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The ∂∂̄-lemma for general Clemens manifolds
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Dedicated to Sir Simon Donaldson for his 60th birthday

Abstract: We show that the ∂∂̄-lemma holds for the non-Kähler
compact complex manifolds of dimension three with trivial canon-
ical bundle constructed by Clemens as deformations of Calabi-Yau
threefolds contracted along smooth rational curves with normal
bundle of type (−1,−1), at least on an open dense set in moduli.
The proof uses the mixed Hodge structure on the singular fibers
and an analysis of the variation of the Hodge filtration for the
smooth fibers.

Introduction

Around 1985, Herb Clemens gave a remarkable construction of compact com-
plex manifolds of dimension three and trivial canonical bundle as follows.
Let X be a Calabi-Yau threefold, for example a quintic threefold in P4, and
let C1, . . . , Cr be disjoint smooth rational curves in X such that the nor-
mal bundle NCi/X

∼= OP1(−1) ⊕OP1(−1) for all i, and such that the classes
[C1], . . . , [Cr] satisfy a linear relation

∑
i mi[Ci] = 0 in H4(X;C) with all

mi �= 0 and span H4(X;C). If X is the singular compact complex threefold
obtained by contracting the Ci to ordinary double points, then X is smooth-
able, and small smoothings of X are compact complex manifolds of dimension
three with second Betti number b2 = 0 and trivial canonical bundle. We will
call any complex manifold obtained in this way a Clemens manifold. If for ex-
ample X is simply connected and the classes [C1], . . . , [Cr] generate H4(X;Z),
then small smoothings of X are diffeomorphic to a connected sum of copies
of S3 ×S3. Moreover, the number r of curves Ci required in the construction
can be arbitrarily large, giving examples of an infinite number of topologi-
cally different families of Clemens manifolds. Details of Clemens’ construction
were given in [9], and the construction was subsequently generalized by Tian
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[23], Kawamata [15], and Ran [18], to the case where the classes [Ci] do not
necessarily span H4(X;C).

Given the very simple topological nature of Clemens manifolds, it is
tempting to speculate that they play a fundamental role in describing the
moduli of Calabi-Yau threefolds, see for example Reid [20]. It is also natu-
ral to ask if their cohomology in dimension three carries a polarized weight
three Hodge structure. While it is easy to see that the Hodge-de Rham spec-
tral sequence degenerates at E1 (and we recall this argument in the proof of
Theorem 2.7 below), it is not obvious that the resulting filtrations F • and
F

• on Hk are k-opposed, or equivalently that the ∂∂̄-lemma holds (despite
the careless statement on p. 107 of [10]). The goal of this paper is to show
that indeed the ∂∂̄-lemma holds for a general Clemens manifold. Here general
roughly means that the ∂∂̄-lemma holds outside of a proper real analytic sub-
variety, although it seems likely that in fact it holds for all small smoothings
of X. Unfortunately, the variational methods of this paper do not seem well
suited to deciding if the resulting weight three Hodge structures are polar-
ized. Of course, it is a general fact that on a compact complex threefold, if
ω ∈ H0(Ω3) is nonzero, then

√
−1〈ω, ω̄〉 > 0, where 〈·, ·〉 is the usual pairing

on H3. But the remaining Hodge-Riemann inequality for Clemens manifolds,
that the Hermitian form on H2,1 defined by

√
−1〈η, η̄〉 is negative definite,

seems more difficult to establish.
One can also ask if there are good metrics on Clemens manifolds whose

existence would imply the existence of a Hodge decomposition, and, even
better, the Hodge-Riemann inequalities. Results of Fu-Li-Yau [11] show the
existence of balanced metrics on Clemens manifolds. These are metrics such
that the square of the associated Kähler form is d-closed (in the case of
complex dimension three). However, in general the existence of a balanced
metric is not sufficient to imply that the ∂∂̄-lemma holds.

Fine and Panov [7] have constructed a complex structure with trivial
canonical bundle on 2(S3 × S3)#(S2 × S4). If X is the corresponding com-
pact complex threefold, they show in addition that there is a nontrivial holo-
morphic vector field on X, i.e. that H0(X;TX) �= 0. It follows easily that
the ∂∂̄-lemma does not hold for X. It would be interesting to know if the
deformations of X are obstructed, or if there are small deformations of X to
a complex manifold for which the ∂∂̄-lemma holds.

This paper is organized as follows. In Section 1, we collect some general
results about Hodge structures and the ∂∂̄-lemma. Section 2 deals with the
deformation theory of threefolds with ordinary double points and trivial dual-
izing sheaf, as well as the limiting mixed Hodge structures associated to their
smoothings. While all of this material is very well-known to specialists, we
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give the arguments in some detail to emphasize that it is enough to assume
only that a resolution of the singular fiber satisfies the ∂∂̄-lemma. We could
replace this assumption by the assumption that a resolution of the singular
fiber is Kähler, at the cost of increasing the notational complexity of the argu-
ment (see Remark 2.3, where we argue that it is enough to consider the case
where there is just one smoothing direction in the deformation space). The
main calculation is given in Section 3, where we use the nature of the mon-
odromy and the variation of the Hodge filtration to show that the ∂∂̄-lemma
holds on a nonempty open subset of the deformation space of smoothings of
the singular fiber. Section 4 deals with a question on deformations of compact
complex manifolds satisfying the ∂∂̄-lemma, which I first learned of from Yau.

1. Some preliminary remarks

We begin with a definition of the statement that the ∂∂̄-lemma holds for
a compact complex manifold V and its link with the existence of a Hodge
structure on the cohomology of V .

Definition 1.1. Let V be a compact complex manifold and let Ak(V ) denote
the space of C∞ k-forms on V . We say that the ∂∂̄-lemma holds for V if, for
all k, and all η ∈ Ak(V ) such that ∂η = ∂̄η = 0, the following property holds:
the form η is d-exact, i.e. there exists a form ξ such that η = dξ ⇐⇒ there
exists an α ∈ Ak−2(V ) such that η = ∂∂̄α.

We then have the following [6, (5.21)] (for the direction (i) =⇒ (ii), see
also [4, (4.3.1)]):

Theorem 1.2. Let V be a compact complex manifold. Then the following
conditions are equivalent:

(i) The Hodge-de Rham spectral sequence for V degenerates at E1 and, for
all k, if F • is the corresponding filtration on Hk(V ;C), then F • and F

•

are k-opposed, i.e. for all p, there is an isomorphism

F p ⊕ F
k−p+1 ∼= Hk(V ;C)

induced by the natural inclusions.
(ii) The ∂∂̄-lemma holds for V .

If either of the above conditions hold, then we define

Hp,q(V ) = F p ∩ F
q ⊆ Hp+q(V ;C).



1004 Robert Friedman

Equivalently, by [2, (5.4)(i)], Hp,q(V ) is the set of α ∈ Hp+q(V ;C) such that
there exists a de Rham representative for α of type (p, q). Then we have the
usual Hodge decomposition

Hk(V ;C) =
⊕

p+q=k

Hp,q(V ), and Hp,q(V ) = Hq,p(V ).

Remark 1.3. (i) The conditions that the Hodge-de Rham spectral sequence
for V degenerates at E1 and that, for all k, the filtrations F • and F

• are
k-opposed are both open conditions. Hence the condition that the ∂∂̄-lemma
holds for V is an open condition.

