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Abstract: A quantization of classical deformation theory, based
on the Maurer-Cartan Equation dS + 1

2 [S, S] = 0 in dg-Lie alge-
bras, a theory based on the Quantum Master Equation dS+�ΔS+
1
2{S, S} = 0 in dg-BV-algebras, is proposed. Representability the-
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Introduction

Yuri I. Manin has always been fascinated with the concept of quantization.
Observing the chromatic spectrum of his work over the years, I have become
more and more convinced that you may quantize more than you expect.

In this paper, I suggest an approach to quantizing deformation theory.
Neither the idea, nor the terminology is new: I am referring to John Terilla’s
paper [40] on Quantizing Deformation Theory, preceded by his work [34]
with Jae-Suk Park and Thomas Tradler. This partially explains the title of
the current paper, which I view as a complement to Terilla’s work. I hint on
a relation in the last section of this paper. I believe strongly that these works
are two tips of one and the same iceberg.

I have been running around disseminating vague ideas of quantum defor-
mation theory for a few years since John hooked me on quantizing deformation
theory during the historic Northeast blackout of 2003. Alas, it is a pity it took
me so long to get these ideas crystallized, but now I am content with their
shining, albeit somewhat superficial.

Conventions on graded algebra and geometry

We will work over a ground field k of characteristic zero. In particular, the
symbol ⊗ will mean ⊗k. The translation V [n] of a graded vector space V =⊕

n∈Z V
n is the same vector space with a redefined degree: V [n]p := V p+n.

The dual V ∗ of a graded vector space V is understood as the direct sum of the
duals of its graded components, graded in such a way that the natural pairing
V ∗ ⊗ V → k is grading-preserving. In particular, (V [n])∗ = V ∗[−n]. One can
also write V ∗ = homk(V, k) with homk(V, V ′) being the internal Hom in the
category of graded vector spaces, as opposed to Homk(V, V ′) = homk(V, V ′)0,
the vector space of degree-preserving linear maps. By default, the degree of
a homogeneous tensor is the sum of the degrees of its factors. Differentials d
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are assumed to have degree 1: |d| = 1. However, the BV differential Δ will
have degree −1. All associative algebras are assumed to be unital and all
coassociative coalgebras to be counital.

For the purpose of this paper, we will mostly work with pointed formal
graded manifolds that are actually pointed formal graded affine spaces. These
are determined by graded symmetric coalgebras of the type S(V ), where V
is a graded vector space. The (graded) cocommutative, coassociative comul-
tiplication on S(V ) is taken to be the standard shuffle comultiplication. We
think of the linear dual algebra S(V )∗ as the algebra of functions in a formal
neighborhood of 0 in V . The basepoint, which corresponds to the origin 0 in
the vector space V , is given by the coaugmentation k = S0(V ) → S(V ).

A morphism V → W of pointed formal graded manifolds in our restricted,
linear category is just a morphism S(V ) → S(W ) of coalgebras respecting
the coaugmentations. Since the coalgebra S(W ) is cofree (in the category of
conilpotent cocommutative coalgebras), such a morphism is determined by
a degree-zero linear map S(V ) → W . Compatibility with coaugmentations
forces this linear map to vanish on k = S0(V ).

When we talk about a linear pointed formal differential graded (dg- ) man-
ifold V , we assume that it is a linear pointed formal graded manifold V en-
dowed with a differential, i.e., the structure coalgebra S(V ) is endowed with
a codifferential, a degree-one, k-linear coderivation D satisfying D2 = 0 and
vanishing on S0(V ). A codifferential, like any coderivation on a cofree cocom-
mutative coalgebra, is determined by a degree-one linear map S>0(V ) → V ,
the projection of the coderivation D to the space V of cogenerators of the
coalgebra S(V ).

Morphisms of pointed formal dg-manifolds have to respect differentials,
i.e., the corresponding coalgebra morphisms have to respect the structure
codifferentials.

Typically, a deformation functor is defined on the category of local Artin
rings. We find it more convenient to work with slightly more general complete
local rings (or algebras). Let (R,m) be a complete local k-algebra, that is to
say, a local k-algebra R with a maximal ideal m such that the canonical ring
homomorphisms k → R/m to the residue field and R → lim←−n

R/mn to the
completion of R in the m-adic topology are isomorphisms. Given a dg-vector
space V and a complete local algebra (R,m), we will be considering completed
tensor products, such as

V ⊗̂ m := lim←−
n

V ⊗m/mn.

We say that a complete local k-algebra (R,m) is of finite type if all the quo-
tients R/mn, n ≥ 1, are finite-dimensional over k. We will also associate
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a pointed formal dg-manifold SpecR to a complete local k-algebra (R,m)
of finite type. This formal pointed manifold is determined by the natural
conilpotent coalgebra structure on the continuous linear dual R∗ of R, along
with the coaugmentation k → R∗, dual to the augmentation R → R/m = k.
We will set the dg structure on SpecR to be given by the zero codifferential
on R∗. Note that this pointed formal dg-manifold is not linear, but rather
affine in the scheme-theoretic sense.

More general pointed formal dg-manifolds are treated in [5].

Disclaimer

Sometimes people refer to quantum deformations in the context of deforma-
tions associated historically with quantum field theory, especially when the
deformation parameter is hidden within the variable q. From the point of view
of this paper, many such deformations would still be classical. But you never
know. For example, a theorem of C. Teleman [39] states that higher-genus
Gromov-Witten invariants can be reconstructed from the quantum cup prod-
uct in the semisimple case. The quantum cup product is a classical deforma-
tion of the usual cup product. We argue that deformation theory of algebraic
structures associated to higher genera is intrinsically quantum, cf. Section 2.1.
Likewise, quantum groups would be classical deformations from our point of
view. However, quantum groups are closely related to Lie bialgebras, whose
deformation theory should be quantum, cf. Section 3. Deformation quantiza-
tion [25], given its relation to moduli spaces of algebraic curves, could have
an incarnation within Quantum Deformation Theory, but it is still a classical
deformation and one does not need to evoke moduli spaces of higher genera
to do it.

1. Classical theory: MCE, CME & deformation theory

1.1. The main player of deformation theory

Let me start with the following, hopefully contentious, statement.

Metatheorem 1.1. Every reasonable deformation problem in mathematics
comes from a dg-Lie algebra.

