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Abstract: This article discusses a relatively new geometric flow,
called the hypersymplectic flow. In the first half of the article we ex-
plain the original motivating ideas for the flow, coming from both 4-
dimensional symplectic topology and 7-dimensional G2-geometry.
We also survey recent progress on the flow, most notably an exten-
sion theorem assuming a bound on scalar curvature. The second
half contains new results. We prove that a complete torsion-free
hypersymplectic structure must be hyperkähler. We show that a
certain integral bound involving scalar curvature rules out a finite
time singularity in the hypersymplectic flow. We show that if the
initial hypersymplectic structure is sufficiently close to being point-
wise orthogonal then the flow exists for all time. Finally, we prove
convergence of the flow under some strong assumptions including,
amongst other things, long time existence.
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1. Summary of contents

The first aim of this article is to popularise a relatively new geometric flow,
called the hypersymplectic flow. The second aim is to explain some new results
about extension and convergence of this flow. In §2 we give the background
motivation for hypersymplectic stuctures, coming from 4-dimensional sym-
plectic topology and 7-dimensional G2-geometry. In §3 we summarise what is
already known about the hypersymplectic flow. We do this partly for context
but also because several of the equations and arguments discussed here will
be reused later. The new results are proved in §4. They include the following:

• Theorem 25: a torsion-free complete hypersymplectic structure is hy-
perkähler.

• Theorem 29: an extension result for the hypersymplectic flow under an
integral bound on the torsion.

• Theorem 32: if the initial hypersymplectic structure is sufficiently close
(in C0) to being pointwise orthogonal then the hypersymplectic flow
exists for all time.

• Theorems 37 and 38: assuming the hypersymplectic flow exists for all
time, then certain geometric bounds imply the flow converges to a hy-
perkähler structure.

2. Motivation

2.1. Hypersymplectic structures

One starting point for the study of hypersymplectic structures comes from
the following folklore conjecture in 4-dimensional symplectic topology.
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Conjecture 1. Let M be a compact 4-manifold and ω a symplectic form
on M with c1(M,ω) = 0. If π1(M) = 0 or b+(M) = 3 then there exists
an integrable almost complex structure J on M which is compatible with ω,
making (M,J, ω) a Kähler surface.

We make the following remarks:

1. The conditions π1(M) = 0 or b+(M) = 3 are necessary. The Kodaira–
Thurston manifold [23, 41] is a homogenous compact symplectic 4-
manifold, with c1 = 0; indeed the tangent bundle is symplectically
trivial. It has no Kähler metric, since b1 = 3 whereas Kähler manifolds
have b1 even. It has π1 �= 0 and b+ = 2.

2. Conjecture 1, if true, describes a purely 4-dimensional phenomenon.
There are infinitely many simply-connected compact symplectic 6-mani-
folds with c1 = 0 yet which admit no compatible complex structure
[14, 15, 1].

3. The only compact Kähler surfaces with c1 = 0 are complex tori or
K3 surfaces. So one consequence of the conjecture is that M is either
diffeomorphic to T

4 or the real manifold underlying K3 surfaces.
The best that is known in this direction is that under the hypotheses of
Conjecture 1, if π1(M) = 0 then M is homeomorphic to a K3 surface.
This follows from work of Morgan–Szabó, Bauer and Li to determine
the integral homology of M [36, 3, 27], and then the celebrated work of
Freedmann [18] to determine the homeomorphism type.
Of course, the jump from homeomorphism to diffeomorphism is large
in dimension 4. Moreover, even if we assume M is diffeomorphic to a
K3 surface or T4 it is still unknown whether or not ω can be made into
a Kähler metric.

Conjecture 1 seems currently out of reach. To gain a foothold, Donaldson
has formulated a simpler conjecture, which may turn out to be more tractable.
To state it we first need the definition of a hypersymplectic structure.

Definition 2. Let M be a 4-manifold. A triple ω = (ω1, ω2, ω3) of symplectic
forms is called a hypersymplectic structure on M if any non-zero linear com-
bination a1ω1 + a2ω2 + a3ω3 of the forms is again a symplectic form (where
(a1, a2, a3) ∈ R

3 \ {0}).

The obvious example, and reason for the name, is the triple of Kähler
forms associated to a hyperkähler metric. Donaldson’s conjecture is that, up
to isotopy and on compact manifolds, these are essentially the only examples.
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Conjecture 3 (Donaldson [9]). Let ω be a hypersymplectic structure on a
compact 4-manifold M . Then there is an isotopy ω(t) of cohomologous hyper-
symplectic structures for 0 � t � 1, taking ω = ω(0) to a triple ω(1) that is
hyperkähler. I.e., there is a hyperkähler metric on M for which the family of
Kähler forms are generated by the components of ω(1).

Donaldson’s Conjecture is a special case of Conjecture 1. First note that
the hypotheses of Conjecture 3 imply those of Conjecture 1.
Lemma 4. If ω is a hypersymplectic structure on M then c1(M,ω1) = 0.
Moreover, if M is compact then b+(M) = 3.
Sketch of proof. We begin with c1(M,ω1) = 0. Let J be an almost complex
structure on M compatible with ω1 and g(·, ·) = ω1(J ·, ·) the corresponding
Riemannian metric. The bundle of self-dual 2-forms of g has the form Λ+ =
〈ω1〉⊕KJ where KJ ⊂ Λ2 is the bundle of 2-forms which are the real parts of
(2, 0)-forms with respect to J . Conversely, given any rank 2 subbundle K ⊂ Λ2

such that the wedge product is positive definite on 〈ω1〉 ⊕K then there is an
almost complex structure J , compatible with ω1, such that K = KJ .

Let K = {χ ∈ 〈ω1, ω2, ω3〉 : ω1 ∧χ = 0}. Now 〈ω1〉⊕K = 〈ω1, ω2, ω3〉; by
the definition of a hypersymplectic structure, the wedge product is positive
definite here. It follows that K = KJ for some almost complex J , compatible
with ω1. It is now a simple matter to write down a nowhere vanishing section
of KJ , showing that c1(M,J) = 0.

To see that when M is compact b+(M) = 3, first note that the J described
above gives a metric g for which ω1, ω2, ω3 are all closed self-dual 2-forms.
This shows that b+(M) � 3. Meanwhile a result of Bauer [3] shows that for a
symplectic 4-manifold with c1 = 0, b+(M) � 3. (Note that Bauer’s Theorem
is relatively deep, relying on Seiberg–Witten theory. It would be interesting to
know if there was a more direct proof that the existence of a hypersymplectic
structure forces b+(M) = 3.)

Next we explain why Donaldson’s Conjecture implies Conjecture 1 in the
case of hypersymplectic structures. Let (M,ω) be a compact hypersymplec-
tic 4-manifold and let ω(t) be an isotopy of cohomologous hypersymplectic
structures starting at this given one and ending at a hyperkähler triple ω(1).
There is certainly an integrable complex structure J compatible with ω1(1).
Meanwhile Moser’s argument applied to the path of cohomologous symplectic
forms ω1(t) gives the existence of a diffeomorphism f with f∗ω1(1) = ω1(0).
It follows that (M, f∗J, ω1(0)) a Kähler surface.

We now turn to a geometric flow of hypersymplectic structures, called the
hypersymplectic flow, which we hope will ultimately lead to an isotopy ω(t)
proving Donaldson’s Conjecture.
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2.2. A brief primer on G2-structures

The hypersymplectic flow has its origins in G2 geometry. In this section we
quickly review the required parts of the study of G2-structures. For more
details and justifications, see [4, 32].

Let X be an oriented 7-manifold and φ ∈ Ω3(X) a 3-form. Using φ we can
define a symmetric bilinear form βφ on X with values in Λ7T ∗X as follows:

(1) βφ(u, v) = 1
6 ιuφ ∧ ιvφ ∧ φ

Definition 5. The 3-form φ is called a G2-structure on X if βφ is positive
definite. More precisely, if ν is any choice of positive nowhere vanishing 7-form
on X, then φ is a G2-structure if βφ/ν defines a Riemannian metric on X.

When φ is a G2-structure, there is in fact a canonical choice of positive
7-form on X. To explain this, note that given any nowhere vanishing 7-form
ν, we obtain a metric gν = βφ/ν. This metric has, in turn, a metric volume
form (a positive 7-form of unit length with respect to gν) which we denote by
dvol(ν) to indicate its dependence on ν. By considering the effect of scaling
ν, one sees that there is a unique choice of ν for which dvol(ν) = ν. In this
way a G2-structure induces a distinguished 7-form and hence metric on X.
We write these structures νφ and gφ respectively.

The prototype of a G2-structure comes from the octonians. Identify R
7

with the vector space of imaginary octonians and define a 3-form φ0 on R
7

by φ0(u, v, w) = 〈im(u× v), w〉. Here u× v is the octonian product of u and
v, whilst 〈·, ·〉 denotes the Euclidean inner product. The 3-form φ0 is the 7-
dimensional analogue of the vector triple product in R

3. The resulting metric
gφ0 on R

7 is just the standard Euclidean metric we started with. It turns
out that, up to the action of GL+(7,R), φ0 is the unique linear G2-structure
on R

7. The stabiliser of φ0 is isomorphic to the exceptional Lie group G2,
which in this way arises as a subgroup G2 ⊂ SO(7). It is from here that
G2-structures get their name.

The interest in G2-structures comes from the search for 7-dimensional
Riemannian manifolds with holonomy G2.
Definition 6. A G2-structure φ is said to be torsion free if ∇φ = 0. Here, ∇
is the Levi-Civita connection of the metric gφ, determined by φ. (In particular,
this equation is non-linear in φ.)

