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On the strict convexity of the K-energy
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Dedicated to Simon Donaldson on the occasion of his 60th birthday

Abstract: Let (X,L) be a polarized projective complex mani-
fold. We show, by a simple toric one-dimensional example, that
Mabuchi’s K-energy functional on the geodesically complete space
of bounded positive (1,1)-forms in ¢;(L), endowed with the
Mabuchi-Donaldson-Semmes metric, is not strictly convex mod-
ulo automorphisms. However, under some further assumptions the
strict convexity in question does hold in the toric case. This leads
to a uniqueness result saying that a finite energy minimizer of
the K-energy (which exists on any toric polarized manifold (X, L)
which is uniformly K-stable) is uniquely determined modulo auto-
morphisms under the assumption that there exists some minimizer
with strictly positive curvature current.

1. Introduction

Let (X, L) be a polarized compact complex manifold and denote by H the
space of all smooth metrics ¢ on the line bundle L with strictly positive cur-
vature, i.e the curvature two-form wg of ¢ defines a Kahler metric on X.
A leading role in Kéhler geometry is played by Mabuchi’s K-energy func-
tional M on H, which has the property that a metric ¢ in H is a critical
point for M if and only if the Kéhler metric wg has constant scalar curva-
ture [25]. From the point of view of Geometric Invariant Theory (GIT) the
K-energy can, as shown by Donaldson [18], be identified with the Kempf-Ness
“norm-functional” for the natural action of the group of Hamiltonian diffeo-
morphisms on the space of all complex structures on X, compatible with a
given symplectic form.

As shown by Mabuchi the functional M is convex along geodesics in
the space H endowed with its canonical Riemannian metric (the Mabuchi-
Semmes-Donaldson metric). More precisely, as indicated by the GIT interpre-
tation, M is strictly convex modulo the action of the automorphism group
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G of (X, L) in the following sense: let ¢; be a geodesic in ‘H (parametrized so
that ¢ € [0, 1]) then

(1.1) t — M(¢y) is affine iff ¢(t) = g(¢)¢o,

where g(t)¢p denotes the action on ¢y of a one-parameter subgroup in G,
i.e. ¢4 is equal to the pull-back of ¢y under the flow of a holomorphic vector
field on X. However, the boundary value problem for the geodesic equation
in H does not, in general, admit strong solutions [24]. In order to bypass
this complication Chen introduced a natural extension of M to the larger
space H1 1 consisting of all (singular) metrics ¢ on L such that the curvature
wg is defined as an L°°-form. The advantage of the latter space is that it
is geodesically convex (in the sense of metric spaces; see [15] and references
therein). It was conjectured by Chen [13] and confirmed in [3] that M is
convex on H; ;. However, the question whether M is strictly convex modulo
the action of G on H;; was left open in [3]. In this short note we give a
negative answer to the question already in the simplest case when X is the
Riemann sphere and the metrics are S'-invariant.

Theorem 1. Let L. — X be the hyperplane line bundle over the Riemann
sphere. There exists an S-invariant geodesic ¢, in Hi1 such that M(¢;) is
affine, but ¢ is not of the form g(t)po.

In terms of the standard holomorphic coordinate z on the affine piece C
of X the geodesic ¢; in the previous theorem can be taken so that ¢, is equal
to the Fubini-Study metric ¢y on the lower-hemisphere, flat on a t-dependent
collar attached to the equator and then glued to a one-parameter curve of the
form ¢(t)*¢o in the remaining region of the upper hemi-sphere.

The failure of the strict convexity of M on H;; modulo G appears to
be quite surprising in view of the fact that the other canonical functional in
Kahler geometry — the Ding functional D — is strictly convex on #H; ;1 modulo
G. In fact, the Ding functional (which is only defined in the “Fano case”,
i.e. when L is the anti-canonical line bundle over a Fano manifold) is even
strictly convex modulo the action of G on the space of all L*®-metrics on L
with positive curvature current [9].