The proof of this statement can easily be demonstrated by contradiction:
If there is a deformation problem that does not come from a dg Lie algebra,
the problem is obviously unreasonable. On a more serious note, the metathe-
orem presents a long and important development stemming from the work of
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Gerstenhaber [18], Schlessinger-Stasheff [35], Goldman-Millson [22], Deligne
[15], Kontsevich [25] and a few others, who showed that, on the one hand,
many major deformation theories, such as those of complex manifolds or as-
sociative algebras, come from a corresponding dg Lie algebra and, on the
other hand, can be completely described in terms of this dg Lie algebra. For
example, the dg Lie algebra governing deformations of a complex manifold M
is the Dolbeault complex (Ω−1,•(M), ∂̄) of the holomorphic tangent bundle of
M . The bracket, known as the Nijenhuis bracket, is given by the commutator
of vector fields combined with the wedge product of (0, q)-forms. The dg Lie
algebra describing deformations of an associative algebra A is its Hochschild
complex C•(A,A) along with the Gerstenhaber bracket. The metatheorem is
probably not that much a law, but rather a manifesto: If your favorite de-
formation theory does not come from a dg Lie algebra, you should make an
effort to find one. This might bear fruit for your theory.

I may give “plausible reasoning”to convince the reader that the meta-
theorem should hold for philosophical reasons. I am sure this argument is
somewhat of folklore, but I had never thought about it until Jim Stasheff
forwarded to me a question of Samir Shah as to really why the gods of math-
ematics had designed the metatheorem to be true. Here is what I think. De-
formation theory describes the tangent cone at a point x of the moduli space
M of the problem. The tangent cone is Spec GrOM,x, where the associated
graded Gr is taken with respect to powers of the maximal ideal of the local
ring OM,x, the stalk of the structure sheaf OM at x. Usually, this cone is sin-
gular. You may resolve this singularity within derived algebraic geometry, for
instance, find a free dg-commutative algebra whose cohomology is GrOM,x.
A free dg-commutative algebra is equivalent to an L∞-algebra, cf. a remark
before Theorem 1.3 below. Then you take a quasi-isomorphic dg-Lie algebra,
and you are done.

1.2. The Maurer-Cartan Equation & deformation functor

Given a dg Lie algebra g =
⊕

n∈Z g
n with a differential d of degree |d| = 1,

the Maurer-Cartan set

MCg := {S ∈ g1 | dS + 1
2[S, S] = 0}

is the set of degree-one solutions S, called Maurer-Cartan elements, of the
Maurer-Cartan Equation (MCE )

(1) dS + 1
2[S, S] = 0,

also known as the CME, the Classical Master Equation.
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A dg Lie algebra g defines a much richer object, called a deformation
functor :

CLAlg → Set,
(R,m) �→ MCg(R),

where CLAlg is the category of complete local k-algebras of finite type and
(R,m) is an object of it, Set is the category of sets, and

(2) MCg(R) := {S ∈ (g ⊗̂ m)1 | dS + 1
2[S, S] = 0}.

This set is interpreted as the set of deformations over SpecR of the mathe-
matical object whose deformation theory is governed by g. For example, when
g is the Hochschild complex of an associative algebra A, the set MCg(R) is the
set of associative R-linear multiplications on A ⊗̂ R extending the original
multiplication on A.

Example 1.2. Let h be a Lie algebra. Then the dg Lie algebra of based,
graded coderivations

g := Coder∗(S(h[1])) = homk(S>0(h[1]), h[1])

of the cofree conilpotent cocommutative coalgebra S(h[1]) describes the de-
formation theory of the Lie algebra h. The differential on g is defined as
follows:

d :=
{
−[−,−] : S2(h[1]) → h[1], the Lie bracket on h, for n = 2,
0 for all other n.

The funny sign is a matter of convention, which becomes useful when one gen-
eralizes this theory to the case when h is an L∞-algebra. It is a straightforward
checkup that the condition that d is a codifferential, d2 = 0, is equivalent to
the Jacobi identity for the Lie bracket [−,−]. A deformation of h over a com-
plete local algebra (R,m) is, by definition, a new bracket [−,−]′ on h ⊗̂ R
which reduces to the original bracket [−,−] on h modulo m. Thus, we have

[x, y]′ = [x, y] + S(x, y) for each x, y ∈ h

and some S(x, y) ∈ Homk(Λ2(h), h) ⊗̂ m = homk(S>0(h[1]), h[1])1 ⊗̂ m such
that [−,−]′ satisfies the Jacobi identity. As above, this new bracket produces
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a new, deformed codifferential on g ⊗̂ R:

d′ = d + [S,−],

for which the equation (d′)2 = 0 is equivalent to the Jacobi identity for [−,−]′.
Now observe that (d′)2 = dS + 1

2 [S, S]. This implies that a deformation of h
over R is equivalent to the choice of a Maurer-Cartan element S ∈ MCg(R).

1.3. Representability theorems

Considering the opposite category FLAff := CLAlgop of formal local affine k-
schemes of finite type whose object corresponding to an algebra R is denoted
by SpecR, we may turn the deformation functor into a contravariant one:

FLAff op → Set,
SpecR �→ MCg(R),

and speak of its representability, possibly in a larger category.
Note that a dg Lie algebra g defines a pointed formal dg-manifold g[1]

determined by the symmetric coalgebra S(g[1]) with the codifferential induced
by the linear map l : S(g[1]) → g[1] whose restriction ln to Sn(g[1]) is defined
by the following formula:

ln :=

⎧⎪⎪⎨⎪⎪⎩
d : g[1] → g[1], the differential on g, for n = 1,
±[−,−] : S2(g[1]) → g[1], the Lie bracket on g, for n = 2,
0 for all other n.

The sign for n = 2 is given by l2(x, y) = (−1)|x|[x, y] for x, y ∈ g[1].
Remark. It is also useful to recall at this point that the structure of a pointed
formal dg-manifold on the pointed formal graded manifold g[1] associated to
a graded vector space g is equivalent to the structure of an L∞-algebra on g.
Moreover, an L∞-morphism g′ → g between two L∞-algebras is by definition
a morphism of pointed formal manifolds g′[1] → g[1], which is, by definition,
nothing but a morphism of coaugmented dg-coalgebras S(g′[1]) → S(g[1]).
Since S(g[1]) is cofree, every such morphism is determined by a linear map
S>0(g′[1]) → g[1], projection of the morphism to the cogenerating space g[1].
Thus, the category L∞-Alg of L∞-algebras with L∞-morphisms becomes a
full subcategory of the category PFDGMan of pointed formal dg-manifolds,
namely the full subcategory of linear pointed formal dg-manifolds.
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Theorem 1.3 (Quillen, as per [27]). The deformation functor MCg is repre-
sented by the pointed formal dg-manifold g[1], i.e., there is a natural isomor-
phism

MCg(R) ∼−→ MorPFDGMan(SpecR, g[1])
:= HomCDGCoalg((R∗, 0), (S(g[1]), D)).