If φ is torsion free, then the holonomy along loops based at x ∈ X must
preserve φ(x). It follows that the holonomy group is isomorphic to a subgroup
of G2. (We remark in passing that the term “torison free” comes from the
language of G-structures.)
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One of the reasons to be interested in metrics with ∇φ = 0 is that they
are automatically Ricci flat. This is similar to Calabi–Yau metrics, i.e., Käh-
ler metrics with a parallel holomorphic volume form, which have holonomy
SU(n). Again the constant differential form forces the Ricci curvature to van-
ish. The analogy is particularly close in real dimension 6: if Z is a Calabi–Yau
threefold with Kähler form ω and holomorphic volume form Ω then Z × S1

carries a torsion free G2-structure, φ = ω ∧ dθ + Re Ω. In terms of holonomy,
this corresponds to the subgroup SU(3) ⊂ G2 of elements which fix a given
direction in R

7.
It turns out that the equation ∇φ = 0 is equivalent to a system of equa-

tions which is at first sight less restrictive.

Proposition 7 (See, for example, [4, 32]). A G2-structure φ is torsion free
if and only if

(2) dφ = 0 and d∗φ = 0

(Here the codifferential d∗ is defined via the metric gφ determined by φ and
so, again, this equation is non-linear in φ.)

In one direction this is obvious, the real strength of the Proposition is
that φ being closed and coclosed is enough to force ∇φ = 0. Again one can
draw an analogy with Kähler geometry: if the associated (1, 1)-form ω of a
Hermitian metric is closed then (using integrability of the complex structure)
it follows that ∇ω = 0.

This description of torsion free G2-structures leads to the following natural
question.

Question 8. Let φ be a closed G2-structure. Does there exist a cohomologous
torsion free G2-structure ψ ∈ [φ]?

Pushing the analogy with Calabi–Yau threefolds still further, one might
think of this as a little similar to the Calabi–Yau theorem: given a complex
manifold with trivial canonical bundle and a Kähler class κ, Yau proved
that there is a unique Kähler form ω ∈ κ for which the holomorphic volume
forms are parallel [44]. We should stress, however, that there are important
differences between G2 and Calabi–Yau geometries. In particular, there are
closed G2-structures on compact 7-manifolds which admit no torsion free G2-
structure [13], and so the strongest “G2 analogue” of Yau’s theorem is false.
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2.3. From hypersymplectic to G2

In [10] Donaldson observes how to turn a hyperpsymplectic structure into a
G2-structure (and conversely, certain 3-dimensional families of hypersymplec-
tic structures are one of the key pieces of data in the description of general
closed G2-structures with co-associative fibrations). Let M be a 4-manifold
with hypersymplectic structure ω = (ω1, ω2, ω3) and consider the following 3-
form φ on M×T

3, where T3 is the 3-torus with angular coordinates (t1, t2, t3):

(3) φ = dt123 − dt1 ∧ ω1 − dt2 ∧ ω2 − dt3 ∧ ω3

The fact that ω is hypersymplectic implies φ is a closed G2-structure. (See,
for example, Lemma 2.2 of [16].)

The metric gφ on M ×T
3 has a purely 4-dimensional description. Firstly,

we define a volume form μω on M as follows. Given any nowhere vanishing
positive 4-form μ on M , consider the symmetric 3-by-3 matrix

(4) Q(μ)ij = ωi ∧ ωj

2μ

We let μω be the unique positive 4-form for which detQ = 1. We can now
define a Riemannian metric gω on M :

(5) gω(u, v) = 1
6
εijkιuωi ∧ ιvωj ∧ ωk

μω

(Here and throughout we use the summation convention that repeated indices
are summed over 1, 2, 3; moreover εijk is the sign of the permutaion (ijk).)
One can check that this symmetric bilinear form is indeed a Riemmanian
metric, because ω is hypersymplectic. Moreover, the forms ωi are actually
self-dual with respect to gω, and Qij = 1

2〈ωi, ωj〉 is (half of) the matrix of
their gω-inner-products. Finally, the 7-dimensional metric gφ on M × T

3 is
related to gω and Q by

(6) gφ = gω + Qijdti ⊗ dtj

(where we have abused notation in writing gω for the pull-back of this metric
from M to M ×T

3). The proofs of all of these assertions can be found in [16].
To summarise, a hypersymplectic structure ω determines two key pieces of

data: a Riemannian metric gω, which makes ω self-dual, and a matrix valued
function Q, given by the inner-products of the components of ω, taking values
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in the space of positive definite matrices with determinant 1. If we interpret
Q as a family of (flat) metrics on T

3 parametrised by M then, together with
gω, we obtain a metric on M×T

3 which is induced by the closed G2-structure
φ as defined above in (3).

We are now in position to interpret Donaldson’s Conjecture 3 in terms
of Question 8. If ω(t) is a path of cohomologous hypersymplectic structures
ending at a hyperkähler triple, then the corresponding G2-structures φ(t) are
cohomologous and end at a torsion free G2-structure. Indeed, the holonomy
of M × T

3 lies in SU(2) ⊂ G2, the subgroup of G2 which fixes a copy of the
imaginary quaternions inside the imaginary octonians. From this perspective,
Donaldson’s Conjecture asserts that, for those closed G2-structures coming
from hypersymplectic structures, you can always deform them to be torsion
free.

We close this subsection with a comment on notation. Given a hyper-
symplectic structure ω we now have two different Riemannian manifolds in
play, the 4-dimensional (M, gω) and the 7-dimensional (M ×T

3, gφ). To help
distinguish between them we will use bold characters for all 7-dimensional ge-
ometric quantities, for example writing g = gφ for the 7-dimensional metric
and Rm for its curvature, whilst g = gω and Rm denote the 4-dimensional
metric and curvature.

2.4. The G2-Laplacian flow

The hypersymplectic flow is a special case of a flow defined for general G2-
structures, called the G2-Laplacian flow. This flow was introduced indepen-
dently by Bryant and Hitchin [4, 19] as a way to approach Question 8. A path
of closed G2-structures φ(t) evolves according to the G2-Laplacian flow if

(7) ∂φ

∂t
= Δφ

Here, Δ = Δgφ(t) is the Hodge Laplacian on 3-forms determined by the metric,
and hence φ, at time t. Some remarks are in order.

1. A closed G2-structure φ is a fixed point of the flow if and only if it is
torsion free. (This follows from the computation, equation (6.14) in [4],
of the pointwise change in the volume form.)

2. Under the flow (7), the cohomology class of φ(t) is constant. One might
hope then that the flow will deform a given closed G2-structure into a
cohomologous one which is torsion free.
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3. The flow (7) is actually a gradient flow. This point of view is due to
Hitchin [19]. Given a closed G2-structure φ, write V(φ) for the total
volume of the associated metric. Write H for the space of all closed
G2-structures in a fixed cohomology class. Then, with a suitable Rie-
mannian metric on H, (7) is the gradient flow of V . (Details of this
calculation can be found in [16].)

The first step in studying (7) is to understand short time existence, which
ultimately comes down to understanding the dependence of Δ on φ. A simple
observation is that this dependence means that (7) is not linear in φ. More
subtly, despite the fact that the Laplacian on the right-hand side is positive,
the complicated way in which Δ depends on φ means that (7) behaves like
a forward heat flow, and not a backward one. The flow (7) is not genuinely
parabolic, however, since it is invariant under diffeomorphisms. In [5], Bryant
and Xu showed how to gauge fix the flow to avoid this problem and hence
prove short time existence. The idea is similar to DeTurck’s proof of short-
time existence of the Ricci flow, although the technicalities are more involved.
(See also the discussion in [32].)

Theorem 9 (Bryant–Xu, [5]). Let X be a compact 7-manifold and φ0 a
closed G2-structure on X. Then there exists ε > 0 and φ(t) a path of closed
G2-structures for t ∈ [0, ε) solving the G2-Laplacian flow (7) with φ(0) = φ0.
Moreover, the solution is unique for as long as it exists.

The G2-Laplacian flow is, in fact, a close cousin of the Ricci flow. To see
this, one computes the evolution of the metric g(t) = gφ(t) under the flow. As
a notational convenience, put

(8) T = −1
2d∗φ

This 2-form is called the torsion of φ. With this in hand, we can give the
evolution equation for g(t).

Proposition 10 (Lotay–Wei [32], equation (3.6)). If a closed G2-structure
φ(t) evolves according to the G2-Laplacian flow (7), the corresponding Rie-
mannian metric g(t) = gφ(t) obeys

(9) ∂gij
∂t

= −2Ricij −
2
3 |T|2gij − 4T k

i Tkj

The terms involving T should be thought of as giving a lower order cor-
rection to Ricci flow, in the sense that the Ricci curvature is determined
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by ∇T, T and φ; see equation (2.29) in [32]. Inspired by this, much work
has been done to extend results from Ricci flow to the G2-Laplacian flow
[32, 33, 34, 28]. One important result of this kind—and which will be im-
portant to us in what follows—is an extension criterion due to Lotay–Wei.
Recall that if a finite time singularity occurs in the Ricci flow, then the cur-
vature must blow up (due to Hamilton [20]). To state Lotay–Wei’s analogous
result for the G2-Laplacian flow we first make a definition. Let Λ denote the
following quantity

(10) Λ(φ) = sup
X

(
|Rm(gφ)|2 + |∇T(φ(t))|2

)1/2

Theorem 11 (Lotay–Wei). Let φ(t) be a path of closed G2-structures solving
the G2-Laplacian flow on a maximal time interval [0, s) with s < ∞ on a
compact manifold. Then

lim
t↗s

Λ(φ(t)) = ∞

An important problem is to find conditions under which the G2-Laplacian
flow exists for long time. One such result is due to Lotay–Wei, who show
that torsion free G2-structures are dynamically stable under G2-Laplacian
flow [33]: if φ(0) is sufficiently close to a given cohomologous torsion free
G2-structure ψ then the flow exists for all time and converges modulo dif-
feomorphisms to ψ. Homogeneous examples of the G2-Laplacian flow have
been investigated by Lauret [25] using the bracket/algebraic soliton approach
giving, in particular, many examples of long time existence. In [21] Huang–
Wang–Yao studied a type of G2-structure on the torus T7 with T

6 symmetry;
they show long time existence of the flow and convergence (modulo diffeo-
morphisms) to a standard flat structure. Fino–Raffero [17] studied so-called
“extremely Ricci-pinched” G2-structures, a special class of G2-structure in-
troduced by Bryant [4] (together with the predating examples of Bryant [4]
and Lauret [25]), and showed the long time existence of the flow; in these
cases the flow does not converge as t → ∞. In [29], Lambert–Lotay proved
the long-time existence and convergence of the G2-Laplacian flow in the case
of semi-flat coassociative T

4-fibrations, via the reduction of the G2-Laplacian
flow to a spacelike mean curvature flow in H2(T4) = R

3,3 (the connection
with spacelike mean curvature flow is another observation due to Donaldson
[10]).

