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Luis ALVAREZ-CONSUL*,
MARIO GARCIA-FERNANDEZ*, AND OSCAR GARCIA-PRADA*

To Simon Donaldson on his 60th birthday

Abstract: In this paper we introduce a set of equations on a prin-
cipal bundle over a compact complex manifold coupling a connec-
tion on the principal bundle, a section of an associated bundle with
Kahler fibre, and a Kéahler structure on the base. These equations
are a generalization of the K&hler—Yang—Mills equations introduced
by the authors. They also generalize the constant scalar curvature
for a Kahler metric studied by Donaldson and others, as well as
the Yang—Mills—Higgs equations studied by Mundet i Riera. We
provide a moment map interpretation of the equations, construct
some first examples, and study obstructions to the existence of
solutions.

1. Introduction

In the 1990s, Donaldson and Fujiki observed independently that moment
maps play a central role in Kéhler geometry [11, 15]. Since then, they have
been fruitfully applied in the problem of finding constant scalar curvature
Kéhler metrics, acting as a guiding principle for many advances in this topic
such as the recent solution of the Kéhler-Einstein problem [10]. As noticed
in [1], the moment map picture for Kahler metrics extends to the study of
equations coupling a Kéahler metric on a compact complex manifold and a
connection on a principal bundle over it, known as the Kéahler—Yang—Mills
equations. Alike the constant scalar curvature Kéahler metrics can be used
to understand the moduli space of polarised manifolds, these equations are
natural in the study of the algebro-geometric moduli problem for bundles and
varieties, suggested in [36].
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Motivated by the search of the simplest non-trivial solutions of the
Kéhler—Yang—Mills equations, the authors studied [2] the dimensional reduc-
tion of the equations on the product of a Riemann surface with the complex
projective line. This approach to the Kéhler—Yang-Mills equations provided
a new theory for abelian vortices on the Riemann surface [7, 28, 18, 19] with
back-reaction of the metric, described by solutions of the ‘gravitating vortex
equations’, and showed an unexpected relation with the physics of cosmic
strings [2, 3]. The further coupling of a Kéhler metric and a connection with
a ‘Higgs field’ considered in these works also reveils newly emergent phenom-
ena, not observed in the theory originally introduced in [1].

Building on [1, 2, 3], this paper develops some basic pieces of a general
moment-map theory for the coupling of a Kéhler metric on a compact complex
manifold X, a connection on a principal bundle £ over X, and a Higgs field
¢, given by a section of a Kéhler fibration associated to E. Our treatment of
the Higgs field ¢ is inspired by, on the one hand, work on the Yang—Mills—
Higgs equations by Mundet i Riera [27], and, other hand, Donaldson’s study
of actions of diffeomorphism groups on spaces of sections of a bundle [14] (see
Section 2). As we will see, the Kdhler—Yang-Mills—Higgs equations introduced
in this paper lead to a very rich theory (see Section 3), which comprises a
large class of interesting examples of moment-map equations (see Sections 4
and 5). In addition, we expect that these equations may provide a natural
framework for the interaction of Kéhler geometry and a certain class of unified
field theories in physics [34] (see Section 5.2).

2. Hamiltonian actions of the extended gauge group
2.1. The space of connections

Details for this section can be found in [1].

Let X be a compact symplectic manifold of dimension 2n, with symplectic
form w. Let G be a compact Lie group with Lie algebra g and E be a smooth
principal G-bundle on X, with projection map n: E — X. Let H be the
group of Hamiltonian symplectomorphisms of (X, w) and Aut F be the group
of automorphisms of the bundle E. Recall that an automorphism of E is a
G-equivariant diffeomorphism ¢g: £ — E. Any such automorphism covers a
unique diffeomorphism ¢: X — X i.e. a unique § such that rog = gomw. We
define the Hamiltonian extended gauge group (to which we will simply refer
as extended gauge group) of E,

QVC Aut F,
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as the group of automorphisms which cover elements of H. Then the gauge
group of E is the normal subgroup G C G of automorphisms covering the
identity.

The map G5 H assigning to each automorphism g the Hamiltonian
symplectomorphism ¢ that it covers is surjective. We thus have an exact
sequence of Lie groups

(1) 15656 -5 H1,

where ¢ is the inclusion map.

The spaces of smooth k-forms on X and smooth k-forms with values in
any given vector bundle F' on X are denoted by QF and QF(F), respectively.
Fix a positive definite inner product on g, invariant under the adjoint action,
denoted

(2) ()gg— R

This product induces a metric on the adjoint bundle ad £ = E X g, which
extends to a bilinear map on (ad E)-valued differential forms (we use the same
notation as in [6, §3])

(3) QP(ad ) x Qi(ad E) — QP92 (ap, aq) — ap A aq.
We consider the operator
(4) A=A, QF — QF 2 ¢ — Wy,

where £ is the operator acting on k-forms induced by the symplectic duality
f: T*X — TX and J denotes the contraction operator. Its linear extension
to Q%(ad E) is also denoted A : Q¥(ad E) — Q*2(ad E) (we use the same
notation as, e.g., in [12]).

Let A be the set of connections on E. This is an affine space modelled on
Q!(ad E). The 2-form on A defined by

n—1

5 ,b) = / ADA
o) walod) = [Lanvn
for a,b € TAA = QY (ad E), A € A, is a symplectic form.

There is an action of Aut £/, and hence of the extended gauge group, on
the space A of connections on E. To define this action, we view the elements
of A as G-equivariant splittings A: TE — V E of the short exact sequence

(6) 0—->VE —TE —1'TX — 0,
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where V E = ker dr is the vertical bundle. Using the action of g € Aut £ on
TE, its action on A is given by g - A := go Ao g~!. Any such splitting A
induces a vector space splitting of the Atiyah short exact sequence

(7) 0 — LieG — Lie(Aut E) - Lie(Diff X) — 0

(cf. [6, equation (3.4)]), where Lie(Diff X) is the Lie algebra of vector fields
on X and Lie(Aut E) is the Lie algebra of G-invariant vector fields on E.
Abusing of the notation, this splitting is given by maps

(8) A: Lie(Aut E) — LieG, A™*: Lie(Diff X) — Lie(Aut E)

such that 1 o A + AL op = Id, where A is the vertical projection and A+
the horizontal lift of vector fields on X to vector fields on E, given by the
connection.

It is easy to see that the G-action on A is symplectic. An equivariant
moment map for this action was calculated in [1]. To give an explicit formula,
we use that the splitting (8) restricts to a splitting of the exact sequence

(9) 0 — LieG - LieG -2 LieH — 0
induced by (1). Consider the isomorphism of Lie algebras
(10) LieH = C5°(X),

where Lie H is the Lie algebra of Hamiltonian vector fields on X and C§°(X)
is the Lie algebra of smooth real functions on X with zero integral over X
with respect to w”, with the Poisson bracket. This isomorphism is induced
by the map C*°(X) — LieH: f — 7, which to each function f assigns its
Hamiltonian vector field 7y, defined by

(11) df =Tfaw.

Let Fy € Q%*(ad E) be the curvature of A € A and z be an element of the
space

(12) =g

of elements of g which are invariant under the adjoint G-action, that we
identify with sections of ad E. We have the following.
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Proposition 2.1. The QNN—actz'on on A is Hamiltonian, with equivariant mo-
ment map pg: A — (LieG)* given by
wn
(4.0 = [ A (AFx =22
1
4 Jx

(13) on
al

f (A2(Fa A Fa) = 4AF4 A z)

for all ¢ € LieG, A € A, where f € C§(X) corresponds to p(¢) via (9) and
(10).

2.2. Sections of a Kahler fibration

Let (F, J, @) be a (possibly non-compact) Kéhler manifold, with complex
structure J and Kéhler form &. Following the notation of the previous sec-
tion, we assume that G acts on F' by Hamiltonian isometries, and fix a G-
equivariant moment map

f: F— g
Consider the associated fibre bundle F = E X F with fibre F'. We will denote
by VF C TF the vertical bundle of the fibration.
Let S := Q(X,F) the space of C* global sections of the fibre bundle
F. Using the Kahler structure on the fibres of F, we endow the infinite-
dimensional space § with a Kéhler structure. Given ¢ € S, the symplectic
form is given explicitly by

w”
n!

ws(¢1,¢2)=/ & (1, o)

where ¢; € TyS are identified with elements in Q°(¢*V F).