One important motivation for studying strict convexity properties of the
Mabuchi functional M on suitable completions of H comes from the Yau-
Tian-Donaldson conjecture. In its uniform version the conjecture says that
the first Chern class ¢1(L) of L contains a Kéhler metric of constant scalar
curvature iff (X, L) is uniformly K-stable (in the L!-sense) relative to a max-
imal torus of G [10, 17]. The “only if” direction was established in [8] when
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G is trivial (and a similar proof applies in the general case [5]). The proof in
[8] uses the convexity of M on the finite energy completion £ of H.! The
remaining implication in the Yau-Tian-Donaldson conjecture is still widely
open, in general, but a first step would be to establish the existence of a
minimizer of M in the finite energy space £!, by generalizing the variational
approach to the “Fano case” introduced in [4]. Leaving aside the challenging
question of the regularity of a minimizer one can still ask if the minimizer is
canonical, i.e. uniquely determined modulo G7 (as conjectured in [16]). The
uniqueness in question would follow from the strict convexity of M on &£*
modulo the action of G. However, by the previous theorem such a strict con-
vexity does not hold, in general. On the other hand, it would be enough to
establish the following weaker strict convexity property:

t — M(¢y) is constant = ¢(t) = g(t) oo,

(the converse implication holds if (X, L) is K-stable). This may still be too
optimistic, but here we observe that this approach towards the uniqueness
problem can be made to work in the toric case if one assumes some a priori
positivity of the curvature current of some minimizer.

Theorem 2. Let (X, L) be an n-dimensional polarized toric manifold. As-
sume that (X, L) is uniformly K-stable relative to the torus action. Then there
exists a finite energy minimizer ¢ of M and the minimizer is unique modulo
the action of C* under the assumption that there exists some finite energy
minimizer ¢g whose curvature current is strictly positive on compacts of the
dense open orbit of C*™ in X.

1.1. Relations to previous results

In view of its simplicity it is somewhat surprising that the counterexample in
Theorem 1 does not seem to have been noticed before. The key point of the
proof is a generalization of Donaldson formula for the Mabuchi functional M
in the smooth toric setting to a singular setting (see Lemma 5 and Lemma
7), showing that

(1.2) M(9) = Flu),

!The space £! was originally introduced in [22] from a pluripotential point of
view and, as shown in [15], £! may be identified with the metric completion of H
with respect to the L!-Finsler version of the Mabuchi-Semmes-Donaldson metric
on H
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where the non-linear part of the functional F only depends on the non-
singular part (in the sense of Alexandrov) of the Hessian of the convex func-
tion on the moment polytope of (X, L), corresponding to the metric ¢. This
leads, in fact, to a whole class of counter-examples to the strict convexity in
question, by taking ¢; to be any torus invariant geodesic ¢;, emanating from
a given ¢y € H, whose Legendre transform u; is of the form

uy = ug + tv,

for a convex and piece-wise affine function v. Such a curve defines a geodesic
ray associated to a toric test configuration for (X, L) and the fact that ¢; €
H1,1 then follows from general results (see [14, 27, 28, Section 7]). A by-
product of formula 1.2 is a slope formula for the K-energy along toric geodesics
of finite energy (see Section 7).

The functional F has previously appeared in a series of papers by Zhou-
Zhu (see Remark 8). In particular, it was shown in [31, Section 6] (when
n = 2) that a minimizer u of F is uniquely determined, modulo the com-
plexified torus action, under the stronger assumption that there exists some
minimizer ug of F which is C*°-smooth and strictly convex in the inte-
rior (while our assumption is equivalent to merely assuming that u is C'!-
smooth in the interior). We also recall that in the toric surface case (i.e
when n = 2) it was shown by Donaldson [19] that uniform K-stability is
equivalent to K-stability. Moreover, the Yau-Tian-Donaldson in the latter
case was settled by Donaldson in a series of papers culminating in [21] (as
a consequence, any minimizer of M is then smooth and positively curved).
Theorem 2 should also be compared with the general uniqueness result for
finite energy minimizers of M on any Kéahler manifold which holds under the
assumption that there exists some minimizer which is smooth and strictly
positively curved. The proof of the latter result, which generalizes the unique-
ness result in [3], exploits a weaker form of strict convexity which holds on
the linearized level around a bona fide metric with constant scalar curva-
ture.