It should be noted that among all these examples, there is no compact
example of finite time singularity. We should mention, however, an interest-
ing example due to Lauret [26] of a complete shrinking closed G2-Laplacian
soliton, which thus becomes singular in finite time.
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All of the known compact examples in which the flow exists for long
time but does not converge at infinity have a common property: the volume
along the flow increases without bound. In such a cohomology class, Hitchin’s
volume functional V is unbounded (see item 3 of section 2.4). For hypersym-
plectic structures, however, there is a uniform bound on the volume in terms
of the cohomology classes of the ω. Since detQ = 1, we have that TrQ � 3
and so Equation (4) implies that for any hypersymplectic stucture ω, the total
volume satisfies

(11)
∫
M×T3

νφ =
∫
M

μω � 1
6

∫
M

ω2
1 + ω2

2 + ω2
3

where the right-hand side depends only on the cohomology classes of the ωi.

3. The hypersymplectic flow

3.1. Evolution equations

In [16], the authors began the study of the G2-Laplacian flow in the setting
of hypersymplectic structures, with the (as yet unfulfilled!) aim of proving
Donaldson’s Conjecture. In this section we review this work, setting the scene
for the new results which we will explain in the following section, some of
which will depend at various points on similar arguments.

Let (M,ω) be a compact 4-manifold with a hypersymplectic structure
and let φ be the associated closed G2-structure on X = M ×T

3 as defined in
(3). The first simple observation is that the G2-Laplacian flow starting at φ
descends to a flow of hypersympectic structures.

Lemma 12 (Lemma 2.8 of [16]). Let φ(t) solve the G2-Laplacian flow (7) on
M ×T

3, starting at φ(0) of the form (3) for a hypersymplectic structure ω(0)
on M . Then there is a path ω(t) of cohomologous hypersymplectic structures
on M for which φ(t) and ω(t) are related by (3).

The evolution equation for ω(t) has a purely 4-dimensional formulation.
Recall that, for each t, ω(t) determines a Riemannian metric g(t) = gω(t) on
M and also matrix-valued function Qij(t) = 1

2〈ωi(t), ωj(t)〉 given by (half of)
the pointwise inner-products of the components of ω(t) with respect to g(t).
The matrix Q(t) is positive definite (because ω(t) is hypersymplectic and its
components are self-dual) and hence invertible. The G2-Laplacian flow for
φ(t) becomes the following evolution equation for ω(t):

(12) ∂ω

∂t
= d

(
Q d∗

(
Q−1ω

))
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More explicitly, writing Qij for the components of the inverse matrix Q−1 and
with the summation convention we have the following evolution equation for
each component of ω.

(13) ∂ωi

∂t
= d

(
Qik d∗

(
Qklωl

))

To give the evolution equations for the 4-dimensional metric g(t) and
the matrix-valued function Q(t), we first need a short digression. Write P
for the space of symmetric positive-definite 3-by-3 matrices. By definition,
Q : M → P. Since P is an open set in the vector space S2

R
3 of all symmetric

3-by-3 matrices, we can identify the tangent space TPP at any point with
the vector space S2

R
3 in a natural way. With this in hand, we can define a

Riemannian metric on P, which makes it into a complete symmetric space of
non-positive curvature. Given A,B ∈ S2

R
3 ∼= TPP their Riemannian inner-

product is given by

(14) 〈A,B〉P = Tr(P−1AP−1B)

The action of GL+(3,R) on P given by G · P = GPGT is isometric, giving

P ∼= GL+(3,R)/ SO(3)

We will treat Q : M → P as a map between two Riemannian manifolds,
using the complete symmetric metric on P. We write Δ̂Q for the harmonic
map Laplacian of Q. The “hat” is to distinguish it from the ordinary Laplacian
applied to each component. The two are related by

(15)
(
Δ̂Q

)
ij

= Δ(Qij) − 〈dQikQ
km, dQmj〉gω

Another piece of notation we will use is |dQ|2Q for the norm-squared of
dQ : TxM → TQ(x)P. Explicitly,

(16) |dQ|2Q = 〈QijdQjk, Q
kmdQmi〉gω

More generally, if A,B are tensors of the same type, with values in Q∗TP,
we write 〈A,B〉Q for their inner-product defined using gω and the symmetric
metric on P. We can also use the metric on P only on the Q∗TP factors. For
example, we write 〈dQ⊗ dQ〉Q for the symmetric 2-tensor given by

(17) 〈dQ⊗ dQ〉Q(u, v) = 〈∇uQ,∇vQ〉Q
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The last piece of information we need is the triple of 1-forms τ =
Q d∗(Q−1ω) on M . The point here is that the hypersymplectic flow is ∂tω =
dτ whilst the torsion of the G2-structure φ is given by

(18) T = −1
2d∗φ = −1

2
(
dt1 ∧ τ1 + dt2 ∧ τ2 + dt3 ∧ τ3

)

Starting with τ we write 〈τ , τ〉 for the 3-by-3 matrix whose (i, j)-element is
〈τi, τj〉. We also write τ ⊗ τ for the 3-by-3 matrix of 2-tensors whose (i, j)-
element is τi ⊗ τj .

With all of this in hand, we can now write the evolution equations for
g(t) and Q(t) under the hypersymplectic flow:

∂Q

∂t
= Δ̂Q + 〈τ , τ〉 − 1

3 Tr
(
Q−1 〈τ , τ〉

)
Q

(19)

∂g

∂t
= −2 Ric(g) + 1

2 〈dQ⊗ dQ〉Q + Tr
(
Q−1τ ⊗ τ

)
− 2

3 Tr
(
Q−1 〈τ , τ〉

)
g

(20)

It is interesting to compare this to the Ricci flow coupled to the harmonic
map flow, introduced by Buzano (né Müller) in [37]. If one drops all the terms
involving τ , then one obtains exactly this coupled flow. The terms involving τ

are lower order, just as the metric evolution of the G2-Laplacian flow is a low
order adjustment to the Ricci flow. It is easily seen that |T|2 = Tr

(
Q−1 〈τ , τ〉

)
.

The two following evolution inequalities are crucial to what follows.

Proposition 13. Under the hypersymplectic flow,
(
∂

∂t
− Δ

)
TrQ � 5

3 |T|2 TrQ(21) (
∂

∂t
− Δ

)
|dQ|2Q � −|∇̂dQ|2Q − 1

16 |dQ|4Q + C (TrQ)19 |T|2|dQ|2Q(22)

where ∇̂dQ is the Hessian of Q : M → P and C is a universal constant.

Inequality (21) follows directly from taking the trace of (19). The proof
of (22) uses ideas of Eells–Sampson in their seminal work on the harmonic
map heat flow [12]. The key is the Bochner formula:

(23) 1
2Δ|dQ|2Q = |∇̂dQ|2Q+gαβ

〈
∇̂αΔ̂Q, ∇̂βQ

〉
Q
+Ricαβ 〈∇αQ,∇βQ〉Q−KP
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Here KP is a term involving the curvature of P. Since this is non-positive, this
term can safely be ignored. This is the same reason why harmonic map heat
flow is so successful when the target has non-positive curvature, as is exploited
in [12]. The second point to note is that when we include ∂t|dQ|2Q, the term
in (23) involving the Ricci curvature is cancelled by the Ricci term in the
time derivative of the metric. This is exactly what occurs in Buzano’s study
of the harmonic map flow coupled to the Ricci flow [37]. For the remaining
parts of the proof of (22) we refer to the original article [16].

3.2. Extension assuming bounded scalar curvature

The main result of [16] is an extension theorem for the hypersymplectic
flow. In the following, R(φ(t)) denotes the scalar curvature of the closed
G2-structure φ(t) on M × T

3.

Theorem 14 (Theorem 1.3 of [16]). Let ω(t) be a solution to the hypersym-
plectic flow (12) defined on a time interval [0, s) with s < ∞. If |R(φ(t))|
is bounded on [0, s) then the flow extends beyond t = s to the time interval
[0, s + ε) for some ε > 0.

It is an important open question to decide if bounded scalar curvature
prevents a finite time singularity for a general G2-Laplacian flow (cf. Section
10 of [32]).