An equivariant moment map for the action of the gauge group G of E on
(S,ws) was calculated in [27]. Here we are interested in a generalization of
this result, where the gauge group is extended by the group of hamiltonian
symplectomorphisms H of (X, w). The action of the extended group G on E
induces an action on S. This can be seen, for example, by regarding a section
of F as a G-equivariant map ¢: E' — F. Furthermore, it is easy to see that
G-action on S preserves the Kéahler structure.

To compute the moment map, let us assume for a moment that the sym-
plectic form @ is exact (this is, e.g., the situation considered in [3]), that is,
there exists 6 € Q'(F) such that
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By averaging over G, we can assume that & is invariant under the action of
G, and it follows that ws = dog, with

Lowh

7s(6) = [ 56)%.

Then, a G-equivariant moment map pg: S — (Lie é)* is given by

(14) (15:0) = —os(0) = [ sldolo) .

where Y; denotes the infinitesimal action

Yei = —do(Q)

of ( € LieG on ¢ € S, where ¢ is regarded as a map ¢: £ — F and we use
the identification F xg TF = ¢*V F.

We want to obtain an equivalent formula for the moment map (14) which
is independent of the choice of 1-form &. For this, choosing a connection
A:TE — VE on E, we can write

d(¢) = dp(AC) + dp(AQ) = (odag — AC - ¢,

where ¢ := p(¢), AC- ¢ denotes the infinitesimal action of A¢ € Q°(V E) along
the image of ¢ and da¢ = dp(A*-) € Q' (¢*V F) is the covariant derivative
induced by A. Using that ¢ induces a moment map for the G-action on F
(that we can assume to be 1) it follows that

0(AC-¢) = —(¢"1, AQ)
where ¢*i € Q°(E xg g*). We use now that ¢ € H, that is, (aw = df for a
smooth function f € C§°(X):

wn—l

[ #Caaso)y = [ otaso) nar n

wnfl

(n—1)I"

= [ sd(@(dao) A
X
Finally, our desired formula follows from

d(6(da¢)) = %@(quﬁ, dag) +6(Fa-¢) = %@(quﬁ, dad) — (9" fi, Fa).

The next result is independent of the existence of the 1-form & on F.
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Proposition 2.2. The G-action on S is Hamiltonian, with equivariant mo-
ment map

pg: S — (Lie G)*.

For any choice of unitary connection A on E, the moment map is given
explicitly by

W10 = [ (07,405
(15) W
2/ b(dad, dad) = 246" Fa)) A gy,

for all ¢ € S and ¢ € LieG covem’ngg € H, such that df = 5_1&) with
feCse(X).
Proof. The variation of (¢*f1, AC) with respect to ¢ is

(di(9), AC) = &(dp(AQ), 9).

In addition, we have

n

~0(dad((). )"~ = ~0(dad.d) A df A"
= d(fo(dad, 6) A" = Jd(@(dad, 6)) Aw

while the variation of &(da¢,dad) — 2(¢*f1, Fa) in the second integral is

&(dad, dad) + &(dad, dad) — 20(dp(Fa), ¢) = —2d(@(dag, ).

Formula (15) follows now integrating by parts. O
2.3. The Hermitian scalar curvature as a moment map

Via its projection into the group of Hamiltonian symplectomorphisms H (see
(1)), the extended gauge group acts on the space J of compatible almost
complex structures on the symplectic manifold (X, w). As proved by Donald-
son [11], the H-action on J is Hamiltonian, with moment map given by the
Hermitian scalar curvature of the almost Kéahler manifold. The moment map
interpretation of the scalar curvature was first given by Quillen in the case
of Riemann surfaces and Fujiki [15] for the Riemannian scalar curvature of
Kéhler manifolds, and generalized independently in [11].
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First we recall the notion of Hermitian scalar curvature of an almost
Kéhler manifold, we follow closely Donaldson’s approach. Fix a compact
symplectic manifold X of dimension 2n, with symplectic form w. An almost
complex structure J on X is called compatible with w if the bilinear form
gs(-,+) == w(-, J-) is a Riemannian metric on X. Any almost complex struc-
ture J on X which is compatible with w defines a Hermitian metric on T*X
and there is a unique unitary connection on 7*X whose (0,1) component is
the operator J;: Qllj’o — Q},’l induced by J. The real 2-form p; is defined
as —i times the curvature of the induced connection on the canonical line
bundle Kx = ART*X, where i is the imaginary unit v/—1. The Hermitian
scalar curvature S is the real function on X defined by

(16) Syw™ = 2npy Aw™h

The normalization is chosen so that S; coincides with the Riemannian scalar
curvature when J is integrable. The space J of almost complex structures J
on X which are compatible with w is an infinite-dimensional Kéhler manifold,
with complex structure J: T;J — T7J and Kéhler form wy given by

1
(17) J® = Jd and wy (U, d) = —/ tr(JUD),
2n! Jx

for &, U € T;7, respectively. Here we identify 777 with the space of en-
domorphisms ®: TX — TX such that ® is symmetric with respect to the
induced metric w(-, J-) and satisfies ®.J = —J .

The group H of Hamiltonian symplectomorphisms h: X — X acts on J
by push-forward, i.e. h-.J := h, o J o h]!, preserving the Kéihler form. As
proved by Donaldson [11, Proposition 9], the H-action on J is Hamiltonian
with equivariant moment map py: J — (Lie H)* given by

n

(19) Gl Dg) = = [ 18555,

for f € C§°(X), identified with an element 7y in Lie H by (10) and (11).

As a warm up for our discussion in Section 3, we note that the H-invariant
subspace J! C J of integrable almost complex structures is a complex sub-
manifold (away from its singularities), and therefore inherits a Kéhler struc-
ture. Over J i, the Hermitian scalar curvature S; is the Riemannian scalar
curvature of the Kéhler metric determined by J and w. Hence the quotient

(19) pa (0)/H,
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where i3, is now the restriction of the moment map to J¢, is the moduli space
of Kéhler metrics with fixed Ké&hler form w and constant scalar curvature.
Away from singularities, this moduli space can thus be constructed as a Kéhler
reduction (see [15] and references therein for details).

3. The Kahler—Yang—Mills—Higgs equations
3.1. The equations as a moment map condition

Fix a compact symplectic manifold X of dimension 2n with symplectic form
w, a compact Lie group G and a smooth principal G-bundle £ on X. We fix
an Ad-invariant inner product (-,-): g®g — R on the Lie algebra g of G. Let
J be the space of almost complex structures on X compatible with w and A
the space of connections on E. Consider the space of triples

(20) J xAXS,
endowed with the symplectic structure
(21) wg + 4ow g + 4Pws

(for a choice of non-zero real coupling constants «, ). Similarly as in [1,
Proposition 2.2], the space (20) has a formally integrable almost complex
structure, which is compatible with (21) when o > 0 and § > 0, thus inducing
a Kahler structure in this case.

By Proposition 2.2 combined with Proposition 2.1 and 18, the diagonal
action of g on this space is Hamiltonian (here the action of g on J is given by
projecting to H), with equivariant moment map pqg: J X A x S — (Lie g)
given by
(22) (10 4,0).0) =4 [ (ACaNFa+ 50" — )5

n
n’

/ F(Sy — 2BA&(dad, dad) + aA2(Fa A Fa) + 4(AFa, 86 — az))

for any choice of central element z in the Lie algebra g.

Suppose now that X has Kéhler structures with Kéahler form w. This
means that the subspace J* C J of integrable almost complex structures
compatible with w is not empty. Define

(23) TCIxAXS
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by the conditions
JeJl, AeAY,  09;40=0,

where 07 4¢ denotes the (0, 1)-part of da¢ with respect to J and A}]’l c A
consists of connections A with F4 € Q},’l(ad E), or equivalently satisfying

Fy? = 0.

Here 0% (ad E') denotes the space of (ad E)-valued smooth (p, ¢)-forms with
respect to J and Fg’z’ is the projection of F4 into 93’2(ad E). This space is in
bijection with the space of holomorphic structures on the principal G¢-bundle
E€ over (X, J) (see [30]).