Here SpecR is regarded as a pointed formal dg-manifold with a zero differ-
ential, as in the Conventions section of the introduction, MorPFDGMan stands
for the set of morphisms of pointed formal dg-manifolds, and HomCDGCoalg for
the set of homomorphisms of coaugmented differential graded coalgebras.
Remark. We do not consider solutions of the Maurer-Cartan equation up to
homotopy, or gauge equivalence classes of solutions, here and in the sequel
(for the Quantum Master Equation) for a reason. We can always extend the
scalars and tensor the given dg-Lie or L∞-algebra g with the dg-algebra of
polynomial differential forms on the n-simplex Δn: g ⊗ Ω•(Δn). If we do
this for each n ≥ 0, we will obtain a simplicial dg-Lie algebra. Solutions
of the Maurer-Cartan equation in this simplicial dg-Lie algebra will form a
deformation functor with values in simplicial sets, whose topology will reflect
homotopy-theoretic properties of the deformation functor. For example, the
set π0 of its path components will be the set of gauge equivalence classes
of solutions. Thus, a mere extension of the deformation functor MCg to dg-
commutative algebras will recover necessary homotopy-theoretic information.

Proof. Ignore the differentials for the time being. Since S(g[1]) is cofree, ho-
momorphisms R∗ → S(g[1]) of conilpotent coaugmented coalgebras are in
natural bijection with homogeneous k-linear maps m∗ → g[1], which are
in bijection with the space g1 ⊗̂ m = (g ⊗̂ m)1, because of our finite-
ness assumption for (R,m). Explicitly, a coalgebra homomorphism corre-
sponding to an element S ∈ (g ⊗̂ m)1 = (g[1] ⊗̂ m)0 = Homk(m∗, g[1]) is
exp(S) ∈ Homk(R∗, S(g[1])), where the exponential is taken in the sense of
the convolution product on the space of linear maps from a cocommutative
coalgebra to a commutative algebra.

Now recall that the homomorphism exp(S) must respect the differen-
tials. In this case, this means D ◦ exp(S) = 0. However, D ◦ exp(S), being
a coderivation of R∗ with values in the cofree conilpotent coalgebra S(g[1])
over the homomorphism exp(S), is determined by its projection

l1(S) + 1
2! l2(S, S) = dS + 1

2[S, S]

to the space g[1] of cogenerators.
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The unsettling discrepancy between the category on which the Maurer-
Cartan functor MCg is defined and the category in which it is “represented”
may nicely be resolved by the following tune-up.
Theorem 1.4 (Chuang-Lazarev [11]). For any dg Lie algebra g, the con-
travariant functor MCg, as in 2, extended from FLAff to the category L∞ −
Alg of L∞-algebras:

MCg : L∞-Algop → Set,

MCg(g′) := {S ∈ hom1
k(S>0(g′[1]), g) | DS + 1

2[S, S] = 0},

where D is the standard differential on homk combining the differentials on
g and S(g′[1]) and the bracket combines the bracket on g with the coproduct
on S(g′[1]), is represented by the dg-Lie algebra g itself, regarded as an L∞-
algebra. In other words, there is a natural isomorphism

MCg(g′)
∼−→ MorL∞-Alg(g′, g)
:= MorPFDGMan(g′[1], g[1]) := HomCDGCoalg(S(g′[1]), S(g[1])).

Proof. The proof of Theorem 1.3 works verbatim in this case.

Remark. This theorem admits even finer tuning, in which the dg-Lie algebra
g is replaced with an L∞-algebra and the MCE 1 is replaced with an Extended
Maurer-Cartan Equation (EMCE):

DS + 1
2! [S, S] + 1

3! [S, S, S] + · · · = 0,

which may equivalently be written as
∞∑
n=1

1
n! ln(S, . . . , S) = 0,

where l1 := D is the differential and ln := [−, . . . ,−], n ≥ 2, are the higher,
L∞ brackets on g (with “scalars extended” to homk(S(g′[1]),−)). Everything
else in the wording of the theorem remains intact.

2. Quantum theory: QME & quantum deformation theory

2.1. Overture

Let me start this section with a probably more contentious metatheorem than
the previous one.
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Metatheorem 2.1. Every reasonable quantum deformation problem comes
from a BV∞-algebra.

The classical version, Metatheorem 1.1, can be stated equivalently in a
similar form, as follows.

Metatheorem 1.1′. Every reasonable classical deformation problem comes
from an L∞-algebra.

Indeed, on the one hand, any dg-Lie algebra is an L∞-algebra, and on
the other hand, if we have managed to construct an L∞-algebra governing
our deformation problem, then a quasi-isomorphic dg-Lie algebra will de-
scribe this deformation problem equally well. A similar statement about quasi-
isomorphic dg-BV-algebras and solutions of the Quantum Master Equation 4
below is proven by K. Costello, [14, Section 5].

In the rest of the paper, I would like to provide evidence for the quan-
tum metatheorem. Before doing that, I need to define a few things. Roughly
speaking, under a quantum deformation problem I understand a deforma-
tion problem for a structure based on graphs rather than trees or engaging
higher genera rather than genus zero. Those include structures of algebras
over PROPs and modular operads, rather than over operads and dioperads.
Examples of such could be Frobenius algebras, any types of bialgebras and
their homotopy versions, such as L∞-bialgebras and IBL∞-algebras. Perhaps,
deformations of stable maps in Gromov-Witten theory may also be classified
as quantum deformations. I will return to examples later, after discussing the
appropriate setup. So, what is a BV∞-algebra?

2.2. Differential graded BV- and BV∞-algebras

As in the classical case, typical quantum deformation problems will be coming
from dg-BV-algebras, rather than BV∞ ones. Thus, let us first discuss dg-BV-
algebras.

Definition 2.2. A dg-BV-algebra is a dg-commutative associative algebra
(V, d) with a second-order differential Δ. By a second-order differential on
a dg-commutative algebra (V, d) we mean a linear operator Δ : V → V of
degree −1, called a BV operator, (graded) commuting with the differential d:
[Δ, d] = 0, annihilating the constants: Δ(1) = 0, squaring to zero: Δ2 = 0,
and being a differential operator of second order, which is a shortcut for order
≤ 2:

[[[Δ, La], Lb], Lc] = 0 for any a, b, c ∈ V ,
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where La : x �→ ax is the operator of left multiplication by a on V . For
the purpose of this note, we will also assume a rather nonstandard piece
of structure, that of a conilpotent graded cocommutative coalgebra on V .
We will impose minimal compatibility between the two structures, namely,
that the unit of the algebra structure is a coaugmentation of the coalgebra
structure and that the counit of the coalgebra structure is an augmentation of
the algebra structure. We will also assume that the differentials are compatible
with the augmentation homomorphism V → k, where both d and Δ act
trivially on k.

