635, (4.1)], where AtD(E) is constructed in (2.3); in
essence, one combines the action on sections of E,End(E) with a Lie deriva-
tive on K (but see [5]). It is straight-forward to check that this homomorphism
produces a homomorphism as in (6.6) (see Section 4.1 of [5]). We have the
homomorphism

(6.7) ηθ : Atp(E) −→ End0
p (E�) ⊗ KX ⊗OX(D) , s �−→ η (s) (θ) .

Denote the quadruple (X, D, E�, θ) by z. Let Az
• be the following two-

term complex of sheaves on X:

Az
0 := Atp(E) ηθ−→ Az

1 := End0
p (E�) ⊗ KX ⊗OX(D) ,
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where ηθ is the homomorphism in (6.7). The infinitesimal deformations of

z = (X, D, E�, θ)

are parametrized by the hypercohomology H1(Az
•
)
. Consider the following

short exact sequence of complexes.

0 0

0 End0
p (E�) ⊗ KX ⊗OX(D)

Atp(E)
ηθ End0

p (E�) ⊗ KX ⊗OX(D)

Atp(E) 0

0 0

It produces an exact sequence of hypercohomologies

H0
(
X, End0

p (E�) ⊗ KX ⊗OX(D)
)

a′−→ H1(Az
•)

b′−→ H1(X, Atp(E)) .

The above homomorphism a′ corresponds to changing the Higgs field keeping
the triple (X, D, E�) fixed, and b′ corresponds to the forgetful map that
sends an infinitesimal deformation of (X, D, E�, θ) to the corresponding
infinitesimal deformation of (X, D, E�) by simply forgetting θ; recall from
Lemma 3.1 that H1(X, Atp(E)) parametrizes the infinitesimal deformations
of (X, D, E�).

6.4. Infinitesimal deformations of a nilpotent parabolic Higgs
bundle

We shall now construct the obstruction space, i.e. when the infinitesimal
deformation of a nonzero nilpotent parabolic Higgs field remains nilpotent.

Let (E�, θ) be a parabolic Higgs bundle of rank 2 over a fixed pointed
curve (X,D) as before. Now assume that the Higgs field θ on E� is nonzero
nilpotent. Let

L := kernel (θ) ⊂ E
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be the corresponding holomorphic line subbundle and denote Q := E/L the
quotient bundle. From the exact sequence

0 −→ L −→ E −→ Q −→ 0

and its dual sequence, we obtain an exact sequence

0 −→ EndL
n(E) := Q∨ ⊗ L −→ E∨ ⊗ L⊕Q∨ ⊗ E

−→ End(E) −→ L∨ ⊗Q −→ 0 ,

factoring through

EndL(E) := {s ∈ End(E) | s(L) ⊂ L}

such that we have the following two short exact sequences:

0⏐⏐�
EndL

n(E)⏐⏐�
0 E∨ ⊗ L⊕Q∨ ⊗ E⏐⏐� ⏐⏐�

EndL(E) = EndL(E)⏐⏐� ⏐⏐�
End(E) 0⏐⏐�
L∨ ⊗Q⏐⏐�

0

We note that rank
(
EndL(E)

)
= 3, and

rank
(
textEndLn(E)

)
= 1 .

The line bundle EndL
n(E) = Hom(Q,L) defined above corresponds to those

endomorphisms of E which respect the filtration 0 ⊂ L ⊂ E and which are
moreover nilpotent; it is also the kernel of the natural projection

EndL(E) −→ End(L) ⊕ End(Q) .
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Now define

EndL
p (E�) := EndL(E) ∩ Endp (E�) ⊂ End(E)

as in Section 3.3 and set

EndL
n(E�) := EndL

n(E) ∩ Endp (E�) ⊂ End(E) .

We have the following two term complex D(E�,θ)
• of sheaves on X:

D(E�,θ)
0 = EndL

p (E�)
f ′
θ−→ D(E�,θ)

1 = EndL
n(E�) ⊗ KX ⊗OX(D) ,

where f ′
θ is the restriction of the homomorphism fθ in (6.5). The infinitesimal

deformations of (E�, θ) in the moduli of nilpotent parabolic Higgs bundles
(keeping (X, D) fixed) are parametrized by H1

(
D(E�,θ)

•
)

[7].
Let AtLp (E) ⊂ Atp(E) be as in Section 3.3 (with F = L). The homo-

morphism ηθ in (6.7) maps AtLp (E) to Endn
L (E�)⊗KX ⊗OX(D). As before,

denote the quadruple (X, D, E�, θ) by z. We have the following two term
complex Bz

• of sheaves on X:

Bz
0 = AtLp (E)

