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A class of fully nonlinear equations

XIUXIONG CHEN AND WEIYONG HE

Abstract: In this paper we consider a class of fully nonlinear
equations which covers the equation introduced by S. Donaldson
a decade ago and the equation introduced by Gursky-Streets re-
cently. We solve the equation with uniform weak C? estimates,
which hold for degenerate case.

Keywords: Fully nonlinear equations, a priori estimates.

1. Introduction

We recall a class of differential operators introduced by S. Donaldson [4] and
Gursky-Streets [5]. Consider a function u : R x R” — R with the coordinate
(t,x). We use the operator D = (9;, V) to denote the first order derivatives.

Consider the matrix
r— Utt Vuy
o (Vut)t R

where R = V?u + lower order terms. Given a symmetric matrix P, we use
0i(P) to denote the i-th elementary symmetric function on its eigenvalues
A1,y Ap. The F; cone is given by

I ={P:0y(P)>0,1<i<k}
Assume uy; > 0 and R € T}, consider the operator

(1.1) Fi.(r) = uggop(R) — (Tp—1(R), Vup @ Vuy),

where Ty is the (k — 1)-th Newton transformation which takes the form of

Ti-1(R)ij = ox(R) log oy, (R).
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This operator appears naturally in two different settings of geodesic equations
of certain infinite dimensional Riemannian geometry.
When k = 1, the operator was introduced by S. Donaldson [4]

Fi(r) = ug(Au + 1) — |[Vug)?,

when he considered a Weil-Peterson type metric on the space of volume forms
(normalized) on a Riemannian manifold (X, ¢) with fixed total volume. This
infinite dimensional space can be parameterized by all smooth functions such
that

{p € CF(X) : 14+ Ago > 0}.
The metric is defined by
166115 = [ (60)*(1 + Lg¢)dg.
X
Then the geodesic equation is
For 1 < k < n, Gursky-Streets [5] introduced a family of operators Fj.
Consider a conformal class g, = e ?“g on a Riemannian manifold (M, g).

Recall the Schouten tensor

A=

1 ‘ 1
n—2 (ch— 2(n—1)Rg)’

which plays an important role in conformal geometry. Under the conformal
change, the Schouten tensor is given by

1
Ay = Agy) = A+ Viu+ Vu® Vu — 5]Vu|29.

When A, € I';7, Gursky-Streets introduced a family of fully nonlinear elliptic
equations of the form

utto-k(Au) — (Tk_l(Au), Vut &® Vut) =0.

When n = 4, k = 2, this is the geodesic equation of the following metric

(), G)u = /N 9voa(gy AV
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defined on the space C* = {u : A,, € I'y, g, = e *g}. Gursky and Streets
introduced these structures to solve the uniqueness of o5 Yamabe problem on
a compact Riemannian four manifold. We refer the readers to [5, 8] for more
details. When k = 1, the Gursky-Streets equation reads

ug (Au — (n)2 — 1)|Vul|? + A(x)) — |Vug|* = 0.

The Donaldson equation and the Gursky-Streets equation are closely related
in this case. In this paper we discuss a class of equations of the following form,

(1.3) Ugy (AU — b|Vul* + a(x)) — |V * = f,
with boundary condition
u(+,0) = ug, u(-, 1) = uy,

where a(z) : M — R is a positive smooth function and b is a nonnegative
constant. We define the function space

H={pecC®M),Ap—bVo|*+a(zx) >0}

and ug,u; € H. Note that the sign —b|Vu|?> makes the space H convex,
meaning that if ug, u; € H, then (1 — t)ug + tu; € H for any t € [0, 1].
A main result of the paper is the following,

Theorem 1.1. Let (M,g) be a compact Riemannian manifold and f €
Ck(M x [0,1]) with k > 2 is a positive function. The Dirichlet problem (1.3)
has a unique solution u(x,t) € C*LB(M x [0,1]) for any B € [0,1). The
uniform Ct estimates and estimates of ug, |usk|, Au do not depend on inf f,
but on (M, g), boundary datum ug,u; and

max {sup fysup |DfY2) sup | f], sup |Af’}

for any t € [0, 1].

