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1. Introduction

This paper is based on the talk given by the author at the Arbeitstagung 2017
“Physical Mathematics” in honor of Yuri Manin’s 80th birthday. It is an intro-
duction to an ongoing joint project with Matthew Heydeman, Sarthak Parikh
and Ingmar Saberi, on the construction of holographic classical and quantum
codes on Bruhat–Tits trees and higher rank Bruhat–Tits buildings and on
Drinfeld symmetric spaces, and associated entanglement entropy formulae,
[23]. A detailed discussion of the entanglement entropy and the relation to a
holographic codes construction generalizing that of [43] in the p-adic setting
is presented in [23]. The present paper should be regarded as covering some
background material on the question of constructing holographic codes on
p-adic symmetric spaces, based on algebro-geometric properties.

In [33], [34], Manin gave a compelling view of the idea of “Arithmetical
Physics”, according to which physics in the usual Archimedean setting or real
and complex numbers would cast non-Archimedean shadows that live over the
finite primes and arithmetic properties associated to these non-Archimedean
models can be used to better understand the physics that we experience at
the Archimedean “prime at infinity”. According to this general philosophy
Spec(Z) is the “arithmetic coordinate” of physics and geometry. A famous

Received January 29, 2018.

1

http://intlpress.com/site/pub/pages/journals/items/pamq/_home/_main/index.html


2 Matilde Marcolli

example where this principle manifests itself is given by the description of
the Polyakov measure for the bosonic string in terms of the Faltings height
function at algebraic points of the moduli space of curves, which leads nat-
urally to the question of whether the Polyakov measure is in fact an adelic
object and whether there is an overall arithmetic expression for the string
partition function, [35], [36]. More generally, one can ask to what extent are
the fundamental laws of physics adelic. Does physics in the Archimedean set-
ting (partition functions, action functionals, real and complex variables) have
p-adic manifestations? Can these be used to provide convenient “discretized
models” of physics, powerful enough to determine their Archimedean coun-
terpart?

Various forms of p-adic and adelic phenomena in physics and their relation
to the usual Archimedean formulation were developed over the years. We refer
the readers to [7], [10], [47], [48] for some references relevant to the point of
view discussed in this paper.

Here we focus in particular on the holographic AdS/CFT correspondence
and on the recent viewpoint relating information (entanglement entropy) of
quantum states on the boundary to geometry (classical gravity) on the bulk,
[42] and the tensor networks and holographic codes approach of [43]. The ex-
istence of a p-adic version of the holographic AdS/CFT correspondence was
already proposed in [41], based on earlier results of Manin [37], [38] expressing
the Green function on a compact Riemann surface with Schottky uniformiza-
tion to configurations of geodesics in the bulk hyperbolic handlebody (which
are higher genus generalizations of Euclidean BTZ black holes [29]) and re-
sults of Drinfeld and Manin [40] on periods of Mumford curves uniformized
by p-adic Schottky groups.

In [22] we developed a non-Archimedean version of AdS/CFT holography,
based on the approach originally proposed in [41], which would be compati-
ble with the more recent viewpoint on the holographic correspondence based
on the ideas of tensor networks and holographic codes and the correspon-
dence between entanglement entropy and bulk geometry. Versions of p-adic
AdS/CFT correspondence were also developed in [18], and in subsequent work
[3], [19], [16], [15], [17] and others. The theme of non-archimedean versions of
holography has clearly become a very active area of current research.

In this paper, we return to the point of view of tensor networks and
holographic codes discussed in [22] and we present some new constructions
which are based on the geometry of Bruhat–Tits trees and buildings and of
Drinfeld symmetric spaces.

The main difference between the approach we propose here and other
constructions of holographic codes such as [43], or for instance [3], [5], [21],



Holographic codes on BT buildings and Drinfeld spaces 3

lies in the fact that we rely on well known techniques for the construction of
classical codes associated to algebro-geometric objects [46] and on algorithms
relating classical to quantum codes [6]. The construction of algebro-geometric
codes played a crucial role in the study of asymptotic problems in coding
theory, as shown by Manin in [39].

We first present here a construction of holographic codes that is based on
the geometry of the Bruhat-Tits trees and algebro-geometric Reed–Solomon
codes associated to projective lines over a finite field, together with an ap-
plication of the CRSS algorithm that associates quantum codes to classical
q-ary codes.

We then revisit the approach to holographic codes via tessellations of
the hyperbolic plane, as in [43]. Instead of relating such constructions to the
Bruhat–Tits trees via a non-canonical planar embedding of the tree, as in [22],
we use here a purely p-adic viewpoint, working with the Drinfeld p-adic upper
half plane as a replacement of the real hyperbolic plane, and its (canonical)
map to the Bruhat–Tits tree. Instead of tessellations of the real hyperbolic
plane we use actions of p-adic Fuchsian groups on the Drinfeld plane and
associated surface codes. We show that this approach is restricted by the
strong constraints that exist on p-adic Fuchsian groups. For example, we show
that a p-adic analog of the holographic pentagon code of [43] constructed with
this method can only exist when p = 2.

We then propose an extension of this approach via holographic codes to
higher rank buildings, based on algebro-geometric codes associated to higher
dimensional algebraic varieties, as constructed in [46].

2. Algebro-geometric codes on the Bruhat–Tits tree

In this section we describe a construction of holographic codes on the Bruhat–
Tits trees that are obtained via Reed–Solomon algebro-geometric codes on
projective lines over finite fields.

2.1. Reed–Solomon codes as a source for classical codes on the
Bruhat–Tits tree

The set of algebraic points X(Fq) of a curve X over a finite field Fq can be
used to construct algebro-geometric error-correcting codes, see [45]. Algebro-
geometric codes associated to a curve X over a finite field Fq consists of
a choice of a set A of algebraic points A ⊂ X(Fq) and a divisor D on X
with support disjoint from A. The linear code C = CX(A,D) is obtained
by considering rational functions f ∈ Fq(X) with poles at D and evaluating
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them at the points of A. A bound on the order of pole of f at D determines
the dimension of the linear code.

We are interested here in the simplest case of algebro-geometric codes,
the Reed–Solomon codes constructed using the points of P1(Fq). Given a
set of points A ⊂ P1(Fq) with #A = n ≤ q + 1 we consider two types of
Reed–Solomon codes, one constructed using the point ∞ ∈ P1(Fq) as di-
visor, that is, using polynomials f ∈ Fq[x], and using a set A of n ≤ q
points in A1(Fq) = Fq for evaluation. The corresponding Reed–Solomon code
C = {(f(x1), · · · , f(xn)) : f ∈ Fq[x], deg(f) < k} gives an [n, k, n − k +
1]q classical code, where n ≤ q. The other type of Reed–Solomon codes
are obtained using homogeneous polynomials and a set A of n ≤ q + 1
points in P1(Fq). The resulting code Ĉ = {(f(u1, v1), . . . , f(un, vn)) : f ∈
Fq[u, v], homogeneous with deg(f) < k}, with xi = (ui : vi) ∈ P1(Fq). We
also consider generalized Reed-Solomon codes of these two types, where for a
vector w = (w1, . . . , wn) ∈ Fn

q one defines

Cw,k = {(w1f(x1), · · · , wnf(xn)) : f ∈ Fq[x], deg(f) < k}

Ĉw,k = {(w1f(u1, v1), . . . , wnf(un, vn)) : f ∈ Fq[u, v],
homogeneous,
deg(f) < k

}.

For K a finite extension of Qp with residue field Fq, with q = pr, the
Bruhat–Tits tree TK is a homogeneous tree with valence q+1 = #P1(Fq) and
with ends ∂TK = P1(K). The choice of a projective coordinate on P1(K)
fixes three points {0, 1,∞} ∈ P1(K), hence it fixes a unique root vertex
ν0 ∈ V (TK). The star of vertices surrounding ν0 can then be identified with a
copy of P1(Fq), which in algebro-geometric terms corresponds to the reduction
modulo the maximal ideal m in OK.

The root vertex ν0 is therefore associated to the reduction curve P1. We
can construct a holographic classical code to the Bruhat–Tits tree by assigning
to the root vertex ν0 and its star of q+1 edges a Reed–Solomon code with an
assigned number k of logical inputs (q-ary bits) located at ν0 and outputs at
each of the q+1 legs. This can be done by a (generalized) Reed-Solomon code
Ĉw,k of maximal length n = q+1, seen as an encoding Ĉw,k : Fk

q → Fq+1
q , which

inputs a k-tuple of q-ary bits a = (a0, . . . , ak−1) ∈ Fk
q , uses the homogeneous

polynomial fa(u, v) =
∑k

i=0 aiu
ivk−1−i, and outputs a q-ary bit f(uj , vj) ∈ Fq

at each point xj = (uj : vj) ∈ P1(Fq) identified with a leg of the vertex ν0 in
the Bruhat–Tits tree.

The choice of the projective coordinate on P1(K), hence of the root ver-
tex ν0 in TK, determines a choice of a leg at each other vertex ν �= ν0, given
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by the unique direction out of ν towards the root ν0. We can identify this
choice with a choice of the point {∞} in each copy of P1(Fq) at each ver-
tex ν �= ν0 of the tree. Proceeding from the center, if we assign a Reed–
Solomon code at each vertex of TK, and by homogeneity we expect all of
them to have the same number k of inputs, we see that at each successive
steps the leg of the star of edges at ν has already one value assigned at
the leg labelled by the point ∞ ∈ P1(Fq), which corresponds to the out-
put coming from the matching leg in the star of the previous vertex coming
from the root ν0. Thus, in projective coordinates (u : v) where (0 : 1) is
the point at infinity, the Reed–Solomon code Ĉw,k associated to the vertex
ν takes k − 1 new inputs a = (a1, . . . , ak−1) ∈ Fk−1

q and one additional
input a0 given by the value at ∞ assigned by the previous code, and de-
posits a new q-ary bit fa(u, v) =

∑k−1
i=0 aiu

ivk−1−i at each of the remain-
ing legs at the vertex v pointing away from the root, labelled by the points
x ∈ A1(Fq) = Fq.