η′θ−→ Bz
1 = EndL

n(E�) ⊗ KX ⊗OX(D) ,

where η′θ is the restriction of the homomorphism ηθ in (6.7).
The infinitesimal deformations of z = (X, D, E�, θ) in the moduli of

nilpotent parabolic Higgs bundles are parametrized by H1(Bz
•
)
. The morphism

H1(Bz
•
)
−→ H1(Az

•
)

forgetting that the Higgs field remains nilpotent along
the infinitesimal deformation is obtained from the morphism of complexes

Bz
0 = AtLp (E)

η′θ Bz
1 = EndL

n(E�) ⊗ KX ⊗OX(D)

Az
0 = Atp(E)

η′θ Az
1 = End0

p (E�) ⊗ KX ⊗OX(D)

induced by the identity. The homomorphism

H1(Bz
•) −→ H1

(
X,AtLp (E)

)

however, which to a infinitesimal deformation of

(X, D, E�, θ)
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with nilpotent Higgs field associates the underlying infinitesimal deformation
of (X, D, E�, L) with L = kernel(θ) is obtained from the natural morphism
of complexes

Bz
0 = AtLp (E)

η′θ Bz
1 = EndL

n(E�) ⊗ KX ⊗OX(D)

AtLp (E) 0 ;

note that the first hypercohomology space of the complex below coincides
with H1

(
X,AtLp (E)

)
.

6.5. The isomonodromic deformation contains very stable
parabolic bundles

We have now established the necessary ingredients of our second main result:

Theorem 6.2. Let X be a Riemann surface of genus g ≥ 2 and let D be
a divisor on X. Let δ be an irreducible logarithmic connection, singular over
D, on a rank 2 vector bundle E −→ X. Consider the family of parabolic
bundles

E� −→ X p−→ Tg,n

underlying the universal isomonodromic deformation of (E, δ) as in Section
4.3 and denote, for any t ∈ Tg,n, by E t

� the corresponding parabolic vector
bundle over Xt = p−1 (t) with parabolic structure over (s1(t), · · · , sn(t)). De-
note

Y ′′ := {t ∈ Tg,n | E t
� is not parabolically very stable.}

Then Y ′′ is a proper closed analytic subset of Tg,n.

Proof. The proof of this theorem is identical to the proof of Theorem 5.2 of
[5, p. 639] after some minor modifications. We will therefore be brief. Let
θ be a nonzero nilpotent Higgs bundle on the parabolic vector bundle E�

corresponding to the initial parameter of the isomonodromic deformation.
Denote L := kernel(θ) as before and let DL be as in equation (6.4). Recall
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the commutative diagram (5.1) with exact rows and columns:

(6.8) 0 0

0 EndL
p (E�) AtLp (E)

μ1

TX(−D) 0

0 Endp (E�) Atp(E)
γ1

σ′
TX(−D)

q

0

Q Q

0 0 .

Here
Q := L∨ ⊗Q⊗OX(−DL)

with the notation of (6.4), and q := γ1 ◦ δ. Since δ is irreducible, we have
q �= 0. Since Q is a line bundle, we obtain an exact sequence

0 −→ TX(−D) q−→ Q −→ T −→ 0 ,

where T is a torsion sheaf. From the corresponding long exact sequence, we
have that the induced morphism

q∗ : H1(X,TX(−D)) −→ H1(X,Q)

of cohomology spaces is surjective. Since θ is nonzero nilpotent with kernel
L, it induces a non-zero section of

Q∨ ⊗ KX = Hom(Q,L) ⊗OX(DL) ⊗ KX ⊂ Hom(Q,L) ⊗OX(D′) ⊗ KX .

In particular, using Serre duality, we have H1(X,Q) �= {0}. So q∗ is nonzero
and surjective.

Consider the closed complex analytic subset of the universal moduli of
Higgs bundles over Tg,n given by the kernel of the map (F, ψ) �−→ (trace(ψ),
trace(ψ2)) to the universal moduli of forms of degree 1 and 2. The Y ′′ defined
as in the statement of the theorem is the intersection of this closed subset
with leaf of the isomonodromic deformation. Hence Y ′′ is a closed complex
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analytic subset of Tg,n. We may assume that in a neighborhood of t0 ∈ Y ′′,
the non-zero nilpotent Higgs field θ on E� extends to a non-zero nilpotent
Higgs field in this neighborhood. Similarly to the proof of Proposition 5.1,
the composition

Tt0Y ′′ ↪→ H1(X,TX(−D)) q∗−→ H1(X,Q)

vanishes identically because γ1 ◦ μ1 = 0. Therefore Y ′′ �= Tg,n.

Remark 6.3. In the higher rank case, not only does the deformation theory of
nilpotent Higgs bundles get much more complicated, but the main argument
in the proof of Theorem 6.2 breaks down: in arbitrary rank the quotient Q
is not necessarily a line bundle and we would need additional information to
ensure that q∗ is surjective.
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