Remark 1.2. This generalizes the results in [2], where the authors solved
the Donaldson equation with righthand side €. Here we consider a class of
equations which also covers the Gursky-Streets equation when k = 1. Our
computations are much more streamlined and simplified.

As a direct corollary, we solve the homogeneous equation with the weak
C? bound.
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Corollary 1.3. Let (M,g) be a compact Riemannian manifold. Then there
exists a solution to the Dirichlet problem of the homogeneous equation
ug(Au — b|Vul? + a(z)) — |[Vu[* =0
such that u(0,-) = ug and u(1,-) = uy with the uniform bound,
[u|cr + |ug| + [Au| + [V < C.

2. Solve the equation
For simplicity, we write

B, = Au — b|Vul® + a(z).
Its linearized operator is given by

Lp,(h) = Ah —2b(Vu, Vh)
We write the equation
(2.1) Q(ust, Bu, Vug) := ug By — |Vug|* = f,

where f € C*°(M x [0,1]) is a positive function and ug, u; € H. When there
is no confusion, we also write

Qu) = Q(Utt> By, Vuy)

We compute the linearized operator, which is given by

dQ(h) :Utt[Ah — Zb(Vu, Vh)] + Buhtt - Q(Vht, V’U,t)
:UttLBu(h) + Buhtt - 2(Vht, Vut)
We will use the following notations. At any point p € M x [0, 1], take local
coordinates (1, -+ ,Z,,t). We can always diagonalize the metric tensor g as

9ii(p) = 0ij, 0rgij(p) = 0. We will use, for any smooth function f on M x [0, 1],
the following notations

Afi=NA(fi), Afiy=A0fij), Ofi=(Af) and Afi=(Af)

For any function f, f;, fi; etc are covariant derivatives. By Weitzenbock for-
mula, we have

(2.2) Afi=Afi+Rijfj,
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where R;; is the Ricci tensor of the metric g.
The following concavity is important for solving the equation.

Lemma 2.1 (Donaldson [4]). 1. If A > 0, then Q(A) > 0 and if A > 0,
Q(A) > 0.

2. If A, B are two matrices with Q(A) = Q(B) > 0, and if the entries
Ago, Boo are positive then for any s € [0, 1],

Q(sA+(1—-3s)B)>Q(A),Q(A—B) <0.
Moreover, strict inequality holds if the corresponding arguments are not the
same.

We have its equivalent form.

Lemma 2.2 ([2]). Consider the function

f(x,y, 21, , 2n) = log (a:y—sz)

Then f is concave when x > 0,y > 0,2y — > 22 > 0.

First we assume u solves the Dirichlet problem (1.3) and derive the a
priori estimates. With these estimates, it is standard to use the method of
continuity to solve the equation.

2.1. C° estimates and uniqueness

Denote U, = ct(1 —t) + (1 — t)ug + tuy for any number c.

Lemma 2.3. For some ¢ > 0 big enough,
(2.3) U_e <u<(1—1t)ug+ tu.

Moreover, the solution u is unique.

Proof. First we have
U > 0.
It follows that

u('at) _u('70) u("l) _u('>t)
t—0 = 1—t '

Namely
u(t) < (1 —t)ug + tus.



1034 Xiuxiong Chen and Weiyong He

Note that v = U_. on the boundary. If v < U_. for some point, then v =
u—U_. obtains its minimum in the interior, say at p. Then, Vv = 0, D?>v > 0
at p. By the concavity of log (), we have

(2.4) Q™'dQ(v) < log Q(u) — log Q(U-c),

where Q71dQ takes value at u. Clearly Q(U_.) = 2cBy_.—|Vug—Vu;|?. Note
that By , > (1 — t) By, + tB,, is strictly positive. If we choose ¢ sufficiently
large, the righthand side of (2.4) is negative. However at p, Vo = 0, D?v > 0,
we claim d@Q(v) > 0. Contradiction. To see the claim, we choose a vector
(10,Y) = (20,91, - yn), then by D?v(p) > 0 we have,

’Uttl‘% —220(Vu, Y) + YVZY! >0

Choose 29 = B,,Y = Vu; and note YV?0Y? < Av|Vut|2. It follows
2(Vuy, Voy) < vy By + By ' Av|Vuy|*

We compute

dQ(v) =vy By + ug(Av — 2b(Vu, Vv)) — 2(Vug, Vuy)
Z(utt — B;l\VutF)Av 2 0.

