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A class of fully nonlinear equations
Xiuxiong Chen and Weiyong He

Abstract: In this paper we consider a class of fully nonlinear
equations which covers the equation introduced by S. Donaldson
a decade ago and the equation introduced by Gursky-Streets re-
cently. We solve the equation with uniform weak C2 estimates,
which hold for degenerate case.
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1. Introduction

We recall a class of differential operators introduced by S. Donaldson [4] and
Gursky-Streets [5]. Consider a function u : R× R

n → R with the coordinate
(t, x). We use the operator D = (∂t,∇) to denote the first order derivatives.
Consider the matrix

r =
(

utt ∇ut
(∇ut)t R

)

where R = ∇2u + lower order terms. Given a symmetric matrix P , we use
σi(P ) to denote the i-th elementary symmetric function on its eigenvalues
λ1, · · · , λn. The Γ+

k cone is given by

Γ+
k = {P : σi(P ) > 0, 1 ≤ i ≤ k}.

Assume utt > 0 and R ∈ Γ+
k , consider the operator

(1.1) Fk(r) = uttσk(R) − (Tk−1(R),∇ut ⊗∇ut),

where Tk−1 is the (k − 1)-th Newton transformation which takes the form of

Tk−1(R)ij = σk(R) ∂

∂Rij
log σk(R).
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This operator appears naturally in two different settings of geodesic equations
of certain infinite dimensional Riemannian geometry.

When k = 1, the operator was introduced by S. Donaldson [4]

F1(r) = utt(Δu + 1) − |∇ut|2,

when he considered a Weil-Peterson type metric on the space of volume forms
(normalized) on a Riemannian manifold (X, g) with fixed total volume. This
infinite dimensional space can be parameterized by all smooth functions such
that

{φ ∈ C∞(X) : 1 + �gφ > 0}.
The metric is defined by

‖δφ‖2
φ =

∫
X

(δφ)2(1 + �gφ)dg.

Then the geodesic equation is

(1.2) utt(1 + �u) − |∇ut|2g = 0.

For 1 ≤ k ≤ n, Gursky-Streets [5] introduced a family of operators Fk.
Consider a conformal class gu = e−2ug on a Riemannian manifold (M, g).
Recall the Schouten tensor

A := 1
n− 2

(
Ric− 1

2(n− 1)Rg

)
,

which plays an important role in conformal geometry. Under the conformal
change, the Schouten tensor is given by

Au = A(gu) = A + ∇2u + ∇u⊗∇u− 1
2 |∇u|2g.

When Au ∈ Γ+
k , Gursky-Streets introduced a family of fully nonlinear elliptic

equations of the form

uttσk(Au) − (Tk−1(Au),∇ut ⊗∇ut) = 0.

When n = 4, k = 2, this is the geodesic equation of the following metric

〈ψ, φ〉u =
∫
M

φψσ2(g−1
u Au)dVu,
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defined on the space C+ = {u : Agu ∈ Γ+
2 , gu = e−2ug}. Gursky and Streets

introduced these structures to solve the uniqueness of σ2 Yamabe problem on
a compact Riemannian four manifold. We refer the readers to [5, 8] for more
details. When k = 1, the Gursky-Streets equation reads

utt(Δu− (n/2 − 1)|∇u|2 + A(x)) − |∇ut|2 = 0.

The Donaldson equation and the Gursky-Streets equation are closely related
in this case. In this paper we discuss a class of equations of the following form,

(1.3) utt
(
Δu− b|∇u|2 + a(x)

)
− |∇ut|2 = f,

with boundary condition

u(·, 0) = u0, u(·, 1) = u1,

where a(x) : M → R is a positive smooth function and b is a nonnegative
constant. We define the function space

H = {φ ∈ C∞(M),Δφ− b|∇φ|2 + a(x) > 0}

and u0, u1 ∈ H. Note that the sign −b|∇u|2 makes the space H convex,
meaning that if u0, u1 ∈ H, then (1 − t)u0 + tu1 ∈ H for any t ∈ [0, 1].

A main result of the paper is the following,

Theorem 1.1. Let (M, g) be a compact Riemannian manifold and f ∈
Ck(M × [0, 1]) with k ≥ 2 is a positive function. The Dirichlet problem (1.3)
has a unique solution u(x, t) ∈ Ck+1,β(M × [0, 1]) for any β ∈ [0, 1). The
uniform C1 estimates and estimates of utt, |utk|,Δu do not depend on inf f ,
but on (M, g), boundary datum u0, u1 and

max
{
sup f, sup |Df1/2|, sup |ftt|, sup |Δf |

}

for any t ∈ [0, 1].