By definition, 7 is a complex subspace of (20) (away from its singularities)
preserved by the G-action, and hence it inherits a Hamiltonian G-action.

Proposition 3.1. The g—agtion on T is Hamiltonian with g—equivam’ant mo-
ment map piap: T — (Lie G)* given by

n
nl

(10,514, 0).C) = 4 [ (AC.aNFa+ 8077 2)%
(24) x

n
nl’

- /X F(Sy + BAGG A2 + aA2(Fa A Fa) — da(AFy, 2))2

for all (J,A,¢) € T and ¢ € LieG, where A, denotes the Laplacian of g =
w('v J)

Proof. Since (J, A, ¢) € T, we have d4¢ = 0, and hence
Ay|¢*fi)? = 2iMD0|¢* i* = —2AD(dag, dag) + 4(¢* 1, AF ).

The statement follows now from (22). O

The zeros of the moment map i, g, restricted to the space of integrable
pairs T, correspond to a coupled system of partial differential equations which
is the object of our next definition.

Definition 3.2. We say that a triple (J, A, ¢) € T satisfies the Kahler—Yang—
Mills—Higgs equations with coupling constants «, 8 € R if

alAFy+ o™i = z,

(25) * A2 2 —
SJJrBAgM) ,LL| + al (FA/\FA)—ZLQ(AFA,Z) =c,

where S is the scalar curvature of the metric g; = w(-,J-) on X, z is an
element in the center of g and ¢ € R.
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The constant ¢ € R in (25) is explicitly defined by the identity
(26) clw]™ = 2mney (X)Uw]™ t4-2an(n—1)p (E)U[w]" 2 —4nc(E)U[w]™ !

where p1(E) := [Fa A Fa) € H*(X,R) and ¢(F) € H*(X,R) are the Chern—
Weil classes associated to the G-invariant symmetric forms (-, -) and (-, z) on
g respectively, and so ¢ only depends on [w] and the topology of E.

The set of solutions of (25) is invariant under the action of G and we
define the moduli space of solutions as the set of all solutions modulo the
action of G. We can identify this moduli space with the quotient

(27) 1a(0)/G,

where p, g denotes now the restriction of the moment map to 7. Away from

singularities, this is a Kéhler quotient for the action of G on the smooth part
of T equipped with the Kéhler form obtained by the restriction of (21).

3.2. Futaki invariant and geodesic stability

In this section, we explain briefly some general obstructions to the existence
of solutions of the Kahler—Yang-Mills—Higgs equations (25), which follow the
general method developed in [1, §3]. To describe them, it is helpful to adopt
a dual view point, based on complex differential geometry.

We fix a compact complex manifold X of dimension n, a Kéhler class
Q) € HY(X) and a holomorphic principal bundle E¢ over X. We assume
that the structure group of E¢ is a complex reductive Lie group G¢, and
that the Lie algebra g of G° is endowed with an Ad-invariant symmetric
bilinear form. Let (F), J ,&) be a (possibly non-compact) Kéhler manifold,
with complex structure J and Kahler form &. We assume that a maximal
compact subgroup G C G° acts on F' by Hamiltonian isometries, and fix a
G-equivariant moment map

ji: F—g*.
Consider the associated fibre bundle F = E¢ X g I’ with fibre F', and assume
that there exists a holomorphic section

¢ € H'(X,F).

Then, the Kahler—Yang-Mills-Higgs equations on (X, E€, ¢), for fixed cou-
pling constants «a, 8 € R, are

alFy + Bo"fi = 2,

(28) * A2 2
S+ BALIP A" + aAZ(Fy A Fr) — 4a(A,Fr, 2) = ¢,
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where the unknowns are a Kéhler metric on X with Kéhler form w in €,
and a reduction H: X — E°/G to G. In this case, Fjy is the curvature of the
Chern connection Ay of H on E€, and S,, is the scalar curvature of the Kéahler
metric. Note that the constant ¢ € R depends on «, €2 and the topology of
X and E°€. In the rest of this section, we will assume o > 0 and $ > 0 in the
definition of (28).

Our first obstruction builds on the general method in [1, §3] and classical
work of Futaki [16]. Consider the complex Lie group Aut(X, E°) of automor-
phisms of (X, F¢) and the complex Lie subgroup fixing the section ¢

Aut(X, B, ¢) C Aut(X, E).

We define a map
Fop: LieAut(X, E¢ ¢) — C

given by the formula
(29)

wn

(Fa,p,C) = 4/X(AH§, alN,Fy + Bo™ 1 — az)m

n

. w
— [ S+ B + QAL (Fir A Fir) = 4(MuFir,2)) .
for a choice a Kéhler form w € €2 and hermitian metric H on E. To explain this
formula, we note that Lie Aut(X, E°) is the space of G-invariant holomorphic
vector fields ¢ on the total space of £. Any such ¢ covers a real-holomorphic
vector field ¢ on X, and decomposes, in terms of the connection Ay, as

¢ = AuC + A%C,

where Ay ¢ and AIL{CV are its vertical and horizontal parts. The complex-valued
function

P =1+ i,
with ¢1, p2 € C§°(X,w), is determined by the unique decomposition

C:mm +J77<p2 +,

valid precisely because 5 is a real-holomorphic vector field, where J is the
(integrable) almost complex structure of X, n,, (for j = 1,2) is the Hamil-
tonian vector field of ¢;, and ~ is the dual of a 1-form that is harmonic with
respect to the Kéahler metric.



On the Kéahler-Yang—Mills-Higgs equations 1193

This Futaki character provides the following obstruction to the existence
of solutions of the Kahler—Yang—Mills-Higgs equations equations (cf. [1, The-
orem 3.9]). Let B be the space of pairs (w, H) consisting of a Kahler form w
in the cohomology class €2 and a reduction H of E° to G C G°.

Proposition 3.3. The map (29) is independent of the choice of element
(w, H) in B. It defines a character of Lie Aut(X, E°, ¢), which vanishes iden-
tically if there exists a solution of the Kdahler—Yang—Mills—Higgs equations
(28) with Kdihler class §).

Further obstructions to the existence of solutions of the Kéahler—Yang—
Mills equations are intimately related to the geometry of the infinite dimen-
sional space B. It is interesting to notice that this geometry is independent
of the choice of holomorphic section ¢ on F. The space B has a structure of
symmetric space [1, Theorem 3.6], that is, it has a torsion-free affine connec-
tion V, with holonomy group contained in the extended gauge group (each
point of B determines one such group) and covariantly constant curvature.
The partial differential equations that define the geodesics (w, Hy) on B, with
respect to the connection V, are

(30) ddc((pt - (d¢t7 d(pt)wt) = 0?
HL‘ - 2J7]¢t—'dHth + Z'FHt (ngbu J%t) = 07
where 7, is the Hamiltonian vector field of ¢; with respect to wy, i.e. dp; =
N, we. Assuming existence of smooth geodesic rays, that is, smooth solu-
tions (wg, Hy) of (30) defined on an infinite interval 0 < ¢ < oo, with pre-

scribed boundary condition at ¢ = 0, one can define a stability condition for
(X, E°, ¢). Define a 1-form o, on B by

n

o0, H) = — 41'/ (H 0o Fir + 867 — a2) =

X

n
n!’

. n w
_ /X O(S0 + BALIG* A2 + ar2 (Fy A Fir) — 4(AuFu, 2)))
where (w, H) is a tangent vector to B at (w, H) and & = dd¢ for ¢ €
CP (X, w).

Definition 3.4. The triple (X, E€, ¢) is geodesically semi-stable if for every
smooth geodesic ray b; on B, the following holds

lim 00175((.&) > 0.

t—-+o0
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Under the assumption that B is geodesically convex, that is, that any
two points in B can be joined by a smooth geodesic segment, geodesic semi-
stability provides an obstruction to the existence of solutions of (28).

The proof of the next proposition follows from the fact that the quan-
tity oaﬁ(bt) is increasing along geodesics in B, with speed controlled by the
infinitesimal action on the space 7 in 3 (see the proof of [1, Proposition 3.14]).

Proposition 3.5. Assume that B is geodesically convex. If there exists a
solution of the Kdahler—Yang—Mills—Higgs equations in B, then (X, P¢,¢) is
geodesically semi-stable. Furthermore, such a solution is unique modulo the
action of Aut(X, E°, ¢).