(ii) Let V be a compact complex manifold for which the ∂∂̄-lemma holds.
It does not seem to be clear if this property is inherited by a closed holomor-
phic submanifold Z. However, if Z is a closed holomorphic submanifold of V
and the ∂∂̄-lemma holds for Z, then it is easy to see that the inclusion and
the Gysin homomorphism are morphisms of Hodge structures. More gener-
ally if Z is a compact complex manifold such that the ∂∂̄-lemma holds for
Z, and f : Z → V is a holomorphic map, then f∗ and f∗ are morphisms of
Hodge structures (with the appropriate shift in the case of f∗ or the Gysin
homomorphism). This follows since clearly f∗Hp,q(V ) ⊆ Hp,q(Z) and because
the Poincaré duality isomorphism

(Hk(V ;Q))∗ ∼= H2n−k(V ;Q) ⊗Q(n)

is an isomorphism of Hodge structures.
(iii) Let V be a compact complex manifold for which the ∂∂̄-lemma holds,

and let Z be a submanifold of V for which the ∂∂̄-lemma also holds. If ρ : Ṽ →
V is the blowup of V along Z, then the ∂∂̄-lemma holds for Ṽ . There have
been a number of recent preprints which address this issue [19], [1], [22]. The
main point is to show that the Hodge-de Rham spectral sequence degenerates
at the E1 page. This can be done by an examination of the Leray spectral
sequence Ep,q

2 = Hp(V ;Rqρ∗Ωk

Ṽ
) =⇒ Hp+q(Ṽ ; Ωk

Ṽ
) and the well-known

computation of the Betti numbers of Ṽ . In fact, the Leray spectral sequence
above additionally degenerates at the E2 page. The above results then follow
easily from a computation due to Gros [13, IV Théorème 1.2.1]; compare also
[14, Proposition (3.3)].

Lemma 1.4. Let V be a compact complex manifold of dimension d for which
the Hodge-de Rham spectral sequence degenerates at E1 and let F • be the
corresponding filtration on Hd(V ;C). Then F • is isotropic for cup product,
in the sense that, for all k, (F k)⊥ = F d−k+1.
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Proof. First, we claim that F d−k+1 ⊆ (F k)⊥. Every element of F k has a de
Rham representative η with dη = 0 and

η =
∑
�≥k

η�,d−�, η�,d−� ∈ A�,d−�(V ),

and similarly for elements of F d−k+1. Thus, if ξ ∈ F k and ξ′ ∈ F d−k+1,
then ξ � ξ′ has a de Rham representative which is a sum of forms of type
(d + a, d− a), a ≥ 1, and hence is 0, so that ξ � ξ′ = 0.

Since V has dimension d, Kodaira-Serre duality implies that

dimH i(V ; Ωd−i
V ) = dimHd−i(V ; Ωi

V ).

It is then easy to see that F d−k+1 and (F k)⊥ have the same dimension. Since
F d−k+1 ⊆ (F k)⊥, we must have F d−k+1 = (F k)⊥.

Lemma 1.5. Let V be a compact complex manifold of dimension d for which
the Hodge-de Rham spectral sequence degenerates at E1. Then the natural
map

F 1 ⊕ F
d → Hd(V ;C)

is an isomorphism, and hence so is the map F d ⊕ F
1 → Hd(V ;C).

Proof. Since the codimension of F 1 in Hd(V ;C) is the dimension of F d, it
suffices to show that F 1∩F d = 0. Let ω be a holomorphic d-form and suppose
that ω̄ ∈ F 1. By Lemma 1.4, F 1 = (F d)⊥ and hence

∫
V
ω ∧ ω̄ = 0. It follows

that ω = ω̄ = 0, and hence that F 1 ∩ F
d = 0 as claimed.

Let X be a compact complex manifold of dimension three for which
the Hodge-de Rham spectral sequence degenerates at E1 and let F • be
the corresponding filtration on H3(X;C). Suppose that that H i(X;OX) =
H0(X; Ωi

X) = 0 for i = 1, 2. It follows that, for n odd, n �= 3, Hn(X;C) = 0,
and for n = 2k even, the filtration F • on H2k(X;C) satisfies: F pH2k(X;C) =
0, p > k, and F pH2k(X;C) = H2k(X;C), p ≤ k. Thus trivially the filtrations
F • and F

• are 2k-opposed and induce a Hodge structure on H2k(X;C) for
which H2k(X;C) = Hk,k(X).

Corollary 1.6. Let X be a compact complex manifold of dimension 3 for
which the Hodge-de Rham spectral sequence degenerates at E1 and let F •

be the corresponding filtration on H3(X;C). Suppose that H i(X;OX) =
H0(X; Ωi

X) = 0 for i = 1, 2. Then the ∂∂̄-lemma holds for X ⇐⇒
H3(X;C) ∼= F 2 ⊕ F

2.
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2. The limiting mixed Hodge structure

2.1. Notation

We fix the following notation for the rest of this section: Let X0 be a compact
complex manifold of dimension 3 with trivial canonical bundle for which the
∂∂̄-lemma holds. We assume further that H i(X0;OX0) = H0(X0; Ωi

X0
) =

0 for i = 1, 2. By the Tian-Todorov theorem, the Kuranishi deformation
space for X0 can be identified with the germ of the origin in H1(X0;TX0) ∼=
H1(X0; Ω2

X0
), and is thus a smooth germ of dimension h, where

h = h2,1(X0) = dimH1(X0; Ω2
X0).

Let C1, . . . , Cr be disjoint smooth curves in X0 such that, for all i, Ci
∼= P1

and the normal bundle NCi/X0
∼= OP1(−1)⊕OP1(−1), i.e. is of type (−1,−1).

The Ci can be contracted in X0 to points pi, yielding a singular compact
threefold X0. We assume that the cohomology classes [Ci] of the Ci satisfy a
linear relation in H4(X0;C) of the form

r∑
i=1

mi[Ci] = 0,mi ∈ Q,

where mi �= 0 for every i, and that the [Ci] span a subspace of H4(X0;C) of
dimension r−1, so that no r−1 of the [Ci] are linearly dependent. Note that
we can and shall consider the case r = 1, in which case the above assumption
is simply that [C1] = 0 in H4(X0;C).

2.2. The deformation space

To analyze the deformation theory of X0, let Ti
X0

= Exti(Ω1
X0

,OX0
) be the

objects of Lichtenbaum-Schlessinger theory. Then by [9, Theorem 4.4], there
is an exact sequence

0 → H1(X0;T 0
X0

) → T1
X0

→ C → 0,

where the last term C is identified with the kernel of the fundamental class
map ⊕

i

C[Ci] → H4(X0;C) = H2(X0; Ω2
X0),

T 0
X0

is the tangent sheaf of X0, and H1(X0;T 0
X0

) ∼= H1(X0;TX0) by [9, (3.4)]
and the following remarks.
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The space X0 is smoothable. More precisely, there is the following result
due independently to Tian [23], Kawamata [15], and Ran [18]:

Theorem 2.1. The locally semi-universal deformation space for X0 can be
identified with the germ of the origin in T1

X0
, and thus is a smooth germ of di-

mension h+1. Moreover, the germ of the hyperplane H1(X0;T 0
X0

) corresponds
to locally trivial deformations of X0, which are identified with deformations
of X0. The points lying over the (germ of) T1

X0
− H1(X0;T 0

X0
) are smooth

compact complex manifolds of dimension 3 with trivial canonical bundle.

Remark 2.2. Tian proves the theorem under the assumption that the ∂∂̄-
lemma holds for X0. Kawamata’s result is stated under the hypothesis that
X0 is projective, but the proof seems to work in much greater generality.
Ran’s proof apparently only uses the degeneration of the Hodge-de Rham
spectral sequence for X0. If we make the very stringent assumption that the
classes [Ci] span H2(X0; Ω2

X0
) (the main case of interest in this paper), then

the above theorem is proved in [9], assuming only that KX0
∼= OX0 .

Remark 2.3. In what follows, to simplify notation, we will use the fact that
it is possible to smooth “one dimension at a time.” More precisely, suppose
that the Ci are smooth rational curves of the type considered, but without
the assumption that no r − 1 of the classes Ci are linearly dependent. We
can then reorder the Ci so that no s − 1 of the classes [C1], . . . , [Cs] are
linearly independent and that [C1], . . . , [Cs] are linearly dependent. Let X1
be a general smooth threefold which is a small smoothing of the singular
threefold X ′

0 with double points obtained by contracting C1, . . . , Cs. Then
KX1 is trivial and (as we shall show) satisfies the ∂∂̄-lemma. The classes
Cs+1, . . . , Cr then deform to curves in X1, satisfying a linear relation with
nonzero coefficients, and we can then repeat the construction.