Before giving an outline of the proof of Theorem 14, we make a small
remark. A calculation due to Bryant [4] shows that for any closed G2-structure
φ, the scalar curvature is given by

(24) R(φ) = −|T|2

where T = −1
2d∗φ is the torsion of φ. In particular R(φ) � 0 and so the

two-sided bound in Theorem 14 is equivalent to a lower bound on R.
We now sketch the proof of Theorem 14. It is also interesting to compare

along the way with what is known for Ricci flow and a general G2-Laplacian
flow. Suppose that the flow becomes singular at t = s; one can zoom in on the
singularity via parabolic rescaling and analyse what happens. The first step
is to prove that one can take a limit, giving a complete Riemannian manifold
modelling the singularity formation. This can be done for any Ricci flow or any
G2-Laplacian flow with bounded scalar curvature. This is well established for
Ricci flow and similar ideas apply in the G2 setting as we explain below. The
result is a Ricci-flat complete metric with non-zero curvature and Euclidean
volume growth. What is special in the case of the hypersymplectic flow is
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that the limit is actually hyperkähler. This brings us to the second step.
Kronheimer has classified hyperkähler 4-manifolds with Euclidean volume
growth [24]. In particular they all contain a holomorphic 2-sphere (for one of
their complex structures). This can then be used to deduce a contradiction.
We now give some more details.

Step 1. Parabolic rescaling and singularity models To describe the
parabolic rescaling we begin with the Ricci flow, for which this process is well
known. Suppose (M, g(t)) is a compact Ricci flow, defined on a maximal time
interval [0, s) with s < ∞. By Hamilton’s extension theorem [20], we know
that lim supt→s ‖Rm(g(t))‖C0 → ∞. So there exists an increasing sequence
of times ti → s such that

‖Rm(g(ti))‖C0 = sup
t�ti

‖Rm(g(t))‖C0 and ‖Rm(g(ti))‖C0 → ∞

To ease the notation we set Λi := ‖Rm(g(ti))‖C0 . Now let

(25) g̃i(t) = Λig(Λ−1
i t + ti)

This is a sequence of Ricci flows defined on [−Λiti, 0], with

‖Rm(g̃i(t))‖C0 � ‖Rm(g̃(0))‖C0 = 1

Now Shi’s estimates [32] show that for any A > 0, l ∈ N there exists Cl,A

such that

(26) sup
t∈[−A,0]

‖∇l Rm(g̃i(t))‖C0 � Cl,A

So curvature of g̃i is bounded with all derivatives. To take a limit, we also
need Perelman’s famous non-collapsing theorem:

Theorem 15 (Perelman’s κ-non-collapsing, [38]. See also [22] for this par-
ticular formulation). Let g(t) be a Ricci flow on a compact n-manifold M ,
defined for t ∈ [0, s). There exists κ > 0 such that for all t ∈ [0, s), and for
all Bg(t)(x, r) with r <

√
s,

if sup
B(x,r)

R � 1
r2 then Volg(t) Bg(t)(x, r) � κrn
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With this in hand, standard convergence theorems from Riemannian ge-
ometry [20] enable us to take a pointed limit (in the sense of Cheeger–Gromov
[39]), centred at the points of maximum curvature, g̃(t) = limi→∞ g̃i(t). The
limit is again a solution to Ricci flow, defined on an open manifold N for
t ∈ (−∞, 0].

If we assume in addition that the original Ricci flow satisfies |R(g(t))| <
K, then the rescaled limit has R(g̃(t)) = 0 for all t. The evolution equation
for scalar curvature under Ricci flow reads

(27) ∂R

∂t
= −ΔR + 2|Ric |2

So a scalar-flat Ricci flow is necessarily Ricci flat, and g̃(t) = g̃ is actually
independent of t. We remark that, by choice of the rescaling factors and the
centres in the pointed limit, ‖Rm(g̃)‖C0 = 1 and so (N, g̃) is not simply flat.

The bound |R(g(t))| < K also means that Perelman’s non-collapsing
result gives information about volume of all balls below a certain radius:
there exists κ > 0 and ρ > 0 such that for any x ∈ M , t ∈ [0, s) and r � ρ,

(28) Volg(t) Bg(t)(x, r) � κrn

After rescaling, this implies that (N, g̃) has Euclidean volume growth.
Up to this stage the argument holds in all dimensions. Thanks to a the-

orem of M. Simon [40], in dimension 4 we can make one further deduction
about (N, g̃).

Theorem 16 (Simon [40]). Let g(t) be a solution to Ricci flow on a compact
4-manifold M , for t ∈ [0, s) with s < ∞. Suppose moreover that |R(g(t))| < K

for all t ∈ [0, s). Then there is a constant C such that for all t ∈ [0, s),
∫
M

|Rm(g(t))|2 dvolg(t) � C

Since the L2-norm of curvature is scale invariant, this information passes
to the limit in our parabolic rescaling and we can conclude that

∫
N
|Rm(g̃)|2 dvolg̃ � C

We can summarise this rescaling argument in the following result (which is
well known to experts in Ricci flow).
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Theorem 17 (Corollary 1.9 of [2]). Let g(t) be a solution to the Ricci flow
on a compact manifold M . Suppose that the flow exists on a maximal time
interval [0, s) with s < ∞ and, moreover, that |R(g(t))| < K for all t ∈ [0, s).
Then parabolic rescaling (25) produces a limit (N, g̃) which is complete, Ricci
flat with Euclidean volume growth, but which isn’t simply flat. If in addition M
is four-dimensional, then the limit (N, g̃) has finite energy, i.e. the L2-norm
of the curvature of g̃ is finite.

Next consider be a G2-Laplacian flow φ(t) of closed G2-structures on a
compact 7-manifold X, defined on a maximal time interval [0, s) with s < ∞.
(For the moment we work in full generality, not assuming the G2-structure is
determined by a hypersymplectic triple.) By Lotay–Wei’s extension theorem
(stated as Theorem 11 above) we know that lim supt→s Λ(φ(t)) = ∞, where

Λ(φ) = sup
X

(
|Rm(gφ(t))|2 + |∇T(φ(t))|2

)1/2

So there is a sequence ti → s for which

Λ(φ(ti)) = sup
t�ti

Λ(φ(t)) and Λ(φ(ti)) → ∞

We write Λi = Λ(φ(ti)) and make the parabolic rescaling

(29) φ̃i(t) = Λiφ(Λ−1
i t + ti)

to produce a sequence of G2-Laplacian flows defined on [−Λiti, 0], with
Λ(φ̃(t)) � Λ(φ̃(0)) = 1. (Note the associated metrics are also related by
the same parabolic rescaling (25) as before.)

In [32] Lotay–Wei also prove Shi-type estimates for the G2-Laplacian flow.
From this it follows that for any A > 0 and l ∈ N there is a constant CA,l

such that

(30) sup
X×[−A,0]

(
|∇l Rm(gφ̃i(t))|

2 + |∇l+1T(φ̃i(t))|2
)1/2

< CA,l

In particular, all derivatives of curvature are bounded. We would like to take
a limit, but now we come to an important difference between Ricci flow and
G2-Laplacian flow: there is, in general, no known analogue of Perelman’s non-
collapsing theorem. When R(φ(t)) is bounded, however, we can appeal to a
recent generalisation of Perelman’s non-collapsing theorem, proved by Chen
[8].
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Theorem 18 (Chen [8]). Let g(t) be a path of Riemannian metrics on a
compact manifold, defined for t ∈ [0, s) and suppose that for all t,

‖∂tg + 2 Ric(g(t))‖C0(g(t)) � K

Then g(t) is κ-non-collapsed relative to scalar curvature for all t ∈ [0, s), i.e.,
the conclusion of Theorem 15 holds.

Recalling the evolution equation (9) for g(t) under G2-Laplacian flow,
and the fact that R(φ(t)) = −|T|2, we see that when the scalar curvature is
bounded, the G2-Laplacian flow enjoys the same non-collapsing as the Ricci
flow:

Corollary 19 (Chen’s non-collapsing for the G2-Laplacian flow with bounded
scalar curvature [8]). Let φ(t) be a closed G2-Laplacian flow on a compact 7-
manifold defined for t ∈ [0, s) with s < ∞. Suppose that the scalar curvature
is uniformly bounded, then there exists κ > 0 and ρ > 0 such that for all
Bg(t)(x, r) with r < ρ,

Volg(t) Bg(t)(x, r) � κr7

Together with the curvature bounds from (30), this enables us to take
a limit. This time, we do not even need to take a limit of the whole flow,
merely of the closed G2-structures φ̃i(0). (In the case of Ricci flow, we needed
a limiting flow to show the limit was actually Ricci flat, in the G2-case this will
follow from a different argument.) The non-collapsing and curvature bounds
show that the associated metrics converge (in the sense of Cheeger–Gromov
[39]) to a complete scalar-flat metric g̃ on a 7-manifold Y with Euclidean
volume growth.

We now explain how to take a limit of the G2-structures themselves. By
equation (2.13) in [32], for any G2-structure φ, we have ∇φ = T ∗φ, where ∗
denotes an algebraic contraction of T⊗φ defined using the metric. It follows
that there is a constant C such that for any G2-structure, ‖φ‖Ck+1 � C‖T‖Ck

(where C depends on k, and k � 1). So, in view of (30), the forms φ̃i are
bounded in Ck+1 and so, by passing to a subsequence, we can assume they
converge to a closed G2-structure φ̃ on the limit Y (after pulling back by the
diffeomorphisms involved in the Cheeger–Gromov convergence). The metric
associated to φ̃ is simply g̃ and, since this is scalar flat, by equation (24) φ̃ is
actually torsion free.

We summarise this in the following result, which is in complete analogy
with what occurs for a Ricci flow with bounded scalar curvature.
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Theorem 20. Let φ(t) be a path of closed G2-structures on a compact 7-
manifold X solving the G2-Laplacian flow, defined on a maximal time interval
t ∈ [0, s) with s < ∞. Suppose, moreover, that the scalar curvature is bounded
for all t ∈ [0, s). Then the parabolic rescaling (29) converges to a limiting
torsion free G2-structure (Y, φ̃) on a manifold Y . The associated metric is
complete, not flat, with holonomy contained in G2 (and so, in particular, is
Ricci flat), with Euclidean volume growth.