The space B defines a geodesic submersion over the symmetric space of
Kéhler metrics on the class © [13, 24, 29]. In particular, this implies that in
general one cannot expect existence of smooth geodesic segments on B with
arbitrary boundary conditions.

3.3. Matsushima—Lichnerowicz for the Kdhler—Yang—Mills—Higgs
equations

In this section we introduce a new obstruction to the existence of solutions
of the Kéhler—Yang-Mills—Higgs equations. This is based on an analogue of
Matsushima-Lichnerowicz Theorem [23, 25] for (28), which relates the ex-
istence of a solution on (X, E, ¢) with the reductivity of Lie Aut(X, E¢, ¢).
Our proof relies on the moment-map interpretation of the equations (28), fol-
lowing closely Donaldson-Wang’s abstract proof [11, 32] of the Matsushima—
Lichnerowicz Theorem.

For simplicity, we will assume that X has vanishing first Betti number,
even though we expect that our analysis goes through with minor modifica-
tions to the general case.

Theorem 3.6. Assume H'(X,R) = 0. If (X, E¢,¢) admits a solution of the
Kahler—Yang-Mills—Higgs equations (28) with « > 0 and 3 > 0, then the Lie
algebra of Aut(X, E€, ¢) is reductive.

To prove our theorem we need some preliminary results. Let w be a Kéahler
form on X and a reduction H of E€ to G C G°. The following lemma gives a
convenient formula for the elements of Lie Aut(X, E¢, ¢) adapted to the pair
(w, H), and is reminiscent of the Hodge-theoretic description of holomorphic
vector fields on compact Kahler manifolds (see, e.g., [20, Ch. 2]). As in (2),
Lie G will denote the Lie algebra of the extended gauge group associated to
the symplectic structure w and the reduction Ey. For the proof, we will not
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assumme that (w, H) is a solution of (28). We denote by I the almost complex
structure on the total space of E*°.

Lemma 3.7. Assume HY(X,R) = 0. Then, for any y € Lie Aut(X, E¢) there
exist (1,(y € Lie G such that

(31) y=CG+IG.

Proof. Let A be the Chern connection of H on E¢. We will use the decom-
position of

(32) y = Ay + A"

into its vertical and horizontal components Ay, ALy, where 9 is the unique
holomorphic vector field on X covered by y. Using the anti-holomorphic in-
volution on the Lie algebra g¢ determined by G C G¢, we decompose

Ay = & + 182,
for & € Q%(ad E). Furthermore, as H'(X,R) = 0, we have
Y =1+ J2,

where 9; and g» are Hamiltonian vector fields for the symplectic form w.
Hence, defining the vector fields

G =&+ Ay,
for j = 1,2, we obtain the result. O

We will now apply Lemma 3.7 to the elements of
Lie Aut(X, E¢ ¢) C Lie Aut(X, E°).

Lemma 3.8. Assume HY(X,R) = 0 and that (X, E¢,¢) admits a solution
(w,h) of the Kdhler—Yang—Mills—Higgs equations with o« > 0 and § > 0.
Then, for any y € Lie Aut(X, E¢, ¢), the vector fields (1,(2 in (31) satisfy
(1, G € Lie Aut(X, £, ¢).

Proof. By the results of Section 3.1, if (w, h) is a solution of (28), then the
triple t := (J, A, ¢) is a zero of a moment map

flap: T — Lie G*
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for the action of G on the space of ‘integrable triples’ 7 defined in (23). Recall
that 7 is endowed with a (formally) integrable almost complex structure I,
and Kéhler metric

gOé,ﬁ = wO‘:ﬁ(" I')

(as we are assuming o > 0 and § > 0), where the compatible symplectic
structure wy,g is as in (21). Given y € Lie Aut(X, E¢), we denote by Yy, the
infinitesimal action of y on ). Then the proof reduces to show that Y, =
Ye,e = 0 for y € Lie Aut(X, E¢, ¢), where (1, (2 as in (31). To prove this, we
note that since the almost complex structure I on E° is integrable, we have
(see [1, Section 3.2])

0= Yy|t - YC1+IC2\1‘/ = Y&1|t + IYC2|t'
Considering now the norm || - || on 7;7 induced by the metric g, g, we obtain
0= [[Yyell* = 1Yeupell* + Yoo el1® — 2wa,5 (Yoo Yeu0)-
Now, fiq,p(t) = 0 and the moment map p, is equivariant, so

wa (Yo 1t: Yout) = d{pta, G) (Yoo i) = (pa(t), [C1, G2]) = 0,
and therefore
||Yc1|1t||2 = HY(2|t||2 =0,
so we conclude that (1, (s € Lie Aut(X, E°, ¢), as required. O
Theorem 3.6 is now a formal consequence of Lemma 3.8.

Proof of Theorem 3.6. Considering the QN—;}Vction on T, we note that the Lie
algebra £ = LieG; of the isotropy group G; of the triple t = (J,A,¢) € T
satisfies

t @ [t C Lie Aut(X, E, ¢).

Furthermore, the Lie group G, is compact, because it can be regarded as a
closed subgroup of the isometry group of a Riemannian metric on the total
space of Ep (see [1, Section 2.3]). Now, Lemma 3.8 implies that

Lie Aut(X, E¢ ¢) = t @ I¢,

so Lie Aut(X, E€, ¢) is the complexification of the Lie algebra ¢ of a compact
Lie group, and hence a reductive complex Lie algebra. O



On the Kéahler-Yang—Mills-Higgs equations 1197

4. Gravitating vortices and dimensional reduction
4.1. Gravitating quiver vortex equations

Here we consider in more detail the Kéhler-Yang-Mills-Higgs equations when
the Higgs field is a section of a special type of vector bundles, defining a quiver
bundle. To fix notation, we recall the notions of quiver and quiver bundle (see,
e.g., [4] for details). A quiver @ is a pair of sets (Qo, @1), together with two
maps t, h: Q1 — Qp. The elements of )y and @) are called the vertices and
arrows of the quiver, respectively. An arrow a € ()1 is represented pictorially
as a: i1 — 7, where i = ta and j = ha are called the tail and the head of
a. Suppose for simplicity that the quiver is finite, that is, both Qg and Q4
are finite sets (this condition will be weakened in Section 4.2). Fix a compact
complex manifold X of dimension n. A holomorphic QQ-bundle over X is a
pair (E,¢) consisting of a set E of holomorphic vector bundles E; on X,
indexed by the vertices i € @y, and a set ¢ of holomorphic vector-bundle
homomorphisms ¢, : Fyy, — Ehge, indexed by the arrows a € (). Note that it
is often useful to consider a category of twisted quiver bundles (see [4]), but
they will not be needed for the application given in Corollary 5.3.

A Hermitian metric on (E, ¢) is a set H of Hermitian metrics H; on E;,
indexed by the vertices i € QQg. Any such Hermitian metric determines a C'*°
adjoint vector-bundle morphism ¢ZHG: Eve — By of ¢p: Eyy — FEpg with
respect to the Hermitian metrics H;, and Hy,, for each a € ()1, and we can
construct a (H-self-adjoint) ‘commutator’

(6,0 = P s, 0"")i: B Ei— P Ei,

1€Qo 1€Qo 1€Qo

with components

9, ¢*H = Z Pa O‘b*H Z ¢2Hu °¢q: Ei — Ej,

ach~1(4) act=1(4)

for all i € Qq. In the following, R-y C R is the set of positive real numbers,
and for any two sets I and S, ST is the set of maps o: I — S, i — 05; to
avoid confusion with the symbols used to denote quiver vertices, i = v/—1 is
the imaginary unit.