2.3. A normal crossings model

We turn next to semistable models for the deformations of X0. Let X̃0 be the
blowup of X0 at the double points, or equivalently of X0 along the curves Ci.
By Remark 1.3(iii), X̃0 also satisfies the ∂∂̄-lemma (as is easy to check directly
in this special case). Moreover one easily checks that H3(X̃0) ∼= H3(X0) is
an isomorphism of Hodge structures. The exceptional divisors Qi over pi,
or Ci, are smooth quadrics. Thus Qi

∼= P1 × P1 and the normal bundle
N

Qi/X̃0
of Qi in X̃0 is OQi(−1,−1) (using the standard notation for line

bundles on Qi). For each i, let Ei be a smooth quadric threefold in P4 and
identify Qi with a smooth hyperplane section of Ei, also denoted Qi, by some
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choice of isomorphism. (Since every element in the neutral component of the
automorphism group of Qi is induced by restriction from an automorphism
of Ei, the choice of an isomorphism is irrelevant.) Thus NQi/Ei

∼= OQi(1, 1).
Let Ỹ0 = X̃0 �

∐
i Ei and let

Y0 = X̃0 �
∐
i

Ei/ ∼ ,

where the equivalence relation ∼ means that we glue Qi ⊆ Ei to Qi ⊆ X̃0
by the choice of an isomorphism above. Note that Y0 is in the natural way
a d-semistable variety with normal crossings in the sense of [8, (1.13)]. Let
ν : Ỹ0 → Y0 be the normalization morphism. We can exhibit a model for the
smoothings of Y0 as follows. Let π̄ : X → S be the germ of the locally semi-
universal deformation of X0, where we can identify S with the germ about the
origin in TX0

. Let S → S be the double cover of S branched along the smooth
hypersurface S ∩ H1(X0;T 0

X0
) and let Y → S be the pulled back family. If

D is the ramification divisor of the cover S → S or equivalently the inverse
image of H1(X0;T 0

X0
) in S, then D is the discriminant locus of π̄, the fibers of

Y over D have r ordinary double points corresponding to the singular points
and the singularities of the total space Y are locally analytically isomorphic to
products of ordinary double points of dimension 4 with D. Blowing up these
singular points gives a proper flat morphism π : Y → S, where Y is smooth,
the discriminant locus of π is D, and the fibers of π over D are locally trivial
deformations of the normal crossings varieties Y0 described above (and hence
also have normal crossings). Let YD = π−1(D). Thus YD is a divisor with
normal crossings in Y . For s /∈ D, the fiber Ys of π is identified with the
corresponding smooth fiber Xs̄ of π̄, where s̄ ∈ S is the point lying under s.

2.4. A mixed Hodge structure on Y0

By convention, all cohomology is with C-coefficients unless otherwise speci-
fied. We have the Mayer-Vietoris sequence for Y0:

0 → CY0 → ν∗CỸ0
→

⊕
i

(ji)∗CQi → 0,

where ji : Qi → Y0 is the inclusion. Using the fact that H1(Qi) = H3(Qi) = 0,
we get an exact sequence

0 → H2(Y0) → H2(X̃0) ⊕
⊕
i

H2(Ei) →
⊕
i

H2(Qi) →

→ H3(Y0) → H3(X̃0) = H3(X0) → 0.
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If b = dimH2(X0) is the second Betti number b2(X0), then the second Betti
number b2(X̃0) of X̃0 is b + r and hence dimH2(X̃0) ⊕

⊕
i H

2(Ei) = b + 2r.
Moreover,

⊕
iH

2(Qi) ∼= C2r. In fact, H2(Qi) ∼= C[σi] ⊕ C[fi], where fi is a
fiber of the morphism Qi → Ci, and σi is a fiber of the “other ruling” on
Qi

∼= P1 × P1. Then, taking the positive generator [Qi] of H2(Ei), the ho-
momorphism H2(Ei) → H2(Qi) sends [Qi] to [σi] + [fi]. The homomorphism
H2(X̃0) → H2(Qi) sends [Qi] to −[σi] − [fi] and sends a class of the form
ρ∗ξ, where ρ : X̃0 → X0 is the blowup morphism, to (ξ · [Ci])[fi]. A brief
computation shows the following:

Proposition 2.4. (i) Let W2 be the image of
⊕

iH
2(Qi) in H3(Y0) = W3.

Then W2 has rank one and W3/W2 ∼= H3(X0).
(ii) H1(Y0) = H5(Y0) = 0.
(iii) H2(Y0) has dimension b+ 1, and is isomorphic to the following sub-

group of H2(X̃0) ⊕
⊕

iH
2(Ei){

ρ∗ξ +
∑
i

aiq
′
i +

∑
i

biq
′′
i : ai = bi and ξ · [Ci] = 0 for all i

}
,

where q′i is the class of Qi in H2(X̃0) and q′′i is the class of Qi in H2(Ei).
(iv) H4(Y0) ∼= H4(X0) ⊕ Cr has dimension b + r.

Part (i) of Proposition 2.4 gives a weight filtration on H3(Y0), defined
over Q, with W1 = 0. There are also trivial (increasing) filtrations on Hk(Y0)
for k �= 3: take W� = Hk(Y0) for � ≥ k and W� = 0 for � < k. To construct
a Hodge filtration, we can use the complex Ω•

Y0
/τ •Y0

of [8, (1.5)], where Ω1
Y0

is
the sheaf of Kähler differentials on Y0, Ω•

Y0
=

∧• Ω1
Y0

, and τ •Y0
is the subcom-

plex of “torsion differentials,” i.e. those supported on (Y0)sing. By [8, (1.5)],
(Ω•

Y0
/τ •Y0

, d) is a resolution of the constant sheaf CY0 , and there is an exact
sequence

0 → Ω•
Y0/τ

•
Y0 → ν∗Ω•

Ỹ0
→

⊕
i

(ji)∗Ω•
Qi

→ 0.

Taking hypercohomology gives the Mayer-Vietoris sequence above.

Theorem 2.5. The spectral sequence with E1 page

Ep,q
1 = Hq(Y0; Ωp

Y0
/τpY0

) =⇒ Hp+q(Y0; Ω•
Y0/τ

•
Y0) = Hp+q(Y0)

degenerates at E1. The corresponding filtration F • on Hk(Y0), together with
the weight filtration W•, give a mixed Hodge structure on Hn(Y0), which is
pure for n �= 3. More precisely,
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(i) Hn(Y0) = 0 for n = 1, 5;
(ii) For n = 2k, the mixed Hodge structure on H2k(Y0) is a pure Hodge

structure and H2k(Y0) = Hk,k(Y0);
(iii) As mixed Hodge structures over Q, H3(Y0) is an extension of the pure

Hodge structure H3(X0) by a pure weight two piece ∼= Q(−1).

Proof. Although we have not necessarily assumed that X0 is Kähler, its coho-
mology satisfies the ∂∂̄-lemma and the same is true for the projective varieties
Ei and Qi. Thus all of the terms in the Mayer-Vietoris sequence carry pure
Hodge structures and the morphisms are morphisms of Hodge structures.
Then the method of proof of [12, (4.2)] shows that there is a mixed Hodge
structure on Hn(Y0), and the usual arguments with mixed Hodge complexes
([5, (8.1.9)] or [17, Theorem 3.18]) show that the above spectral sequence
degenerates at E1.

The other statements are proved by explicit calculation. Starting with
OY0 , we have the usual resolution

0 → OY0 → ν∗(OX̃0
⊕

⊕
i

OEi) →
⊕
i

(ji)∗OQi → 0.