Note how the construction considered here has one root vertex play a
special role with an Fk

q logical input and a Reed–Solomon code of length
q + 1, while all the other vertices have a further logical input of Fk−1

q . This
asymmetry is inevitable if we want to use the algebro-geometric structure
underlying the Bruhat–Tits tree to construct a classical code, since the root
vertex plays the special role of the algebraic curve given by the reduction
modulo m, while the sets of vertices in the tree at distance m from the root
correspond to reducing modulo powers mm. Thus, the asymmetric role of the
root vertex and the other vertices is built into the relation between P1(K)
and its reduction curves.

The construction described here determines a classical code associated to
the Bruhat–Tits tree with logical inputs at the vertices and outputs at the
forward pointing legs. In the limit where one considers the whole tree, the
outputs consist of a q-ary bit deposited at each point of the boundary P1(K).
We want to transform this classical code built using the algebro-geometric
properties of the Bruhat–Tits tree, into a quantum error correcting code that
generates a holographic code for the Bruhat–Tits tree and its boundary at
infinity.

Assigning codes to the Bruhat–Tits trees with inputs at vertices and ten-
sors along the edges is not, however, the correct thing for the purpose of
obtaining a holographic correspondence between the entanglement entropy
on the boundary and size of regions in the bulk. To that purpose a better
construction is obtained in [23] using a network “dual” to the Bruhat–Tits
tree with respect to an ambient Drinfeld plane and a lift of the Bruhat–Tits
tree to that plane.
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2.2. Classical algebro-geometric codes for Mumford curves

The construction above can be generalized in the case of Mumford curves.
Let Γ be a p-adic Schottky group and ΩΓ = P1(K) � ΛΓ the domain of
discontinuity of Γ acting on the boundary P1(K), the complement of the
limit set ΛΓ. The quotient X = ΩΓ/Γ is a Mumford curve of genus g equal
to the number of generators of the Schottky group. Unlike complex Riemann
surfaces, which always admit a Schottky uniformization, only very special
p-adic curves admit a Mumford curve uniformization. Indeed, these curves
must have the property that their reduction mod m is totally split: as a curve
over Fq it consists of a collection of P1’s with incidence relations described by
the dual graph G. This is the finite graph at the center of the quotient TK/Γ,
obtained as the quotient G = TΓ/Γ, where TΓ is the subtree if TK spanned by
the geodesic axes of the hyperbolic elements γ �= 1 of Γ, with ∂TΓ = ΛΓ.

Using the identification between the finite graph G and the dual graph
of the reduction curve, we can again associate to each vertex in G a copy
of P1(Fq) (the corresponding component in the curve), and to each of these
projective lines a Reed–Solomon code as in the previous construction. Now,
however, we need to impose compatibility conditions between these codes at
the incidence points between different components of the curve, that is, along
the edges of the finite graph G. Thus, we associate to the finite graph G a
classical code C(G) constructed as follows. Start with a code Ĉw,k associated
to each vertex v, which inputs a = (a0, . . . , ak−1) and outputs fa(u, v) =∑

i aiu
ivk−1−i at each point x = (u : v) of the associated P1(Fq). Consider the

set F of functions f = (f1, . . . , fN ), with N = #V (G), and fi a homogeneous
polynomial of degree deg(fi) < k on the i-th component P1(Fq), with the
property that if x = (ui : vi) = (uj : vj) is an intersection point between
the i-th and the j-th components of the reduction curve, then fi(ui : vi) =
fj(uj : vj). Thus, each edges e ∈ E(G) imposes a relation between fi and fj
which requires the value that the codes Ĉw,k at the vertices νi and νj deposit
at the point x to be the same. Thus, the resulting code C(G) is an Fq-linear
code with input FkN−M

q where N = #V (G) and M = #E(G). We have
kN−M = (k−1)N+1−b1(G) hence we need to assume k > 1+(b1(G)−1)/N .

The free legs of the graph G are all the legs that point towards the infinite
trees in TK/Γ that extend from the vertices of G to the boundary Mumford
curve X(K) = ∂TK/Γ. At each vertex along these trees we consider Reed-
Solomon codes as in the case of P1(K), with one input coming from the
previous vertex closer to G and k − 1 new inputs and outputs at the q for-
ward pointing legs. This determines a classical code associated to the infinite
graph TK/Γ, with logical inputs at the vertices and outputs at the points of
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the Mumford curve X(K). The finite graph G and the infinite graph TK/Γ
containing it are a genus g generalization of the p-adic BTZ black hole, which
corresponds to the g = 1 case of Mumford–Tate elliptic curves.

2.3. Reed–Solomon codes and quantum algebro-geometric codes

There is a general procedure for passing from classical codes to quantum
codes, based on the Calderbank–Rains–Shor–Sloane algorithm [6], see also
[1]. It can be applied to certain classes of algebro-geometric codes and in
particular to generalized Reed–Solomon codes.

Let H = Cq be the Hilbert space of a single q-ary qubit and Hn = (Cq)⊗n

the space of n q-ary qubits. We label an orthonormal basis of H by |a〉 with
a ∈ Fq. Thus, a q-ary qubit is a vector ψ =

∑
a∈Fq

λa |a〉 with λa ∈ C, and an
n-tuple of q-ary qubits is given by a vector ψ =

∑
a=(a1...an)∈Fn

q
λa|a〉 where

|a〉 = |a1〉⊗ · · ·⊗ |an〉. Quantum error correcting codes are subspaces C of Hn

that are error correcting for a certain number of “q-ary bit flip” and “phase
flip” errors. More precisely, an error operator E is detectable by a quantum
code C if PCEPC = λE PC , where PC is the orthogonal projection onto the
code subspace and λE is a scalar. In particular, one considers error operators
that affect up to a certain number of qubits in an n-qubits state, namely error
operators of the form E = E1 ⊗ · · · ⊗ En, of weight ω(E) = #{i : Ei �= I}.
The minimum distance dQ(C) of the quantum code is the largest d such that
all errors with ω(E) < d are detectable.

The bit and phase flip error operators are defined on a single q-ary qubit
as

Tb|a〉 = |a + b〉, Rb|a〉 = ξTr(〈a,b〉)|a〉,
where ξ is a p-th primitive root of unity, and Tr : Fq → Fp is the trace function,
Tr(a) =

∑r−1
i=0 ap

i , with 〈a, b〉 =
∑r

i=1 aibi and with Rbi |aj〉 = ξTr(ajbi)|aj〉. Let
{γi}ri=1 be a basis of Fq as an Fp-vector space, so that a =

∑
i aiγi and

b =
∑

i biγi. Then the error operators Tb and Rb can be written respectively
as

Tb = T b1 ⊗ · · · ⊗ T br , Rb = Rb1 ⊗ · · · ⊗Rbr

with T and R given by the operators acting on Cp of matrix form

T =

⎛
⎜⎜⎜⎜⎜⎜⎝

0 1 0 · · · 0
0 0 1 · · · 0
... . . . ...
0 0 0 · · · 1
1 0 0 · · · 0

⎞
⎟⎟⎟⎟⎟⎟⎠

R =

⎛
⎜⎜⎜⎜⎜⎜⎝

1
ξ

ξ2

. . .
ξp−1

⎞
⎟⎟⎟⎟⎟⎟⎠
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satisfying the commutation relation TR = ξRT . The operators TaRb with
a, b ∈ Fq form an orthonormal basis for Mq×q(C) under the inner product
〈A,B〉 = q−1Tr(A∗B), hence these operators generate all possible quantum
errors on the space Cq of a single q-ary qubit. The action of error operators
on a state of n q-ary qubits can similarly be written in terms of operators
TaRb with

Ea,b = TaRb = (Ta1 ⊗ · · · ⊗ Tan)(Rb1 ⊗ · · · ⊗Rbn),

for a = (a1, . . . , an), b = (b1 . . . , bn) ∈ Fn
q . The operators Ea,b satisfy Ep

a,b = I
and the commutation and composition rules

Ea,bEa′,b′ = ξ〈a,b
′〉−〈b,a′〉Ea′,b′Ea,b, Ea,bEa′,b′ = ξ−〈b,a′〉Ea+a′,b+b′ ,

where 〈a, b〉 =
∑

i〈ai, bi〉 =
∑

i,j ai,jbi,j , with ai, bi ∈ Fq, written as ai =∑
j ai,jγj and bi =

∑
j bi,jγj , after identifying Fq as a vector space with Fr

p.
Thus, we can consider the group Gn = {ξiEa,b, a, b ∈ Fn

q , 0 ≤ i ≤ p − 1} of
order pq2n. A quantum stabilizer error-correcting code C is a subspace C ⊂ Hn

that is a joint eigenspace of operators Ea,b in an abelian subgroup S ⊂ Gn.
Let ϕ ∈ AutFp(Fr

p) be an automorphism. In particular, we consider ϕ
given by the trace as in [1], so that we the associated pairing is

〈(a, b), (a′, b′)〉 = 〈a, ϕ(b′)〉 − 〈a′, ϕ(b)〉 = Tr(〈a, b′〉∗ − 〈a′, b〉∗),

where, for a, b ∈ Fn
q , the inner product 〈a, b〉 �= 〈a, b〉∗, since 〈a, b〉∗ =∑n

i=1 aibi, while 〈a, b〉 =
∑n

i=1〈ai, bi〉 =
∑n

i=1
∑r

j=1 ai,jbi,j . If C ⊂ F2n
q is a

classical self-orthogonal code with respect to this pairing, then the subgroup
S ⊂ Gn given by the elements ξiEa,ϕ(b) with (a, b) ∈ C is an abelian sub-
group of Gn, because of the commutation rule above. This construction is
the CRSS algorithm that associates to a self-orthogonal classical [2n, k, d]q
code a stabilizer quantum [[n, n − k, dQ]]q-code, where dQ = min{ω(a, b) :
(a, b) ∈ C⊥ � C}, where the weight ω(a, b) = #{i : ai �= 0 or bi �= 0}, and
C⊥ = {(v, w) ∈ F2n

q : 〈(a, b), (v, w)〉 = 0, ∀(a, b) ∈ C}.
We can view the CRSS algorithm assigning the quantum stabilizer code C

to the classical code C as an encoding process that takes the qk input vectors
(v, w) ∈ F2n

q of the classical code C and encodes the states |(v, w)〉 using the
vectors ψ ∈ (Cq)⊗n satisfying Ev,ϕ(w)ψ = λψ in a common eigenspace of the
Ev,ϕ(w).