Remark 1.2. This generalizes the results in [2], where the authors solved
the Donaldson equation with righthand side ε. Here we consider a class of
equations which also covers the Gursky-Streets equation when k = 1. Our
computations are much more streamlined and simplified.

As a direct corollary, we solve the homogeneous equation with the weak
C2 bound.
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Corollary 1.3. Let (M, g) be a compact Riemannian manifold. Then there
exists a solution to the Dirichlet problem of the homogeneous equation

utt(Δu− b|∇u|2 + a(x)) − |∇ut|2 = 0

such that u(0, ·) = u0 and u(1, ·) = u1 with the uniform bound,

|u|C1 + |utt| + |Δu| + |∇ut| ≤ C.

2. Solve the equation

For simplicity, we write

Bu = Δu− b|∇u|2 + a(x).

Its linearized operator is given by

LBu(h) = Δh− 2b(∇u,∇h)

We write the equation

(2.1) Q(utt, Bu,∇ut) := uttBu − |∇ut|2 = f,

where f ∈ C∞(M × [0, 1]) is a positive function and u0, u1 ∈ H. When there
is no confusion, we also write

Q(u) = Q(utt, Bu,∇ut)

We compute the linearized operator, which is given by

dQ(h) =utt[�h− 2b(∇u,∇h)] + Buhtt − 2(∇ht,∇ut)
=uttLBu(h) + Buhtt − 2(∇ht,∇ut).

We will use the following notations. At any point p ∈ M × [0, 1], take local
coordinates (x1, · · · , xn, t). We can always diagonalize the metric tensor g as
gij(p) = δij , ∂kgij(p) = 0. We will use, for any smooth function f on M×[0, 1],
the following notations

�fi = �(fi), �fij = �(fij), �f,i = (�f),i and �f,ij = (�f)ij .

For any function f , fi, fij etc are covariant derivatives. By Weitzenbock for-
mula, we have

(2.2) �fi = �f,i +Rijfj ,
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where Rij is the Ricci tensor of the metric g.
The following concavity is important for solving the equation.

Lemma 2.1 (Donaldson [4]). 1. If A > 0, then Q(A) > 0 and if A ≥ 0,
Q(A) ≥ 0.

2. If A,B are two matrices with Q(A) = Q(B) > 0, and if the entries
A00, B00 are positive then for any s ∈ [0, 1],

Q(sA + (1 − s)B) ≥ Q(A), Q(A−B) ≤ 0.

Moreover, strict inequality holds if the corresponding arguments are not the
same.

We have its equivalent form.

Lemma 2.2 ([2]). Consider the function

f(x, y, z1, · · · , zn) = log
(
xy −

∑
z2
i

)
.

Then f is concave when x > 0, y > 0, xy −∑
z2
i > 0.

First we assume u solves the Dirichlet problem (1.3) and derive the a
priori estimates. With these estimates, it is standard to use the method of
continuity to solve the equation.

2.1. C0 estimates and uniqueness

Denote Uc = ct(1 − t) + (1 − t)u0 + tu1 for any number c.

Lemma 2.3. For some c > 0 big enough,

(2.3) U−c ≤ u ≤ (1 − t)u0 + tu1.

Moreover, the solution u is unique.

Proof. First we have
utt > 0.

It follows that
u(·, t) − u(·, 0)

t− 0 <
u(·, 1) − u(·, t)

1 − t
.

Namely
u(t) < (1 − t)u0 + tu1.
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Note that u = U−c on the boundary. If u < U−c for some point, then v =
u−U−c obtains its minimum in the interior, say at p. Then, ∇v = 0, D2v ≥ 0
at p. By the concavity of logQ, we have

(2.4) Q−1dQ(v) ≤ logQ(u) − logQ(U−c),

where Q−1dQ takes value at u. Clearly Q(U−c) = 2cBU−c−|∇u0−∇u1|2. Note
that BU−c ≥ (1 − t)Bu0 + tBu1 is strictly positive. If we choose c sufficiently
large, the righthand side of (2.4) is negative. However at p, ∇v = 0, D2v ≥ 0,
we claim dQ(v) ≥ 0. Contradiction. To see the claim, we choose a vector
(x0, Y ) = (x0, y1, · · · yn), then by D2v(p) ≥ 0 we have,

vttx
2
0 − 2x0(∇vt, Y ) + Y∇2vY t ≥ 0

Choose x0 = Bu, Y = ∇ut and note Y∇2vY t ≤ Δv|∇ut|2. It follows

2(∇ut,∇vt) ≤ vttBu + B−1
u Δv|∇ut|2

We compute

dQ(v) =vttBu + utt(Δv − 2b(∇u,∇v)) − 2(∇ut,∇vt)
≥(utt −B−1

u |∇ut|2)Δv ≥ 0.