2. Proofs

We start with some preparations. To keep things as simple as possible we
mainly stick to the one-dimensional situation (see [2] for the general convex
analytical setup and its relations to polarized toric varieties).
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2.1. Convex preparations

Let ¢(x) be a lower semi-continuous (Isc) convex function on R (taking values
in | — 0o, o0]). Its point-wise derivative ¢/(x) exists a.e. on R and defines an
element in L;S (R). We will denote by 0¢ the subgradient of ¢, which is a
set-valued map on R with the property that (0¢)(z) is a singleton iff ¢'(z)
exists at x. Similarly, we will denote by 9%¢ the measure on R defined by the
second order distributional derivative of ¢. By Lebesgue’s theorem we can
decompose

06 =0i0+¢",
where 92¢ denotes the singular part of the measure 9%¢ and ¢” € L} (R)

loc
denotes the regular part (wrt Lebesgue measure dx), which coincides with

the second order derivative of ¢ almost everywhere on x. We set

(2.1) ¢o(z) :=log(l + ")
and
Pi(R) :={¢: ¢convexonR, ¢ — ¢y € L(R)}

(02¢ is a probability measure for any such ¢). Given a function ¢ in P, (R)
we will denote by wu its Legendre transform which defines a finite Isc convex
function w on [0, 1] (which is equal to oo on ]0, 1[¢)

u(y) = (¢%)(y) := supzry — ¢(x)

z€R
Since ¢ = u* the map ¢ — u gives a bijection
P+(R) «— {u: uconvexon|0,1]} N L0, 1]

which is an isometry wrt the L°°-norms. Moreover, ¢ is smooth and strictly
convex on R iff u is smooth and strictly convex on |0, 1], as follows from the
formula

(2:2) o(x) = zy —u'(y),

if  =4/(y) and w is differentiable at y (and vice versa if ¢ is replaced by u).
Moreover, if u is two times differentiable at y = 0 and «”(y) > 0 then ¢" is
differentiable at x and

(2.3) ¢"(z) = 1/u"(y)
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2.2. Complex preparations

Let (X, L) := (P*,O(1)) be the complex projective line P! endowed with the
hyperplane line bundle O(1). Realizing P! as the Riemann sphere (i.e. the
one-point compactification of the complex line C) a locally bounded metric
on O(1) may, in the standard way, be identified with a convex function ®(z)
on C such that

O — @) € L¥(C), Po(2) :=log(1 + |2[*),

where @ corresponds to the Fubini-Study metric on O(1), which defines a
smooth metric with strictly positively curvature wg on P! (coinciding with the
standard SU(2)-invariant two-form on P'). Moreover, the metric ® on O(1)
has semi-positive curvature wg on P! iff ®(z) is subharmonic on C. More
precisely,

L
T 21020z

(2.4) welc = éaécb dz A dz

We will denote by H;3' the space of all bounded (i.e L) metrics ® on O(1) —
P! with semi-positive curvature which are S'-invariant (wrt the standard
action of S1). Setting

z := log | z|?

gives a correspondence
Hy' e PL(R), ®(2) = ¢la) = (™)

As is well-known, under the Legendre transform the Mabuchi-Donaldson-
Semmes metric on H! corresponds the standard flat metric induced from
L2[0,1]. Tt follows that a geodesic ®; in Hfl corresponds to a curve ¢; in
P+ (R) with the property that the corresponding curve

Ut ‘= ‘25:

of bounded convex functions on [0, 1] is affine wrt ¢.
In particular, taking ¢g to be defined by 2.1, the following curve defines
a geodesic in Hflz

or(z) = (uo +tv)*, uo(y) == ¢g(y) = ylogy + (1 —y)log(1l —y),
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where v is the following convex piece-wise affine function on [0, 1]:

1 1

U(y):——+y, Yy e

2 [57 1]

Wy):=0, yelo. )
Lemma 3. Assume that t €]0,1]. Then ¢; defines an S*-invariant metric
on O(1) — P which is CYt-smooth on P* with semi-positive curvature and
C*®-smooth and strictly positively curved on the complement of a t-dependent
netghborhood of the equator. More precisely, in the logarithmic coordinate
z € R we have ¢y(x) = ¢o(x) when x < 0 and ¢(x) = ¢o(0) + /2 when
x € [0,t] and ¢(x) = Ppo(x — t) +t/2 when x > t.