It follows that H0(Y0;OY0) ∼= C, H3(Y0;OY0) ∼= H3(X0;OX0) ∼= C, and
Hk(Y0;OY0) = 0, k �= 0, 3. As for Ω1

Y0
/τ 1

Y0
, beginning with the exact sequence

0 → Ω1
Y0/τ

1
Y0 → ν∗Ω1

Ỹ0
→

⊕
i

(ji)∗Ω1
Qi

→ 0,

we see that H0(Y0; Ω1
Y0
/τ 1

Y0
) = H3(Y0; Ω1

Y0
/τ 1

Y0
) = 0, that H1(Y0; Ω1

Y0
/τ 1

Y0
) ∼=

H2(Y0) and that there is an exact sequence

0 → C → H2(Y0; Ω1
Y0/τ

1
Y0) → H2(X0; Ω1

X0) → 0.

The cases Hq(Y0; Ωp
Y0
/τpY0

), p = 2, 3 are analyzed in a similar way. We remark
that, by directly checking all possible cases for all k, it follows that∑

p+q=k

dimHq(Y0; Ωp
Y0
/τpY0

) = dimHk(Y0).

Thus we see again that the spectral sequence degenerates at E1.
The remaining statements also follow by inspection, using the compati-

bility of the above exact sequences with the Mayer-Vietoris exact sequence.
For example, for the Hodge and weight filtrations on H3, there is a surjection
from

⊕
i F

2H2(Qi) = 0 to F 2 ∩ W2, so that F 2 ∩ W2 = 0, and similarly
F 1 ∩W2 = W2, i.e. W2 is pure of type (1, 1).
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2.5. The limiting mixed Hodge structure

We begin by constructing the relative log complex. Recall that S is the base
of the deformation Y of Y0, with discriminant locus D, and that YD → D
is the locally trivial part of the deformation of Y0. After shrinking, we will
assume that S is a polydisk Δh+1 and that D is the divisor Δh × {0}. Let
S∗ = Δh ×Δ∗, where Δ∗ is the punctured unit disk, and let π∗ : Y∗ → S∗ be
the restriction of π to S∗. Thus Rn(π∗)∗C = Hn is a local system over S∗.

Define the sheaf Ω1
Y/S(logYD) by the exact sequence

0 → π∗Ω1
S(logD) → Ω1

Y(logYD) → Ω1
Y/S(logYD) → 0.

It is a locally free sheaf of rank 3. Define the relative log complex via

Ω•
Y/S(logYD) =

•∧
Ω1

Y/S(logYD),

with the usual differential. For a fiber Ys, s /∈ D, Ω•
Y/S(logYD)|Ys

∼= Ω•
Ys

.
For the singular fiber Y0, we set Λ•

Y0
= Ω•

Y/S(logYD)|Y0. The complex
Ω•

Y/S(logYD) is the relative log complex of Deligne-Steenbrink with extra pa-
rameters coming from the locally trivial deformations of Y0. In fact, if Δ → S
is a morphism of the disk to S, transverse to the discriminant locus D, then
the pullback of Ω•

Y/S(logYD) to Δ is the usual one parameter relative log
complex. The arguments of [21] or [17, Corollary 11.18] show:

Theorem 2.6. The hypercohomology Hn(Y0; Λ•
Y0

) is isomorphic to the coho-
mology Hn(Y∗ ×S∗ S̃∗;C), where S̃∗ = Δh × Δ̃∗ is the universal cover of S∗.
(Here Δ̃∗ ∼= H is the universal cover of Δ∗.) The sheaf

Hn = Rnπ∗Ω•
Y/S(logYD)

is locally free and satisfies: Hn|S∗ is the holomorphic flat vector bundle Hn =
Hn ⊗C OS∗ , and Hn is Deligne’s canonical extension of Hn.

The arguments of [17, Theorem 11.22 and Corollaries 11.23 and 11.24] as
well as the method of proof of Theorem 2.5 then show:

Theorem 2.7. (i) Denote

Hn(Y0; Λ•
Y0) ∼= Hn(Y∗ ×S∗ S̃∗;C)

by Hn
lim. Then there is a mixed Hodge structure on Hn

lim, the limiting mixed
Hodge structure, some of whose properties we recall below.
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(ii) The spectral sequence with E1 page

Ep,q
1 = Hq(Y0; Λp

Y0
) =⇒ Hp+q(Y0; Λ•

Y0) = Hp+q
lim

degenerates at E1 and the corresponding filtration on Hp+q
lim is the Hodge fil-

tration.
(iii) Possibly after shrinking S, the spectral sequence of coherent sheaves

on S whose E1 page is

Ep,q
1 = Rqπ∗Ωp

Y/S(logYD) =⇒ Rp+qπ∗Ω•
Y/S(logYD) = Hp+q

degenerates at E1. Thus, for t ∈ S∗, the Hodge-de Rham spectral sequence
for Yt degenerates at E1. Moreover, the sheaves Rqπ∗Ωp

Y/S(logYD) are locally
free.

In particular, there is a filtration of Hn by holomorphic subbundles F •,
which we will somewhat inaccurately call the Hodge filtration. It follows from
Lemma 1.4 that, for n = 3, this filtration is isotropic over S∗ (and in fact
over S).

2.6. The monodromy weight filtration

There is an increasing filtration V• on the complex Λ•
Y0

. Because Y0 consists
of smooth components meeting transversally along smooth divisors, it takes
the following simple form

0 → V0 → V1 = Λ•
Y0 → V1/V0 → 0.

Here V0 ∼= Ω•
Y0
/τ •Y0

and V1/V0 ∼=
⊕

i(ji)∗Ω•−1
Qi

, by [8, (3.5)] or [17, 11.2.5]. By
[17, Theorem 11.29] (and the discussion prior to the statement), we have
Theorem 2.8. The homomorphism

Hn(Y0; Ω•
Y0/τ

•
Y0) → Hn(Y0; Λ•

Y0)

is the specialization homomorphism Hn(Y0;C) → Hn
lim, and it is a morphism

of mixed Hodge structures.
Consider now the long exact sequence associated to the short exact se-

quence 0 → V0 → V1 → V1/V0 → 0. In particular, we get the two exact
sequences of mixed Hodge structures (all groups with C-coefficients)

0 → H1(Y0) → H1
lim →

⊕
i

H0(Qi)(−1) → H2(Y0) → H2
lim → 0
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and

0 → H3(Y0) → H3
lim →

⊕
i

H2(Qi)(−1) → H4(Y0) → H4
lim → 0.

The map
⊕

iH
0(Qi)(−1) → H2(Y0) is injective, since the composite map⊕

i

H0(Qi)(−1) → H2(Y0) → H2(X̃0) ⊕
⊕
i

H2(Ei)

is injective (it restricts to the Gysin map H0(Qi)(−1) → H2(Ei) on each
summand). Thus H2

lim has dimension b − r + 1, and the same must be true
for H4

lim. Then, since H4(Y0) has dimension b + r and the dimension of H4
lim

is b − r + 1, the image of
⊕

iH
2(Qi)(−1) in H4(Y0) has dimension 2r − 1

and hence the kernel of this map has dimension one. Explicitly, it is easy to
check that the kernel of

⊕
iH

2(Qi)(−1) → H4(Y0) ⊆ H4(X̃0) ⊕
⊕

iH
4(Ei)

is identified with{
(m1([σ1] − [f1]), . . . ,mr([σr] − [fr])) :

∑
i

mi[Ci] = 0
}
.

Summarizing,

Theorem 2.9. (i) H1
lim = H5

lim = 0.
(ii) H2

lim and H4
lim are pure of weights two and four respectively and di-

mension b− r + 1, with H2
lim = H1,1

lim and H4
lim = H2,2

lim.
(iii) There is an exact sequence of mixed Hodge structures

0 → H3(Y0) → H3
lim → Q(−2) → 0.