This contradicts (2.4) if c is sufficiently large.
Now we prove the uniqueness. Suppose u and ũ are two solutions with

the same boundary condition, then for any ε ∈ (0, 1),

u ≤ ũ + εt(1 − t).

This follows the same maximum principle argument above. Let ε → 0, we
obtain u ≤ ũ. Interchanging u and ũ this shows that ũ = u.

2.2. C1 estimates

Proposition 2.4. We have the following,

−c + u1 − u0 ≤ ut(0, ·) ≤ u1 − u0 ≤ ut(1, ·) ≤ u1 − u0 + c.

Proof. By Lemma 2.3,

−ct(1 − t) + (1 − t)u0 + tu1 ≤ u ≤ (1 − t)u0 + tu1.

Since utt > 0, ut obtains its maximum on the boundary. It is then easy to
verify that the estimate holds.
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Remark 2.5. Since u + At + B still solves the equation for any constants
A,B. The boundary data changes as, u0 → u0 + B, u1 → u1 + A + B and
ut → ut+A. (Note that ∇u remains the same.) Since we have uniform bound
on |u|C0 and |ut|, we can choose A,B accordingly such that 1 ≤ |ut| ≤ C, and
1 ≤ −u ≤ C. We assume this normalization in the following.

We need some preparations. We have the following straightforward com-
putations.

Proposition 2.6. We have

dQ(t) = 0, dQ(t2) = 2Bu.

Proposition 2.7. We have

dQ(u) = 2f − (a + b|∇u|2)utt

Proof. We compute

dQ(u) = utt(Δu− 2b|∇u|2) + Buutt − 2|∇ut|2

Using the equation this completes the proof.

Proposition 2.8. Given φ, ψ, we have

(2.5) dQ(φψ) = ψdQ(φ) + φdQ(ψ) + 2qu(Dφ,Dψ),

where the quadratic form is given by

qu(Dφ,Dψ) = utt(∇φ,∇ψ) + Bu(φt, ψt) − (∇ut, φt∇ψ + ψt∇φ)

Note that qu(Dφ,Dφ) ≥ 0.

Proposition 2.9. We compute

(2.6) dQ(|∇u|2) = 2utt(Rijuiuj − aiui) + 2fiui + 2qu(Dui, Dui)

Proof. We compute,

dQ(ui) = utt(Δui − 2b(∇u,∇ui)) + Buutti − 2utkutki

Taking derivative of the equation, we get

utt((Δu)i − 2b(∇u,∇ui) + ai) + Buutti − 2utkutki = fi.
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It follows that

(2.7) dQ(ui) = utt(Rijuj − ai) + fi.

Applying (2.5) to φ = ui, we get (2.6).

Lemma 2.10. There exists a uniform constant

C2 = C2(g, |u0|C1 , |u1|C1 , sup f, |∇f1/2|)

such that
|∇u| ≤ C2.

Proof. To bound ∇u, take

h = 1
2
(
|∇u|2 + λu2 + At2

)
,

where λ is a constant determined later. We want to show that h is bounded.
Namely, there exists a constant C1 depending only on sup f, |∇f1/2| and the
boundary data such that

max h ≤ C2.

Since h is uniformly bounded on the boundary, we assume h takes its maxi-
mum at (p, t0) ∈ M × (0, 1). We compute, using (2.5),

dQ(u2) = −2u(a + b|∇u|2) + 4fu + 2qu(Du,Du)

It follows that, using (2.6),

dQ(h) =utt(Rijuiuj − aiui) + fiui + qu(Dui, Dui)
− λu(a + b|∇u|2) + 2λfu + λqu(Du,Du) + ABu

≥− C0utt(|∇u|2 + |∇u|) − |∇u||∇f |
− λu(a + b|∇u|2) + 2λfu + λqu(Du,Du) + ABu,

(2.8)

where C0 depends on max |Ric| and |∇a|. We compute

qu(Du,Du) =utt|∇u|2 + Buu
2
t − 2utkutuk

≥1
2utt|∇u|2 −Buu

2
t ,
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where we use the fact that