Proof. Step 1: ¢; is in CHL(R).
This step only uses that v is convex and bounded on [0, 1]. Let v() be a se-
quence of smooth strictly convex function on [0, 1] such that Hv(j ) —UHL

=[0,1]
0. Set ul)(t) := ug + tv\¥) and ¢ := ul)*. Since the Legendre transform
preserves the L°°-norm we have Hgf)(j) — ngLm(R) — 0. By construction, uij )

is smooth and satisfies (uij))// > (up)” > 1/C > 0. Hence, by 2.3, ( §j))” <C
and letting j — oo thus implies that 9%¢ = ¢” < O, showing that ¢; is in
CHL(R).

Step 2: Explicit description of ¢;

We fix ¢ > 0 and observe that the map y — u}(y) induces two diffeomor-
phisms (with inverses x — ¢}(x))

25) WY ::]0,%[—> X o] —00,0], Vi ::]%71[% X =]t o0

This follows directly from the fact that u; is strictly positive on Y1 and
converges to 0 and ¢ when y — 1/2 from the left and right, respectively. We
claim that this implies, by general principles, that the restriction of ¢; to X4
only depends on the restriction of u; to Y. Indeed, if x = uj(y) for y € Y3
then formula 2.2 shows that ¢, x, only depends on the restriction of u to X _.
Hence, the restriction of ¢, to X_ is given by uj = ¢o and the restriction of
¢ to X is given by the Legendre transform of ug(y) + t(y — 1/2), which is
equal to ¢o(x—1t)+1t/2. Finally, it follows from the diffeomorphism 2.5 (using,
for example, that ¢ is increasing) that ¢; = 1/2 on [0, ]. O

Remark 4. A more symmetric form of the geodesic ¢; may be obtained by
setting ¢y (z) 1= 2¢(z) — x, which has the property that ¢,(x) := ¢o(z) :=
log(e™® + ¢*) when z < 0 and ¢(x) = ¢o(0) when 2 € [0,¢] and ¢ (z) =
(Z)g(SU —t) when z > t. Geometrically, ¢ defines a geodesic ray of metrics on
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O(2) — P!, expressed in terms of the trivialization of O(2) over C* C P!
induced from the embedding C* — C? — P? defined by F(z) := (27%,2) €
C?, where X is identified with the closure F(C) of F(C) in P? and O(2)
with the restriction of Op2(1) to F(C). A direct calculation reveals that ¢; ()
(and hence also ¢;(z)) is in fact C1!'-smooth when viewed as a function on
R x R. This implies that the Laplacian of the corresponding local potentials
over P! x D* (where D* denotes the punctured unit disc with holomorphic
coordinate 7 such that t := — log |7|?) is locally bounded, i.e. the geodesic has
Chen’s regularity [12] in the space-time variables. It should also be pointed
out that ¢, can be realized as the geodesic ray, emanating from the Fubini-
Study metric, associated to the toric test configuration of (X, L) := (P!, O(2))
determined (in the sense of [19, 14, 28]) by the piece-wise affine function
9(y) = max{0,y} on the moment polytope [—1,1] of (P!, O(2)) (as in [14]).
Using this realization the C1!-regularity also follows from the general results
in [27, 14] which show that the Laplacian (or equivalently complex Hessian)
of the corresponding potential is locally bounded over X x D*. Indeed, in the
toric setting boundedness of the complex Hessian is equivalent to boundedness
of the real Hessian, i.e. to C't!-regularity.