A slightly more general version of the CRSS algorithm starts with two
classical linear q-ary codes C1 ⊆ C2 of length n and dimensions k1 and
k2 and associates to them a quantum code C = C(C1, C2) with parameters
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[[n, k2 − k1,min{d(C2 �C1), d(C⊥
1 �C2)}]]q, see [13], [27]. The procedure for

the construction of the quantum code is similar to the version of the CRSS
algorithm recalled above. One constructs a code C = γC1 + γ̄C2 in Fn

q2 with
γ a primitive element of Fq2 and {γ, γ̄} a linear basis of Fq2 as an Fq-vector
space. By identifying Fn

q2 as an Fq-vector space with F2n
q , we obtain a self-

orthogonal C ⊂ F2n
q , to which the CRSS algorithm discussed before can be

applied.
Conditions under which Reed-Solomon codes satisfy a self-dual condition,

and the corresponding quantum Reed-Solomon codes obtained via a CRSS
type algorithm are analyzed, for instance, in [12] and [14]. We use here a
construction of [1], which shows that, if C is a q2-ary classical [n, k, d]q2-code,
which is Hermitian self-dual, then there exists an associated q-ary [[n, n −
2k, dQ]]q-quantum code, with dQ ≥ d. Here Hermitian self-dual means that
the classical code C is self dual with respect to the “Hermitian” pairing

〈v, w〉H =
n∑

i=1
viw

q
i , for v, w ∈ Fn

q2 .

This is a variant of the CRSS algorithm described above, where a Hermitian
self-dual code of length n over the field extension Fq2 is used to construct a
self-dual code C̃ of length 2n over Fq to which the CRSS algorithm can be
applied, obtained by expanding the code words v ∈ C using a basis {1, γ} of
Fq2 as a Fq-vector space, where γ is an element in Fq2 � Fq satisfying γq =
−γ + γ0 for some fixed γ0 ∈ Fq. Using this approach, it suffices to construct
generalized Reed–Solomon codes Ĉw,k of length n < q + 1 over Fq2 that are
Hermitian self-dual, in order to obtain associated quantum codes Ĉw,2n−k as
a code subspace of the n q-ary qubits space Hn = (Cq)⊗n. It is possible
to ensure the Hermitian self-duality condition for generalized Reed–Solomon
codes by taking the weights vector w = (w1, . . . , wn) ∈ (F∗

q2)n to satisfy∑n
i=1 w

q+1
i xqj+�

i = 0 for all 0 ≤ j, 
 ≤ k − 1, where x = (x1, . . . , xn) ∈ Fn
q2 are

the n chosen points (excluding ∞) of P1(Fq2). Using this method, it is proved
in [30] that the choice wi = 1, with n = q2 = #Fq2 and k = q, produces a
Reed-Solomon code C = C1,q that is Hermitian self-dual, and an associated
[[q2 + 1, q2 − 2q + 1, q + 1]]q-quantum Reed-Solomon code Ĉ. Moreover, it is
also shown in [30] that for wi satisfying wq+1

i = (
∏

j 	=i(xi−xj))−1, with n ≤ q
and x = (x1, . . . , xn) ∈ Fq, and for k ≤ �n/2�, the generalized Reed-Solomon
codes satisfy Cw,k ⊆ Cw,n−k and Cw,k is Hermitian self dual to Cw,n−k. Thus,
hence the CRSS algorithm can be applied to obtain an [[n, n − 2k, k + 1]]q-
quantum Reed-Solomon code Cw,k = C(Cw,k, Cw,n−k).
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2.4. The case of the perfect tensors

In particular, from the construction described above we see that we obtain
the case of perfect tensors as the special case where n = q and k = (q− 1)/2.
We obtain this using the generalized Reed–Solomon codes as in Theorem 6
of [30], for the case n ≤ q and k ≤ �n2 �, with a choice of the weights wi

satisfying wq+1
i = (

∏
j 	=i(xi − xj))−1, with n = q and xi ∈ Fq. As shown

in Theorem 6 of [30], this produces two classical generalized Reed-Solomon
codes Cw, q−1

2
⊆ Cw, q+1

2
that are Hermitian self-dual. The associated quantum

generalized Reed–Solomon code is then obtained via the general construction
of Ashikhmin–Knill (Theorem 4 and Corollary 1 of [1]) that associates to a
classical [n, k, d]q2 code contained in its Hermitian dual a quantum [[n, n −
2k, d]]q code. One can see directly that, in the case of perfect tensors when
n = q, the weights are constant and given by wq+1

i = p−1 for all i = 1, . . . , q.
Thus, we can regard the construction described above with generalized

Reed–Solomon codes as a generalization of the usual construction of perfect
tensors, which recovers the perfect tensor case for a particular choice of (con-
stant) weights of the classical Reed–Solomon codes.

The more general cases with non-constant weights assign different weights
to different directions in the Bruhat–Tits tree. These may be useful in view
of holographic models where the bulk geometry is dynamical, as in [15], and
also described by different weights in different directions in the tree.

2.5. Holographic quantum codes on Bruhat–Tits trees and
Mumford curves

We use the procedure described above to pass from classical algebro-geometric
codes, in particular generalized Reed-Solomon codes, to associated quantum
stabilizer codes, to construct a holographic code on the Bruhat–Tits tree TK
associated to the classical codes constructed above.

We have seen above that, in order to apply the CRSS algorithm, we pass
to a quadratic extension Fq2 of Fq and consider Reed-Solomon codes over
Fq2 . In terms of the Bruhat–Tits tree, we can pass to an unramified quadratic
extension L of the field K, so that the Bruhat–Tits tree TL is obtained from
the Bruhat–Tits tree TK simply by adding new branches at each vertex, so
as to obtain a homogeneous tree of valence q2 + 1. Since the extension is
unramified, it is not necessary to insert new vertices along the edges, and
we can view the tree TK as a subtree of TL. We then proceed to construct a
classical code associated to TL using Reed-Solomon codes Ĉw,k placed at the
vertices according to the procedure described in the previous sections. Using
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the construction above, with wi = 1 and k = q, we associate to each vertex
a quantum Reed-Solomon code Ĉ with code parameters [[q2 + 1, q2 − 2q +
1, q + 1]]q. This corresponds to considering a state space Hq2+1 = (Cq)⊗q2+1

associated to each vertex, which we can think of as a state with a q-ary qubit
sitting at each of the q2 + 1 points of P1(Fq2), or equivalently at each of the
legs surrounding that vertex in TL. The quantum code Ĉ detects quantum
errors of weight up to q + 1 = #P1(Fq). Thus, by identifying TK ⊂ TL and
P1(Fq) ⊂ P1(Fq2) as the set of directions along the subtree TK, we can arrange
that the code Ĉ corrects quantum errors along the TK directions. One can also
use a bipartition A ∪Ac of the edges at each vertex of TL, with #A = k and
associate to the bipartition a pair of codes Ĉw,k and Ĉw,n−k with associated
quantum Reed-Solomon codes Ĉw,k as above at the vertices of TK.

One can think of the classical codes Ĉ associated to the vertices of the
Bruhat–Tits tree in this way as performing an encoding of q + 1 classical
q2-ary bits associated to the points of P1(K) into q2 + 1 classical q2-ary bits
associated to the points of P1(L). Thus, the whole classical code associated to
this quadratic extension can be seen as a way of encoding a state consisting
of classical q2-ary bits associated to the edges of TK into a set of classical
q2-ary bits associated to the edges of TL, and the letter into a state of q2-ary
bits associated to the set of boundary points P1(L). The corresponding CRSS
quantum codes Ĉ at the vertices of the Bruhat–Tits tree TL encode the input
given by the common eigenspace of the error operators associated to the code
words of the classical code Ĉ into a state consisting of a q-ary qubit placed
at each leg around the vertex.

In order to combine these quantum codes placed at the vertices of the
Bruhat–Tits tree TL into a holographic code over the whole tree, with logical
inputs in the bulk and physical outputs at the boundary P1(L), notice that at
each vertex v we have the same subspace Hν given by the common eigenspace
Hν = {ψ : Ev,ϕ(w)ψ = λψ} for all words (v, w) in the classical code. We
encode states ψν ∈ Hν as ψν = (ψν,x)x∈P1(Fq2 ), where the points x ∈ P1(Fq2)
label the legs around the vertex ν, so that we think of ψν,x ∈ Cq as the
q-ary qubit deposited on the leg x by the quantum code Ĉ sitting at the
vertex ν. Starting at the root vertex and proceeding towards the outside of
the tree, at each next step, the leg ∞ ∈ P1(Fq2) around the new vertex ν is
the one connected to a leg xi ∈ Fq2 ⊂ P1(Fq2) of the previous vertex ν ′, which
receives an output ψν′,i. Thus, the q-ary qubit ψν,∞ is determined as it has
to match the output ψν′,i of the previous code, while the remaining possible
inputs correspond to the choices of ψ ∈ Hv with that fixed ψv,∞ component.
Proceeding towards the boundary of the tree determines a holographic code
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on TL that outputs q-ary qubits at the points of P1(L). As mentioned above,
the quantum code detects errors along the subtree TK. As in the case of the
classical codes, there is an asymmetry in this construction of the holographic
code between the roles of the root vertex and of the remaining vertices of the
Bruhat–Tits tree.

3. Discrete and continuous bulk spaces: Bruhat-Tits
buildings and Drinfeld symmetric spaces

Unlike its Archimedean counterparts, either Euclidean AdS2/CFT1 with bulk
H2 and boundary P1(R) or Euclidean AdS3/CFT2 with bulk H3 and boundary
P1(C), the p-adic AdS/CFT correspondence has two different choices of bulk
spaces (one discrete and one continuous) which share the same conformal
boundary at infinity. The discrete version of the bulk space is given by the
Bruhat–Tits tree TK of PGL(2,K), with K a finite extension of Qp, while the
continuous form of the bulk space is given by Drinfeld’s p-adic upper half
plane Ω. Both have the same boundary P1(K). We argue here that the full
picture of the p-adic AdS/CFT correspondence should take into account both
of these bulk spaces and the relation between them induced by the norm map.