Thus the weight filtration on H3
lim is given by

0 ⊆ W2 ⊆ W3 ⊆ W4 = H3
lim,

where W3 = H3(Y0), W3/W2 ∼= H3(X0), W2 ∼= Q(−1) and W4/W3 ∼= Q(−2).

Remark 2.10. (1) Somewhat more general formulas for b2(Ys) and b3(Ys)
are given in [10, Lemma 8.1] by comparing the Mayer-Vietoris sequences for
X0 and Xt.

(2) In our main case of interest, the classes [Ci] span H2(X0) and satisfy
one linear relation. Hence b = r−1 and thus H2

lim = 0, i.e. H2(Yt;Z) is torsion
for t /∈ D.
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An easy argument using Theorem 2.7 then shows:

Corollary 2.11. If Ys is a small smoothing of Y0, then H i(Ys;OYs) =
H0(Ys; Ωi

Ys
) = 0 for i = 1, 2.

We relate the weight filtration to the monodromy filtration on H3 as
follows. Let T be the monodromy of the family acting on H3 and let N = T−I.
Thus N is a nilpotent matrix, and in fact N2 = 0. More precisely,

Theorem 2.12. KerN = W3 = ImH3(Y0) and ImN = W2.

Proof. By general theory [17, Theorem 11.28], N is a morphism of mixed
Hodge structures of type (−1,−1), and hence W3 ⊆ KerN and ImN ⊆
W2. Thus N induces a homomorphism of one dimensional Q-vector spaces
W4/W3 → W2. To see the statement of the theorem, it therefore suffices to
prove that N �= 0, or equivalently that T �= I. This follows from Picard-
Lefschetz theory: associated to each double point pi, is a vanishing cycle
ξi, viewed as an element of cohomology. By assumption, there exists a ξ ∈
H3(Yt;Z) of infinite order such that each ξi is a multiple riξ of ξ and the
Q-span of the ξi is equal to Q · ξ, so that not all of the ri can be 0. By the
Picard-Lefschetz formula,

T (α) = α +
∑
i

2〈α, ξi〉ξi = α +
(∑

i

2r2
i

)
〈α, ξ〉ξ,

where the 2 reflects the base change of order 2 in the passage from deforma-
tions of X0 to deformations of the semistable model Y0. Thus there exists a
positive rational number r such that

T (α) = α + r〈α, ξ〉ξ

and so T �= I.
We can give a direct argument that N : W4/W3 → W2 is an isomorphism

as follows. The action of N on the graded pieces W4/W3 → W2 is calculated
in [17, 11.2.5], and one checks (cf. [17, §11.3]) that it is the homomorphism
(induced by ± Id :

⊕
iH

2(Qi) →
⊕

iH
2(Qi)):

Ker
(⊕

i

H2(Qi) → H4(X̃0) ⊕
⊕
i

H4(Ei)
)

→ Coker
(
H2(X̃0) ⊕

⊕
i

H2(Ei) →
⊕
i

H2(Qi)
)
.
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To see that N : W4/W3 → W2 is an isomorphism, using the comments before
Proposition 2.4 and Theorem 2.9, it suffices to show that, if (m1, . . . ,mr) ∈ Qr

is a nonzero vector such that
∑

imi[Ci] = 0 in H4(X0), then (m1, . . . ,mr) is
not in the subspace

I = {((ξ · [C1]), . . . , (ξ · [Cr]) : ξ ∈ H2(X0)}.

But (m1, . . . ,mr) is orthogonal to I under the standard inner product on Qr,
so that (m1, . . . ,mr) ∈ I =⇒ (m1, . . . ,mr) = 0.

Proposition 2.13. With the alternating nondegenerate pairing 〈·, ·〉 on
H3

lim
∼= H3(Yt), W⊥

2 = W3. Hence, if ξ is a generator for W2 and η gen-
erates W4/W3, then 〈ξ, η〉 �= 0.
Proof. The first statement is clear since N(α) = r〈α, ξ〉ξ, with ξ �= 0, so that
ImN = C · ξ and KerN = ξ⊥. (It also follows from the fact that 〈N(α), β〉 =
−〈α,N(β)〉.) The final statement follows because 〈·, ·〉 is nondegenerate.

2.7. The differential of the period map

The flat vector bundle H3 has an integrable connection ∇ and a decreasing
filtration F • by holomorphic subbundles. Moreover, for every s ∈ S∗, the
associated graded

F p
s /F

p+1
s

∼= H3−p(Ys; Ωp
Ys

).
In any small simply connected open subset U of S∗, or on the universal cover
S̃∗, the restriction or pullback of H3 is canonically trivialized by ∇. Given
such a trivialization, we define the period map on U to be the holomorphic
map from U to an appropriate flag manifold defined by sending s ∈ U to
the subspaces F p

s of H3(Ys). By openness of versality, the tangent space to
S∗ at s is identified with H1(Ys;TYs); more precisely, the Kodaira-Spencer
map TS∗,s → H1(Ys;TYs) is an isomorphism. The standard arguments in the
Kähler case (see e.g. [3, Proposition 7.7]) show that the differential of the
period map is computed at the point s via the natural homomorphism

H1(Ys;TYs) →
⊕
p

Hom(H3−p(Ys; Ωp
Ys

), H3−p+1(Ys; Ωp−1
Ys

))

given by cup product and contraction. A similar statement holds globally: the
differential of the period map is given by the homomorphism induced by cup
product:

R1π∗TY∗/S∗ →
⊕
p

Hom(R3−pπ∗Ωp
Y∗/S∗ , R

3−p+1π∗Ωp−1
Y∗/S∗).
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Since Ω3
Yt

∼= OYt , the cup product homomorphism

H1(Yt;TYt) → Hom(H0(Yt; Ω3
Yt

), H1(Yt; Ω2
Yt

)) ∼= H1(Yt; Ω2
Yt

)

is an isomorphism. Similarly, after trivializing the line bundle R0π∗Ω3
Y∗/S∗ , i.e.

after choosing an everywhere generating section of Ω3
Y∗/S∗ , the cup product

homomorphism

R1π∗TY∗/S∗ → Hom(R0π∗Ω3
Y∗/S∗ , R1π∗Ω2

Y∗/S∗) ∼= R1π∗Ω2
Y∗/S∗

is an isomorphism.

3. The variational argument

3.1. The basic setup

We begin by abstracting the situation of §2. Let H be a vector space with a
nondegenerate alternating bilinear form 〈·, ·〉 and a standard symplectic basis
e0, . . . , eh+1, f0, . . . , fh+1 (i.e. 〈ei, fj〉 = δij , and 〈ei, ej〉 = 〈fi, fj〉 = 0 for all
i, j). We assume that H is in fact defined over Q, i.e. is the complexification of
a Q-vector space HQ, and that the above basis is a Q-basis. In particular, H is
defined over R so that complex conjugation is defined on H. Let N : H → H
be the rational linear map defined by: N(ei) = 0 for all i, N(fi) = 0 for
i �= h + 1, and N(fh+1) = eh+1. Then

〈N(α), β〉 + 〈α,N(β)〉 = 0

for all α, β ∈ H. Define

W2 = Ceh+1 ⊆ W3 = span {e0, . . . , eh+1, f0, . . . , fh} ⊆ W4 = H.

Let S = Δh × Δ, with coordinates t1, . . . , th, q, let S∗ = Δh × Δ∗ ⊆ S,
and let D = Δh × {0}. We shall abbreviate (t1, . . . , th, q) by (t, q). Write
q = e2π

√
−1z, where z is the usual coordinate on the upper half plane H = Δ̃∗;

equivalently,

z = log q
2π

√
−1

.