1
2utt|∇u|2 + 2Buu

2
t ≥ 2

√
uttBu|∇u||ut| ≥ 2|∇ut||∇u||ut|

Since −u ≥ 1 and |ut| ≤ C1, we obtain,

dQ(h) > utt(
λ

2 |∇u|2 −C0|∇u|2 −C0|∇u|)− |∇u||∇f |+ 2λfu+ (A−C0λ)Bu

Choose A = C0λ + λ. Note that

λutt|∇u|2/4 + λBu ≥ λ
√
uttBu|∇u||ut| ≥ λ

√
f |∇u|

We compute that

dQ(h) > utt(λ|∇u|2/4 − C0|∇u|2 − C0|∇u|) + λ
√
f |∇u| − |∇f ||∇u| + 2λfu.

Since at p, dQ(h) ≤ 0. It follows that, at p,

|∇u|(p) ≤ C2,

where C2 depends on |∇f1/2| in addition. This completes the proof.

2.3. C2 estimates

First we derive the boundary estimates. Due to the flatness of the bound-
ary (in t direction), the estimates of “normal-normal” direction utt can be
obtained from the equation that

utt ≤ B−1
u (|∇ut|2 + f),

once the boundary estimates hold for |∇ut|. To bound the mixed term |∇ut|
in the boundary estimates, we construct barrier functions using similar ideas
in [7, 6]. The argument is purely local.

Lemma 2.11. There exists a uniform constant C2, such that at t = 0 and
t = 1,

utt, |∇ut| ≤ C2

where C2 = C2(g, |u0|C2 , |u1|C2 , |∇f1/2|, sup f)



1038 Xiuxiong Chen and Weiyong He

Proof. We only argue for t = 0. First we compute

dQ(u− u0) = 2f − utt(Δu0 − b|∇u0|2 + a)
− butt(|∇u|2 + |∇u0|2 − 2(∇u,∇u0))

≤ 2f − uttBu0

For a fix point p ∈ M , take a geodesic ball Br(p) ⊂ M around p such that r
is less than injectivity radius. Consider the region

U = {(x, t) ∈ Br(p) × [0, 1] : d2(x, p) + t2 ≤ r2}

Denote, for positive constants A,B, c which will be specified below,

h = A(u0 − u− 3ct + ct2) −B(t2 + d2(x)) + (∇u−∇u0)i,

where i = 1, 2, · · · , n and d(x) = d(p, x) is the distance function. Note that
h is local function define on Ū . We choose c, B sufficiently large such that
h ≤ 0 on ∂U . We compute, using (2.7),

|dQ((∇u−∇u0)i)| ≤ C0utt + |∇f |.

Note that for x ∈ Br(p) for r sufficiently small,

|dQ(d2)| = utt|(Δd2 − 2b(∇u,∇d2))| ≤ C0utt.

It then follows that

dQ(h) ≥ A(uttBu0 − 2f + 2cBu − 2f) − 2BBu − (B + 1)C0utt − |∇f |

Choose A sufficiently large, c ≥ 1 such that ABu0 ≥ 2, ABu0−2(B+1)C0 ≥ 0
and Ac ≥ 2B, we get that

dQ(h) ≥ utt + AcBu − 2fA− |∇f | ≥ 2
√
uttBuAc− 2fA− |∇f |

Now choose c sufficiently large (depending on sup f and |∇f1/2|) such that

dQ(h) ≥ 2
√
fAc− 2Af − |∇f | > 0.

By the maximum principle, it follows that h ≤ 0 in U . Since h(p, 0) = 0,
it follows that ∂th(p, 0) ≤ 0. Since i and p are arbitrary, this implies that
|∇ut|(p, 0) ≤ C2 at t = 0, where C2 depends on |∇f1/2| in particular.



A class of fully nonlinear equations 1039

Now we derive the interior C2 estimates. We need some preparations to
simply the computations. We write r = (ri) and

Q(r) = r0r1 −
∑
i≥2

r2
i , G(r) = logQ(r),

where r = (utt, Bu,∇iut). Then the equation Q(r) = f can be written as
G(r) = log f . Denote, for 0 ≤ i ≤ n + 1,

Qi = ∂Q

∂ri
, Gi = ∂G

∂ri
Q−1Ai, Qi,j = ∂2Q

∂ri∂rj
, Gi,j = ∂2G

∂ri∂rj
.