The rank-two case can be generalized to higher rank, with the Bruhat–
Tits buildings of PGL(n,K) generalizing the Bruhat–Tits tree and the higher
dimensional Drinfeld symmetric spaces generalizing the Drinfeld upper half
plane, see [24].

The geometry of the Drinfeld plane

We review quickly the geometry of the Drinfeld upper half plane, see [4]. We
denote by K a finite extension of Qp and by Cp the completion of the algebraic
closure of K. Drinfeld’s p-adic upper half plane is the space

Ω = P1(Cp) � P1(K).

We also denote by TK the Bruhat–Tits tree of PGL(2,K), with boundary at
infinity P1(K). It is convenient to think of P1(Cp) as the set of classes, up to
homotheties in C∗

p, of non-zero K-linear maps ϕ : K2 → Cp, with P1(K) the
set of classes of maps as above with K-rank equal to one. This can be seen
by identifying points (α : β) of P1 with homogeneous ideals 〈yα− xβ〉 in the
polynomial ring in the variables (x, y). The K-linear map ϕ : K2 → Cp given
by ϕ(x, y) = yα−xβ has a non-trivial kernel when α/β ∈ K (assuming β �= 0)
and is invertible if α/β ∈ Cp � K. Thus, P1(Cp) � P1(K) can be identified
with the set of homothety classes of invertible K-linear maps ϕ : K2 → Cp.
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Given such an injective linear map, one can then compose it with the
norm on Cp. Recall that the Bruhat–Tits tree can be defined in terms of
equivalence classes of norms. Namely, vertices of the Bruhat–Tits tree cor-
respond to classes of lattices M in K2 up to similarity, namely M1 ∼ M2 if
M1 = λM2 for some λ ∈ K∗. To a lattice M one associates a norm | · |M ,
namely a real valued function on K2 which is positive on non-zero elements,
satisfies |a ·x|M = |a| · |x|M for all a ∈ K and x ∈ K2, with |a| the p-adic norm
on K, and |x+ y|M ≤ max{|x|M , |y|M}. The norm |x|M is defined as follows.
Let π be a uniformizer in OK such that k = OK/πOK is the residue field
k = Fq. The fractional ideal {λ ∈ K : λx ∈ M} is generated by a power πm.
The norm is then defined as |x|M = qm on non-zero vectors. Equivalent norms
| · |M1 = γ| · |M2 for γ ∈ R∗

+ correspond to equivalent lattices. Two vertices in
the Bruhat–Tits tree are adjacent if the corresponding equivalence classes of
lattices have representatives satisfying πM ⊂ M ′ ⊂ M . To see this in terms
of norms, we can choose an OK-basis {e1, e2} for M and {e1, πe2} for M ′.
Then |xe1 + ye2|M = max{|x|, |y|} and |xe1 + ye2|M ′ = max{|x|, |π|−1 · |y|}.
The edge e between the vertices v = [M ] and v′ = [M ′] is then parameterized
by the classes of norms |xe1 + ye2|t = max{|x|, |π|−t · |y|} for 0 ≤ t ≤ 1, see
[24]. This description of the Bruhat–Tits tree in terms of equivalence classes
of norms on K2 determines a map from the Drinfeld uppar half plane to the
Bruhat–Tits tree, directly induced by the norm. Namely, given a point in Ω,
which we identify as above with an invertible K-linear map ϕ : K2 → Cp, we
obtain a surjective map

Υ : Ω → TK

by setting Υ(ϕ) = | · |ϕ, where | · |ϕ is the norm on K2 defined by |x|ϕ = |ϕ(x)|,
where the norm on the right-hand-side if the p-adic norm on Cp. The explicit
form of this map is discussed in [4]. We identify a point (ζ0 : ζ1) ∈ P1(Cp) �
P1(K) with the map ϕ : K2 → Cp that maps xe1 +ye2 �→ xζ0 +yζ1 ∈ P1(Cp).
In an affine patch (say with ζ1 �= 0) we can write the homotethy class of ϕ
as xe1 + ye2 �→ xζ + y ∈ Cp � K. Then the preimages under the map Υ of
two adjacent vertices v, v′ of TK and the edge e connecting them are given,
respectively, by

Υ−1(v) = {ζ ∈ Cp : |ζ| ≤ 1}�
⋃

a∈OK/πOK

{ζ ∈ Cp : |ζ − a| < 1}

Υ−1(v′) = {ζ ∈ Cp : |ζ| ≤ q−1}�
⋃

b∈πOK/π2OK

{ζ ∈ Cp : |ζ − b| < q−1}
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where v = [M ], v′ = [M ′] with πM ⊂ M ′ ⊂ M , and for et = (1 − t)v + tv′,
for 0 < t < 1, along the edge e

Υ−1(et) = {ζ ∈ Cp : |ζ| ≤ q−t},

while

Υ−1(e) = {ζ ∈ Cp : |ζ| ≤ 1}�
⋃

a∈(OK�πOK)/πOK

{ζ ∈ Cp : |ζ − a| < 1}

�
⋃

b∈πOK/π2OK

{ζ ∈ Cp : |ζ − b| < q−1}.

For a detailed proof of this fact we refer to §2 of [4]. A part of the Drinfeld
plane corresponding to the regions Υ−1(v), Υ−1(v′) and Υ−1(e) with ∂e =
{v, v′} in the Bruhat–Tits tree can be illustrated as follows (from [4]):

where the light colored region is Υ−1(v), the striped shaded region is Υ−1(v′),
and the dark shaded cylinder connecting them is Υ−1(e). Thus, one can visu-
alize the Drinfeld plane as a continuum that is a “tubular neighborhood” of
the discrete Bruhat–Tits tree, with the regions Υ−1(v) viewed as the p-adic
analog of pair-of-pants decompositions for complex Riemann surfaces. A lift
of the projection map Υ to the Bruhat-Tits tree realizes the tree as a skeleton
of the Drinfeld plane.

Higher rank buildings and Drinfeld symmetric spaces

An analogous description holds relating the Bruhat–Tits buildings Tn,K of
PGLn+1(K), with K a finite extension of Qp and the associated Drinfeld
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symmetric space
Ωn = Pn(Cp) � ∪H∈HK

H,

where HK is the set of all K-rational hyperplanes in Pn(Cp). There is again
a map Υn : Ωn → Tn,K where the preimages of simplices in the Bruhat-Tits
building is described in terms of norm conditions, [24].

The Bruhat–Tits building Tn,K of PGLn+1(K) is a simplicial complex
with vertex set V (Tn,K) = T 0

n,K given by the similarity classes M1 ∼ M2 if
M1 = λM2 for λ ∈ K∗ of lattices in an n + 1 dimensional vector space V
over K. A set {[M0], . . . , [M�]} of such classes defines an 
-simplex in T �

n,K

in the Bruhat–Tits building iff M0 � M1 � M2 � · · · � M� � πM0, with
π ∈ OK a prime element with Fq = OK/πOK the residue field. Such a sequence
determines a flag M̄0 � M̄1 � · · · � M̄� ⊇ 0 of subspaces M̄i = Mi/πMi of an
n+1-dimensional Fq-vector space. The 
-simplices in T �

n,K containing a given
vertex [M ] are in one-to-one correspondence with such flags with [M0] = [M ].
As before, we consider norms on V � Kn+1 and similarity classes of norms.
There is a PGLn+1(K)-equivariant homeomorphism between the resulting
space of equivalence classes of norms and the geometric realization of the
simplicial complex Tn,K.

Consider then points ζ = (ζ0 : · · · : ζn) ∈ Pn(Cp) and the map ϕ : V →
Cp given by

∑n
i=0 aiei �→ ∑n

i=0 aiζi. The map |∑n
i=0 aiei|ϕ = |∑n

i=0 aiζi|
determines an equivalence class of norms iff the point ζ ∈ P1(Cp) does not lie
in any K-rational hyperplane. This determines the map Υ : Ωn → Tn,K that
generalizes in higher rank the map from the Drinfeld plane to the Bruhat-Tits
tree. As in the previous case, one can describe the preimages under this map.
For example, the preimage of a vertex v = [M ] is given by

Υ−1(v) = {|ζ0| = · · · = |ζn| = 1}� ∪H{ζ mod π ∈ H}

with the union over hyperplanes and

Υ−1(et) = {|ζ0| = · · · = |ζn−1| = 1, |ζn| = q−t}

for et point along an edge e, with 0 < t < 1, see §2 of [24] for more details.

4. Tensor networks on the Drinfeld plane

Because the p-adic AdS/CFT correspondence has two different choices of bulk
space, in addition to considering classical and quantum codes associated to
the Bruhat–Tits tree in constructing a version of tensor networks, we can also
work with the Drinfeld p-adic upper half plane. Because this is a continuous
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rather than a discrete space, the type of construction we can consider there
will be more similar to the type of construction of tensor networks on the ordi-
nary upper half plane (the 2-dimensional real hyperbolic plane H2) described
in [43]. The map Υ from the Drinfeld upper half plane to the Bruhat–Tits
tree will then make it possible to relate the construction of tensor networks on
the first to the latter. To this purpose, we start by reviewing the construction
of the pentagon holographic code from [43].

4.1. Pentagon code on the real hyperbolic plane

In [43] a holographic code is constructed using a tessellation of the real hyper-
bolic plane H2 by pentagons, with quantum codes given by a six leg perfect
tensor placed at each tile. Unlike the codes discussed in the previous section
on Bruhat–Tits trees, this code has no preferred base point in the tiling and
all tiles are treated equally, and the codes are symmetric with respect to per-
mutations of the five legs places across the edges of the tiles, thus preserving
the full symmetry group of the tiling. We discuss briefly some aspects of this
pentagon code here before turning to analogous constructions on the Drinfeld
p-adic upper half plane.