Definition 4.1. Fix constants p € Ry, 0 € RQO and 7 € RQ. The gravitat-
ing quiver (p, o, T)-vorter equations for a pair (w, H), consisting of a Kéahler
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metric w on the complex manifold X and a Hermitian metric H on a holo-
morphic Q-bundle (E, ¢), are

(33a) 011N Fy, + [¢,6*"]; = 7 1d,,
(33b) S, — pz o\ Tr Ff +2p Z <A +2 <@ - E)) |Pal?. = c.
i€Qo a€Q: Oha Ota

Here, |<;Sa|%{a = Tr(¢g 0 ¢*Ha) € C°°(X) is the pointwise squared norm,
and c is a constant, determined by the parameters p, o, 7, the cohomology
class of w, and the characteristic classes of the manifold X and the vector
bundles E;. More precisely,

n—2

¢ Vol ( —2/ Puw N 4pZaZ/ TrFH — i

1€Qo

+ 4p Vol (X) Z <§ — ,uw(Ei)> TiTi,

1€Qo

where Vol,(X) = [y w"/nl, r; is the rank of E;, its normalized w-slope is
n—1

w
Tr(i F
Vol r,/ H(iFa) A (n—1)1

and p,, is the Ricci form. To see this, we integrate (33b), use (16), and also
integrate the following identity (that follows from (33a))

Z (ﬁ - Tt_a) |¢a|H = Z ;—iTY[Q ¢*H}i

1€Qo

=y (— -7 Tr(iAwFHi)> .

1€Q0

(34) peo () =

Given a fixed Kéhler form w on X the first set of equations (33a), involv-
ing a Hermitian metric H on (E, ¢), were called the (o, 7)-vortex equations on
(E, ¢) over the Kahler manifold (X, w) in [5], where their symplectic interpre-
tation and their relation with a (o, 7)-polystability condition were provided.
To explain how the larger set of equations (33) fit in the general moment-
map picture of Section 3, we now fix the metrics and consider the holomorphic
data as the unknowns. More precisely, we fix a compact real manifold X of
dimension 2n, with a symplectic form w, and a pair (£, H) consisting of a set
of C*° (complex) vector bundles E; of ranks r;, and a set of Hermitian metrics
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H; on Ej, indexed by the vertices i € (Jg. Let F; be the frame G;-bundle of
the Hermitian vector bundle E;, where G; = U(r;), for all i € @, and G;
the extended gauge group of P; over (X,w). Let P — X be the fibre product
of the principal bundles P; — X, for all ¢ € @y, and G the extended gauge
group of P over (X,w). Then P is a principal G-bundle, where G is the direct
product of the groups Gj, for all i € @y, and we have short exact sequences

156G —G -5 H—-1, 1-6G—G-51-1,
where G; is the gauge group of P;, the gauge group of P is the direct product

(36) g=1] 4,

1€Qo

and p: G — H is the fibre product of the group morphisms p: G; — H, for
all ¢ € Qo.
Let A; is the space of connections on P;. Consider the space of connections

on P, denoted
1€Qo
To specify a symplectic structure on A, we fix a vector a € R>O, and define

an Ad-invariant positive definite inner product (2) on the Lie algebra g of G,
given for all a,b € g by

(37) (a,0) = = > o; Tr(a; o by),
1€Qo

where a;, b; are in the Lie algebra g; of G;. Then the symplectic form (5) on
A becomes

n—1

(38) wala,b) = az/ Tr(a; A b;) A paTl

1€Qo

for A€ A, a,b € TaA = Q'(ad E). Consider the element z of the centre of g
given by z; = —ic;Idg,, for all i € Q, for fixed ¢; € R. By Proposition 2.1,
the G-action on A has equivariant moment map pg: A — (Lie G)* given for

all A€ A, ¢ €LieG by

wn
(ng(A) —1Zal/Tr (1A Fa, — c1IdE))—'
(39) e ¥
4/ f ZQ: (ozlA2 TrFA + deio; Tr(i Ay, Fa, )) o
1€Qo
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where  := AC € LieG (so & = A;¢ € LieG;), and p(¢) = ny with f € Cg°(X)
(see (11)).
Define a Hermitian vector bundle over X by

R = P Ra, with R, = Hom(Ejq, Ena),

a€Qo

where the Hermitian metric is the orthogonal direct sum of the Hermitian
metrics H, on the vector bundles R,, given by the formulae (¢4, %) m,
Tr(¢aiHe), for all ¢4, 1, in the same fibre of R,. Consider now the space of
C™ global sections of R,

S= P S., with S, =T(X,Ra).

a€Qo
Then S has a symplectic form wg defined for all ¢ € S, ¢, 9 € TS = S by

s =1 Y [ TeGai — dud) S

acQ1

Since wg = do, for the 1-form o on S given for all ¢ € S, ¢ € TS by

T'L

o) = =5 X [ Guti — ba0) 2,

aceQ1
the canonical G-action is Hamiltonian, with equivariant moment map
ps: S — (LieG)*

given by (us(4),¢) = —o(Yz(¢)), where the infinitesimal action of ¢ € LieG
on § is the vector field on S with value Y (¢) = & - ¢ — p({)adag on ¢ € S.
Here, £ = AC € LieG (so & = A;(¢;) € LieG;), the action of £ on ¢ is given
by (€ ®)a = Ehata — Gabta, and da¢ is the covariant derivative with respect
to the connection induced by A on R. More explicitly,

(40) (us(o —IZ/Trw &) /fZA d(da, b, ba),

1€Q0 a€Q

Fix p € Ry. Then we consider the space of triples J x A x S, with the
symplectic form

(41) Wa,p = Wg + 4w + 4pws,
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with 7 and w7 as in Section 2.3. Adding (18), (39) and (40), we see that the
diagonal G-action on J x A x S has equivariant moment map

Pap: T X AxS — (Lieg)*

given by
. . N w™
(a1, A.0).0) =41 3 [ Tr (st AuFa, + 006,67 — aicildz) 5
1€Q0 :
(42) - / f (SJ - Z (CKZAE) Tr F/QL + 4C¢Oél‘ Tl'(l AwFAZ))
X 1€Q0
. w"
+4p Z lAwd(dAa¢a7¢lZ)Ha)Fa
acQq :

for all (J,A,¢) € J x Ax S, ¢ € LieG, with ¢ := AC € LieG, p(¢) = ny,
fecE).

Consider the G-invariant subspace T C J x A x § of ‘integrable triples’
(J, A, ¢), defined by the conditions J € J%, A; € (Ai)371,éJ7Aa¢a = 0, for all
i€ Qo,a € Qq (cf. (23)). Since

Aw|¢)a‘%[a =2i Awéaw)a‘%[a =2i Awd(dAa¢av d)a)Ha
when 94, ¢y = 0, the G-action has equivariant moment map

Pap: T — (Lie Q)*

given by
. . * w"
</’La,p(J7 A? ¢)7C> =4i Z /}( Tr (é.l(al lAwFAi + p[¢7 ¢ ]Z — QG IdEl)) F
1€Qo ’
(13) = [ (504 2080 S lul,
X acQ1
2 2 . w"
_ Z (aiAw Tr Fi, + 4cia; Tre(i AwFAi)) )n"
i€Qo ’

for all (J, A, ¢) € T. Defining now o; = «;/p and 7; = «;¢;/p, we see that the
vanishing condition fi ,(J, A, ¢) = 0 for a triple (J, A, ¢) € T is equivalent
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to the equations

O—iiAwFHi + [¢7 ¢*H]l =T IdEz’

) s, 4200, S [0ulh, — 0 S (0ih2 Tr 3, + 4 Te(i A Fa)) = ¢,
a€Q1 1€Qo

expressed in terms of the metrics w and H, where ¢/ € R. By (35), these
equations are equivalent to the gravitating vortex equations (33), with ¢
replaced by another constant ¢ € R.

4.2. Dimensional reduction

We will now consider the invariant solutions of the Kéhler—Yang—Mills equa-
tions on an equivariant vector bundle over M = X x K¢/P. Here, X is a
compact complex manifold, K¢ is a connected simply connected semisimple
complex Lie group, and P C K¢ is a parabolic subgroup, so the quotient
K¢/ P for the P-action by right multiplication on K* is a flag manifold. The
group K¢ acts trivially on the first factor X and in the standard way on
K¢/P. The Kéhler-Yang-Mills equations for the compact complex manifold
M, a holomorphic vector bundle £ — M, and a fixed real parameter o > 0,
are

(45a) iASFs = s (E)1dg,
(45b) Sy —aMTrFZ = C.

They involve a pair consisting of a Kéhler form w on M and a Hermitian
metric H on E, with normalized slope p~(E) defined by (34).