We now turn to the case of a hypersymplectic flow. Let ω(t) be a solution
to the hypersymplectic flow, defined on a compact 4-manifold M , on a max-
imal time interval t ∈ [0, s). Suppose moreover that the 7-dimensional scalar
curvature R(φ(t)) is bounded uniformly in t. We let ti → s and Λi be as
before, for the general discussion of the G2-Laplacian flow. We then consider
the parabolic rescaling

(31) ω̃i(t) = Λi ω(Λ−1
i t + ti)

Under this rescaling, the four-dimensional metric gω̃i
(t) scales as in (25). The

G2-structures and seven-dimensional metrics, however, do not scale as in (29),
because only the 4-manifold directions are stretched whilst the T

3 directions
are unchanged.

The singularity limit we obtain is given by the following theorem.

Theorem 21 ([16]). Let ω(t) be a solution to the hypersymplectic flow, de-
fined on a compact 4-manifold M , on a maximal time interval t ∈ [0, s) with
s < ∞. Suppose moreover that the 7-dimensional scalar curvature R(φ(t)) is
bounded uniformly in t. Them the parabolic rescaling (31) converges to a lim-
iting hyperkähler 4-manifold (N, ω̃). The metric is complete, its curvature is
non-zero, with finite L2-norm, and it has Euclidean volume growth. In other
words, it is a non-trivial ALE gravitational instanton.

One approach to proving this theorem would be to prove an extension
result and Shi estimates directly for the hypersymplectic flow. Instead, the
argument in [16] leverages the known estimates for G2-Laplacian flow. This
means the discussion has to pass back and forth between the 4-manifold M
and the 7-manifold M×T

3, but there is nothing essentially new involved here
in producing the limiting Riemannian manifold. The two genuinely new ideas
needed are to show firstly that the limit has finite energy and secondly to
show that is hyperkähler.

The proof of finite energy is inspired by Simon’s proof in the case of
Ricci flow. The idea is to compute time derivatives of the integral of various
curvature quantities. Each integral produces a “good” term with the right sign



1238 Joel Fine and Chengjian Yau

and a “bad” term with the wrong sign. The next integral has a good term
which cancels the bad one from the previous integral until eventually one is
able to close the circle. Compared with Ricci flow, the evolution equations for
hypersymplectic flow are more complicated, because of the torsion terms, and
so one has to be correspondingly a little more imaginative with the choice of
quantities to integrate.

To show that the limit is hyperkähler one must prove that the rescaled
forms ω̃i pass to the limit. It turns out that to do this it suffices to prove
that Q(t) is bounded in C2 uniformly in t. This ultimately comes down to
judicious use of the evolution inequalities (21) and (22). Again, we refer the
reader to the article [16] for the details.

Step 2. Ruling out ALE gravitational instanton singularity models
We are now in a position to complete the proof of Theorem 14. We begin
with a compact hypersymplectic flow for t ∈ [0, s) with s < ∞ and for which
the 7-dimensional scalar curvature is bounded. We assume for a contradiction
that the flow does not extend to t = s. Then Theorem 21 enables us to take a
limit via parabolic rescaling to obtain an ALE gravitational instanton which,
moreover, is not simply flat. Kronhiemer has classified these [24]. We will
need a single important consequence of this classification:

Theorem 22 (Kronheimer [24]). Let (N, h) be an ALE gravitational instan-
ton, i.e., a complete hyperkähler 4-manifold with finite energy and with Eu-
clidean volume growth. If h is not flat, then there is an embedded 2-sphere
S ⊂ N which is holomorphic for one of the hyperkähler complex structures.

From here the idea for deriving a contradiction is simple. The sphere
S ⊂ N is the limit of a sequence of spheres Si ⊂ M in the compact 4-
manifold. We must have

(32)
∫
Si

ωj(ti) → 0

as i → ∞. This is because the rescaled forms ω̃j(ti) converge to the hyper-
kähler structure and so the rescaled integral has a finite limit. To see why this
should give a contradiction, suppose for a moment that the Si were all homol-
ogous. Then the above integral would be fixed and so vanish for j = 1, 2, 3.
But in the limit S is holomorphic for one of the hyperkähler structures and
so for large i, Si must be symplectic for one of the hypersymplectic struc-
tures, meaning the integral for at least one value of j must always be strictly
positive.
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To complete the argument one must show that the classes [Si] actually
take on only finitely many different values. To see this note that in the hyper-
kähler limit, [S]2 = −2 by the adjunction formula. Since a neighbourhood of
Si is diffeomorphic to a neighbourhood of S, it follows that for all i, [Si]2 = −2.
Meanwhile, by (32) the evaluation of the symplectic classes is bounded. Since
they generate b+, we see that the positive and part of [Si] is bounded. Since
[Si]2 = −2, it follows that the negative part is also bounded and so [Si] lies
in a bounded subset F ⊂ H2(M,Z), which is hence finite. We know that Si is
symplectic for, say ω1 for all large i. Now ω1 has a smallest strictly positive
value η > 0 on F ⊂ H2(M,Z) and so

∫
Si

ω1(ti) � η > 0

for all large i, which contradicts (32). This completes the proof of Theorem 14.

4. New results

4.1. Torsion free hypersymplectic structures

In this subsection we do not assume the manifold M is compact. A torsion-free
closed G2-structure determines a Riemannian metric with holonomy group
contained in G2 and so in particular the metric is Ricci flat. By contrast,
a torsion free hypersymplectic structure in dimension 4 is not necessarily
hyperkähler. To give examples, we recall a construction due to Donaldson
[11, Section 3].

Proposition 23 (Donaldson [11]). Any S1-invariant torsion-free hypersym-
plectic structure ω is (locally) determined by a convex potential function
u : P → R defined on an open subset P ⊂ R

3, and a smooth function
S : P → R

+ satisfying

det
(

∂2u

∂xi∂xj

)
= 1;

and
U ijSij = 0

via the formula

ωi = α ∧ dxi + 1
2SU

ijεjkldxk ∧ dxl , i = 1, 2, 3
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where
(
U ij

)
=

(
∂2u

∂xi∂xj

)−1
and Sij = ∂2S

∂xi∂xj . The function 1√
S

measures the
length of the S1-orbit under the associated metric gω. The metric gω is hy-
perkähler if and only

(
∂2u

∂xi∂xj

)
is constant.

In the above formula, α = dt + α1dx1 + α2dx2 + α3dx3 satisfies dα =
−1

2U
ipSpεijkdxj ∧ dxk. The associated Riemannian metric is

gω = S−1α2 + Suijdxi ⊗ dxj

= S−1dt2 + S−1αidt⊗ dxi + S−1αidxi ⊗ dt + (Suij + S−1αiαj)dxi ⊗ dxj

(33)

Corresponding to the matrix of metric in the coordinates t, x1, x2, x3, the
inverse matrix is
(
gijω

)
=

(
S + S−1αUαt −S−1αU
−S−1Uαt S−1U

)
=

(
S + S−1αiU

ijαj −S−1αkU
kj

−S−1αkU
ik S−1U ij

)

and the matrix Q is precisely U =
(
U ij

)
. There is a related interesting de-

scription of torsion-free G2-structures with torus symmetry by Madsen and
Swann [35], generalizing the Gibbons–Hawking construction of S1-invariant
hyperkähler metrics in dimension 4.
Corollary 24 (Donaldson [11]). There exists a (local) torsion free hypersym-
plectic structure ω whose associated metric gω is not hyperkähler.
Proof. Let ω be a torsion free hypersymplectic structure with S1 symmetry
determined by the data (u, S) of Proposition 23. The 3-form φ = dt123−dt1∧
ω1 − dt2 ∧ ω2 − dt3 ∧ ω3 on U × S1 × T

3 is a torsion free G2-structure, and
therefore the associated Riemannian metric gφ is Ricci-flat. According to the
formula [16, Lemma 3.5],

R = 1
4 |dQ|2Q

= 1
4Q

ij∇αQjkQ
kl∇βQlig

αβ

= 1
4uijU

jk
,αuklU

li
,β

1
S
Uαβ

= 1
4SUaiU bjU ckuabcuijk

Any solution u to det
(

∂2u
∂xi∂xj

)
= 1 which is not a quadratic polynomial gives

a metric where |dQ|2Q �= 0 and thus gω is not scalar-flat.
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As an almost explicit example, we could take u(x1, x2, x3) = r
4
3w(x1)

where r =
√
x2

2 + x2
3. Then

det (uij) = 16
27(w2w′′ − 4ww′2)

By ODE theory, an even function w defined on some interval (−δ, δ) such
that det(uij) = 1 exists. This non-quadratic function is strictly convex on the
domain (−δ, δ) × {x2 = x3 = 0}.

The condition of being torsion-free for a hypersymplectic structure ω is
equivalent to the following equations (according to [16, Lemma 3.5]):

Δ̂Q = 0(34)

Ric gω = 1
4 〈dQ⊗ dQ〉Q(35)

Therefore a torsion free hypersymplectic structure leads to a harmonic map
from a 4-manifold with non-negative Ricci curvature to a 5 dimensional sym-
metric space of non-positive curvature. In the presence of geometrical com-
pleteness of the domain and target manifolds, one should expect a Liouville
type theorem to hold, implying the map must be constant. The following
theorem shows this is indeed true.

Theorem 25. Let (M,ω1, ω2, ω3) be a hypersymplectic structure. Suppose
T = 0 and the associated metric gω is complete, then ω is hyperkähler.