The real hyperbolic plane H2 (which we can conveniently represent as the
Poincaré disk) has a regular periodic tessellation by right-angle pentagons.

The corresponding symmetry group is the Fuchsian group Γ ⊂ PSL(2,R) of
signature (2, 2, 2, 2, 2) generated by the reflections about the sides of a single
right-angled hyperbolic pentagon. An interesting property of this Fuchsian
group, from the algebro-geometric perspective is the fact that, if one subdi-
vides an equilateral right-angled hyperbolic pentagon into 10 triangles with
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angles π/2, π/4, π/5, then one can realize the group Γ as a finite index sub-
group of a triangle Fuchsian group Γ′ of signature (2, 4, 5). These Fuchsian
groups have the property that the quotient Riemann surfaces H/Γ = X is
arithmetic as an algebraic curve (that is, it is defined over a number field), [8].

The construction of the pentagon holographic code in [43] places over
each tile of this right-angled pentagon tiling a quantum code given by the six
leg perfect tensor determined by a 5-qubit [[5, 1, 3]]2-quantum code

C ⊂ H⊗5, C = {ψ ∈ H⊗5 : Sjψ = ψ}

where S1 = X⊗Z⊗Z⊗X⊗I, with X, Y, Z the Pauli gates and S2, S3, S4, S5 =
S1S2S3S4 the cyclic permutations of S1, and with H = C2 the 1-qbit Hilbert
space. This is visualized as a code over H2 that has one logical input at each
tiles of the pentagon tessellation and physical outputs across each edge of the
tile, which are contracted with the legs of the nearby tiles, so that the resulting
holographic code has one logical input at each tiles and outputs at the points
at the boundary P1(R) that correspond to infinite sequences of tiles.

4.2. Triangle Fuchsian groups and holographic codes

In view of adapting this construction to the p-adic setting, it is better to first
consider a modification that will allow us to work directly with the triangle
Fuchsian group Γ(2, 4, 5) rather than with its index 10 subgroup Γ of signature
(2, 2, 2, 2, 2) which is the symmetry group of the regular right-angled pentagon
tiling.

This means replacing each pentagons in the tiling with its subdivision
into a triangulation of 10 hyperbolic triangles with a vertex at the center of
the pentagon tile and the other vertices in the middle of the edges and at the
original vertices of the pentagon.
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We then consider holographic codes constructed by quantum codes associated
to the triangle tiles. To this purpose, we do not necessarily require the group to
be Γ(2, 4, 5). We can work directly with the more general case of an arbitrary
triangle Fuchsian group Γ(a, b, c) ⊂ PSL2(R) of hyperbolic type, a−1 + b−1 +
c−1 < 1.

A simple way to construct a holographic code based on a tiling of the
hyperbolic plane realized by a hyperbolic triangle group is to use a quan-
tum error correcting code described in [43] that encodes a single 3-ary qubit
(qutritt) into a space of three 3-ary qubits by

|0〉 �→ |000〉 + |111〉 + |222〉
|1〉 �→ |012〉 + |120〉 + |201〉
|2〉 �→ |021〉 + |102〉 + |210〉 .

This code can be represented as a perfect tensor |a〉 �→ Tabcd|bcd〉 in the sense
of [43]. By placing a copy of this code (thought of as a copy of the tensor
Tabcd at each triangle tile of the tiling specified by the Fuchsian triangle group,
one obtains a holographic code with a logical input qutritt at each tile and
physical output qutritts at points of the boundary P1(R) corresponding to
limit points of infinite sequences of tiles, from a specified base point in the
bulk.

A possible drawback of this simple construction is the fact that the quan-
tum code we are using does not contain any information about the specific
triangle group that determines the tessellation. This should be corrected by
taking into consideration the stabilizer subgroups of edges and vertices, and
incorporating them into the structure of the quantum code.

This can be done by considering quantum codes placed at the vertices,
rather than at the faces, of the tessellation of a hyperbolic triangle group
Γ(a, b, c). This requires using perfect tensors of different valences, depending
on the cardinality of the stabilizer group Gv ⊂ Γ(a, b, c) of the vertex v.

A triangle Fuchsian group Γ(a, b, c) in PSL2(R) is generated by elements
γ1 = σ1σ2, γ2 = σ2σ3 and γ3 = σ3σ1, where the σi with σ2

i = 1 are the
reflections about the sides of the fundamental domain triangle in H2. The
generators γi satisfy the relations γa1 = γb2 = γc3 = γ1γ2γ3 = 1, that correspond
to rotations by angles 2π/a, 2π/b and 2π/c, respectively, with stabilizer groups
Z/aZ, Z/bZ, Z/cZ associated to the vertices of the tessellation. Let 
 =
lcm{a, b, c} and consider the embedding Z/aZ ↪→ Z/
Z by identifying Z/
Z

with 
-th roots of unity and mapping the generator of Z/aZ to ζ�/a, where
ζ is a primitive 
-th root. Similarly, for the other two groups. We can then
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consider a construction like the quantum codes described in [22]. At a vertex
labelled by a stabilizer Z/aZ we consider the polynomial code

|α〉 �→
∑

α0,...,αa−1∈Z/�Z
⊗x∈Z/aZ|fα(x�/a)〉

where fα(t) = α0 + α1t + · · · + αa−1t
a−1 + αta ∈ Z/
Z[t]. This encodes an

input in 
2(Z/
Z) into an output in 
2(Z/
Z) ⊗ 
2(Z/aZ), which we think of
as an 
-ary qubit deposited at each side of the tessellation around the vertex.
We can express this as a tensor Ti0...ia with a + 1 legs. By contracting legs
along the matching edges of the tessellations we obtain a holographic code
that inputs an 
-ary qubit at each vertex of the tessellation and outputs at the
points in the boundary P1(R) that are endpoints of geodesic lines consisting
of edges of the tessellation.

4.3. Surface quantum codes

There is another interesting construction of quantum stabilizer codes associ-
ated to tessellations of the hyperbolic planes, which was developed in [49].
These codes are constructed in general for a tiling defining a 2-dimensional
surface (possibly with boundary). In particular, as shown in [49], the con-
struction applies to the case of hyperbolic triangle Fuchsian groups, through
the associated Cayley graph and the tessellation defined by it. In particular
it applies to the triangle group Γ(2, 4, 5) which we use here as a replacement
for the right-angled pentagon tile of [43]. The construction of surface codes
in [49] arises as a natural generalization of Kitaev’s toric code of [28]. They
have the advantage that they rely again on the CRSS algorithm that con-
verts classical into quantum codes, hence they can be investigated in terms
of classical coding theory techniques.

Consider a tessellation R of a complex Riemann surface Σ and its dual
R∗ that has a vertex for each face of R with two vertices being adjacent
in R∗ if the corresponding faces in R share a common boundary edge. Let
E = (εv,e) be the vertex-edge incidence matrix of R and let E∗ be the vertex-
edge incidence matrix of the dual graph R∗. Let V and V ∗ be the Fq-vector
spaces spanned by the rows of E and E∗, respectively. The rows of E are
orthogonal to V ∗ and the rows of E∗ are orthogonal to V , with respect to
the standard pairing 〈v, v′〉 =

∑
i viv

′
i. The first homology groups of R and

R∗ can be identified with the quotients V ⊥/V ∗ and V ∗⊥/V . A quantum
code can be associated to these data by a version of the CRSS algorithm,
using the pair of matrices E and E∗. The construction of the quantum code
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follows the same procedure illustrated above: to pairs (v, w) of vectors v ∈ V ,
w ∈ V ∗, one associates an error operator E(v,w). The condition that the
spaces V and V ∗ are mutually orthogonal implies that the bilinear pairing
〈(v, w), (v′, w′)〉 = 〈v, w′〉 − 〈v′, w〉 vanishes, hence the group S formed by
these E(v,w) and the ξj , 0 ≤ j ≤ p− 1 is abelian. Thus, one can associate to
it a quantum stabilizer code by taking a common eigenspace of the E(v,w).
This imposes dimV + dimV ∗ stabilizer conditions on n q-ary qubits, where
n is the number of columns of E and E∗ (number of edges of the graph R),
hence the parameters of the resulting quantum code are [[n, k, d]]q, where
k = n − dimV − dimV ∗ and d = min{dV ⊥�V ∗ , dV ∗⊥�V } with dV ⊥�V ∗ =
min{ω(v) : v �= 0, v ∈ V ⊥ � V ∗} with ω(v) = #{i : vi �= 0} and similarly
for dV ∗⊥�V .

The Kitaev toric code consists of this construction applied to a graph R
obtained by a tessellation of a torus into squares. Generalizations to other
Riemann surfaces and other tessellations were described in [49]. The main
idea is to associate quantum surface codes to increasingly large portions of
a given tessellation of the hyperbolic plane or to suitable quotients of such
regions.