Let L C P be a (reductive) Levi subgroup, and K C K¢ a maximal com-
pact Lie subgroup. Then the K-invariant Kéhler 2-forms w. on the complex
K¢manifold K/(K N P) & K¢/P are parametrized by elements ¢ € RZ,
(see [4, p. 38, Lemma 4.8]), where ¥ is a fixed set of ‘non-parabolic simple
roots’, as defined in [4, §1.5.1]. For a fixed ¢ € R, and each choice of Kihler
form w on X, we consider the K-invariant Kéhler form on M defined by

(46) W =w+ws

(hereafter we omit the symbols for the pullbacks by the canonical projections
M— X, M — K°¢/P).

In [4], the first and the third authors proved that there exist an infinite
quiver @ and a set of relations K of @), such that a K“equivariant holomor-
phic vector bundle E over M is equivalent to a holomorphic @-bundle (E, ¢)
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over X that satisfies the relations in I (see [4, p. 19, Theorem 2.5]). The
vertex set (Jy consists of the isomorphism classes of (finite-dimensional com-
plex) irreducible representations of L. Under this equivalence, the K-invariant
Hermitian metrics H on the vector bundle £ over M are in bijection with
the Hermitian metrics H on the quiver bundle (E, ¢) over X (see [4, §4.2.4]).
Furthermore, for each choice of Kéahler form w on X, a K-invariant Hermitian
metric H satlsﬁes the Hermitian-YangMills equation (45a) on E over (M, &)
if and only if the corresponding Hermitian metric H on (F, ¢) over (X, w) sat-
isfies the quiver (o, 7)-vortex equations (33a) (see [4, §4.2.2, Theorem 4.13]).
Here, the parameters o € RY) and 7 € R are given by

(47) oy =dimc My, 7\= UA(M;(E) — 1e(Ox)),

for all A € o, where M, is an irreducible representation of L (or P) in the
isomorphism class A, Oy = K¢ xp M) is the homogeneous vector bundle
over K¢/P associated to M), and the normalized slopes pe(O)) = p,. (On),
defined by (34), are explicitly given by [4, (4.16), §4.2.3]. Note that the vortex
equations (33a), and the symplectic interpretation in Section 4.1, make sense
for the infinite quiver @), as Fy # 0 only for finitely many A € @, and the
quiver @ is locally finite, that is, t7*(a) and h=1(a) are finite sets for all
a € Q1.

The following correspondence extends these bijections to the Kéhler—
Yang-Mills equations. It includes [2, Proposition 3.4] for a particular class
of equivariant bundles when K¢/P = P!. As above, E is a K°equivariant
holomorphic vector bundle over M, and (F, ¢) is the corresponding holomor-
phic @)-bundle over X.

Theorem 4.2. Let w be a Kdhler form on X and w the K-invariant Kdhler
form on M defined by (46). Let H be a K-invariant Hermitian metric on E
and H the corresponding Hermitian metric on (E,¢). Then the pair (© H)
satisfies the Kahler—Yang—Mills equations (45) if and only if (w, H) satisﬁes
the quiver (p,o,T)-vorter equations (33), where p := «, and o € Rgg and
7 € R are given by (47).

Proof. Let @ C @ be the finite full subquiver with vertex set (), consisting
of the vertices A € Qo such that £y # 0, so (£, ¢) is a Q'-bundle over X. Let
A and Ay be the Chern connections of H and H, on the holomorphic vector
bundles E and E\, respectively, for A € Q. The vector bundles F\ and the
Hermitian metrics Hy on Ej, for A € Q, specify the K-action on E and its
Hermitian metric H, respectively, via the identification

(48) F=@ Roo,
AEQ),
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between K-equivariant C°° Hermitian vector bundles, where the homoge-
neous vector bundles Oy are endowed with their unique (up to scale) K-
invariant Hermitian metrics. Furthermore, the Higgs fields ¢, and the unitary
connections Ay, for a € Q1, A € Qf, specify the unitary connection Aon E ,
given by dy = dae + 0, with 0 = 8 — 3* € Q'(ad E) and

(49) dao = Y (da, ®1do, +1dg, @da) oy, S=Y ba®@na,
AEQ) a€qQ

where A is the unique K-invariant unitary connection on Oy,
m: B — E\® O,

are the canonical projections, and {n, | @ € t71(A\) N h~1(u)} is a basis of
the space of K-invariant Hom(Oj, O,,)-valued (0, 1)-forms on K¢/P, for all
A\ € Qp (see [4, §3.4.5]).

We will use the moment-map interpretations of the Kéhler— Yang - Mills
equations and the quiver gravitating vortex equations. Let j A and Gy be
the space of almost complex structures J on (M, @), the space of unitary con-
nections on (E H ), and the extended gauge group of the symplectic manifold
(M, &) and the Hermitian vector bundle (E, H), respectively. By [1, Propo-
sition 2.1], the G M-action on J x .A with symplectic form wz + 4aw , has

equivariant moment map ,ugM. T x A= (LieG M) given by

60) g, (J.A).0) = alfie, (4.8 + [ Fs.(].A

for all C € LieGy, where € = A( € LieG, fe oy (M) is such that
df = p(¢).@, m = dime M, and Jig,, : A — (Lie Gar)*, Sa(J, A) € C™(M)
(cf. [1, (3.78)]) are given by

Gla)  (ion(D).8 =1 [ Tr((AFs - i5(B) ) =
(51b) Sa(J, A) = =S5+ dap;(E) Tr(i A;F;) + A2 Tr F2.

By construction, AzFy + l,uw( )Id € LieGE ., so fig,,(A) = 0 if and only

if (fig,, (A),€) = 0 for all £ € LieGE (where (—)X means the fixed-point
subspace for the K-action). Using the last displayed formula for i A~ F 7 in [4,
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§4.2.4]), we see that

(iow (1).8) = Vol(K/P) 3= i [ Te( (minuF,
(52) M@y

n

16,07 - n1ds, )6) 2

where ¢ € Lie G corresponds to (Ex)aeqy, with &\ € LieGy, by [4, Proposi-
tion 3.4], G being the unitary gauge group of E), and

l

We

Vol.(K¢/P) = /

wep 1

with | = dim¢(K¢/P). This gives the correspondence for the vortex equa-
tions (33a) and the Hermitian—Yang—Mills equation (45a). To compare (33b)
and (45b), we calculate separately the terms involved in (51b), namely,

(53a) —S85= =S5 + const.,
(53b) dauz(E) Tr(iAzF;) = dpuz(E) Y oaTr(i AyFa,&)) + const.,
AEQ,
(53c) aAZTrF2= 3" (poaA2 Tr F} — 4pospi-(O5) Tr(i AuFa, ) )
AEQ
= > ApiN,dTr(da,dq o ¢})
acQ’
—p Z Tr(¢q 0 gbZ)AiEdTr(na A dA;ﬁZ +darna A ) + const.,
a,beQ]

where A, (resp. A!) is the connection induced by A;, and Ap, (resp. A}, and
Aj ) on the vector bundle Hom(Ey,, Ep,) (resp. Hom(Oyy, Ong)), and the
sums in a,b € @} in (53b) are constrained to the condition ta = tb, ha = hb
(so that the traces are well defined). Formula (53a) follows because the scalar
curvature of w. on K¢/ P is K-invariant by construction, and hence it is
constant, as K acts effectively on K¢/P. Formula (53b) is obtained taking
traces in the last displayed formula for i Az F; in [4, §4.2.4]). We prove (53c)
making the substitution F; = Fao + da-0 + 62, obtaining

AZTr F2 = A2 Tr Fio 4 202 Tr(Fae A daof) + A2 Tr(6")

54
(54 + 202 Tr(daof A 6%) + A2 Tr((dao6)?) + 2A2 Tr(Fae A 67),
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and calculating the six terms in the right-hand side:

(55a)  AZTrFi.=> (0AA] Tr F3, —40aue(Oy) Tr(i Ay Fa,))+ const.,
AEQ
(55b) AZTr(Fye Adasf) =0, A2Tr(6%) =0, A2 Tr(da-6 A6*) =0,

(55¢)  AZTr((da:0)%) = > (4TriAu(da,bu A da, ;)
a,beQ)