We give the proof since it is elementary and the results in the literature
are not directly applicable. Note first that by (35), the Ricci curvature of gω
is non-negative. Next we recall the Bochner formula (23)

1
2Δ|dQ|2Q = |∇̂dQ|2Q + gαβ

〈
∇̂αΔ̂Q,∇βQ

〉
Q

+ Rαβ 〈∇αQ,∇βQ〉Q −KP

where KP is a term involving the sectional curvature of P:

KP = RmP(∇αQ,∇βQ,∇βQ,∇αQ)

and is non positive. From this, (34), (35) and the fact that |∇|dQ|Q| �
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|∇̂dQ|Q (Kato’s inequality) we get

1
2 |dQ|2Q Δ|dQ|2Q = |∇̂dQ|2Q|dQ|2Q + 1

4

∣∣∣〈dQ⊗ dQ〉Q
∣∣∣2 |dQ|2Q −KP |dQ|2Q

� 1
4

∣∣∣∇|dQ|2Q
∣∣∣2 + 1

4

∣∣∣∣14 |dQ|2Qgω
∣∣∣∣2

= 1
4

∣∣∣∇|dQ|2Q
∣∣∣2 + 1

16 |dQ|6Q

(36)

We now need the following lemma:
Lemma 26. Let (M, g) be a complete Riemannian 4-manifold with nonneg-
ative Ricci curvature. The only nonnegative function f solving the following
inequality is f ≡ 0.

(37) fΔf � 1
2 |∇f |2 + 1

2f
3

Results of this kind date back to Haviland, Osserman and Calabi [6].

Proof of Lemma 26. We first claim that Δf � 0 on M . To see this suppose
that at some point p, Δf < 0. The inequality (37) shows that f(p) = 0. But
this means that p is a minimum of f and so at p we must have Δf ≥ 0, a
contradiction.

Next, for any ε > 0, define hε = (f + ε) 1
2 , then hε is a strictly positive

smooth function, and

Δhε = 1
2(f + ε)−

1
2 Δf − 1

4(f + ε)−
3
2 |∇f |2

� 1
2(f + ε)−

3
2 εΔf + 1

4f
3(f + ε)−

3
2

� 1
4f

3(f + ε)−
3
2

= 1
4(h3

ε − 3hεε + 3
hε

ε2 − ε3

h3
ε

)

� 1
4h

3
ε −

3
4hεε−

1
4ε

3
2

(38)

For any a > 0, one checks that va(x) = 32a
32−a2x2 , x ∈ [0, 4

√
2

a ) is the unique
one-variable real-valued function satisfying{

v′′(x) + 3
xv

′(x) = 1
4v(x)3

v(0) = a, v′(0) = 0
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Now let p0 ∈ M be any given point, rp0(·) = d(p0, ·) be the distance function,
and define a local comparison function Va(·) = va (rp0(·)) on the metric ball
Bgω(p0,

4
√

2
a ) ⊂ M . Then on this metric ball we have

(39) ΔVa = v′′a + v′aΔrp0 � v′′a + 3
rp0

v′a = 1
4V

3
a

The function hε − Va approaches −∞ near ∂Bgω(p0,
4
√

2
a ), therefore it takes

its maximum at some point q ∈ Bgω(p0,
4
√

2
a ). By (38) and (39), at q,

0 � Δ(hε − Va)|q

� 1
4 (hε(q) − Va(q))

(
hε(q)2 + hε(q)Va(q) + Va(q)2

)
− 3

4hε(q)ε−
1
4ε

3
2

which implies that

hε(p0) − Va(p0) � hε(q) − Va(q)

� 3ε
hε(q) + Va(q)2

hε(q) + Va(q)
+ ε

3
2

hε(q)2 + hε(q)Va(q) + Va(q)2

� ε

Va(q)
+ ε

3
2

Va(q)2

� ε

a
+ ε

3
2

a2

Fixing a > 0 and let ε → 0, we get
√
f(p0) � a and then letting a → 0

we conclude that f(p0) = 0. It follows f ≡ 0 since p0 is arbitrary.

Proof of Theorem 25. Let f = 1
4 |dQ|2Q be the scalar curvature of the Rieman-

nian metric associated to a torsion free hypersymplectic structure. It follows
from (35) and (36) that gω and f satisfy the assumption of Lemma 26 and
therefore f vanishes. In other words, Q is constant and gω is hyperkähler.

Remark 27. Among the “local conditions” of being 1) hyperkähler, 2) torsion
free and 3) Ricci flat for a hypersymplectic structure, we know the implica-
tions 1) =⇒ 2), 1) =⇒ 3) hold, and the implications 2) =⇒ 1) and 2) =⇒
3) do not hold. The other implications are not clear, but we do not expect
them to hold.
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We note in passing that the comparison argument (applied to the metric
ball Bgω(p0, A) instead of metric balls of larger and larger radius) in The-
orem 26 shows the following local estimate for torsion-free hypersymplectic
structures which might be of future use.

Proposition 28. Let ω = (ω1, ω2, ω3) be a torsion free hypersymplectic struc-
ture on an open set U . If Bgω(p0, A) ⊂ U with ∂Bgω(p0, A) �= ∅, then we have

|dQ|2Q(p0) � 128
A2

4.2. Extension under weaker assumptions

Turning to the hypersymplectic flow now, our first new result is a finite time
extension for flows with an integral bound on T, strengthening Theorem 14.

Theorem 29. Let {ω(t)} be a flow of hypersymplectic structure existing on
[0, s), where s < ∞. Suppose

∫ s

0
sup

M×{t}
|T|2dt < ∞,

then the flow extends across t = s.

Proof. Let f(t) = supM×{t} TrQ, then the inequality (22) implies

d
dt log f � 5

3 sup
M×{t}

|T|2

Integrating both sides on [0, s) shows that f is bounded on M × [0, s). Simi-
larly, let h(t) = supM×{t} |dQ|2Q, then the inequality (22) leads to

d
dt log h � Cf(t)19 sup

M×{t}
|T|2

which implies h is bounded on [0, s). The bound |T|2 � 3
2 |dQ|2Q (Lemma 3.13

of [16]) implies |T|2 is uniformly bounded on [0, s). The stated result is now
a consequence of Theorem 14.

Note that the bound |T|2 = O((sm − t)−1) does not meet the hypotheses
of Theorem 29. However, there is the following interesting gap phenomenon
about this growth rate.
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Proposition 30. Let ω be a hypersymplectic flow on a compact 4-manifold
defined for t ∈ [0, sm) where sm < ∞ is maximal. Suppose moreover that
TrQ < K uniformly along the flow. Then

lim sup
t→sm

[
(sm − t) sup

X×{t}
|T|2

]
� ε0

for some constant ε0 > 0, depending only on K.

Proof. Suppose the claim in this corollary is not correct, for some choice of
ε0 which will be specified shortly. Then there exists s0 < sm such that on
[s0, sm),

|T|2(sm − t) < ε0

We have the following inequality from (22):

(∂t − Δ)
(
(sm − t)|dQ|2Q

)
= −|dQ|2Q + (sm − t)(∂t − Δ)|dQ|2Q
� −|dQ|2Q

+ (sm − t)
(
− 1

16 |dQ|4Q + C (TrQ)19 |T|2|dQ|2Q
)

�
(
−1 + CK19|T|2(sm − t)

)
|dQ|2Q

�
(
−1 + CK19ε0

)
|dQ|2Q

Now taking ε0 = 1
2CK19 we have that

(∂t − Δ)
(
(sm − t)|dQ|2Q

)
� −1

2 |dQ|2Q

Let h(t) = supX×{t}(sm − t)|dQ|2Q, then the above inequality implies

h′(t) � − 1
2(sm − t)h(t)

This implies

|dQ|2Q(t) � |dQ|2Q(s0)
(sm − s0)

1
2

(sm − t) 1
2

From here, Theorem 29 implies the flow extends across sm, contradicting the
maximality of sm.
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Remark 31. It is interesting to compare Theorem 29 and Proposition 30
with what is known for the Ricci flow, where analogous results have been
proved with respect to Ricci curvature instead of scalar curvature, by Wang
[42, 43].

There are also similarities with results in mean curvature flow. The article
[30] shows extension of the mean curvature flow of a surface in R

3 provided
the mean curvature remains bounded. Meanwhile, [31] shows an inequality in
this setting which is analogous to Proposition 30, with the mean curvature
there again playing the role of the torsion here.

This suggests that it might be worth comparing closely mean curvature
flow and G2-Laplacian flow, with the roles of mean curvature and torsion
being analogous. On this subject, it is worth pointing out that a concrete link
between spacelike mean curvature flow and the G2-Laplacian flow is explored
in [29]. In the setting studied there, torsion and mean curvature can be directly
identified (remark 1.9 of [29]).

4.3. Long-time existence given an initial C0-bound

The goal of this section is to prove the following result:
Theorem 32. There exists ε0 > 0 such that if the initial hypersymplectic
structure ω(0) satisfies

TrQ(0) < 3 + ε0

then the hypersymplectic flow ω(t) starting at ω(0) exists for all time. More-
over, TrQ(t) < 3 + ε0 and |dQ|2Q(t) < C for all t.

Note that, since detQ = 1, we have TrQ � 3 for any hypersymplectic
structure, with equality if and only if Q is the identity matrix. The hypothesis
of Theorem 32 says that the initial symplectic forms ωi(0) are C0-close to
being point-wise orthogonal.