This contradicts (2.4) if ¢ is sufficiently large.
Now we prove the uniqueness. Suppose u and @ are two solutions with
the same boundary condition, then for any € € (0, 1),

u<u+et(l—1t).

This follows the same maximum principle argument above. Let ¢ — 0, we
obtain u < 4. Interchanging « and @ this shows that @ = u. O

2.2. C! estimates
Proposition 2.4. We have the following,
—c+up —up < u(0,7) <uyp —up <u(l, ) <up —ug+ e
Proof. By Lemma 2.3,
—ct(l —t) + (1 — thup + tug < u < (1 —t)ug + tus.

Since uy > 0, up obtains its maximum on the boundary. It is then easy to
verify that the estimate holds. O
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Remark 2.5. Since u + At + B still solves the equation for any constants
A, B. The boundary data changes as, ug — ug+ B, u1 = u; + A+ B and
ur — ug+ A. (Note that Vu remains the same.) Since we have uniform bound
on |u|co and |ut|, we can choose A, B accordingly such that 1 < |us| < C, and
1< —u < C. We assume this normalization in the following.

We need some preparations. We have the following straightforward com-
putations.

Proposition 2.6. We have
dQ(t) = 0,dQ(t*) = 2B,.
Proposition 2.7. We have
dQ(u) = 2f — (a + b|Vul?*)uy
Proof. We compute
dQ(u) = ug(Au — 2b|Vul?) + Byug — 2|Vug|?

Using the equation this completes the proof. O
Proposition 2.8. Given ¢, 1, we have

(2.5) dQ(ov) = ¥dQ(¢) + ¢dQ (V) + 2¢u (Do, DY),
where the quadratic form is given by
(D¢, DY) = uu(Vo, Vib) + Bu(pr, i) — (Vur, 9 VY + Vo)

Note that q,(D¢, Dp) > 0.
Proposition 2.9. We compute

(2.6) dQ(IVul?) = 2uy (Rijuiu; — aju;) + 2fiv; + 2qu(Du;, Du;)
Proof. We compute,

dQ(u;) = ug(Au; — 20(Vu, V) + Buugi — 2ugtgk;
Taking derivative of the equation, we get

uy ((Au); — 20(Vu, Vug) + a;) + By — 2ugug = fi
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It follows that
(27) dQ(u,) = Utt(RijUj — ai) + fl
Applying (2.5) to ¢ = u;, we get (2.6). O

Lemma 2.10. There exists a uniform constant

02 = C2(97 |u0|Clv ‘u1|Cla sup fv |Vf1/2|)
such that

Proof. To bound Vu, take
_ 1 2 2 2
h=3 (IVul? + 22 + Ae2),

where A is a constant determined later. We want to show that A is bounded.
Namely, there exists a constant C; depending only on sup f, |V /2| and the
boundary data such that

max h < Cs.

Since h is uniformly bounded on the boundary, we assume h takes its maxi-
mum at (p,tg) € M x (0,1). We compute, using (2.5),

dQ(u?) = —2u(a + b|Vul?) + 4fu + 2¢,(Du, Du)
It follows that, using (2.6),

dQ(h) =uw(Rijuiu; — a;iw;) + fiv; + qu(Duy, Duy)
— Mu(a + b|Vul?) + 2\ fu + Aqu(Du, Du) + AB,
> — Coun(|Vul® + |Vul) — |Vu|[V ]
— Mu(a + b|Vul|?) + 2\ fu + Aqu(Du, Du) + AB,,