Let ϕ : S̃∗ = Δh × H → S∗ be the universal cover map. Setting T = expN
defines an action of π1(S∗) ∼= Z on H, where 1 acts as T , and hence a local
system H over S∗. Let H = H ⊗C OS∗ be the corresponding holomorphic
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vector bundle over S∗ and H the canonical extension of H to S. By [3], we
can take H ∼= H ⊗C OS , the trivial holomorphic vector bundle over S with
fiber H, with the meromorphic connection ∇ whose associated connection
1-form is − N

2π
√
−1

dq

q
. The bundle ϕ∗H is trivialized by ∇ and the fiber at

any point of S̃∗ is identified with H. The fiber of H at any point is identified
with H modulo the action of {T k = exp(kN) : k ∈ Z}. The fiber of H
over 0 ∈ D is identified with H up to the action of the unipotent group
{exp(λN) : λ ∈ C}. The local flat sections of H over S∗ are then sections
locally of the form exp(zN)v, where v ∈ H. A holomorphic section σ of H,
viewed as a holomorphic section σ of the trivial bundle ϕ∗H ∼= H ⊗C O

S̃∗

with the invariance property σ(t, z + 1) = Tσ(t, z), extends to a holomorphic
section of H if and only if the section exp(−zN)ϕ∗σ, viewed as a holomorphic
section of ϕ∗H, extends to a single-valued holomorphic function from S to H.
Given a holomorphic section σ of H, we denote ∇∂/∂tiσ by ∂σ

∂ti
, and similarly

for the coordinate q.
Finally, we are given a filtration of H by holomorphic subbundles F •. It

satisfies:

(i) F 3 is a line bundle, hence F 3 = OS · ω̃(t, q) for some nowhere vanishing
holomorphic function ω̃(t, q) with values in H.

(ii) Over S∗, a basis for F 2|S∗ is given by

ω̃,
∂ω̃

∂t1
, . . . ,

∂ω̃

∂th
,
∂ω̃

∂q
.

We can also replace the last term ∂ω̃

∂q
by ∂ω̃

∂z
on ϕ∗H, since

1
2π

√
−1

∂

∂z
= q

∂

∂q
.

(iii) (First Hodge-Riemann bilinear relation) With respect to the form 〈·, ·〉,
(F 3)⊥ = F 1 and (F 2)⊥ = F 2, so that F 2 is a maximal isotropic sub-
bundle.

(iv) For s ∈ D = Δh×{0}, the filtrations F •
s and W• define a mixed Hodge

structure on H, with W2 ∼= Q(−1), W4/W3 ∼= Q(−2), and W3/W2 is
a pure weight three Hodge structure with h3,0 = h0,3 = 1, and hence
h2,1 = h1,2 = h.

As a consequence, we record the following facts:



1018 Robert Friedman

Lemma 3.1. Under the above assumptions,

(i) The subbundle F 2 has rank h + 2.
(ii) For s ∈ D, F 3

s ⊆ W3 and F 2
s + W3 = W4. Equivalently, there exists

a v ∈ F 2
s such that, writing v as a linear combination of the ei, fi, the

coefficient of fh+1 in v is 1.
(iii) For s ∈ D, F 2

s ∩W2 = 0.

3.2. The bundle H#

By the above, eh+1 defines a global holomorphic section of H and of H.
We define H# = (eh+1)⊥/OS · eh+1. It is a flat vector bundle canonically
isomorphic to H# ⊗C OS , where

H# = (eh+1)⊥/C · eh+1 = W3/W2.

Here we take (eh+1)⊥ inside the vector space H, not the holomorphic bundle
H. For each s ∈ D, the filtration F •

s induces a pure weight three Hodge
structure on H#. The bundle H# has rank 2h + 2. There is an induced
nondegenerate alternating bilinear form 〈·, ·〉 on H# and on H#.

Define F 2
# to be the image of F 2 ∩ (eh+1)⊥ in H#.

Lemma 3.2. Possibly after shrinking S, F 2
# is a holomorphic isotropic sub-

bundle of H# of rank h + 1, and, as C∞ bundles, F 2
# ⊕ F

2
#
∼= H# ⊗C C∞

S .

Proof. By (ii) of Lemma 3.1, for all s ∈ D, 〈eh+1, F
2
s 〉 �= 0. Thus, possibly

after shrinking S, we can assume that F 2∩(eh+1)⊥ is a holomorphic subbundle
of H of rank h + 1. By (iii) of Lemma 3.1, for all s ∈ D, F 2

s ∩ C · eh+1 = 0.
Thus, again possibly after shrinking S, we can assume that the projection
F 2 ∩ (eh+1)⊥ → H# is injective and of maximal rank at every point of S. It
follows that F 2

# is a holomorphic subbundle of H# of rank h + 1, and it is
isotropic (i.e. 〈F 2

#, F
2
#〉 = 0) because F 2 is isotropic.

Finally, for s ∈ D, (F 2
#)s ⊕ (F 2

#)s ∼= H# because, for each s ∈ S, H#
carries a weight 3 Hodge structure for which (F 2

#)s is the corresponding piece
of the Hodge filtration. After shrinking S, we can assume that, for all s ∈ S,
(F 2

#)s ⊕ (F 2
#)s ∼= H#. Hence F 2

# ⊕ F
2
#
∼= H# ⊗C C∞

S .

3.3. Normalizing the holomorphic form

Begin by choosing an arbitrary holomorphic, nowhere vanishing section
ω̃ of the line bundle F 3. We can write (using the basis of flat sections
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e0, . . . , eh+1, f0, . . . , fh+1 of ϕ∗H)

ϕ∗ω̃(t, z) =
h+1∑
i=0

Ãiei +
h+1∑
i=0

B̃ifi,

where the Ãi, B̃i are holomorphic in t1, . . . , th, z. The invariance property,
that ω̃ defines a holomorphic section of H, implies that Ã0, . . . , Ãh and
B̃0, . . . , B̃h+1 are holomorphic functions of t and q on S, and

Ãh+1 = C(t, q) + zB̃h+1(t, q),

where C(t, q) is a holomorphic function of t and q on S. Equivalently, viewed
as a holomorphic section of the bundle H ∼= H ⊗C OS ,

ω̃(t, z) =
h∑

i=0
Ãiei + Ceh+1 +

h+1∑
i=0

B̃ifi.

In the limit (i.e. for s ∈ D), F 3
s ⊆ W3 and hence B̃h+1(t, 0) = 0. Nonethe-

less:

Lemma 3.3. The coefficient B̃h+1 is not identically 0.

Proof. Suppose instead that B̃h+1 is identically 0, so that ω̃ lies in the (flat)
subbundle (eh+1)⊥ of H. Then, over S∗, the sections

ω̃,
∂ω̃

∂t1
, . . . ,

∂ω̃

∂th
,
∂ω̃

∂q

all lie in (eh+1)⊥. It follows that F 2|S∗ lies in (eh+1)⊥, and hence so does F 2.
But this contradicts (ii) of Lemma 3.1.

We define the normalized meromorphic section ω of F 3 by dividing ω̃ by
B̃h+1. Thus ω = (B̃h+1)−1ω̃ and

ϕ∗ω =
h∑

i=0
Aiei + (A′ + z)eh+1 +

h∑
i=0

Bifi + fh+1,

where Ai, Bi, and A′ are meromorphic functions of t and q on S. We write
this as

ϕ∗ω = ψ + zeh+1.
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Henceforth we shall ignore the ϕ∗ and view ω and its derivatives as mero-
morphic functions either on S̃∗ or on S∗. Note that

∂ω

∂ti
= (B̃h+1)−1 ∂ω̃

∂ti
+ ∂

∂ti
(B̃h+1)−1 · ω̃,

and similarly for the partial derivatives with respect to q or z. Thus, over the
nonempty open subset of S∗ where B̃h+1 �= 0, the span of ω and its derivatives
with respect to t1, . . . , th, q, or equivalently with respect to t1, . . . , th, z, is the
holomorphic subbundle F 2.

3.4. The main calculation

First, a preliminary definition:
Definition 3.4. A real meromorphic function on S is an element of the field
of quotients K(S) of the ring of (complex valued) real analytic functions on
S (which is an integral domain). A nonzero real meromorphic function on S
is defined and real analytic on an open dense subset of S. Real meromorphic
functions on S∗ are defined similarly, and we let K(S∗) be the field of all such.
In particular K(S) is a subfield of K(S∗).