Remark. Even though the traditional definition of a dg-BV-algebra does not
assume any coalgebra structure, imposing it is not unprecedented: it was
secretly used in [13, 12] in the study of BV∞- and IBL∞-morphisms. Our
work [32] with Markl arose from our discovering this secret and attempting
to leak this information to the public. The coalgebra requirement is rather
mildly restrictive: every augmented dg-commutative algebra carries a trivial
conilpotent cocommutative comultiplication defined by δ(1) := 1⊗ 1, δ(a) :=
a ⊗ 1 + 1 ⊗ a for a in the augmentation ideal, see, e.g., [32]. If we do not
mention a specific comultiplication in the sequel, we will assume the trivial
comultiplication.

Note that the failure of Δ to be a derivation is measured by a Lie bracket
of degree −1, often called an antibracket:

{a, b} := (−1)|a|(Δ(ab) − (Δa)b− (−1)|a|a(Δb))
= (−1)|a|[[Δ, La], Lb](1) for a, b ∈ V ,

(3)

which turns V into a dg-Gerstenhaber algebra.

Example 2.3 (The Chevalley-Eilenberg complex of a dg-Lie algebra). Let g
be a dg-Lie algebra. Then its Chevalley-Eilenberg (CE) complex C•(g; k) :=
S(g[−1]) is a dg-BV-algebra. The differential d is the internal differential on
S(g[−1]), and the BV operator Δ is the following part of the CE differential:

Δ(x1 . . . xn) :=
∑
i<j

(−1)|x1|+···+|xi|+εx1 . . . [xi, xj ] . . . x̂j . . . xn,

where x1, . . . , xn ∈ g[−1], |x| is the degree of x in g[−1], and (−1)ε is the
Koszul sign gotten from commuting x1 . . . xn to x1 . . . xixjxi+1 . . . x̂j . . . xn in
S(g[−1]). More generally, if g is an L∞-algebra, then S(g[−1]) with the CE
differential becomes a (commutative) BV∞-algebra, see [9, 6].
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Example 2.4 (The Chevalley-Eilenberg complex of an involutive Lie bialge-
bra, see [38, 13, 16, 12]). Let g be an involutive Lie bialgebra, that is to say,
a Lie bialgebra (g, [−,−], δ), δ : g → g ∧ g being the cobracket, satisfying an
involutivity condition: [−,−]◦δ = 0. Let Δ be the CE differential correspond-
ing to the Lie algebra structure on g, as in the previous example. Extend the
cobracket δ as a degree-one derivation d of S(g[−1]). Then (S(g[−1]), d,Δ)
is a dg-BV-algebra. Note that without the involutivity condition, the BV op-
erator Δ will no longer commute with the differential d, but if we forget Δ,
S(g[−1]) will still be a dg-Gerstenhaber algebra, see [28]. See ibid. for a con-
struction of a different BV operator on the dg-Gerstenhaber algebra S(g[−1])
in the case when dim g < ∞ and the dual g∗ carries a Lie-bialgebra structure
which is triangular, rather than involutive.
Example 2.5 (The Chevalley-Eilenberg complex of a bi-dg-Lie algebra).
This example is very important for quantum deformation theory, see Ex-
amples 2.15 and 2.16. Let g be a graded Lie algebra with two commuting
differentials: d of degree 1 and Δ of degree −1. We may call such g a bi-dg-
Lie algebra. Consider the graded symmetric algebra S(g[−1]) on the shifted
graded vector space g[−1]. Extend the differential d to S(g[−1]) as an “inter-
nal” differential with respect to multiplication. Extend the Lie bracket [−,−]
as a degree −1 biderivation to an antibracket {−,−} on S(g[−1]), known as
the Schouten bracket. Then extend Δ to a second-order differential operator
on S(g[−1]) by the formula

Δ(ab) = (Δa)b + (−1)|a|a(Δb) + (−1)|a|{a, b} for a, b ∈ S(g[−1]).

The resulting triple (S(g[−1]), d,Δ) is a dg-BV-algebra. By the way, for every
dg-BV-algebra V , the shifted space V [1] carries a bi-dg-Lie algebra structure
with respect to the antibracket. Moreover, for the dg-BV-algebra S(g[−1])
of this example, the natural inclusion g = S1(g[−1])[1] ↪→ S(g[−1])[1] is a
morphism of bi-dg-Lie algebras.
Example 2.6 (The bar complex of an associative algebra, see Terilla-Tradler-
Wilson [41]). Let A be a dg-associative algebra and T (A[−1]) be the dg-
tensor coalgebra on the shifted dg-vector space A[−1]. Then T (A[−1]) with
the shuffle product and the BV operator

Δ(a1 ⊗ · · · ⊗ an) :=
∑
i

(−1)|a1|+···+|ai|a1 ⊗ · · · ⊗ (ai · ai+1) ⊗ · · · ⊗ an

for ai ∈ A[−1], becomes a dg-BV-algebra. Note that we need to choose a
conilpotent cocommutative coproduct on T (A[−1]), such as the shuffle co-
product, or the trivial coproduct described in the remark after Definition 2.2,
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to fit our definition of a dg-BV-algebra. I suspect that T (A[−1]), perhaps with
the original coassociative coproduct, is responsible for quantum deformation
theory over noncommutative, associative parameter rings.

Example 2.7 (The bar complex of an O-algebra). Let O be a Koszul quad-
ratic operad of vector spaces, O! be its Koszul-dual operad, and V be a
dg-O-algebra. Then the cofree conilpotent O!-coalgebra F c

O!(V [1]) acquires a
codifferential d+Δ, where d is the internal differential and Δ is the coderiva-
tion corresponding to the O-algebra structure on V . Based on the particular
cases of O being the Lie operad or the associative operad, as in Examples
2.3 and 2.6, respectively, I anticipate that F c

O!(V [−1]) with the differential d
and the BV operator Δ will be a dg-BV algebra and give rise to deformation
theory with O!-algebras as parameter rings. The 2018 Honors thesis [46] of
Lucy Yang at the University of Minnesota aims to prove that Δ is indeed a
BV operator.

Example 2.8 (Functions on an odd symplectic manifold, see Schwarz [36]
and Getzler [19]). Let M be an odd symplectic supermanifold of dimension
(n|n) with a volume form. Then the algebra C∞(M) of smooth functions on
M becomes a BV-algebra with the BV operator given by

Δ :=
∑
i

∂2

∂xi∂ξi

in super Darboux coordinates (x1, . . . , xn| ξ1, . . . , ξn). Here we do not assume
much of a dg structure, i.e., the grading is actually a Z/2Z-grading and the
differential d is just zero. Also, we do not assume any comultiplication in this
example. However, to get one, one can choose a basepoint on M and use the
associated augmentation on C∞(M) to define a trivial coproduct, as in the
Remark after Definition 2.2. Still, in general there will be no compatibility
between the augmentation and Δ, which we require of our dg-BV-algebras.
Thus, this example, albeit fundamental, is an outlier in our context.