(2.8)

where Cjy depends on max |Ric| and |Va|. We compute

¢u(Du, Du) =uy|Vul|? + Byu? — 2ugusug

1
zgutt\VuP - BUU?,
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where we use the fact that
SVl + 2B, > 2 Bl V] > 21V [l
Since —u > 1 and |us| < C1, we obtain,
dQ(h) > utt(%|VU\2 — Co|Vul? = Co|Vu|) — |Vul||V f] + 2\ fu+ (A — CoN\) B,
Choose A = CyX + A. Note that
/\utt|Vu|2/4 + AB, > )\M\VUWM > )\\/f|Vu|
We compute that
dQ(h) > uw(AVul*/4 — Co|Vul> = Co|Vul) + AW FIVu| — |V f||Vul + 2) fu.
Since at p, dQ(h) < 0. It follows that, at p,
[Vul(p) < Cs,

where Cy depends on |V f1/2| in addition. This completes the proof. O
2.3. C? estimates

First we derive the boundary estimates. Due to the flatness of the bound-
ary (in t direction), the estimates of “normal-normal” direction wu can be
obtained from the equation that

uw < BN (Ve + f),

once the boundary estimates hold for |Vu;|. To bound the mixed term |Vuy|
in the boundary estimates, we construct barrier functions using similar ideas
in [7, 6]. The argument is purely local.

Lemma 2.11. There exists a uniform constant Cs, such that att = 0 and
t=1,

g, | Vue| < Cy

where C(2 = 02(97 |U0’02, |u1|C2a |Vf1/2|, sup f)
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Proof. We only argue for ¢t = 0. First we compute

dQ(u — ug) = 2f — uy(Aug — b|Vuo|* + a)
— bug (|Vul* + |Vuo* — 2(Vu, Vug))
<2f-— uttBuo

For a fix point p € M, take a geodesic ball B,(p) C M around p such that r
is less than injectivity radius. Consider the region

U={(z,t) € B,(p) x [0,1] : d*(x,p) + t* < r?}
Denote, for positive constants A, B, ¢ which will be specified below,
h = A(UO —u — 3ct + Ctz) — B(tZ + dz(a:)) + (VU — VUO)i,

where i = 1,2,--- ,n and d(z) = d(p, z) is the distance function. Note that
h is local function define on U. We choose ¢, B sufficiently large such that
h <0 on OU. We compute, using (2.7),

[dQ((Vu — Vug);)| < Couw + |V f].
Note that for x € B,(p) for r sufficiently small,
1dQ(d*)| = ug|(Ad? — 2b(Vu, Vd?))| < Coug.
It then follows that
dQ(h) > A(uy By, — 2f +2¢B, —2f) —2BB, — (B + 1)Couy — |V f|

Choose A sufficiently large, ¢ > 1 such that AB,, > 2, AB,,—2(B+1)Cy > 0
and Ac > 2B, we get that

dQ(h) > uy + AcBy — 2f A — |V f| > 2\/uy B, Ac — 2fA — |V f|

Now choose ¢ sufficiently large (depending on sup f and |V f/2|) such that

dQ(h) > 2v/FAc — 2Af — |V f| > 0.

By the maximum principle, it follows that A < 0 in U. Since h(p,0) = 0,
it follows that Oih(p,0) < 0. Since i and p are arbitrary, this implies that
|Vug|(p,0) < Cy at t = 0, where Cy depends on |V £1/2| in particular. O



A class of fully nonlinear equations 1039

Now we derive the interior C? estimates. We need some preparations to
simply the computations. We write r = (r;) and

=Torr — Z i G log Q(T)a

>2

where r = (uy, By, Viug). Then the equation Q(r) = f can be written as
G(r) =log f. Denote, for 0 < i <n+1,

2 2
0Q (i 0G 1 yi i _ P°Q iy O°G

©= or;’ or; or;or;’ orior;’

With this notation, we also record the linearization of Q(r). We have

(2.9) dQ(v) = uw(AY — 26(Vu, Vb)) + Byt — 2uski
If we write (R;) = (Y4, Lp, v, Vi), then
¢) = Z QiRz

First we have the following interior estimates.