2.2.1. The K-energy Let (X, L) be a polarized compact complex mani-
fold. We recall that the K-energy functional was originally defined by Mabuchi
[25] on the space H of all smooth metrics ® on L with strictly positive cur-
vature by specifying its differential (more precisely, this determines M up to
an additive constant). Chen extended M to the space H;; consisting of all
(singular) metrics ¢ on L such that the curvature we of ® is defined as an
L*°-form [13]. The extension is based on the Chen-Tian formula for M on H
which may be expressed as follows in terms of a fixed Kéhler form wg on X:

(2.6)
(R  eRicwo ny 5. nei(X) - wo]" !
M(u) = (n—l— 15((1)) ER (<I>)> + Hop(wg), R:= D ,
where

(2.7) Hyu(0) = [ 10g (Mﬁ) i

and & and ERi¢«o are defined, up to an additive constant, by their differentials
on H:

(2.8) d&p = (n + 1)wg, dé'gicwo = nwi' A Ricwy
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with Ricwy denoting the two-form defined by the Ricci curvature of wy (see
[3] for a simple direct proof of the Chen-Tian formula). The extension of M to
H1,1 is obtained by observing that both terms appearing in the rhs of formula
2.6 are well-defined (and finite) when ® € H; ;. We note that the functional
appearing in the first bracket of the formula is continuous wrt the L°-norm
on Hy 1. Indeed, it follows readily from the definitions that both £ and ERic«o
are even Lip continuous wrt the L°°-norm.

In the present setting where X = P! we can, for concreteness, take wg =
wa,, whose restriction to C is equal to a constant times e~2%0dz A dz.

2.3. Conclusion of proof of Theorem 1

The proof will follow from the following extension to Hf | of a formula due
to Donaldson when ® € #5" [19, Prop 3.2.8].

Lemma 5. Assume that ® is in Hfll Then

M) = £0) = [ 10 0y, £00) = 50+ () = [ ula)dy

1
loc

Proof. Step 1: Assume that & € Hfll Then

where u" € L} denotes the non-singular part of 0*u.

M@®) = L) + [ &' ()log ¢ (x)do

In the case when ® € H*' (or more generally when u is continuous on [0, 1]
and smooth and strictly convex in the interior) this follows from Donaldson’s
formula [19]. To extend the formula to the case when ® € HY | first observe
that

(29) [ én(@)é @) < .

as follows directly from estimating ¢” < C'¢f < Ae™l#I/B and ¢o(z) < |z|+C.
Hence, we can rewrite the Chen-Tian formula 2.6 as

(2.10) M(@) = Eof@) + [ ' (@)loge (@),

where

Eo(®) = ( " e(a) - sRm@)) +2 [ onf@)e/ ().
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Now take a sequence ®; € H5" such that |®; — @ 1« — 0 (which equiva-
lently means that [ju; — uHLOC[O 5y 0) and we; < Cwe,, i.e.

(2.11) ¢; () < Coy(x)
We claim that

Indeed, as pointed out above the first term appearing in the definition of
Ey is continuous wrt the L*°-norm. To handle the second term first observe
that, since [|©; — @[|;.(x) — 0, the probability measures ¢; (x)dzx converge
weakly towards ¢ (z)dz and hence, for any fixed R > 0,

lim do()¢!!()da = / do(2)¢" ()dz

J=o0 Jjz|<R |lz|<R

Moreover, the uniform bound 2.11 gives

lim sup lim sup/ $o¢ (x)dx < C'lim sup/ do(x)pp(x)dx =0
lz|>R lz|>R

R—oo  j—oo R—o0

Hence, letting first j — oo and then R — oo proves 2.12.
Now take a sequence ®; € HS' such that [|[®; — @, — 0 which equiv-
alently means that |u; — u||U,o[0 j) = 0. By Donaldson’s formula

Eo(¢5) = L(uy)

and since both sides are continuous wrt the convergence of ®; towards @ this
concludes the proof of Step 1.

Step 2: Let ¢ be a convex function on R such that 9%¢ is a probability
measure which is absolutely continuous wrt dx. Then

(213) [ @yos g @)z = — [ 10g(u ()

if the left hand side is finite (and then u”(y) > 0 a.e.).