In our case, we can start with the right-angled pentagon tessellation R
and its dual graph R∗. After choosing a root vertex v0 of R∗ (the center of
a chosen face in the tiling) we denote by RN and R∗

N the finite tessellations
obtained by considering only the points that are up to N steps away from
v0 (that is, such that the hyperbolic geodesic to v0 passes through at most
N tiles. Let VN and EN be the number of vertices and edges in RN and
let V ∗

N be the number of vertices in R∗
N . The region RN has boundary, so

in the construction of the dual graph R∗
N we assume that the dual graph

has EN = E∗
N where the edges of R∗

N include an edge cutting through each
boundary edge of RN and number of vertices V ∗

N given by the number of
faces of RN plus one additional vertex for each boundary edge of RN . This
will correctly produce, in the limit when N → ∞ boundary vertices on P1(R)
at the endpoints of all geodesics of the dual graph R∗ of the tessellation R,
which should be the physical outputs of a holographic quantum code. Note
that, starting from the central pentagon as zeroth step, at the first step one
adds 10 new pentagons, five of which share an edge with the initial one and
five that share a vertex. At the second step, one adds 40 new pentagons, where
each of the 5 pentagons of the first step that shared an edge with the central
pentagon (we call these tiles of the first kind) will be adjacent to 2 new tiles
of the first kind (sharing an edge) and 1 tile of the second kind (sharing a
vertex), while each of the 5 tiles of the second kind will be adjacent to 3 new
tiles of the first kind and 2 new tiles of the second kind. Thus, if we let FN
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be the number of new tiles (faces) added to the tessellation at the N -th step,
with FN = mN +nN , where mN and nN are, respectively, the number of tiles
of the first and second kind, namely those that share a full edge or just a
vertex with a tile of the (N − 1)-st step. We then have the recursion relation

mN+1 = 2mN + 3nN , nN+1 = mN + 2nN

with initial condition m1 = n1 = 5. This gives

(m1, n1) = (5, 5), (m2, n2) = (25, 15), (m3, n3) = (95, 55),
(m4, n4) = (355, 205), (m5, n5) = (1325, 765), (m6, n6) = (4945, 2855), . . .

which corresponds to F1 = 10, F2 = 40, F3 = 150, F4 = 560, F5 = 2090,
F6 = 7800 . . . Similarly, let VN denote the number of vertices added to the
tessellation at the N -th step in the construction. We count as before the
numbers mN and nN of faces added at the N -th step, and for each face we
count new vertices counterclockwise, counting the leftmost vertex (common
to the next adjacent face) and not counting the rightmost vertex (which we
include in the counting for the next tile). This gives a number of new vertices
equal to WN = 2mN +3nN = mN+1, which is again computed in terms of the
recursion above. We have VN =

∑N
k=0 Wk and V ∗

N =
∑N

k=0 Fk + E∂,N , where
E∂,N is the number of boundary edges at the N -th stage in the construction.
This number is also equal to E∂,N = 2mN + 3nN = mN+1.

One can also consider closed surfaces (without boundary) and associated
quantum codes by passing to Cayley graphs of quotient groups of the triangle
Fuchsian group associated to the tessellation. In particular, the case that
corresponds to the right-angled pentagon tile of the pentagon code of [43] is
m = 4 and 
 = 5, for which we use the presentation

Γ(2, 4, 5) = 〈a, b | a2 = 1, b5 = 1, (ab)4 = 1〉.

The 2-complex used for the construction of the surface code in [49] is built
by considering 2-cycles of length 
 = 5 and 2m = 8 of the form

{x, xb, xb2, xb3, xb4, xb5 = x} and
{x, xa, xab, xaba, x(ab)2, x(ab)2a, x(ab)3, a(ab)3a, x(ab)4 = x},

at every vertex x, where all vertices have valence 3, with two edges {x, xb}
and {x, xb−1} along an 
 = 5-face and the remaining edge {x, xa} along a
2m = 8-face. By constructing an explicit matrix representation of Γ(2,m, 
)
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in the matrix group SL3(Z[ξ]), with ξ = 2 cos(π/m
), and taking reduc-
tion of the matrix entries modulo a prime p, one obtains a finite quotient
group G, as the image of Γ(2,m, 
) (as a subgroup of SL3(Z[ξ])) in the quo-
tient SL3(Fp[X]/(h(X))) where h(X) is a function of the 2m
-th normalized
Chebyshev polynomial. It is shown in [49] that this finite quotient group G
has the property that any word in the generators that is the identity in G
without being the identity in Γ(2,m, 
) must be of length at least log p. This
condition on the finite quotient group ensures that the finite graph given by
the Cayley graph of G can be identified with a portion of the infinite Cayley
graph of Γ(2,m, 
), given by the neighborhood of size log p of a vertex. Pro-
vided that log p is sufficiently large, the 2-cycles will then correspond to the

-cycles and 2m-cycles in this region, as the only words within that length
that are equal to the identity in G are those already equal to the identity
in the triangle group. The quantum code associated to the Cayley graph of
G and its dual graph then has code parameters [[n, k, d]]q with n = E, di-
mension k ≥ E

3 (1 − 2(1
� + 1

m), where E and V are the number of edges and
vertices in the Cayley graph of G. Thus, the dimension grows linearly in the
length of the code, while as shown in §3.3 of [49], the minimum distance is
proportional to log p.

The advantage of thinking in terms of triangle groups rather than pen-
tagon codes is that there is a parallel theory of p-adic hyperbolic triangle
groups in PGL2(K), for K a (sufficiently large) finite extension of Qp, see
[25], [26]. These are much more severely constrained than the Fuchsian trian-
gle groups in PSL2(R) and only exist for small values of p.

4.4. Triangle groups on the Bruhat-Tits trees

In order to consider analogous constructions in the Drinfeld p-adic upper half
plane Ω = P1(Cp)�P1(K), we first need to consider possible tilings of Ω. As
in the case of the real hyperbolic plane H2, we can think of a tessellation of
the Drinfeld plane Ω as a fundamental domain F for the action of a subgroup
Γ ⊂ GL2(K) and its translates γ(F), γ ∈ Γ, with the property that Ω/Γ is
compact. Using the reduction map Υ : Ω → TK from the Drinfeld plane to
the Bruhat–Tits tree, the property that Ω/Γ is compact translates into the
property that TK/Γ is a finite graph.

Unlike what happens in the case of Fuchsian groups acting on the real
hyperbolic plane, the existence of p-adic triangle graphs is much more severely
constrained. One is particularly interested in triangle groups of Mumford type.
These are triangle groups Γ ⊂ GL2(Qp) such that (P1(Cp)�ΛΓ)/Γ � P1(Cp)
and the uniformization map π : P1(Cp) � ΛΓ → P1(Cp) is ramified at three
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points. In particular, by the classification result of [25], [26] a p-adic triangle
group of Mumford type, of signature (2, 4, 5) exists only when p = 2. No
hyperbolic triangle groups of Mumford type exist for p > 5. The complete
list of hyperbolic p-adic triangle groups Γ(a, b, c) of Mumford type that can
exist in the cases p = 2, p = 3, and p = 5 is given in [26].

Let F be a fundamental domain for the action of the triangle group
Γ(2, 4, 5) on the Drinfeld p-adic upper half plane Ω with p = 2 and let T
be a fundamental domain for the action of the same group Γ(2, 4, 5) on the
Bruhat–Tits tree TK of a (sufficiently large) finite extension K of Q2. Since
the reduction map Υ : Ω → TK is equivariant with respect to the action of
GL2(K), we can assume that T = Υ(F). More generally, we can consider
any choice of one of the possible hyperbolic p-adic triangle groups Γ(a, b, c)
of Mumford type, with p ∈ {2, 3, 5}, acting on the Bruhat–Tits tree of a
(sufficiently large) finite extension K of Qp, for one of these three possible
values of p, and we proceed in the same way.

A good way of describing the fundamental domain of the action of a
finitely generated discrete subgroup Γ ⊂ PGL2(K) on the Bruhat–Tits tree
TK and the resulting quotient graph is in terms of graphs of groups, as shown
in [25], [26]. The theory of graphs of groups was developed in [2], [44]. A
graph of groups consists of a finite directed graph with groups Gv and Ge

associated to the vertices and edges of the graph, with Gē = Ge, together
with injective group homomorphisms ϕs : Ge → Gs(e) and ϕt : Ge → Gt(e)
from the group associated to an edge to the groups associated to the source
and target vertices. The fundamental group of a graph of groups is constructed
choosing a spanning tree of the graph: it is generated by the vertex groups
Gv together with an element he for each edge e, with relations hē = h−1

e and

h−1
e ϕs(g)he = ϕt(g), ∀g ∈ Ge

and with he = 1 for all e in the chosen spanning tree. If one denotes by G
the graph and by G• the collection of groups associated to the vertices and
edges, one writes π1(G, G•) = lim−→ϕ,G G• for the resulting amalgam given by
the fundamental group of the graph of groups. In the case where the graph
consists of one edge and two vertices, this fundamental group is just the
pushforward in the category of groups, namely the amalgamated free product
Gs(e) �Ge Gt(e). The main idea (see [2], [44]) is to associate to the action of
a discrete group on a tree a quotient given not just by a graph but by the
richer structure of a graph of groups, which keeps track of the information
about the stabilizers of vertices and edges. In the case of a discrete subgroup
Γ ⊂ PGL2(K), we consider the tree of groups given by the subtree TΓ of the



24 Matilde Marcolli

Bruhat–Tits tree TK together with the stabilizers Gv and Ge of vertices and
edges, and we obtains a graph of groups as the quotient graph TΓ/Γ. It is
shown in [26] that p-adic triangle groups of Mumford type are characterized
by the property that the quotient graph T = TΓ/Γ is a tree consisting of
three lines meeting at a single root vertex v0. Such trees are called tripods.
This tree, decorated with the stabilizer groups of vertices and edges is a tree
of groups. The ends of this tree are the three branch points, at 0, 1 and ∞,
of the genus zero curve ΩΓ/Γ. The group Γ can be reconstructed from the
tree of groups (T,G•) as the associated fundamental group, [25]. Indeed the
possible p-adic triangle groups of Mumford type are explicitly constructed
using this method. For example, the tripod associated to the p-adic triangle
group Γ(2, 4, 5) with p = 2, seen as a tree of groups, is the case 
 = m = 1 of
the following family (from [26]):

with subgroups D2 ⊂ D4 ⊂ S4 and D2 intersecting A4 ⊂ S4 trivially. In the
case 
 = m = 1 the resulting amalgam agrees with the pushout S4 �A4 A5.

4.5. Tessellations of the Drinfeld plane

A general algorithm exists for computing fundamental domains in Bruhat–
Tits trees for the action of certain quaternion groups, see [11]. In these cases
the algorithm produces

1. a connected subtree DΓ of the Bruhat–Tits tree which is a fundamental
domain for the group action, in the sense that the edges of DΓ form a
complete set of coset representatives for E(T )/Γ;

2. the edge and vertex stabilizer groups Ge, Gv for e ∈ E(DΓ) and v ∈
V (DΓ);

3. an explicit form for the quotient map by identifications (v, v′, γ) between
pairs of boundary vertices v, v′ of the fundamental domain DΓ, with
γ ∈ Γ such that v′ = γv.
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This algorithm can be used to produce corresponding tessellations of the
Drinfeld p-adic upper half plane. Let Γ, DΓ, Ge, Gv, and {(v, v′, γ)} be given
as above, through the algorithm of [11]. Using the projection map Υ : Ω →
T from the Drinfeld plane to the Bruhat–Tits tree, we can construct an
associated tessellation of the Drinfeld plane, where the tiles are given by γT ,
with γ ∈ Γ and

T =
⋃

v∈V (DΓ)
Υ−1(v) ∪

⋃
e∈E(DΓ)

Υ−1(e).