A particular case of this example, which I present in the graded, rather
than Z/2Z-graded version, is the example of T ∗[1]M , a shifted cotangent
bundle to an oriented n-manifold M , see [10, 29]. Functions on this graded
manifold are nothing but multivector fields Γ(M,S(T [−1]M)). A volume form
on M gives an isomorphism: f : Γ(M,Sp(T [−1]M)) → Ωn−p(M). Then Δ =
f−1 ◦ddR ◦f defines the structure of a BV-algebra on Γ(M,S(T [−1]M)), i.e.,
a dg-BV-algebra with a zero differential.

Definition 2.9. A (commutative) BV∞-algebra is a graded commutative as-
sociative algebra V with a sequence of differential operators Δn of order ≤ n
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with n ≥ 1. A differential operator of order ≤ n on a graded commutative
algebra V is a linear operator Δn : V → V satisfying

[. . . [[Δn, Lv0 ], Lv1 ], . . . , Lvn ] = 0 for any v0, v1, . . . , vn ∈ V .

We also require that the k[[�]]-linear operator d̂ :=
∑

n≥1 �
n−1Δn : V [[�]] →

V [[�]], which we call a BV∞ operator, where � is a formal variable with
|�| = 2, be of total degree 1, kill constants: d̂(1) = 0, and square to zero:
d̂2 = 0. Another requirement, specific to this paper, is that V have a conilpo-
tent graded cocommutative coalgebra structure, mildly compatible with the
algebra structure, as in Definition 2.2: the unit of the algebra structure is a
coaugmentation of the coalgebra structure, and the counit of the coalgebra
structure is an augmentation of the algebra structure. And we again assume
that d̂ is compatible with the augmentation homomorphism V [[�]] → k[[�]],
where d̂ acts trivially on k[[�]].

Example 2.10. Every dg-BV-algebra (V, d,Δ) is a BV∞-algebra with d̂ =
d + �Δ or Δ1 = d, Δ2 = Δ, and Δn = 0 for all other n.

The BV∞ operator d̂ generates a whole family of “derived” antibrackets

{v1, v2, . . . , vn} := 1
�n−1 [. . . [[d̂, Lv1 ], Lv2 ], . . . , Lvn ](1)

= [. . . [[Δn + �Δn+1 + �
2Δn+2 + . . . , Lv1 ], Lv2 ], . . . , Lvn ](1)

for v1, v2, . . . , vn ∈ V . Note a conventional sign difference with Equation 3 for
n = 2. These antibrackets (after being multiplied back by �

n−1, to be precise)
define the structure of an L∞-algebra on V , compatible with the product on
V in the way that the failure of the nth antibracket to be a multiderivation
is measured by the (n + 1)st antibracket. These statements are an original
result of J. Alfaro, I. A. Batalin, K. Bering, P. H. Damgaard and R. Marnelius
[3, 7, 8], see also F. Akman [1, 2], Th. Th. Voronov [43, 44], and D. Bashkirov
and the author [6].

Commutative BV∞-algebras appeared in [13] in the study of symplectic
field theory. We will be dropping the adjective “commutative,” despite the
fact that our commutative BV∞-algebras do not fit the definition of an O∞-
algebra in the sense of being an algebra over a cofibrant model O∞ of an
operad O. The correct, C∞ version of the notion of a BV∞-algebra and its
relation to the notion of a commutative BV∞-algebra is described in [17].
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2.3. QME & quantum deformation functor

Again, let � be a formal variable of degree 2:

|�| = 2.

First of all, a dg-BV-algebra V will be related to quantum deformations
through the corresponding quantum deformation functor

CLAlg → Set,
(R,m) �→ QMV (R),

which associates to a complete local algebra (R,m) the set

QMV (R) := {S ∈ V [[�]]2 ⊗̂ m | dS + �ΔS + 1
2{S, S} = 0}

of solutions of the Quantum Master Equation (QME ):

(4) dS + �ΔS + 1
2{S, S} = 0,

which is equivalent to
d̂ eS/� = 0,

where
d̂ := d + �Δ,

in the space V ((�)) ⊗̂ R of formal Laurent series, because of the following
remarkable formula

(5) e−S/� ◦ d̂ ◦ eS/� = d̂ + {S,−} + 1
�

(
d̂S + 1

2{S, S}
)
,

for operators on V ((�)) ⊗̂ R, where we abuse notation by writing elements,
such as eS/�, in lieu of the operators, such as LeS/� , of left multiplication
by these elements. This formula follows from a celebrated, and much more
compact, identity

AdeA = eadA

for linear operators on a Lie algebra, in our case evaluated on d̂ with A =
L−S/�. If we apply the operators on both sides of Equation 5 to the unit
element 1, we obtain an equation

e−S/�d̂ (eS/�) = 1
�

(
d̂S + 1

2{S, S}
)
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on elements in V ((�)) ⊗̂ R, which yields the equivalence of the two forms of
the QME above.

The quantum deformation functor admits a generalization to a BV∞-
algebra (V, d̂). Here are the adjustments one needs to make in this case. The
quantum deformation functor QMV : CLAlg → Set associates to a complete
local algebra (R,m) the set

(6) QMV (R) := {S ∈ V [[�]]2 ⊗̂ m | d̂ eS/� = 0}

of solutions of the Quantum Master Equation (QME ):

(7) d̂ eS/� = 0,

which is equivalent to

d̂S + 1
2!{S, S} + 1

3!{S, S, S} + · · · = 0.

Again, the equivalence follows from a generalization of Equation 5:

e−S/� ◦ d̂ ◦ eS/� = d̂ + {S,−} + 1
2!{S, S,−} + . . .

+ 1
�

(
d̂S + 1

2!{S, S} + 1
3!{S, S, S} + . . .

)
,

proven exactly in the same way as in the dg-BV case.
Solutions to the QME in a dg-BV- or BV∞-algebra, in general, may be

considered as distinguished deformations of the BV or BV∞ operator. In par-
ticular cases, they may describe interesting structures. For example, for the
dg-BV-algebra Γ(M,S(T [−1]M)) of multivector fields on an oriented mani-
fold M , see the end of Example 2.8, a solution of the QME is a linear polyno-
mial S0 +�S1, where S0 is a bivector field and S1 is just a function satisfying
the relations [S0, S0] = 0 and Δ(S0) + [S1, S0] = 0. As Ricardo Campos has
pointed out to me, these data define a unimodular Poisson structure on M ,
see [45].