With this notation, we also record the linearization of Q(r). We have

(2.9) dQ(ψ) = utt(Δψ − 2b(∇u,∇ψ)) + Buψtt − 2utkψtk

If we write (Ri) = (ψtt, LBuψ,∇ψt), then

dQ(ψ) =
∑
i

QiRi.

First we have the following interior estimates.

Lemma 2.12. There is a uniform positive constants C2 such that

utt ≤ C2,

where C2 = C2(g, |u0|C2 , |u1|C2 , sup f−1|ft|2, sup−ftt, sup f).

Proof. We can compute by G = logQ = log f

(2.10) Gi∂tri = Q−1dQ(ut) = f−1ft.

Taking derivative again, we have

Gi,j∂tri∂trj + Gi∂2
t ri = f−1ftt − f−2f2

t .

By concavity of G, we have

Gi∂2
t ri ≥ f−1ftt − f−2f2

t .

Note that
∂2
tBu = LBu(utt) − 2b|∇ut|2.
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It follows that we have

Gi∂2
t ri = Q−1

(
dQ(utt) − 2butt|∇ut|2

)

Hence we have
dQ(utt) ≥ ftt − f−1f2

t

We compute

dQ(utt − u) ≥ (a + b|∇u|2)utt + ftt − f−1f2
t − 2f

If utt−u takes the maximum at the boundary, then by the boundary estimate
this is done. If the maximum appears interior, at the maximum point of utt−u,
we have

utt ≤ C3,

where C3 = C3(sup f, sup−ftt, sup f−1f2
t ). This completes the proof.

Next we want to bound Δu. We use the similar computation relying on
the concavity of G = logQ.

Lemma 2.13. There exists a uniform constant C4 such that

Δu ≤ C4,

where C4 = C4(g, |u0|C2 , |u1|C2 , sup f, sup−Δf, supDf1/2)

Proof. We only need to control the interior maximum. We compute

∇G = f−1∇f = Gi∇ri,

Gi,j∇ri∇rj + GiΔri = f−1Δf − f−2|∇f |2.
(2.11)

By the concavity of G, we have

(2.12) QiΔri ≥ Δf − f−1|∇f |2.

There exists a difference between QiΔri and dQ(Δu) coming from com-
munication of covariant derivatives and the nonlinear term −b|∇u|2. We com-
pute

(Δri) = (Δutt,ΔBu,Δutk)

The Bochner-Weitzenbock identity gives

Δ|∇u|2 = 2|∇2u|2 + 2(∇Δu,∇u) + 2Ric(∇u,∇u)
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Hence we have

ΔBu =Δ(Δu− b|∇u|2 + a)
=LBu(Δu) − 2b|∇2u|2 − 2bRic(∇u,∇u) + Δa

We also have
Δutk = Rickjutj + (Δu)tk

It follows that

QiΔri =dQ(Δu) − 2butt
(
|∇2u|2 + Ric(∇u,∇u)

)
+ uttΔa− 2Ric(∇ut,∇ut)

(2.13)

Combining (2.12) and (2.13), we have

(2.14) dQ(Δu) ≥ 2butt|∇2u|2 + 2Ric(∇ut,∇ut) − C2 + Δf − f−1|∇f |2

Since b ≥ 0, the nonlinear term −b|∇u|2 results in a good term 2butt|∇2u|2.
Now we denote v = Δu + λt2. Then we have

dQ(Δu + λt2) ≥ 2λBu − C1|∇ut|2 − C2 + Δf − f−1|∇f |2.

Since |∇ut|2 ≤ uttBu ≤ CBu, we can choose λ sufficiently large such that

dQ(Δu + λt2) ≥ Bu − C2 + Δf − f−1|∇f |2.

This is sufficiently to bound Δu from above.

To get higher regularity, we assume that f is strictly positive. The Hölder
estimate of D2u follows from Evans-Krylov theory using the concavity of
logQ. Once we get the Hölder estimates of D2u, the standard boot-strapping
argument gives all higher order derivatives of u.

2.4. Solve the equation

To solve (1.3) for a general positive f , we consider the following continuity
family for s ∈ [0, 1]

(2.15) Q(u) = (1 − s)Q(U−c) + sf,

with the boundary condition

u(·, 0, s) = u0, u(·, 1, s) = u1.
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When c is big enough, Q(U−c) is positive and bounded away from 0. We shall
now prove that if f ∈ Ck(X × [0, 1]) with k ≥ 2 then we can find of solution
of (1.3) such that u ∈ Ck+1,β(X × [0, 1]) for any 0 ≤ β < 1. Consider the set

S =
{
s ∈ [0, 1] : the equation (2.15) has a solution in Ck−1,β(X × [0, 1])

}

Obviously 0 ∈ S. Hence we only need to show that S is both open and close.
It is clear that Q : Ck+1,β → Ck−1,β is open if

Bu > 0 and Q(u) > 0.