The function log |q| is real analytic on S∗, hence is an element of K(S∗).
However:
Lemma 3.5. The function log |q| is not a real meromorphic function on S.
Proof. Write q = re

√
−1·θ. Suppose that log |q| = log r is of the form F/G

where F and G are real analytic functions on S and G �= 0. Choose values of
θ and t so that G(t, re

√
−1·θ) is not identically zero and is convergent at r = 0

as a power series in r. Then, for 0 < r � 1, log r = f(r)/g(r), where f(r),
g(r) are convergent power series in r (at r = 0) and g(r) is not identically
0. Thus g(r) = rag0(r) for some nonnegative integer a, where g0(0) �= 0.
Hence there exists a nonnegative integer a such that ra log r extends to a C∞

function in some interval around r = 0. This is a contradiction, since the ath

derivative of ra log r is unbounded at 0.

Our goal now is to prove:
Theorem 3.6. With ω the normalized meromorphic section of F 3 given
above, there exist real meromorphic functions M1 and M2 on S with M1 �= 0,
such that, as an element of

∧2h+4 H ⊗C K(S∗),

ω ∧ ω̄ ∧ ∂ω

∂z
∧ ∂ω

∂z
∧ ∂ω

∂t1
∧ ∂ω

∂t1
∧ · · · ∧ ∂ω

∂th
∧ ∂ω

∂th
=

= ((z − z̄)M1 + M2)(e0 ∧ · · · ∧ eh+1 ∧ f0 ∧ · · · ∧ fh+1).
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First, we show how to apply Theorem 3.6 toward establishing the ∂∂-
lemma:
Corollary 3.7. There exists a nonempty open dense subset of S∗, the com-
plement of a proper real analytic subvariety in S∗, such that, for all s ∈ S∗,

F 2
s ⊕ F

2
s
∼= H.

Proof. By Theorem 3.6, if F 2
s and F

2
s do not span H on an open subset where

M1, M2, and B̃−1
h+1 are defined, then (z− z̄)M1 +M2 is identically 0. We have

z − z̄ = 1
π
√
−1

log r = 1
π
√
−1

log |q|.

Thus log |q| = −π
√
−1M2/M1 is a real meromorphic function on S, contra-

dicting Lemma 3.5.
Hence (z− z̄)M1 +M2 is not identically 0 on S∗. Let U be the nonempty

open dense subset of S∗ where M1, M2, and B̃−1
h+1 are defined, and for which

(z − z̄)M1 +M2 does not vanish. Then U is the complement of a proper real
analytic subvariety in S∗. For s ∈ U , we have F 2

s ⊕ F
2
s
∼= H as claimed.

Combining Corollary 3.7 and Corollary 1.6, we obtain:
Corollary 3.8. Let π : Y → S be as in §2.3, §2.5. There exists a nonempty
open dense subset of S∗, the complement of a proper real analytic subvariety
in S∗, such that, for all s ∈ S∗, the fiber Ys satisfies the ∂∂-lemma.
Proof of Theorem 3.6. Write ω = ψ + zeh+1, where ψ is a meromorphic sec-
tion of H, i.e. whose coordinates are meromorphic functions of (t, q), and such
that 〈ψ, eh+1〉 = 1, i.e. the coefficient of fh+1 in ψ is 1. Then ω̄ = ψ̄ + z̄eh+1.
Thus

ω ∧ ω̄ = z̄(ψ ∧ eh+1) − z(ψ̄ ∧ eh+1) + (ψ ∧ ψ̄).
Taking derivatives, we have

∂ω

∂z
= ∂ψ

∂z
+ eh+1.

Here, since 1
2π

√
−1

∂

∂z
= q

∂

∂q
, ∂ψ

∂z
and ∂ω

∂z
are meromorphic sections of H

(their coefficients are meromorphic functions of (t, q)), and the coefficient of
fh+1 in each is 0. Similarly

∂ω

∂z
= ∂ψ

∂z
+ eh+1.
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Computing, we see that

Ξ = ω ∧ ω̄ ∧ ∂ω

∂z
∧ ∂ω

∂z

= [ω ∧ ω̄] ∧
(
∂ψ

∂z
∧ eh+1 −

∂ψ

∂z
∧ eh+1 + ∂ψ

∂z
∧ ∂ψ

∂z

)

= z̄

(
ψ ∧ eh+1 ∧

∂ψ

∂z
∧ ∂ψ

∂z

)
− z

(
ψ̄ ∧ eh+1 ∧

∂ψ

∂z
∧ ∂ψ

∂z

)

+ψ ∧ ψ̄ ∧
(
∂ψ

∂z
∧ eh+1 −

∂ψ

∂z
∧ eh+1 + ∂ψ

∂z
∧ ∂ψ

∂z

)
.

Setting

Φ = ψ ∧ ψ̄ ∧
(
∂ψ

∂z
∧ eh+1 −

∂ψ

∂z
∧ eh+1 + ∂ψ

∂z
∧ ∂ψ

∂z

)
,

we can write the expression above as

(∗) Ξ = (z − z̄)
(
∂ψ

∂z
∧ ∂ψ

∂z

)
∧ eh+1 ∧ fh+1 + Φ + . . . ,

where the remaining terms do not involve fh+1 (but might involve z or z̄).
Consider the wedge product

Ψ = ∂ψ

∂z
∧ ∂ψ

∂z
∧ ∂ω

∂t1
∧ ∂ω

∂t1
∧ · · · ∧ ∂ω

∂th
∧ ∂ω

∂th
.

Note that none of the terms in the wedge product involve fh+1. In fact, we
have the following:

Lemma 3.9. There exists a nonzero real meromorphic function M1 on S
such that Ψ is of the form

M1e0 ∧ f0 ∧ · · · ∧ eh ∧ fh + Ω ∧ eh+1,

for some Ω ∈ K(S) ⊗C

∧2h+1 H.

Proof. It is enough to prove the corresponding statement for the form Ψ′

where, in the definition of Ψ, we replace ∂ψ

∂z
∧ ∂ψ

∂z
with ∂ω

∂z
∧ ∂ω

∂z
. Clearly, we
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can view Ψ or Ψ′ as an element of K(S)⊗C

∧2h+2 H. Consider the meromor-
phic sections

∂ω

∂z
,
∂ω

∂t1
, . . . ,

∂ω

∂th

of F 2 ∩ (eh+1)⊥. Over the field of meromorphic functions on S∗, the span of

ω,
∂ω

∂z
,
∂ω

∂t1
, . . . ,

∂ω

∂th

is the same as the span of

ω̃,
∂ω̃

∂t1
, . . . ,

∂ω̃

∂th
,
∂ω̃

∂q
.

Hence ∂ω

∂z
,
∂ω

∂t1
, . . . ,

∂ω

∂th
are linearly independent over the field of meromor-

phic functions on S∗ and hence on S. Since F 2 ∩ (eh+1)⊥ → H# is injective
and of maximal rank, the above sections remain linearly independent when
viewed as meromorphic sections of F 2

#.
Let σ0, . . . , σh be a basis of holomorphic sections for the holomorphic

bundle F 2
#. Then, by Lemma 3.2, there exists a nonzero real analytic function

A such that

σ0 ∧ σ̄0 ∧ · · · ∧ σh ∧ σ̄h = Ae0 ∧ f0 ∧ · · · ∧ eh ∧ fh.