2.4. Quantum representability theorem

To talk about representable functors in the QME context, we need to switch
to different categories, those of BV∞-spaces and BV∞-algebras.
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Definition 2.11. Let (V, d̂) and (V ′, d̂′) be two BV∞-algebras. A BV∞-
morphism V → V ′ is a k-linear map ϕ : V → V ′[[�]] of degree two such
that

1. ϕ(1) = 0;
2. d̂′ ◦ exp(ϕ/�) = exp(ϕ/�) ◦ d̂, where the exponential exp is taken with

respect to the convolution product on Homk(V, V ′((�)));
3. ϕ = ϕ0 +�ϕ1 +�

2ϕ2 + . . . , where ϕn : V → V ′ is a differential operator
of order ≤ n+1 over the trivial algebra homomorphism V → V ′, which
takes the augmentation ideal m of V to zero, i.e., ϕn(mn+2) = 0.

This definition is somewhat more general than the original one by Cielie-
bak and Latschev [13] (or Cieliebak, Fukaya, and Latschev [12]): if we require
our ϕn to be a differential operator of order ≤ n over the trivial algebra homo-
morphism for each n ≥ 0, then ϕ/� will be a BV∞-morphism in their sense.
The exponential makes sense, because of Condition 1 and the conilpotency
of the coproduct on V . Composition of BV∞-morphisms ϕ and ψ is done by
composing exp(ϕ/�) and exp(ψ/�). The fact that composition of exponen-
tials is the exponential of a BV∞-morphism follows from the existence of the
logarithm and its extension to Laurent series in �, see [6, 32], and checking
that the series � log(exp(ϕ/�) ◦ exp(ψ/�)) satisfies Properties 1–3 of Defini-
tion 2.11. For example, to see that the series does not contain any negative
powers of �, one verifies that lim�→0 � log(exp(ϕ/�) ◦ exp(ψ/�)) is finite.

Let BV∞-Alg denote the category of BV∞-algebras and BV∞-Sp the same
category, interpreted geometrically: if (V, d̂) is a BV∞-algebra, Spec∗ V will
denote the corresponding geometric object, which we call a BV∞-space. The
idea is that this is a geometric object, generalized functions, or distributions,
on which form the BV∞-algebra V .

Observe that the opposite category of complete local algebras forms a
subcategory of the category of BV∞-algebras:

CLAlg ⊆ BV∞-Algop .

To see this, observe that if (R,m) is a complete local k-algebra, then its k-
linear dual R∗ with the BV∞ operator d̂ = 0 and multiplication defined to
be zero on m∗ is a BV∞-algebra. A homomorphism f : (R,mR) → (S,mS) of
complete local algebras induces a dual morphism f∗ : S∗ → R∗ of coalgebras.
Then ϕ := � log f∗ is a BV∞-morphism S∗ → R∗. Indeed, let e be the unit
of Homk(S∗, R∗) under the convolution product. It is given by composing
the unit morphism k → R∗ with the counit morphism S∗ → k. Then ϕ =
� log f∗ = �(f∗ − e), because Im(f∗ − e) ⊆ m∗

R and (m∗
R)2 = 0. Therefore,
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ϕ(1) = �(1−1) = 0. Also log f∗ = f∗−e automatically vanishes on (m∗
S)3 = 0.

Thus, it makes sense to talk about a functor CLAlg → Set, such as QMV ,
being represented by an object of the category BV∞-Alg or BV∞-Sp.

Theorem 2.12. The quantum deformation functor QMV associated to a dg-
BV- or a BV∞-algebra V is represented by the BV∞-space Spec∗ V , i.e., there
is a natural isomorphism

QMV (R) ∼−→ MorBV∞-Sp(Spec∗R∗, Spec∗ V )
:= HomBV∞-Alg((R∗, 0), (V, d̂)).

Park, Terilla, and Tradler in [34] prove a representability theorem of a
rather different flavor for the quantum deformation functor up to gauge equiv-
alence. Our result is closer to but does not directly follow from Münster-Sachs
[33, Section 4.3] or Markl-V [32, Corollary 41]. However, the proof, which we
repeat here for completeness, is similar.

Proof. A solution S ∈ V [[�]]2 ⊗̂ m of the QME 7 is by definition equivalent
to a degree-two k-linear map S : m∗ → V [[�]] satisfying d̂ exp(S/�) = 0 or a
degree-two k-linear map S : R∗ → V [[�]] such that S(1) = 0. Each such S
automatically satisfies Property 3 of Definition 2.11, because (m∗)n+2 = 0 for
all n ≥ 0.

A quantum analogue of Chuang-Lazarev’s Theorem 1.4 has a more natural
wording and, naturally, a totally trivial proof. The quantum deformation
functor associated to a BV∞-algebra (V, d̂) may be extended to a functor

QMV : BV∞-Algop → Set

which takes a BV∞-algebra (V ′, d̂′) to the set of BV∞-morphisms V ′ → V .
One may view the equation d̂ exp(ϕ/�) = exp(ϕ/�)d̂′ as a QME on ϕ. Then,
tautologically, the functor QMV is represented by the BV∞-algebra (V, d̂) or
the BV∞-space Spec∗ V .

On the other hand, the following less general representability theorem
may be more interesting.

Before wording the theorem, note that the category L∞-Alg of L∞-al-
gebras (and thereby the equivalent category PFDGMan of pointed formal
dg-manifolds) is a subcategory of the category BV∞-Alg of BV∞-algebras.
Indeed, if g is an L∞-algebra, then S(g[−1]) is a BV∞-algebra, see Example
2.3. An L∞-morphism g → h is, by definition, a morphism of coaugmented
dg-coalgebras S(g[1]) → S(h[1]), which is determined by its components
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ϕn : Sn(g[1]) → h[1], n ≥ 1, and ϕ =
∑

n≥1 �
nϕn defines a BV∞-morphism

S(g[−1]) → S(h[−1]), see [6, Theorem 4.8].
Now define a version of the quantum deformation functor on the opposite

category L∞-Algop of the category of L∞-algebras. Let (V, d̂V ) be a BV∞-
algebra and g an L∞-algebra. Then S(g[1]) is a coaugmented conilpotent
cocommutative dg-coalgebra with the codifferential D1 + D2 + . . . defining
the L∞ structure on g: Dn extends the nth bracket ln : Sn(g[1]) → g[1] to
a degree-one coderivation of S(g[1]). Likewise, S(g[−1]) is a coaugmented
conilpotent cocommutative graded coalgebra with the codifferential d̂g :=
D1 + �D2 + �

2D3 + . . . on S(g[−1])[[�]]. Hence, the graded vector space
homk(S(g[−1]), V ) becomes a BV∞-algebra with respect to the convolution
product and the BV∞ operator D̂(Φ) := d̂V ◦ Φ − (−1)|Φ|Φ ◦ d̂g.1 Thus, we
can define the value of the quantum deformation functor associated to V on
the L∞-algebra g as the set

(8) QMV (g) := {S =
∑
n≥0

�
nSn | D̂ eS/� = 0}

of solutions to the QME for the BV∞-algebra homk(S(g[−1]), V ), where

Sn ∈ hom2−2n
k (S>0(g[−1]), V ) for each n ≥ 0

subject to
Sn(S>n+1(g[−1])) = 0 for each n ≥ 0.