In this case dQ is an invertible elliptic operator and openness follows. The
closeness of S follows from the a prior estimates derived in Section 2. Hence
Theorem 1.1 holds.

Since our estimates on |u|C1 , utt,Δu, |∇ut| does not depend on inf f , we
can solve the equation

Q(u) = sf

for s ∈ (0, 1] and f > 0. Taking s → 0, this gives a strong solution of the
homogeneous equation

Q(u) = uttBu − |∇ut|2 = 0,

which has the uniform bound on |u|C1 , utt,Δu, |∇ut|. This proves Corollary
1.3.

Remark 2.14. For the general righthand side f ≥ 0 (possible degenerate)
such that |Df1/2| is uniformly bounded, we can use an approximation argu-
ment to get a strong solution, by considering for example the equation

utt(Δu− b|∇u|2 + a(x)) − |∇ut|2 = f + s

for s ∈ (0, 1]. Letting s → 0 we get a strong solution. The only technical
point is that uniqueness of homogeneous/degenerate equation does not follow
directly from the comparison, which requires f > 0. On the other hand, we
believe that the uniqueness should still hold.

Remark 2.15. It would be interesting to see whether |∇2u| is uniformly
bounded, independent of inf f . Such a result was proved for complex Monge-
Ampere equation recently by [3]. When n = 2, the Donaldson equation is one
special case of their results and it should work also for (1.3). On the other
hand, it would be interesting to see whether such an estimate holds for n ≥ 3.
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3. Discussions

When k = 1, the nonlinear term −b|∇u|2 in Bu = Δu − b|∇u|2 + a has the
“right” sign. Hence we can treat the Donaldson equation and the Gursky-
Streets equation together. In [2] only the righthand side f = ε was discussed.
Here we give a new argument with more streamlined computations. This also
covers the Gursky-Streets equation when k = 1.

When k = n, the operator

Fn(r) = r00σn(R) − (Tn−1(R), r0i ⊗ r0i) = σn+1(r),

hence it is just the famous Monge-Ampere operator. It is not hard to see
that the theory of Monge-Ampere equation can be used directly to solve the
equation

Fn(r) = f.

We shall skip the details.
On the other hand, the Gursky-Streets equation becomes rather subtle

when 2 ≤ k ≤ n− 1. When k = 2, Gursky and Streets obtained a smooth so-
lution with uniform C1 bound for a perturbed equation [5]. Very recently, the
second author solved the Gursky-Streets equation with uniform C1,1 bound,
for n ≥ 4. There are several subtle points. First of all, the concavity of the
operator logFk(r) is rather subtle for k = 2, and it is still unknown for
3 ≤ k ≤ n− 1; see [8] for the discussion and the conjecture on the concavity.
The estimate of second order, in particular Δu appears to be very subtle.

Lastly, we introduce a family of operators, which is the complex com-
panion of Fk. Let u : R × C

n → R be a real valued function. Consider the
following (n + 1) × (n + 1) matrix

r =
(
r00 r0i
r̄0i R

)

where R is a n× n Hermitian matrix. We take R = ∂∂̄u and

r =
(
utt ∂ut
∂̄ut ∂∂̄u

)

Denote the operator, 1 ≤ k ≤ n,

Gk(r) = uttσk(∂∂̄u) − (Tk−1(∂∂̄u), ∂ut ⊗ ∂̄ut),
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where Tk−1(R)ij̄ = σk(R)∂ log σk(R)
∂Rij̄ . When k = 1, we get that

G1(r) = uttΔu− |∇ut|2

is the Donaldson operator on R× C
n. When k = n,

Gn(r) = uttσn(∂∂̄u) − (Tk−1(∂∂̄u), ∂ut ⊗ ∂̄ut)

is a special case of the complex Monge-Ampere operator. Actually this opera-
tor is the operator underline the geodesic equation in space of Kähler metrics,

φtt − |∇φ|2ωφ
= 0,

which was studied extensively in the literature. Similar as in [8], we conjecture
that,

Conjecture 3.1. For 2 ≤ k ≤ n− 1, the operator logGk(r) is concave on r,
for r00 > 0, ∂∂̄u in Γ+

k cone and Gk(r) > 0.
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