This formula is a special case of McCann’s Monotone change of variables
theorem [26, Theorem 4.4]. But it may be illuminating to point out that a
simple direct proof can be given in the present setting when ¢ is of the form
¢ appearing in Lemma 3. Indeed, then p := ¢” = 0 on a closed intervall
I of R and ¢’ diffeomorphism of the complement I onto ]0, 1[—{1/2}. Since
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plogp = 0 if p = 0 the formula 2.13 then follows directly from making the
change of variables y = ¢'(xz) on R — S. O

Now, let ®; be the geodesic in Hf 11 defined by the curve ¢; appearing in
Lemma 3. Since v is piece-wise affine we have u} = uj a.e on R and hence

the previous lemma gives

M(®,) = —/ log(u" (y))dy +tL(v)

(0,1]

which is affine in t. Moreover, ¢, is not induced from the flow of a holomorphic
vector field (since this would imply that v is affine on all of [0,1]). This
concludes the proof of Theorem 1.

Remark 6. The functional Ey in formula 2.10 coincides with the (attractive)
Newtonian energy of the measure p = 0%¢:

Eo(i) = 7 [ le = vln() @ a(y)

and the continuity property of Ey used in the in Step 1 can be alternatively
deduce from the fact that F is continuous on the space P;(R) of all prob-
ability measures with finite first moment (endowed with the L!-Wasserstein
topology). This point of view is further developed in the higher dimensional
toric setting in [1].

2.4. Proof of Theorem 2

In this higher dimensional setting we will be rather brief and refer to [1] for
more details. Let (X, L) be an n-dimensional toric manifold and denote by
P the corresponding moment lattice polytope in R™ which contains 0 in its
interior. We will denote by do the measure on 0P induced from the standard
integer lattice in R™ (which is comparable with the Lebesgue measure on
JP) [19]. The n-dimensional real torus acting on (X, L) will be denoted by
T. As above we can then identify a T-invariant metric ® on L with positive
curvature current with a convex function ¢(x) on R™ (whose sub-gradient
maps into P) and, via the Legendre transform, with a convex function v on
P. We will denote by 9%¢ the distributional Hessian of ¢ and by (V2¢)(z)
the Alexandrov Hessian of ¢ which is defined for almost all x (on the subset
where ¢ is finite).

Assume that (X, L) is uniformly K-stable relative to the torus 7' (in the
L'-sense). Concretely, this means (see [23]) that there exists § > 0 such that
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for any rational piece-wise affine convex function u on P,

(2.14)  L(u) := /Pudy — C/E)Pu > 516&5)* </P(u —l)dy — iI}f(U — l)) ,

c::/ dy// do,
P op

where the inf ranges over all linear functions [ on R™ (which, geometrically,
may be identified with an element of the real part of the Lie algebra of the
complex torus). We note that, by a standard approximation argument, the
inequality 2.14 holds for the space C(P) of all convex functions u on P such
that u € L*(P)NL'(9P) (where ujgp(y) is defined as the radial boundary limit
of u).? The uniform K-stability implies, by [29, 23], that M is coercive relative
to T, i.e. there exist C' > 0 such that the following coercivity inequality holds
on HT:
M(®) > inf J(g®)/C —-C,

geCHn

where J denotes Aubin’s J-functional. The functional M admits a canonical
extension to the space £! of all (singular) metrics on L with positive curvature
current and finite energy (namely, the greatest lsc extension of M from H to
&L endowed with the strong topology [6, 7]). The coercivity of M combined
with the results in [6] (which show that M is Isc wrt the weak topology on
EY) implies that there exists a T-invariant minimizer ®; of M on the space
EYX, L) of all (singular) metrics on L with positive curvature current and
finite energy.

A generalization of the argument used in the proof of Lemma 5 gives
the following lemma which extends Donaldson’s formula in [19] to the finite
energy setting (the proof is given in [1]):

Lemma 7. Assume that ® € EY(X, L) and M(®) < oco. Then u € C(P)
and

(2.15) M(P) = F(u) := L(u) — /P log det(V2u(y))dy,

where V?u denotes the Alezandrov Hessian of u and both terms are finite (in
particular, V?u(y) > 0 a.e. on P).