Let G be the (h+1)×(h+1) matrix whose entries are meromorphic functions
on S which expresses the images of the meromorphic sections ∂ω

∂z
,
∂ω

∂t1
, . . . ,

∂ω

∂th
in F 2

# as linear combinations of σ0, . . . , σh. Furthermore, detG �= 0, because
∂ω

∂z
,
∂ω

∂t1
, . . . ,

∂ω

∂th
are linearly independent over the field of meromorphic func-

tions on S. Then, working in H# and the associated C∞ bundle (i.e. mod
eh+1),

Ψ mod eh+1 = Ψ′ mod eh+1 = ±| detG|2σ0 ∧ σ̄0 ∧ · · · ∧ σh ∧ σ̄h

= ±| detG|2Ae0 ∧ f0 ∧ · · · ∧ eh ∧ fh.

This says that, for some nonzero real meromorphic function M1,

Ψ = M1e0 ∧ f0 ∧ · · · ∧ eh ∧ fh

mod eh+1, and thus completes the proof of the lemma.



1024 Robert Friedman

To finish the proof of Theorem 3.6, our goal is to calculate

Ξ ∧ Ξ′ = ω ∧ ω̄ ∧ ∂ω

∂z
∧ ∂ω

∂z
∧ ∂ω

∂t1
∧ ∂ω

∂t1
∧ · · · ∧ ∂ω

∂th
∧ ∂ω

∂th

which is the wedge product of Ξ = ω ∧ ω̄ ∧ ∂ω

∂z
∧ ∂ω

∂z
with

Ξ′ = ∂ω

∂t1
∧ ∂ω

∂t1
∧ · · · ∧ ∂ω

∂th
∧ ∂ω

∂th
.

In our previous notation,

Ψ = ∂ψ

∂z
∧ ∂ψ

∂z
∧ Ξ′.

Since Ξ′ does not involve fh+1, any terms of Ξ which do not involve fh+1 will
drop out of Ξ ∧ Ξ′. By the above lemma and Equation (∗), Ξ ∧ Ξ′ is of the
form

Ξ ∧ Ξ′ = (z − z̄)Ψ ∧ eh+1 ∧ fh+1 + Φ ∧ Ξ′

= (z − z̄)M1e0 ∧ f0 ∧ · · · ∧ eh+1 ∧ fh+1 + Φ ∧ Ξ′,

with M1 �= 0. Since the coefficients of Φ, Ξ′ are real meromorphic functions,
Φ ∧ Ξ′ ∈ ∧2h+4 H ⊗C K(S) and we can write

Φ ∧ Ξ′ = M2e0 ∧ f0 ∧ · · · ∧ eh+1 ∧ fh+1

for some real meromorphic function M2. Thus Ξ ∧ Ξ′ is as claimed.

3.5. The main theorem

We can now prove the main theorem of this paper:

Theorem 3.10. Let X be a compact complex manifold of dimension 3 with
KX

∼= OX for which the ∂∂̄-lemma holds, and such that that H i(X;OX) = 0
for i = 1, 2 and H0(X; Ωj

X) = 0 for j = 1, 2. Suppose that C1, . . . , Cr are
disjoint smooth rational curves in X such that NCi/X

∼= OP1(−1)⊕OP1(−1).
Assume that the classes [Ci] of the Ci satisfy a linear relation in H4(X;C) of
the form

r∑
i=1

mi[Ci] = 0,
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where mi �= 0 for every i. Let X be the singular compact threefold obtained by
contracting the Ci. Then there exist smoothings of X for which the ∂∂̄-lemma
holds.

Proof. If s is the smallest positive integer such that there exists a subset of
the Ci whose classes are linearly dependent, then, possibly after reordering
the Ci, we can assume that there exist n1, . . . , ns ∈ Q, such that ni �= 0 for
all i,

s∑
i=1

ni[Ci] = 0,

and the [Ci] span a subspace of H4(X) of dimension s − 1. Let X1 be the
singular threefold obtained by contracting C1, . . . , Cs and let X1 be a general
small smoothing of X1. By Corollary 3.8, the ∂∂̄-lemma holds for X1. In par-
ticular, we have proved the corollary in case r = s, and hence in case r = 1.
Now assume the result by induction for all positive integers less than r and
suppose that s < r. The curves Cs+1, . . . , Cr deform to disjoint smooth ratio-
nal curves C ′

i in X1. Since H4(X1) ∼= H4(X)/
∑s

j=1 C·[Cj ],
∑r

i=s+1 mi[C ′
i] = 0

in H4(X1). Let X1 be the threefold obtained by contracting C ′
s+1, . . . , C

′
r in

X1. Then X1 is smoothable, and by induction the ∂∂̄-lemma holds for general
small smoothings X2 of X1. Such a smoothing will also be a general small
smoothing of X, completing the proof of the theorem.

4. Concluding remarks

First we recall the following standard definition:

Definition 4.1. Let V1 and V2 be two compact complex manifolds. Then V1
and V2 are deformation equivalent if there exists a proper smooth morphism
π : V → S, where V and S are connected analytic spaces, and two points
s1, s2 ∈ S, such that π−1(si) ∼= Vi, i = 1, 2.

I am grateful to S.-T. Yau for calling my attention to the following ques-
tion: is every compact complex manifold for which the ∂∂̄-lemma holds defor-
mation equivalent to a compact complex manifold bimeromorphic to a Kähler
manifold (also called of class C)? The answer to this question is no:

Proposition 4.2. A Clemens manifold is not deformation equivalent to a
compact complex manifold bimeromorphic to a Kähler manifold.

Proof. Since the condition that b2 = 0 is preserved under deformation equiv-
alence, it suffices to show that a compact complex threefold V with b2 = 0
is not bimeromorphic to a Kähler manifold. Assume the contrary, that V is
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bimeromorphic to a Kähler manifold V ′. In fact, we may assume that there is a
surjective degree one morphism f : V ′ → V . By [2, (5.3)] (cf. also [6, (5.22)]),
the ∂∂̄-lemma holds for V . As b2(V ) = 0, h2(V ;OV ) = h0(V ; Ω2

V ) = 0.
Since h0(V ; Ω2

V ) is a birational invariant, h0(V ′; Ω2
V ′) = 0 as well. Then

H2(V ′;C) = H1,1(V ′), so that there exists a Hodge metric on V ′ and thus
V ′ is projective. Since f : V ′ → V is birational, there exists a hypersurface
E ⊆ V ′ such that f(E) has codimension at least two and f induces an isomor-
phism V ′−E ∼= V −f(E). Choose an irreducible curve C on V ′ not contained
in E and an irreducible very ample divisor H on V ′ such that H ∩C is finite
and disjoint from E. Then f(H) is a hypersurface in V and it meets f(C)
at a finite and nonempty set of points. Then [f(H)] � [f(C)] > 0, so that
[f(H)] is a nonzero element of H2(V ;Q). This contradicts the assumption
that b2(V ) = 0.

Remark 4.3. Let π : X → Δ be a degeneration of compact complex man-
ifolds Xt, t �= 0, to a singular X0. Under very general hypotheses, the argu-
ments of Theorem 2.7 will show that, for t ∈ Δ∗ small, the Hodge-de Rham
spectral sequence for Xt degenerates at E1. For example, if all components of
X0 are bimeromorphic to Kähler manifolds, or if X0 has normal crossings and
all k-fold intersections X

[k]
0 satisfy the ∂∂̄-lemma, then the Hodge-de Rham

spectral sequence for Xt degenerates at E1 for t small and �= 0. On the other
hand, it is easy to find examples for which the ∂∂̄-lemma does not hold for
Xt, t �= 0. For example, let X0 be the singular surface which is obtained by
gluing the negative section σ0 of the rational ruled surface Fn to a disjoint
section σ by some choice of isomorphism. Note that σ2

0 = −n and σ2 = n,
so that X0 is d-semistable in the sense of [8]. Kodaira has shown [16] that, if
n �= 0, then there is a degeneration π : X → Δ, such that π−1(0) ∼= X0 and,
for t �= 0, Xt = π−1(t) is a Hopf surface. Then the Hodge-de Rham spectral
sequence for Xt degenerates at E1, but the ∂∂̄-lemma does not hold for any
compact complex surface deformation equivalent to Xt.
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