The first step in the proof of Theorem 32 is to show that the bound on
TrQ is preserved along the flow.
Lemma 33. Let ω(t) be a hypersymplectic flow on a compact 4-manifold. If
TrQ(0) < 25/3 then TrQ(t) < 25/3 at all later times.
Proof. Diagonalising Q = (λ1, λ2, λ3) gives

(∂t − Δ) TrQ = −
3∑

i,j=1
λ−1
j |dQij |2 +

3∑
i=1

|τi|2 −
1
3

3∑
i=1

λ−1
i |τi|2 TrQ

�
3∑

i=1
(2
3 − TrQ

3λi
)|τi|2

(40)
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When Q = I, the coefficients on the right-hand side are strictly negative.
This means that there is a neighbourhood of I for which the right-hand side
remains negative and for which we can apply the maximum principle. We now
measure this neighbourhood in terms of TrQ. To get an explicit expression
for its size, we make the following observation: for any A ∈ [3, 25/3) and
x, y, z > 0 satisfying x + y + z = A, xyz = 1, we have

x + y > z

y + z > x

z + x > y

The argument for this is as follows: assume (without loss of generality) that
x � y � z, then it suffices to show the inequality

(41) x + y − (A− (x + y)) > 0

under the assumption that x + y + x−1y−1 = A. Fix x, then smaller y gives
bigger z, and thus smaller x + y − z. Thus, it suffices to consider the case
y = x. This critical value x0 must solve

(42) 2x0 + x−2
0 = A

(where x0 is the root of this equation on (0, 1)). Meanwhile, the critical
value of A occurs when (41) is saturated, i.e., when x0 = A/4. Substitut-
ing into (42), we see that the critical value of A is A = 25/3. It is simple to
check that for any A < 25/3 the solution x0 of (42) satisfies x0 > A

4 and so
for any A < 2 5

3 (41) holds.
Now let Q ∈ P with detQ = 1 and TrQ < 25/3. By the previous para-

graph, the three eigenvalues λ1, λ2, λ3 of Q satisfy 2λi − TrQ < 0 which
makes the right-hand side of the evolution equation for TrQ non-positive.
The maximum principle implies that TrQ is non-increasing, and so the bound
TrQ < 25/3 holds for all time.

Given ε > 0 we define δ(ε) > 0 to be the infimum of all δ > 0 such that
TrQ < 3 + ε implies min{λ1, λ2, λ3} � 1 − δ and max{λ1, λ2, λ3} � 1 + δ.

Lemma 34. Suppose that TrQ(t) < 3 + ε. Then for any choice of η ∈ [0, 1],
we have

(∂t − Δ) TrQ � −η(1 − δ(ε))|dQ|2Q − 1
3
(
TrQ− (2 + η)(1 + δ(ε))

)
|T|2
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Proof. Consider the first term in the heat inequality (40) for TrQ. In the
proof of Lemma 3.13 of [16], the following inequality is established for this
term: ∑

i,j

λ−1
j |dQij |2 � 1

3
∑

|τi|2

With this in hand we have
∑
i,j

λ−1
j |dQij |2 � η(1 − δ(ε))

∑
i,j

λ−1
i λ−1

j |dQij |2 + 1
3(1 − η)

∑
i

|τi|2

We now have

(∂t − Δ) TrQ = −
∑
i,j

λ−1
j |dQij |2 +

∑
i

|τi|2 −
1
3 TrQ

∑
i

λ−1
i |τi|2

� −η(1 − δ(ε))|dQ|2Q +
∑
i

{(
1 − 1 − η

3 − TrQ
3λi

)
|τi|2

}

Now we recall that

|T|2 =
∑
i

λ−1
i |τi|2 � (1 + δ(ε))−1 ∑ |τi|2

From here the stated inequality follows.

Proposition 35. There exists ε0 > 0 such that if the initial hypersymplectic
structure ω(0) has

(43) TrQ + |dQ|2Q � 3 + ε0

then the hypersymplectic flow starting at ω(0) exists for all time.

Proof. Suppose that the flow exists for t ∈ [0, s). We will show that the bound
(43) holds for all t ∈ [0, s). From this it will follow that |dQ|2Q � ε0 along the
flow and so, since |T|2 � 3

2 |dQ|2Q, it follows that |T|2 is bounded along the
flow and so, by Theorem 14, the flow extends past t = s.

To prove that (43) holds for all t ∈ [0, s), let

I =
{
u ∈ [0, s) : sup

M×[0,u]

(
TrQ + |dQ|2Q

)
� 3 + ε0

}

By continuity, I is a closed subset of [0, s). We will show that, for ε0 > 0
sufficiently small, it is also open and hence I = [0, s) as claimed.
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Let u ∈ I, so that (43) holds on [0, u]. By continuity, there exists δ > 0,
such that for all t ∈ [0, u + δ),

TrQ + |dQ|2Q < 3 + 2ε0

Now take η = 1/2 and ε = 2ε0 in the previous Lemma and choose ε0 > 0
small enough that δ(ε) � 1/10. For t ∈ [0, u + δ), we have

(∂t − Δ) TrQ � − 9
20 |dQ|2Q − 1

12 |T|2

Combining this with the heat-inequality (22) for |dQ|2Q we see that for all
t ∈ [0, u + δ),

(44) (∂t − Δ)
(
TrQ + |dQ|2Q

)
�

(
C(TrQ)19|dQ|2Q − 1

12

)
|T|2 − 9

20 |dQ|2Q

Now we take ε0 > 0 small enough to also ensure that C4192ε0 < 1
12 . With

this choice of ε0, we see that for all t ∈ [0, u+ δ) the right-hand side of (44) is
non-positive. It follows that the supremum of TrQ+ |dQ|2Q is non-increasing
on [0, u + δ) and so (43), which a priori holds on [0, u], actually holds on all
of [0, u + δ). This shows that I is open and hence I = [0, s).

Proof of Theorem 32. Let ω0 be an initial hypersymplectic structure with
TrQ < 3+ ε0 where ε0 is that appearing in the hypotheses of Proposition 35.
Let K > 0 be a large constant and consider the rescaled hypersymplectic
structure ω′

0 = K2ω0. This leaves Q untouched, but rescales |dQ|2Q by K−2.
So if K is chosen large enough, the new starting hypersymplectic structure
ω′

0 satisfies
TrQ + |dQ|2Q < 3 + ε0

So the hypersymplectic flow ω′(t) starting at ω′
0 exists for all time. Then

ω(t) = K−2ω′(t) is the sought-after global solution to hypersymplectic flow
starting at ω0.

4.4. Convergence at infinity under assumptions

The main goal of this subsection is to study the following natural question:

Question 36. Suppose we have a compact global solution of hypersymplectic
flow ω(t) for t ∈ [0,∞) on a compact 4-manifold M . Assume that

1. supM×[0,∞) TrQ < ∞
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2. supM×[0,∞) |T|2 < ∞

Do we get convergence as t → ∞?

Examples of such flows are given by Theorem 32 of the previous section.
We give two partial answers to this question. The first is:

Theorem 37 (Convergence with Λ and Q bounded). Let (M4, ω(t)) be a
compact global solution of the hypersymplectic flow 12. Assume that

1. supM×[0,∞) TrQ < ∞
2. sup[0,∞) Λ(φ(t)) < ∞
3. χ(M) �= 0.

Then for any ti → ∞, there exists a subsequence tik such that

(M, gω(tik ), ω(tik))
C∞
−−→ (M, gω∞

, ω∞) as k → ∞

for some hyperkähler structure (M, gω∞
, ω∞) on M4.

And the second partial answer is

Theorem 38 (Convergence with Ricci lower bound and diameter upper
bound). Let (M4, ω(t)) be a compact global solution of the hypersymplectic
flow 12. Assume that

1. Ric gω(t) � −C
2. sup[0,∞) diam(M, gω(t)) < ∞
3. supM×[0,∞) TrQ < ∞
4. supM×[0,∞) |T|2 < ∞

Then for any ti → ∞, there exists a subsequence tik such that

(M, gω(tik ), ω(tik))
C∞
−−→ (M, gω∞

, ω∞) as k → ∞

for some hyperkähler structure (M, gω∞
, ω∞) on M4.

A priori bounds In order to obtain these convergence theorems, we first
derive two useful a priori estimates.

Lemma 39. Assume supM×[0,∞) TrQ = K < ∞ and supM×[0,∞) |T|2 = β
2 <

∞, then there is an explicit upper bound:

sup
M×[0,∞)

|dQ|2Q � max{sup
M

|dQ|2Q(0), 20CK19β}
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Proof. By (22) (proved in [16, Proposition 4.5]), there exists a constant C

such that

(∂t − Δ)|dQ|2Q ≤ −|∇̂dQ|2Q − 1
16 |dQ|4Q + C(TrQ)19|T|2|dQ|2Q

Let f(t) = supM |dQ|2Q(·, t), then we have

(45) f ′ � − 1
16f

2 + C

2 K19βf � − 1
16(f − 4CK19β)2 + C2K38β2

Now, the maximum principle applied to (45) shows that

(46) sup
[0,∞)

f � max{f(0), 8CK19β}

Indeed if we suppose that sup[0,∞) f > max{f(0), 8CK19β}, then there exists
a ∈ (0,∞) such that f(a) > max{f(0), 8CK19β}. Thus f ′(a) < 0 by the
inequality. Therefore, at the maximal point b of f on (0, a),

0 = f ′(b) � − 1
16(f(b) − 4CK19β)2 + C2K19β2 < 0

which gives the contradiction.

Lemma 40 (Energy bound). Assume supM×[0,∞) TrQ = K < ∞ and
supM×[0,∞) |T|2 = β

2 < ∞, then

sup
[0,∞)

∫
M

|Rm |2 � C
(
β,K, |dQ0|2Q0 , ||Rm(g0)||L2

)

and for any α > 0,

∫ α+1

α

∫
M4

(
|Ric |4 + |Δ̂Q|4Q + |∇Ric |2 + |∇Δ̂Q|2Q + |∇̂dQ|2Q+

|Ric |2|∇̂dQ|2Q + |Δ̂Q|2Q|∇̂dQ|2Q
)
< G

for some constant G = G(β,K, |dQ0|Q0 , ||Rm(g0)||L2).