The gluing rules for the tiles are prescribed by the data (2) and (3) associated
to the fundamental domain on the Bruhat–Tits tree.

4.6. Lifting holographic codes from the Bruhat–Tits tree

Another way to obtain holographic codes on the Drinfeld plane is to lift
the construction of the classical and quantum codes on Bruhat-Tits trees
described in §2 via the surjection Υ : Ω → TK. This means that the “tiles”
to which we associate classical and quantum codes in the Drinfeld plane are
given, in this case, by the regions Υ−1(v), the preimages in Ω of vertices of
the Bruhat–Tits tree, and the outputs of each (classical or quantum) Reed–
Solomon code is stored in the connecting regions Υ−1(e). This can be done
by choosing a lift of the projection Υ, which realizes the Bruhat–Tits tree
as a skeleton of Ω and constructing the holographic code over that skeleton.
The choice of a lift of the projection is non-canonical, hence this type of
construction has the same kind of drawback of the construction used in [22]
to simulate the pentagon code via a choice of a planar embedding of a tree
along edges of the pentagon tiling of the real hyperbolic plane. An advantage
in this case, however, is that the projection Υ is equivariant with respect to
the GL2(Qp) symmetries so one maintains the symmetries of the tree intact,
unlike the case of the planar embedding used in [22].

5. Holographic codes on higher rank Bruhat–Tits buildings

As above, we denote by Tn,K the Bruhat–Tits building of GLn+1(K) and by
Ωn the Drinfeld symmetric space.

Consider first the case of the Bruhat–Tits building of GL3(K), with K

a finite extension of Qp with residue field Fq, q = pr. The set of vertices
adjacent to a given vertex v ∈ V (T2,K) is a bipartite set, consisting of the set
of q2 + q + 1 Fq-rational points of the projective plane P2 over Fq together
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with the set of q2 + q + 1 Fq-rational lines of the projective plane P2 over Fq.
The surface X over Fq obtained by blowing up all the Fq-rational points of P2

contains an exceptional divisor (a line) for each Fq-rational points of P2 and
a proper transform (also a line) for each Fq-rational line in P2. Thus, to each
vertex w adjacent to the given vertex v we associate a line 
w in the blowup
surface X. Let u,w be vertices adjacent to v: the set {u, v, w} corresponds
to a 2-simplex in the 2-dimensional simplicial complex T2,K if and only if the
lines 
u and 
w intersect nontrivially in X.

In the case of Q2 one obtains the well known picture below, with the 7
points and 7 lines of P2(F2) as vertices and with 21 edges, [9].

In order to extend the construction of holographic codes to higher rank
Bruhat–Tits buildings, in a way that reflects the associated geometries over
finite fields that determine the local structure of the building, we need to
replace the classical Reed–Solomon codes with algebro-geometric codes asso-
ciated to higher-dimensional algebraic varieties.

5.1. Codes on the Bruhat–Tits buildings of GL3 from
algebro-geometric codes on surfaces

A general procedure for constructing algebro-geometric codes over higher-
dimensional algebraic varieties generalizing the Reed–Solomon codes is de-
scribed in [46], see also [20]. Given a smooth projective variety X over Fq

with an ample line bundle L, one obtains a linear code C(X,L,P), where P
is a set of Fq-algebraic points of X, as the image of the germ map

α : Γ(X,L) → ⊕x∈PLx � Fn
q ,

which evaluates sections s ∈ Γ(X,L) at points x ∈ P, with the last identifi-
cation given by a choice of an isomorphism Lx � Fq of the fibers at x ∈ P,
with n = #P.



Holographic codes on BT buildings and Drinfeld spaces 27

For example, for X = P2, with L = O(m), with 0 < m ≤ q, and P the set
of all Fq-rational points of P2, one obtains a code C(P2,O(m),P2(Fq)) with
length n = q2 +q+1, dimension k = 1

2(m+1)(m+2), and minimum distance
bounded by d ≥ q2 + q + 1 −m(q + 1), see [20].

We focus here on the case of the Bruhat–Tits building of GL3(K), with
K a finite extension of Qp with residue field Fq, q = pr. As we mentioned
above, the link of a vertex in the Bruhat–Tits building is described in terms
of the geometry of an algebraic surface X obtained by blowing up all the
Fq-algebraic points of P2.

We use the example above of algebro-geometric codes C(P2,L,P2(Fq))
associated to line bundles L over P2 to construct a classical holographic code
on the Bruhat–Tits building of GL3(K). We fix a base vertex in the building
and assign as logical input the datum of a divisor D on P2 so that L = L(D).
Consider then the surface X over Fq obtained by blowing up all the Fq-
rational points of P2, and the pullback π∗L under the projection map, and
line bundles of the form L̂ = π∗L ⊗ O(−∑

i kiEi) where the Ei are the
exceptional divisors of the blowup. Assume that D and the ki are chosen
so that L̂ is represented by an effective divisor on X. We now consider the
q2 + q + 1 lines in X determined by the Fq-lines of P2 and the q2 + q + 1
lines that correspond to the Fq-points of P2 and the set P consisting of the
q+1 Fq-rational points of each of these lines, with #P = 2(q+1)(q2 + q+1).
The code C(X, L̂,P) can be viewed as a code that, given the logical input
D at the base vertex v, deposits an output given by a vector in Fq+1

q at each
adjacent vertex w in the Bruhat–Tits building. These outputs are related by
a consistency condition, which is determined by the edges and 2-cells of the
building. Namely, whenever w and u are vertices adjacent to v, such that
{v, w, u} is a 2-cell in the building, we know the corresponding condition
on X is that the two lines 
w and 
u intersect. The presence of a point of
intersection means that the corresponding vectors in Fq+1

q must agree in one
of the q + 1 coordinates.

When one propagates the construction to nearby vertices in the Bruhat–
Tits building, part of the logical input is reserved for the output Fq+1

q -vector
of the nearby vertices already reached by the previous steps from the chosen
root vertex. As in the case of the Bruhat–Tits tree, we identify the given
Fq+1
q -vector (computed as output by the previous code) with assigned values

at one of the lines in X that corresponds to one of the lines in P2 (which we
can think of as the P1 at infinity in P2). There is a consistency condition for
the output at a new vertex w that is adjacent to a 2-cell where the remaining
two vertices v and v′ already have outputs x(v), x(v′) ∈ Fq+1

q assigned by the
previous codes: the outputs x(v), x(v′) at the two previous vertices v, v′ are
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two vectors in Fq+1
q that agree in one coordinate, hence they fix the values of

the sections at two intersecting lines in X. The resulting output x(w) at the
new vertex w is then computed by the values at the q + 1 points of the line

w of all sections s that satisfy the constraints given by the assigned values at
the points of 
v and 
v′ . The construction can in this way be propagated to
the rest of the Bruhat–Tits building of GL3(K). This illustrates the general
approach to constructing classical holographic codes on higher rank Bruhat–
Tits buildings.

A construction of quantum holographic codes can be obtained from these
classical codes using a version of the CRSS algorithm (possibly by allowing
more general types of weighted versions of the classical codes, as we discussed
in the case of the Reed–Solomon codes). The details of the corresponding
quantum codes for higher rank buildings will be discussed in forthcoming
work.

5.2. Codes on Drinfeld symmetric spaces

Another possible approach to the construction of holographic codes for higher-
rank p-adic symmetric spaces consists of working with Drinfeld symmetric
spaces instead of Bruhat–Tits buildings. This extends the approach discussed
in §4 on codes associated to actions of discrete groups on the Drinfeld plane.

In the higher rank setting, we consider two possible viewpoints. The first
is based on the projection map from the Drinfeld symmetric space Υ : Ωn →
Tn,K, from the Drinfeld space Ωn = Pn(Cp)�∪H∈HK

H (the complement of the
K-rational hyperplanes in Pn) to the Bruhat–Tits building of GLn(K). The
idea here, as in §4.6 above, is to lift via the projection map a construction
of holographic classical and quantum codes from the Bruhat–Tits building
to the space Ωn, with logical inputs associated to the regions Υ−1(v), with v
the vertices of Tn,K and outputs and compatibility conditions along the edges,
faces, and higher-dimensional cells. Since the projection map Υ is equivariant
with respect to the GLn(K) action, whatever symmetry the codes constructed
on Tn,K exhibit will be inherited by the resulting codes on Ωn.

The other possible approach consists of constructing a tensor network di-
rectly associated to a given action of a discrete subgroup Γ of GLn(K) on the
symmetric space Ωn. Roughly, the main idea in this case is to assign logical
inputs to the fundamental domains of the action, while outputs should be as-
sociated to the generators of the discrete group with compatibility conditions
resulting from the relations. In this way, the codes assigned to each copy of the
fundamental domain can be compatibly assembled into a global holographic
code on Ωn, with logical inputs in the bulk and outputs at the boundary.
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The outputs should live on the points in the limit set of the group action
on the rational hyperplanes H ∈ HK. We will discuss these constructions
of holographic codes on higher rank p-adic symmetric spaces in forthcoming
work.

Acknowledgment

The author thanks Matthew Heydeman, Sarthak Parikh, and Ingmar Saberi
for many very useful discussions and an ongoing collaboration on several
topics discussed in this paper, and especially Sarthak Parikh for suggesting
several improvements to the paper. The author is partially supported by NSF
grant DMS-1707882, by NSERC Discovery Grant RGPIN-2018-04937 and
Accelerator Supplement Grant RGPAS-2018-522593, and by the Perimeter
Institute for Theoretical Physics.