Theorem 2.13. Given a BV∞-algebra (V, d̂V ), the associated quantum de-
formation functor

QMV : L∞-Algop → Set
is represented by the BV∞-algebra V in the category of BV∞-algebras or by
the BV∞-space Spec∗ V in the equivalent category of BV∞-spaces. In other
words, there is a natural isomorphism

QMV (g) ∼−→ MorBV∞-Sp(Spec∗ S(g[−1]), Spec∗ V )
:= HomBV∞-Alg((S(g[−1]), d̂g), (V, d̂V )).

Proof. The proof is almost a tautology: one just needs to observe that the
equation d̂V ◦exp(S/�) = exp(S/�)◦d̂g defining S as a BV∞-morphism is equi-
valent to the QME D̂eS/� = 0 for the BV∞-algebra homk(S(g[−1]), V ).

1For D̂ to define a BV∞ operator, it is essential that d̂g be a coderivation.
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2.5. Quantum deformation functor associated to a bi-dg-Lie
algebra

Notwithstanding the apparent consistency of the quantum deformation set-
up in the previous section, actual examples of quantum deformations, see
Section 2.6, require certain modification of the quantum deformation functor.
Suppose S(g[−1]) is the dg-BV algebra arising from a bi-dg-Lie algebra g, as
in Example 2.5. In this case, g is a bi-dg-Lie subalgebra of S(g[−1])[1], the
QME 4 in S(g[−1]) restricts to an equation in g, and the following subfunctor
of the quantum deformation functor becomes important:

(9) QMg(R) := {S ∈ g[[�]]1 ⊗̂ m | dS + �ΔS + 1
2[S, S] = 0}.

Note that g[[�]]1 = S1(g[−1])[[�]]2 and we have a natural inclusion of functors
QMg(R) ⊆ QMS(g[−1])(R). On the other hand, we have a natural identifica-
tion

QMg(R) = MCg[[�]](R),

where g[[�]] is considered as a dg-Lie algebra over k with a differential d̂ =
d + �Δ. Thus, Theorems 1.3 and 1.4 are applicable and we can state the
following easy corollary.

Corollary 2.14. Given a bi-dg-Lie algebra g, the quantum deformation func-
tor QMg : FLAffop → Set is representable by the pointed formal dg-manifold
g[1][[�]], and so is the extension of this functor to the category of pointed for-
mal dg-manifolds over k[[�]]. In other words, we have natural isomorphisms

QMg(R) ∼−→ MorPFDGMan(SpecR, g[[�]][1]),
QMg(g′)

∼−→ MorPFDGMan /k[[�]](g′[[�]][1], g[[�]][1]),

for a complete local algebra R and a bi-dg-Lie algebra g′ or a more general
L∞-algebra g′[[�]] over k[[�]].

2.6. Examples of quantum deformations

Now we can discuss examples of quantum deformations, described by solutions
of QME in appropriate bi-dg-Lie and BV∞-algebras.

Example 2.15. Let O be a modular dg-operad, V be a dg-vector space
with finite-dimensional graded components and an inner product of degree
−1, i.e., a nondegenerate linear map S2(V ) → k[−1], and EndV ((g, n)) :=
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V ⊗n be the twisted modular dg-operad of endomorphisms of V . Consider the
tensor product O⊗EndV , which is a twisted modular operad with components
(O ⊗ EndV )((g, n)) := O((g, n)) ⊗ EndV ((g, n)). Barannikov in [4], cf. also
[23], constructs, in fact, a bi-dg-Lie algebra structure (g, [−,−], d,Δ), see
Example 2.5, on a shifted direct sum g :=

⊕
g,n(O ⊗ EndV )((g, n))Sn [1] =⊕

g,nO((g, n))⊗Sn V
⊗n[1] of Sn-coinvariants of the components of O⊗EndV .

As we know from Example 2.5, the bi-dg-Lie algebra g gives rise to a dg-BV-
algebra S(g[−1]).

According to Barannikov [4], see also [23], solutions S ∈ g[[�]]1 of the
Quantum Master Equation

(10) dS + �ΔS + 1
2[S, S] = 0

are in bijection with F(O)-algebra structures on V , where F(O) is the Feyn-
man transform [21] of the modular operad O. Thus, we may think of the
quantum deformation functor 9 describing deformations of the trivial F(O)-
algebra structure on V corresponding to the trivial solution S0 = 0 of the
QME. Deformations of the F(O)-algebra corresponding to a nontrivial solu-
tion S0 ∈ g[[�]]1 of Equation 10 may be described by solutions of the QME

d̂′S + 1
2[S, S] = 0, S ∈ g[[�]]1,

with d̂′ = d+�Δ+[S0,−]. As in Example 2.5, the bi-dg-Lie algebra (g[[�]], d+
[S0,−],Δ, [−,−]) over k[[�]] gives rise to a BV∞-algebra S(g[−1]) with the
BV∞ operator d̂′ = d + {S0,−} + �Δ being a formal power series in � in
which all the terms but those by �

1 are derivations.
The simplest example of a modular operad O is the modular envelope of

the commutative operad: O((g, n)) := k for all (g, n) in the “stable” range.
The corresponding notion of an F(O)-algebra was studied by Markl [31], who
called it a loop homotopy Lie algebra. It is a modular analogue of the (prop-
eradic) notion of an IBL∞-algebra, which we will look at later, in Section 3.

Another standard example of a modular dg-operad is the homology op-
erad O((g, n)) = H•(Mg,n; k) of the Deligne-Mumford moduli spaces Mg,n

of stable algebraic curves of genus g with n punctures with respect to attach-
ing. In this case, the notion of an F(O)-algebra on V will be a higher-genus,
homotopy extension of the notion of a gravity algebra, see [20].