Proof. We begin by recalling inequality [16, Equation (29)] which says that
if the flow exists on finite time interval [0, Tm) and |T|2 � β

2 on this interval,
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then

(47)

d

dt

∫
Z(A1, A2, A3) �

∫
− 1
β2

(
|Ric |4+

|Ric |2|∇̂dQ|2Q + |∇Ric |2 + |∇̂dQ|2Q
)

+ F
(
Z(A1, A2, A3) + I + 1

)

for some constant F = F (|dQ0|Q0 ,TrQ0, β, Tm). Here

Z(A1, A2, A3) = |Ric |2
R +β

+ A1|Ric |2|dQ|2Q + A2|Ric |2 + A3|dQ|2Q

for some positive constants A1, A2, A3 depending only on K, β, |dQ0|Q0 .
The only essential difference between the global solution and the finite

time situation in [16] is that we do not have an a priori bound of TrQ in terms
of β and Tm. However, we know |dQ|2Q is uniformly bounded in terms of β,K
and |dQ0|2Q0

according to Lemma 39, which suffices to give the inequality
above.

Using Cauchy–Schwarz inequality, we get

d

dt

∫
Z(A1, A2, A3) � − 1

β2Vol(gω(t))

(∫
|Ric |2

)2

− 1
β2

∫ (
|Ric |2|∇̂dQ|2Q + |∇Ric |2 + |∇̂dQ|2Q

)

+ F

∫
Z(A1, A2, A3) + F (χ + Vol(gω(t)))

� − 1
AVol(gω(t))

(∫
Z(A1, A2, A3)

)2

− 1
β2

∫ (
|Ric |2|∇̂dQ|2Q + |∇Ric |2 + |∇̂dQ|2Q

)

+ F

∫
Z(A1, A2, A3) + F (χ + Vol(gω(t)))

(48)

Recall from (11) the absolute volume upper bound sup[0,∞) Vol(gω(t)) �
V0. Denote

f =
∫

Z(A1, A2, A3)
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then by (48) we have on [0,∞),

f ′ � − 1
AV0

f2 + Ff + F (χ + V0)

An easy maximum principle argument, similar to that used in Lemma 39,
shows the following explicit uniform bound:

(49) sup
[0,∞)

f � max
{
f(0), 1

2FAV0 +
√

1
4F

2A2V 2
0 + FAV0(χ + V0)

}

In particular, the 7-dimensional Ricci curvature Ric is bounded in L2. By
Lemma 3.5 of [16] (and using the fact that |dQ|2Q is uniformly bounded) this
gives an L2-bound on the 4-dimensional Ricci curvature. Now, by Chern–
Gauss–Bonnet, this translates into an L2-bound on the whole curvature.

Meanwhile, plugging the bound on f back into inequality (47) and inte-
grating on [α, α + 1], we get
(50)∫ α+1

α

∫
|Ric |4+|Ric |2|∇̂dQ|2Q+|∇Ric |2+|∇̂dQ|2Q < G = G(β,K, |dQ0|2Q0)

Corollary 41. Under the assumption of Lemma 39, there is a sequence ti →
∞ such that (M,ω(ti), gω(ti)) has uniform bounds on the following quantities:

||R||L∞ , ||Rm ||L2 , ||Ric ||L4 , Vol

Proof of the convergence theorems

Lemma 42. For a global solution of the hypersymplectic flow, if

sup
[0,∞)

∫
M

|T|2pμω(t) < ∞

for some p � 2, then ∫
M

|T|2q → 0, ∀q ∈ [1, p)

In particular, if supM×[0,∞) |T|2 < ∞, then
∫
M

|T|2q → 0, ∀q ∈ [1,∞)
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Proof. We recall the evolution equations for |T|2 and μ (derived in [32]):

∂tμ = 2
3 |T|2μ(51)

∂t|T|2 = Δ|T|2 + 4∇b∇a(T c
a Tcb) − 2|Ric|2 + 2

3 |T|4 − 4RabT c
a Tcb(52)

To ease notation, let f(t) =
∫
M |T|2μω(t). The evolution equation for the

volume form gives

(53) f ′(t) =
∫
M

(∂t − Δ)|T|2 + 2
3 |T|4

Now applying (52), and completing the square on the terms involving Ric,
it follows that the uniform upper bound of

∫
M |T|4 implies a uniform upper

bound

f ′(t) � C

(Note the term in (52) involving derivatives of T is a divergence and so
vanishes upon integration.) Meanwhile,

∫ T

0
f(t) dt = Vol(T ) − Vol(0)

and since the Vol(T ) � Vmax is uniformly bounded (11) it follows that f ∈
L1[0,∞). Now since f(t) � 0 and has bounded derivative, it follows that
f(t) → 0 as t → ∞. The stated results are then a consequence of Hölder’s
inequality.

Proof of Theorem 37. By the Shi-type estimates of [32], the condition that Λ
is uniformly bounded on [0,∞) actually implies the uniform bound for

(54) sup
M×[0,∞)

(|∇k Rm |2 + |∇k+1T|2) 1
2 � Ck

for all k.
Lemma 42 implies in this situation

∫
M |T|2μω(t) → 0 as t → ∞.

We now invoke the topological assumption χ(M) �= 0. We claim that it
means we can find pt ∈ M for all t ∈ [0,∞) such that

(55) inj(M, gω(t), pt) � ε0
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for some positive constant ε0 depending only on C, the global upper bound
of the Riemannian curvature. If not, Cheeger–Gromov’s Decomposition The-
orem [7, Theorem 0.1] assures the existence of an F -structure of positive rank
on M , which is in contradiction with χ(M) �= 0.

Next, we claim that

(56) sup
[0,∞)

diam(M, gω(t)) < ∞

To see this we argue by contradiction. If there exists a sequence ti → ∞ with
diam(M, gω(ti)) → ∞, then the condition (55) implies

(M, gω(ti), ω(ti), pi)
C∞ Cheeger–Gromov−−−−−−−−−−−−−→ (M∞, gω∞

, ω∞, p∞)

(This follows similar reasoning as in Section 3.2 with (55) replacing Chen’s
non-collapsing Theorem.)

The convergence is in the following sense. There is an exhaustion of M∞ =
∪mΩm and a sequence of diffeomorphisms Fm : Ωm → M such that

F ∗
m(gω(ti), ω(ti))

Cl

−→ (gω∞
, ω∞)

on any relatively compact subest Ω ⊂⊂ M∞ and for any l ∈ N.
The limit hypersymplectic structure is complete and satisfies

• diam(M∞, gω∞
) = ∞;

• Vol(M∞, gω∞
) � limi→∞

∫
M μω(ti) < ∞;

•
∫
M∞

|T∞|2μω∞
� limi→∞

∫
M |T(φ(ti))|2μω(ti) = 0.

This implies the closed G2-structure φ∞ associated with the limit hyper-
symplectic structure ω∞ is torsion free and so, in particular, is Ricci-flat. Since
gω∞

on M∞ is complete, the metric on M∞×T
3 of the form gφ∞ = gω∞

⊕Q∞
is also complete. Moreover, (M∞ × T

3, gφ∞) has finite volume. This is a con-
tradiction since a non-compact complete Ricci-flat 7-manifold has infinite
volume by Calabi and Yau’s volume growth lower bound. (We note in pass-
ing that this contradiction could also be derived directly on the 4-manifold via
Theorem 25 stating that torsion free hypersymplectic structure on 4-manifold
whose metric is complete must be Ricci-flat.)

Thus under the assumption of the bound of Λ, the diameter is uniformly
bounded from above and (M, gω(t), ω(t)) is uniformly noncollapsing by the
Bishop–Gromov Comparison theorem.
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Take any sequence ti → ∞, the compactness results outlined in Section 3.2
imply that there is a subsequence tik , a hyperkähler structure (M,ω∞) and a
sequence of diffeomorphisms Fk : M → M such that

F ∗
k (ω(tik))

C∞
−−→ ω∞, as k → ∞

Proof of Theorem 38. If diam(M, gω(t)) is bounded above by D and Ricci cur-
vature is uniformly bounded from below, then Bishop–Gromov Comparison
Theorem implies non-collapsing, i.e.

(57) Volgω(t)

(
Bgω(t)(p, r)

)
� κr4, ∀r ∈ [0, D], p ∈ M, t ∈ [0,∞)

for some κ depending only on D,C. We will show that Λ is uniformly bounded
for the family on [0,∞). If it were not, we could pick ti to be such that Λ
achieves the maximum on [0, ti] at some point pi on the time ti-slice. Then
a parabolic rescaling of the flow based at (pi, ti) by a factor Λ(pi, ti) will
lead to a Cheeger–Gromov limit flow of hypersymplectic structures which
is Ricci flat and thus static (here we need the global bound of |T|2 and
TrQ to ensure the convergence on the 4-manifold). Lotay–Wei showed the
uniform bounds of (|∇k Rm |2 + |∇k+1T|2) 1

2 on (−∞, 0] for all k for the
rescaled sequence of flows, we thus have a smooth convergence of t = 0. The
limit is now hyperkähler with Euclidean volume growth (by the noncollapsing
condition 57) and ||Rm ||L2 finite by Lemma 40, and thus must be an ALE
gravitational instanton classified by Kronheimer. We get a contradiction just
as in Section 3.2 and the proof of the extension result in [16, Section 6].

From here, the result follows from the previous convergence theorem.
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