— 2Tx(¢a 0 G3)A, Tr(dagma A dagny))
A2 Tr(Fpo AG*)==2 " Tr(iA,Fa,, 0 ¢ao0 ¢ —iA,Fa, 0§} 0 dq)
aeQ]

(55d) + Y Tr(¢ao ¢p)AL Te(Fay Ao A+ Far, Ay A1),
a,beQ]

Formula (55a) follows from the definition of dso in (49), the identities
iAv. Fa = p(Oy)1do, (see [4, Lemma 4.15, §4.2.3]), and the fact that
AZ Tr FE&; € C*(K¢/P) is K-invariant, and hence constant. The first iden-
tity in (55b) follows by using (49) and observing the quiver @' has no ori-
ented cycles [4, Lemma 1.15]. The second identity in (55b) follows from
Tr(O A 63) = —Tr(62 A 9) (as 0 is a 1-form). Using (49) and the orthogo-
nal direct-sum decomposition

(56) TM =TX & T(K°/P)
(with respect to the metric w), it is not difficult to derive the identity

(57) AZTr(da-076%) = — > Tr(¢aodpody) ®AL dTe(naAmpAn;)+c.c.,

a,b,ceQ)

where “c.c.” means complex conjugate. The third identity in (55b) now follows
because the function A% Tr(da-0 A 62) is K-invariant (by construction), so it
equals its average by fibre integration along the canonical projection M — X,
that vanishes because in (57),

/ A2 dTr(ng Ay Aml)wl = 0.
Ke/P

To prove (55c), we use (49) with 6 = § — §*, and the facts that the
quiver )’ has no oriented cycles and the direct-sum decomposition (56) is
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orthogonal, obtaining
Az% Tr((dAoe)Q) = —QA% Tr(dAOﬂ A dAOB*)-

To prove that this equals the right-hand side of (55¢), one needs to make
another calculation using (49), choosing the basis {1, } as in [4, §4.2.4], so the
pointwise inner product

(58) —Trile. (e A1) = da

is the Kronecker delta for ta = tb, ha = hb, and the orthogonal decomposi-
tion (56).
Finally, using (49) and the decomposition §# = 3 — 3*, one can prove that

A%TI‘(FAO VAN 02) = —A%TI‘(FAO A [ﬁaﬁ*])v

where [, 5*| = BAB*+ 5* A3, because A,,. and Afjs respectively vanish when
applied to (2,0) and (0, 2)-forms, and to (1, 3) and (3, 1)-forms. To show that
this is equal to the right-hand side of (55d), one has to use (49) once again,
and (58).

Formula (53c) follows from (54), (55), and the fact that the connections
Ay and A) are unitary, and so putting together the right-hand sides of (55¢)
and (55d), we obtain

A2 Tr((dao8)?) + 202 Tr(Fae A 6%) = =4 ) " i Ayd Tr(da,dq © ¢))
acQy

> Tr(¢ao ¢p)AZ dTr(na A da s + dagna A )
a,beQ)

We can now compare (33b) and (45b). By construction, S,(J,A) €
C=(M)K, SONSa(j, A) = const. if and only if the last term in (51b) van-
ishes for all f € C°(M)X | ie. f = fopx with f € C(X), px: M — X
being the canonical projection. In this case,

n!’

/ FSu(T, A) _vO1 (K°/P) / FSon (A, )"
where, adding the three identities in (53), we have

Spor(J A, 0) = =S5 +p > (oAALTr Fi + 47, Tr(i AuFa,))
AEQ),
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—4p > iMdTr(da,da 0 OF).

aeqQ]

Combining this and (52) in (50), we see that (ﬁfgvM(j, A),C) equals (42), up
to a factor Vol.(K€¢/P). This implies the correspondence for (33b) and (45b),
as required. O

Note that the relations in the set K have not played any role in the proof
of Theorem 4.2.

5. Examples
5.1. Solutions in the weak coupling limit

In this section we consider the Kéhler—Yang—Mills—Higgs equations with cou-
pling constants « = 3. Assuming o > 0 and normalizing the first equation in
(28), we obtain the system of equations

5 AoFpy + i = z,
(59) Su + aly |0 > + a2 (Fg A Fy) — 4a(A,Fg, 2) = c.
Following [1], this section is concerned with the existence of solutions of (59)
in ‘weak coupling limit’ 0 < |a| < 1 by deforming solutions (w, H) with
coupling constants a = 0.

Note that for a = 0, the coupled equations (59) are the condition that
w is a constant scalar curvature Kahler (cscK) metric on X and H is a so-
lution of the Yang—Mills-Higgs equation, as studied in [27]. If ¢ = 0, then
the existence of solutions of the first equation in (59) is equivalent, by the
Theorem of Donaldson, Uhlenbeck and Yau [12, 31], to the polystability of
the holomorphic bundle E¢ with respect to the Kéhler class [w] € H*(X,R).
For ¢ # 0, Mundet i Riera [27] gave the following characterization of the
existence of solutions.

Theorem 5.1 ([27]). Assume that ¢ # 0 and that (E°, ¢) is a simple pair.
Then, for every fized Kdhler form w, there exists a solution H of the Yang—
Mills—Higgs equation if and only if (E°, ¢) is z-stable, in which case the so-
lution is unique.

The conditions of simplicity and z-stability in the previous theorem are
rather technical, and we refer the reader to [27] for a detailed definition.
To give an idea in the language of Section 3.2, a sufficient condition for
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(E°, ¢) to be a simple pair (see [27, Definition 2.17]) is that the Lie alge-
bra Lie Aut(E¢, ¢) of infinitesimal automorphisms of (£, ¢) vanishes, where
Lie Aut(E¢, ¢) is given by the kernel of

Lie Aut(X, E¢, ¢) — HY(X,TX).

The z-stability of the pair (E¢, ¢) can regarded as a version of the geodesic
stability in Definition 3.4, for (weak) geodesic rays (w¢, Hy) with w; = w
constant (see [27, Definition 2.16]).

Our next result is a consequence of the implicit function theorem in Ba-
nach spaces, combined with Theorem 5.1 and the moment map interpretation
of the constant scalar curvature Kéahler metric equation. The proof follows
along the lines of [1, Theorem 4.18].

Theorem 5.2. Assume that ¢ # 0 and that (E€, ¢) is a simple pair. Assume
that there is a cscK metric wy on X with cohomology class [wo] = Qo and
that there are no non-zero Hamiltonian Killing vector fields on X. If (E€, ¢)
is z-stable with respect to wy, then there exists an open neighbourhood

UcCRx H" (X, R)

of (0,Q0) such that for all (o,Q2) € U there exists a solution of (59) with
coupling constant «a such that [w] = .

We next provide an application of the previous theorem to the Kéhler—
Yang—Mills equations. Using the notation of Section 4.2, we fix a Kéhler form
wo on X, a K-invariant Kahler form w, on K¢/P (with £ € RZ;), and the
product Kahler form @y = wo + w: on M = X x K¢/P. Let Qp = [wo],
Q. = [we] and Qp = [@o] = Qo + Q. be their cohomology classes on X, K¢/P
and M, respectively. We also fix a K*“-equivariant holomorphic vector bundle
E on M, and say Eis K¢ -invariantly stable (with respect to Qo) if for all K-
invariant proper subsheaves E C E their slopes with respect to Qo satisfy
lig, (E) < 1g, (E) (cf. [4, Definition 4.6, §4.1.2]).

Corollary 5.3. Assume that wg is a constant scalar curvature Kdihler metric
on X, there are no non-zero Hamiltonian Killing vector fields on X, and E
1s K¢-invariantly stable with respect to Q. Then there exists an open neigh-
bourhood U C R x H"(X,R) of (0,0) such that for all (a,Q) € U, there
exists a K -invariant solution (W, H) of the Kdihler—Yang—Mills equations (45)
on M with coupling constant o such that (@] = Q + Q..

Proof. This follows from Theorems 5.2 and 4.2, and the correspondences of [4,
§4]. To apply Theorem 5.2, we consider the holomorphic @Q-bundle (E, ¢) over
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X corresponding to E, and the symplectic form (21) given by wy + 4pw4 +
dpws, i.e., with o = 3 both equal to p, where w4 is now defined using the
invariant inner product (38) with ay = dim¢ M. O

Note that this result is not covered by [1, Theorem 4.18], since the in-
finitesimal action by any non-zero element of ¢/p = Tp(K¢/P) induces a
nowhere-vanishing real holomorphic vector field over X x K¢/P (where p C £
are the Lie algebras of P C K¢, respectively).