References

[1] A. Ashikhmin, E. Knill, Nonbinary quantum stabilizer codes, IEEE
Trans. Inform. Theory 47 (2001), no. 7, 3065–3072. MR2097049

[2] H. Bass, Covering theory for graphs of groups, J. Pure Appl. Algebra
89 (1993), no. 1-2, 3–47. MR0422161

[3] A. Bhattacharyya, L.Y. Hung, Y. Lei, W. Li, Tensor network and
p-adic AdS/CFT, arXiv:1703.05445

[4] J.F. Boutot, H. Carayol, Uniformization p-adique des courbes de
Shimura: les théorèmes de Čerednik et de Drinfeld, in “Courbes modu-
laires et courbes de Shimura” (Orsay, 1987/1988). Astérisque No. 196-
197 (1991), 7, 45–158 (1992). MR1010662

[5] E.M. Brehm, B. Richter, Classical holographic codes, Phys. Rev. D
96 (2017) 066005 MR0844733

[6] A.R. Calderbank, E.M. Rains, P.W. Shor, N.J.A. Sloane,
Quantum error correction and orthogonal geometry, Phys. Rev. Lett.
78 (1997) 405–409. MR0893957

[7] L.O. Chekhov, A.D. Mironov, A.V. Zabrodin, Multiloop calcula-
tions in p-adic string theory and Bruhat-Tits trees, Communications in
Mathematical Physics 125 (1989) 675–711.

[8] P.B. Cohen, C. Itzykson, J. Wolfart, Fuchsian triangle groups
and Grothendieck dessins. Variations on a theme of Bely̌i, Comm. Math.
Phys. 163 (1994), no. 3, 605–627. MR1098608

http://www.ams.org/mathscinet-getitem?mr=2097049
http://www.ams.org/mathscinet-getitem?mr=0422161
http://arxiv.org/abs/arXiv:1703.05445
http://www.ams.org/mathscinet-getitem?mr=1010662
http://www.ams.org/mathscinet-getitem?mr=0844733
http://www.ams.org/mathscinet-getitem?mr=0893957
http://www.ams.org/mathscinet-getitem?mr=1098608


30 Matilde Marcolli

[9] H.S.M. Coxeter, Self-dual configurations and regular graphs, Bull.
Amer. Math. Soc. 56 (1950) 413–455. MR0656047

[10] B. Dragovich, A.Yu. Khrennikov, S.V. Kozyrev, I.V.

Volovich, On p-adic mathematical physics, p-Adic Numbers Ultramet-
ric Anal. Appl. 1 (2009), no. 1, 1–17. MR0396582

[11] C. Franc, M. Masdeu, Computing fundamental domains for the
Bruhat-Tits tree for GL2(Qp), p-adic automorphic forms, and the canon-
ical embedding of Shimura curves, LMS J. Comput. Math. 17 (2014)
no. 1, 1–23. MR1898372

[12] M. Grassl, W. Geiselmann, T. Beth, Quantum Reed-Solomon
codes, in “Applied algebra, algebraic algorithms and error-correcting
codes”, pp. 231–244, Lecture Notes in Comput. Sci. 1719, Springer,
1999. MR2566335

[13] M. Grassl, T. Beth, M. Rötteler, On optimal quantum codes,
Intl. J. Quantum Information 2 (2004) 55–64. MR3370186

[14] G. La Guardia, R. Palazzo, C. Lavor, Nonbinary quantum
Reed-Solomon codes, Int. J. Pure Appl. Math. 65 (2010), no. 1, 55–
63. MR0476875

[15] S.S. Gubser, M. Heydeman, C. Jepsen, M. Marcolli, S.

Parikh, I. Saberi, B. Stoica, B. Trundy, Edge length dynamics
on graphs with applications to p-adic AdS/CFT, J. High Energy Phys.
6 (2017) 157, 34 pp. MR2339649

[16] S.S. Gubser, M. Heydeman, C. Jepsen, S. Parikh, I. Saberi, B.

Stoica, B. Trundy, Signs of the time: Melonic theories over diverse
number systems, arXiv:1707.01087 MR1186841

[17] S.S. Gubser, C. Jepsen, S. Parikh, B. Trundy, O(N) and O(N)
and O(N), arXiv:1703.04202 MR1288093

[18] S.S. Gubser, J. Knaute, S. Parikh, A. Samberg, P.

Witaszczyk, p-adic AdS/CFT, Comm. Math. Phys. 352 (2017), no.
3, 1019–1059. MR1003429

[19] S.S. Gubser, S. Parikh, Geodesic bulk diagrams on the Bruhat-Tits
tree, arXiv:1704.01149. MR2836246

[20] S.H. Hansen, Error-correcting codes from higher-dimensional varieties,
Finite Fields and Their Applications 7 (2001) 530–552.

http://www.ams.org/mathscinet-getitem?mr=0656047
http://www.ams.org/mathscinet-getitem?mr=0396582
http://www.ams.org/mathscinet-getitem?mr=1898372
http://www.ams.org/mathscinet-getitem?mr=2566335
http://www.ams.org/mathscinet-getitem?mr=3370186
http://www.ams.org/mathscinet-getitem?mr=0476875
http://www.ams.org/mathscinet-getitem?mr=2339649
http://arxiv.org/abs/arXiv:1707.01087
http://www.ams.org/mathscinet-getitem?mr=1186841
http://arxiv.org/abs/arXiv:1703.04202
http://www.ams.org/mathscinet-getitem?mr=1288093
http://www.ams.org/mathscinet-getitem?mr=1003429
http://arxiv.org/abs/arXiv:1704.01149
http://www.ams.org/mathscinet-getitem?mr=2836246


Holographic codes on BT buildings and Drinfeld spaces 31

[21] P. Hayden, S. Nezami, X.L. Qi, N. Thomas, M. Walter, Z.

Yang, Holographic duality from random tensor networks, J. High Energy
Phys. 11 (2016) 009, 55 pp.

[22] M. Heydeman, M. Marcolli, I. Saberi, B. Stoica, Tensor net-
works, p-adic fields, and algebraic curves: arithmetic and the AdS3/CFT2
correspondence, Adv. Theor. Math. Phys. 22 (2018), no. 1, 93–176.

[23] M. Heydeman, M. Marcolli, S. Parikh, I. Saberi, Nonar-
chimedean holographic entropy from networks of perfect tensors,
arXiv:1812.04057.

[24] F. Kato, An overview of the theory of p-adic uniformization, Appendix
B in Y. André, “Period mappings and differential equations. From C to
Cp, Tôhoku-Hokkaidô lectures in arithmetic geometry”, MSJ Memoirs,
12. Mathematical Society of Japan, Tokyo, 2003, pp. 219–228.

[25] F. Kato, Non-archimedean orbifolds covered by Mumford curves, J. Al-
gebraic Geom. 14 (2005), 1–34.

[26] F. Kato, p-adic Schwarzian triangle groups of Mumford type,
arXiv:math/9908174v3.

[27] J.L. Kim, J.L. Walker, Nonbinary quantum error-correcting codes
from algebraic curves, Discrete Math. 308 (2008) 3115–3124.

[28] A.Y. Kitaev, Fault-tolerant quantum computation by anyons, Ann.
Phys. 303 (2003) 2–30.

[29] K. Krasnov, Holography and Riemann surfaces, Adv. Theor. Math.
Phys. 4 (2000) no. 4, 929–979.

[30] Z. Li, L.J. Xing, X.M. Wang, Quantum generalized Reed-Solomon
codes: unified framework for quantum maximum-distance-separable
codes, Phys. Rev. A (3) 77 (2008) no. 1, 012308, 4 pp.

[31] D.J.C. Mackay, G. Mitchison, P.L. Mcfadden, Sparse graph
codes for quantum error-correction, IEEE Trans. Inform. Theory 50
(2004) no. 10, 2315–2330.

[32] Yu.I. Manin, p-adic automorphic functions, Journ. of Soviet Math. 5
(1976) 279–333.

[33] Yu.I. Manin, New dimensions in geometry, in “Arbeitstagung Bonn
1984”, pp. 59–101, Lecture Notes in Math. 1111, Springer, 1985.

http://arxiv.org/abs/arXiv:1812.04057
http://arxiv.org/abs/arXiv:math/9908174v3


32 Matilde Marcolli

[34] Yu.I. Manin, Reflections on arithmetical physics, in “Conformal Invari-
ance and String Theory”, pp. 293–303, Perspectives in Physics, Academic
Press, 1989.

[35] Yu.I. Manin, The partition function of the Polyakov string can be
expressed in terms of theta-functions, Phys. Lett. B 172 (1986), no. 2,
184–185.

[36] Yu.I. Manin, Theta-function representation of the partition function
of a Polyakov string, JETP Lett. 43 (1986), no. 4, 204–206

[37] Yu.I. Manin, Closed fibers at infinity in Arakelov’s geometry, preprint
PAM-479, Center for Pure and Applied Mathematics, University of Cal-
ifornia Berkeley, 1989.

[38] Yu.I. Manin, Three-dimensional hyperbolic geometry as ∞-adic
Arakelov geometry, Invent. Math. 104 (1991), no. 2, 223–243.

[39] Yu.I. Manin, What is the maximum number of points on a curve
over F2? J. Fac. Sci. Univ. Tokyo Sect. IA Math. 28 (1981), no. 3, 715–
720.

[40] Yu.I. Manin, V. Drinfeld, Periods of p-adic Schottky groups,
J. Reine u. Angew. Math., 262–263 (1973) 239–247.

[41] Yu.I. Manin, M. Marcolli, Holography principle and arithmetic of
algebraic curves, Adv. Theor. Math. Phys. 5 (2001), no. 3, 617–650.

[42] T. Nishioka, S. Ryu, T. Takayanagi, Holographic entanglement
entropy: an overview, J. Phys. A 42 (2009) no. 50, 504008.

[43] F. Pastawski, B. Yoshida, D. Harlow, J. Preskill, Holographic
quantum error-correcting codes: toy models for the bulk/boundary cor-
respondence, J. High Energy Phys. 6 (2015), 149 [53 pp].

[44] J.P. Serre, Arbres, Amalgames, SL2, Astérisque, 46. Société Mathé-
matique de France, 1977.
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