Example 2.16. This is a twisted version of the previous example. Let O
be a twisted modular operad, V be a dg-vector space with finite-dimensional
graded components and an inner product of degree 0, and EndV ((g, n)) :=
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V ⊗n be the endomorphism modular operad of V . Consider the tensor prod-
uct O ⊗ EndV , which is a twisted modular operad with components (O ⊗
EndV )((g, n)) := O((g, n)) ⊗ EndV ((g, n)). Again, Barannikov in [4], cf. [23],
constructs, a bi-dg-Lie-algebra structure (g, [−,−], d,Δ), see Example 2.5,
on a shifted direct sum g :=

⊕
g,n(O ⊗ EndV )((g, n))Sn [1] =

⊕
g,nO((g, n))

⊗Sn V
⊗n[1] of Sn-coinvariants of the components of O⊗EndV . The bi-dg-Lie

algebra g is part of the dg-BV-algebra S(g[−1]) up to shift.
Again, as per [4, 23], solutions of the Quantum Master Equation

dS + �ΔS + 1
2[S, S] = 0

in g[[�]]1 are in bijection with F(O)-algebra structures on V , where F(O) is
the Feynman transform of the twisted modular operad O.

Deformations of the F(O)-algebra corresponding to a nontrivial solution
S0 ∈ g[[�]]1 of the QME are obtained by redefining d̂′ := d̂ + [S0,−] and
considering the QME d̂′S + 1

2 [S, S] = 0, S ∈ g[[�]]1. As in the previous
example, this leads to a BV∞-algebra of a particular type, with all the BV
operators Δn, except Δ2, being derivations.

The model example of a twisted modular operad is the homology operad
O((g, n)) = H•(Mg,n; k) of the moduli spaces Mg,n of algebraic curves of
genus g with n punctures with respect to twist-gluing. In this case, the notion
of an F(O)-algebra will be a higher-genus, homotopy extension of the notion
of a hypercommutative, or WDVV-algebra, see [20] and [42]. This structure
is equivalent to the structure of a linear Frobenius manifold on V and is the
genus-zero avatar of cohomological field theory, see [26, 30].

There are various versions of the moduli-space example of a twisted modu-
lar operad. One, in a different language, appeared in the work of B. Zwiebach
[47] and A. Sen and Zwiebach [37]. Translated to the language of our pa-
per, they considered V = k and S1-equivariant chains on the moduli space
of Riemann surfaces with holomorphic disks. This gave a twisted modular
dg-operad. Another version of this operad, which uses the real version of the
Deligne-Mumford compactification, originated in the paper [24] of T. Kimura,
Stasheff and myself. See also Costello [14]. However, for the QME in these
cases to be sensible, degree considerations suggested to change grading on
chains to grading by codimension, as well as assume that the formal variable
� has degree zero. One can view this change of grading as nothing but re-
placing chains with Poincaré-Lefschetz dual cochains with compact support.
A solution to the QME in these cases is regarded as a universal topological
quantum field theory, the 2d, chain-level, closed-string, nonperturbative flavor
to be more precise. Zwiebach also associated this structure with string-field
theory.
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3. Quantizing Deformation Theory I

Recall from Example 2.4 that an involutive Lie bialgebra g gives rise to a dg-
BV-algebra structure on the symmetric algebra S(g[−1]). Not surprisingly,
a general BV∞-algebra structure on the symmetric algebra S(g[−1]) of a
suspended graded vector space g is equivalent to the structure of a homo-
topy involutive Lie bialgebra, called an IBL∞-algebra, on g. This is actually
the definition thereof, see [12]! Moreover, the notion is equivalent to that of
an Ω(coFrob)-algebra as per [16, Theorem 4.10]. Here coFrob is a certain
co-Frobenius coproperad and Ω is the cobar construction, producing a dg-
properad. The notion of an IBL∞-algebra generalizes not only that of an
involutive Lie bialgebra but also the notion of a bi-dg-Lie algebra, which
played an important role in the previous section. Indeed, both the involutive
Lie bialgebra and bi-dg-Lie algebra structures on a graded vector space g

induce dg-BV-structures on the symmetric algebra S(g[−1]), the Chevalley-
Eilenberg complex of g, see Examples 2.4 and 2.5.

In Quantizing Deformation Theory [40], Terilla conjectured the existence
of quantized deformation theory, in which commutative k-algebras R would
be replaced with (commutative) Frobenius algebras and the Maurer-Cartan
equation in an L∞-algebra would be replaced with a master equation in an
IBL∞-algebra g. The rationale is that the properad Frob describing Frobenius
algebras is a unit in the monoidal category of properads, just like the operad
Com describing commutative algebras is a unit in the monoidal category
of operads. Equivalently, if V is an algebra over a properad P and F is a
Frobenius algebra, then V ⊗ F is again a P-algebra. Moreover, an IBL∞-
algebra is equivalent to an algebra over the dg-properad Ω(coFrob), whereas
an L∞-algebra is equivalent to an algebra over the operadic cobar construction
Ω(coCom) for the cocommutative co-operad coCom.

This is an extremely striking analogy, but the current paper falls short
of proving Terilla’s conjecture. However, I would like to convince the reader
that staying within the good old world of deformations over commutative
parameters still produces an interesting quantization of deformation theory.

The matter is that there is a subtle difference between extending the
structure of an algebra over a properad P on a dg-vector space V to a tensor
product V⊗kR and making a complete base change from k to R. The structure
of a commutative k-algebra on R is not enough to define the structure of a
P-algebra on V⊗R over k. As mentioned above, endowing R with a Frobenius-
algebra structure will suffice. On the other hand, when making a base change,
we are rather interested in a P ⊗R-algebra structure on V ⊗R over R, which
is always there as long as R is a commutative k-algebra. At the level of
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operations, not every properadic operation with values, say, in the tensor
square V ⊗ V extends to an operation with values in (V ⊗R)⊗ (V ⊗R) but
it does, if all we want is an operation with values in (V ⊗R) ⊗R (V ⊗R).

What this means in the case of an IBL∞-algebra g and a complete local
algebra R is that g⊗R and g⊗̂R are also IBL∞-algebras over R. Likewise, if
g′ is an L∞-algebra, then homk(S(g′[−1]), g) is an IBL∞-algebra over the dg-
commutative algebra S(g′[−1])∗. Accordingly, S(g[−1])⊗R, S(g[−1])⊗̂R and
homk(S(g′[−1]), S(g[−1])) are BV∞-algebras over (dg-)commutative algebras
R and S(g′[−1])∗, respectively. Thus, the functors QMV (R), see Equation 6,
and QMV (g′), see Equation 8, for V = S(g[−1]) are well-defined and Theo-
rems 2.12 and 2.13 show that these functors are representable.
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