Lemma 2.12. There is a uniform positive constants Co such that

u < Oy,
|, sup — fur, sup f).
Proof. We can compute by G = log Q = log f

where Cy = Ca(g, |uo|cz, [ui]c2,sup f 71| f;

(2.10) GOy = Q1dQ(wy) = [ f.
Taking derivative again, we have
Gi’jatn-atrj + Giﬁfn = f_lftt — f_2ft2.
By concavity of G, we have
G'opri> [ fu— 21

Note that
GEBU = LBu(utt) — 2b\Vut]2
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It follows that we have
Gzafrl = Qil (dQ(utt) — 2butt]Vut\2)

Hence we have
dQ(uw) > fu — fﬁlft2

We compute
dQ(us — 1) > (a +0|Vul?)uy + fur — [ f2 = 2f

If uyy — u takes the maximum at the boundary, then by the boundary estimate
this is done. If the maximum appears interior, at the maximum point of usy —u,
we have

uy < Cs,
where C3 = Cs(sup f,sup — fu, sup f 1 f2). This completes the proof. O

Next we want to bound Au. We use the similar computation relying on
the concavity of G = log Q).

Lemma 2.13. There exists a uniform constant Cy such that
Au S 04,

where Cy = Cy(g, |uo|c2, |ui|c2, sup f,sup —Af, sup D f1/2)
Proof. We only need to control the interior maximum. We compute
(2.11) VG = f7IVf =G'Vr,

' GNP Nr; + G Ar = fTIAf — 2V

By the concavity of G, we have
(2.12) Q'Ari > Af — [TV

There exists a difference between Q'Ar; and dQ(Au) coming from com-
munication of covariant derivatives and the nonlinear term —b|Vu|?. We com-
pute

(A’f’l) = (Autt, ABU, Autk)
The Bochner-Weitzenbock identity gives

AlVul? = 2|V2u|?* + 2(VAu, Vu) + 2Ric(Vu, Vu)
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Hence we have

AB, =A(Au — b|Vul* + a)
=Lp,(Au) — 2b|V?u|? — 2bRic(Vu, Vu) + Aa

We also have
Ay, = Rickjutj + (Au)tk
It follows that

(2.13) Q'Ar; =dQ(Au) — 2buy (]V2u]2 + Ric(Vu, Vu))

. + uyAa — 2Ric(Vug, Vuy)

Combining (2.12) and (2.13), we have

(2.14)  dQ(Au) > 2buy|V?ul* + 2Ric(Vuy, Vug) — Co + Af — fHVf)?

Since b > 0, the nonlinear term —b|Vu|? results in a good term 2buy, |V2ul?.
Now we denote v = Au + At?. Then we have

dQ(Au + M?) > 2AB, — C1|Vu|?> — Co + Af — fHV
Since \VutP < wuuB, < CB,, we can choose A sufficiently large such that
dQ(Au+ M\?) > B, — Cy + Af — [V %

This is sufficiently to bound Awu from above. O

To get higher regularity, we assume that f is strictly positive. The Holder
estimate of D?u follows from Evans-Krylov theory using the concavity of
log . Once we get the Holder estimates of D?u, the standard boot-strapping
argument gives all higher order derivatives of w.

2.4. Solve the equation

To solve (1.3) for a general positive f, we consider the following continuity
family for s € [0, 1]

(2.15) Qu) = (1 —5)Q(U-c) + s,
with the boundary condition

u(+,0,8) = up,u(-,1,s) = uy.
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When c¢ is big enough, Q(U-_.) is positive and bounded away from 0. We shall
now prove that if f € C¥(X x [0,1]) with k > 2 then we can find of solution
of (1.3) such that u € C*¥T1A(X x [0,1]) for any 0 < 8 < 1. Consider the set

S = {S €[0,1] : the equation (2.15) has a solution in C*~1#(X x [0, 1})}

Obviously 0 € S. Hence we only need to show that S is both open and close.
It is clear that @ : C*t1.8 — C*=18 i5 open if

B, >0 and Q(u) > 0.