To illustrate further the scope of application of Theorem 5.2, consider
now a compact Riemann surface ¥ with genus ¢g(X) > 1, endowed with a
Kéhler metric wy with constant curvature —1. We fix a holomorphic principal
G°-bundle over ¥ and consider a unitary representation p: G — U(W), for
a hermitian vector space W. We take F' = P(W), endowed with the Fubini—
Study metric, rescaled by a real constant 7 > 0. Consider the associated ruled
manifold

F = E° Xge F =P(E° xge W).
Denote by P(W)* C P(W) the locus of stable points for the linearized G-
action, and set
‘FSZEC XGC]P)(W)S C]:

Then, if E¢ is semistable with respect the Kéhler class [wg] and ¢ € H(%, F)
is such that ¢(X) C F*, then (E°, ¢) is z-stable, for any z and any value of 7
(see [26, p. 74]). Furthermore, we can also choose ¢ such that the pair is simple,
by taking its image outside any proper G°-invariant subspace W’ C W.

For the sake of concreteness, consider the case that G¢ = GL(r,C) and p is
the standard representation in W = C". Then V' = E°Xx g W is a holomorphic
vector bundle and ¢ € H°(X, F) can be identified with the inclusion

Lcv

for a holomorphic subbundle L of rank one, as considered by Bradlow and
the third author in [9]. Then, the pair (E¢, ¢) is not simple if and only if one
can find a holomorphic splitting

V=VaVv

such that L is contained in V’. Identifying z = —iAId € u(r) for a real
constant A € R, the pair (E° ¢) is z-stable if and only if for any non-zero
proper subbundle V' C V' we have

deg(V") + 7rk(LNV') _ deg(V)+ 7
rk(V7) T '
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In this simple situation, the equations (59) are for a Kahler metric w on ¥
and a hermitian metric H on V, and reduce to

iN,Fy + 7l = \1d,

S, +ar? A |rH P = ¢,

for a suitable real constant ¢ € R, where 7H:V — L denotes the H-
orthogonal projection.

5.2. Gravitating vortices and Yang’s Conjecture

In this section we apply Theorem 3.6 to find an obstruction to the grawi-
tating vortex equations on the Riemann sphere, as introduced in [2]. As an
application, we give an alternative affirmative answer to Yang’s Conjecture
for the Einstein-Bogomol'nyi equations [33] (see also [34, p. 437]), that shall
be compared with the original proof in [3, Corollary 4.7].

Consider X = P!, with G¢ = C* and F = C, endowed with the standard
hermitian structure. A C*-principal bundle on P! is equivalent to a line bundle
Op1(N) of degree N, while the Higgs field is ¢ € H°(P', Opi(NV)). Here we
are concerned with the case ¢ # 0, so we assume N > 0. Choose a real
constant 7 > 0, and consider z = —ia7/2. Then, the Ké&hler-Yang-Mills—
Higgs equations (28) with coupling constants o = 3 > 0 are equivalent to the
gravitating vortex equations [2]

1
iNoFr +=(|¢]3% —7) =0

Su+ (B, +7) (07 —7) =,

where w is a Kihler metric on P! and H is a hermitian metric on Op: (N).
The constant ¢ € R is topological, and is explicitly given by

(61) c=2-2arN,

where have assumed the normalization [p w = 2.

The first equation in (60) is the abelian vortex equation. A theorem by
Noguchi [28], Bradlow [7] and the third author [18, 19] implies that, upon a
choice of Kéhler metric with volume 27, the equation

. 1
iNoFir + 5 (6l —7) =0
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admits a (unique) solution provided that N < 7/2. As we will show next, this
numerical condition is not enough to ensure the existence of solutions of the
coupled system (60).

Theorem 5.4. If ¢ has only one zero, then there are no solutions of the
gravitating vortex equations for (P!, L, ¢).

Proof. Choose homogeneous coordinates [z, z1] on P! such that ¢ is identified
with the polynomial

o=

Here we use the natural identification HY(P!, L) = SN (C?)*, where the right
hand side is the space of degree N homogeneous polynomials in the coordi-
nates xg, z1. By [3, Lemma 4.3], it follows that

Aut(P', Op1 (N), ¢) 2 C* x C,

which is non-reductive. Consequently, the proof follows from Theorem 3.6. [

When the constant ¢ in (61) is zero, the gravitating vortex equations (60)
turn out to be a system of partial differential equations that have been exten-
sively studied in the physics literature, known as the Einstein—Bogomol nyi
equations. Based on partial results in [33], Yang posed a conjecture about non-
existence of solutions of the Einstein—Bogomol’'nyi equations with ¢ having
exactely one zero. This conjecture has been recently settled in the affirmative
in [3]. As an application of Theorem 5.4, we provide here an alternative proof.

Corollary 5.5 (Yang’s conjecture). There is no solution of the Einstein—
Bogomol’nyi equations for ¢ having exactly one zero.

5.3. Non-abelian vortices on P!

We consider now the case of non-abelian rank-two vortices on the Riemann
sphere (corresponding to G = U(2)).

Let X = P!, with G¢ = GL(2,C) and F = C?, endowed with the standard
hermitian structure. A G°-principal bundle on P! is equivalent to a split rank-
two bundle

V= Opl (Nl) D OIPH (N2)7
while the Higgs field is

¢ = (¢1.¢2) € H'(P', Op1 (N1)) ® H° (P, Op1 (Na)).
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We will assume 0 < Ny < Ns. Choose a real constant 7 > 0, and consider
the central element z = —i(ar/2)1d. Then, the Kéhler—Yang-Mills-Higgs
equations (28) with coupling constants a = 5 > 0 are equivalent to

. 1 N T

ZAwFH+§¢®¢ = §Id,
Sy +a(Ay +7)(|¢5 —271) = ¢,

(62)

where w is a Kéhler metric on P! and H is a hermitian metric on V. The
constant ¢ € R is topological, and is explicitly given by

(63) c=2—2a1(Ny + Na),

where have assumed the normalization [p w = 2.

The first equation in (62) is the non-abelian vortex equation, as studied
in [8]. Applying [8, Theorem 2.1.6] we obtain that this equation admits a
solution provided that

(64) Ny < g < Np + Np — deg([¢]),

where [¢] denotes the line bundle given by the saturation of the image of
¢: Opr — V. We want to show next that condition (64) is not sufficient to
solve the full system of equations (62). For this, we will apply the Futaki
invariant in Proposition 3.3. Fix homogeneous coordinates [z, z1], so that
HO(P!, Opi (N;)) = SNi (C?)* is the space of degree N; homogeneous polyno-
mials in zg, 1. Following [3], consider

(65) 6;=xy ay,

with 0 < ¢; < Nj (the case {; = {5 = 0 corresponds to a Higgs field ¢ that
has only one zero). In this case, it can be easily checked that the numerical
condition (64) reduces to

(66) Ny < g < N1+ Ny — min{€1,€2} — min{N1 — El, Ny — 52}7
and, by choosing suitable values of the parameters 7, N;, and /;, the non-

abelian vortex equation admits a solution. To evaluate the Futaki invariant,
note that the Lie algebra element

(67) y= ( - ) € gi(2,0)
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can be identified with an element in Lie Aut(P!, V, ¢) for any choice of ¢; as
before.

Lemma 5.6.
(68) (Fasa,y) = 2mia(2Ny — 7)(261 — N1) + 2mia(2N2 — 7)(203 — Na)

The proof follows along the lines of [3, Lemma 4.6], by direct evaluation
of the Futaki invariant using the Fubini-Study metric on P! and the product
ansatz H = Hy @ Ho, with H; the Fubini-Study hermitian metric on the line
bundle Op:1(Nj).

As a direct consequence of Proposition 3.3 and the previous lemma, we
obtain the following.

Theorem 5.7. Let (V,¢) as before, and assume that (66) is satisfied. Then,
there is no solution of the equations (62) on (P, V, @), unless the following
balancing condition holds

200 — N1 205 — N,

= 0.
2N2—7’ * 2N1—T
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