Remark 8. The functional F on C(P) has previously been studied in a series
of papers by Zhou-Zhu (see [30, 29]). In particular it was shown in [30] that F
admits a minimizer u. But the point of the previous formula is that it identifies

2In fact, if u is convex on P and in L!'(9P), then automatically u € L!(P).
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F with the Mabuchi functional on the space £1(X, L)T. As a byproduct this
gives a new proof of the existence of a minimizer u of F.

Let now ®y and ®; be two given minimizers of M in £'(X,L)T and
denote by ®; the corresponding geodesic in £1(X, L)? (which corresponds to
ug = ug + t(ug — up) under the Legendre transform). By the previous lemma
the function ¢t — M(®;) decomposes in two terms, where the first term is
affine in ¢ and the second one is convex. Since M(®P;) is constant (and in
particular affine) it follows that the second term,

t— f/ log(det V2uy(y))dy
P

is also affine. But this forces, using the arithmetic-geometric means inequality,
that

(2.16) V2u; = Vg a.e.on P.

As a consequence the previous function in ¢ is, in fact, constant. Since M (®;)
is also constant in t formula 2.15 forces L(u;) = L(ug) for all ¢. Setting
v := uq — ug this means that

L(v) = 0.

Now, if v is convex, then it follows form the assumption of uniform relative
K-stability that v is affine and hence ®4 and ®; coincide modulo the action of
C*™. All that remains is thus to show that v is convex. To this end we invoke
the assumption that the distributional Hessian of ¢q satisfies

Vi > CkI

on any given compact subset K of R™. We claim that this implies that ug €
Cllo’i(P). Indeed, since @y has finite energy it has full Monge-Ampeére mass

and hence the closure of the sub-gradient image (0®)(R") is equal to P. It
follows (just as in the proof of Lemma 3) that

Pug = Viug < Ci'l

on the closure of (0®¢)(K) in P. Since K was an arbitrary compact subset of
R™ it follows that ug € C’llo’cl(P). The proof of the theorem is now concluded
by invoking the following lemma (see [26, Lemma 3.2]):

Lemma 9. Let ug and uy be two finite convex functions on an open convex
set P C R™ such that ugp € Cllo’cl(P) and the Alexandrov Hessians satisfy 2.16.
Then u; — ug 18 convez.



996 Robert J. Berman

2.5. A generalized slope formula for the K-energy

We conclude the paper by observing that a by-product of Lemma 7 is the
following generalization of the slope formula for the K-energy in [11] (which
concerns the case when ®; is defined by a bona fide metric on a test configu-
ration) to the present singular setting:

Proposition 10. (Slope formula) Let ®; be a geodesic ray in E1(X, L)1 such
that ®y € H(X, L)T and M(®;) < oo for any t € [0,00[. Then

. 1 .
tliglot M(Py) = L(v) < o0

where uy = u + tv is the curve of convex functions in L*(OP) corresponding
to ®; under Legendre transformation.

Proof. Since M(®;) < oo Lemma 7 shows that u; = ug + tv € L*(OP) for
all t > 0, where v := u; — ug. Moreover, since wu; is convex for any ¢ > 0 it
also follows that v is convex and v € L*(OP). Now, since 9%uq is invertible
we can, denoting the inverse by A(y), write

/ log(det V2(uo + t0)(y))dy = Co + /P log(det (1 + tA(y)V2uo(y))dy,

which is finite for any ¢ (by Lemma 7). Moreover, since V2vg(y) > 0 we have,
when £ > 1, that

0< [ log(det (I + tA() V2o (y))dy

< Vol(P)nlogt —|—/ log(det(I 4+ A(y)V3uvo(y))dy,
P

where all terms are finite. Hence, dividing by ¢ and letting ¢ — oo concludes
the proof of the proposition. O

In the terminology of [10, 11, 4] this formula shows that the slope of the
Mabuchi functional along a finite energy geodesic is equal to the Non-Archi-
medean Mabuchi functional of the corresponding (singular) Non-Archimedean
metric. It would be very interesting to extend this slope formula to the non-
toric setting. Indeed, this is the key missing ingredient when trying to extend
the variational approach to the (uniform) Yau-Tian-Donaldson conjecture in
the “Fano case” in [4] to a general polarized manifold (X, L), in order to
produce a finite energy minimizer of M.
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