In this case d() is an invertible elliptic operator and openness follows. The
closeness of S follows from the a prior estimates derived in Section 2. Hence
Theorem 1.1 holds.

Since our estimates on |u|c1, uy, Au, |Vu,| does not depend on inf f, we
can solve the equation

Qu) = sf

for s € (0,1] and f > 0. Taking s — 0, this gives a strong solution of the
homogeneous equation

Q(U) = up By — ‘VUtP =0,

which has the uniform bound on |u|ct, ug, Au, |Vug|. This proves Corollary
1.3.

Remark 2.14. For the general righthand side f > 0 (possible degenerate)
such that | D f1/?| is uniformly bounded, we can use an approzimation argu-
ment to get a strong solution, by considering for example the equation

g (Au — b|Vu|2 +a(zx)) — |Vut\2 =f+s

for s € (0,1]. Letting s — 0 we get a strong solution. The only technical
point is that uniqueness of homogeneous/degenerate equation does not follow
directly from the comparison, which requires f > 0. On the other hand, we
believe that the uniqueness should still hold.

Remark 2.15. It would be interesting to see whether |V2u| is uniformly
bounded, independent of inf f. Such a result was proved for complex Monge-
Ampere equation recently by [3]. When n = 2, the Donaldson equation is one
special case of their results and it should work also for (1.3). On the other
hand, it would be interesting to see whether such an estimate holds for n > 3.
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3. Discussions

When k = 1, the nonlinear term —b|Vu|? in B, = Au — b|Vu|? + a has the
“right” sign. Hence we can treat the Donaldson equation and the Gursky-
Streets equation together. In [2] only the righthand side f = e was discussed.
Here we give a new argument with more streamlined computations. This also
covers the Gursky-Streets equation when k = 1.

When k = n, the operator

Fo(r) = 10000 (R) — (Th-1(R), r0i @ 10;) = Opy1(7),

hence it is just the famous Monge-Ampere operator. It is not hard to see
that the theory of Monge-Ampere equation can be used directly to solve the
equation

Fo.(r)y=f.

We shall skip the details.

On the other hand, the Gursky-Streets equation becomes rather subtle
when 2 < k <n—1. When k = 2, Gursky and Streets obtained a smooth so-
lution with uniform C* bound for a perturbed equation [5]. Very recently, the
second author solved the Gursky-Streets equation with uniform C*! bound,
for n > 4. There are several subtle points. First of all, the concavity of the
operator log Fy(r) is rather subtle for & = 2, and it is still unknown for
3 <k <n—1;see [§] for the discussion and the conjecture on the concavity.
The estimate of second order, in particular Au appears to be very subtle.

Lastly, we introduce a family of operators, which is the complex com-
panion of Fj. Let u : R x C" — R be a real valued function. Consider the
following (n + 1) x (n + 1) matrix

_(Too To:
where R is a n x n Hermitian matrix. We take R = 9du and
- Uit 81_%
-~ \Ow, 00u

Denote the operator, 1 < k <n,

Gi(r) = uttak(aéu) — (Tk_l(ﬁéu), Oour ® 5ut),
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where Ty, _1(R);; = ok(R)%w. When k£ = 1, we get that
G1(r) = uyAu — |Vuy|?

is the Donaldson operator on R x C". When k = n,

Gn(1) = U0, (00u) — (T—1(00U), Ouy @ Ouy)

is a special case of the complex Monge-Ampere operator. Actually this opera-
tor is the operator underline the geodesic equation in space of Kéhler metrics,

Pu — |V¢|i¢ =0,

which was studied extensively in the literature. Similar as in [8], we conjecture
that,

Conjecture 3.1. For 2 <k <n—1, the operator log G (r) is concave on r,
for rog >0, 90u in T'} cone and Gy (r) > 0.
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