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On the strict convexity of the K-energy
Robert J. Berman

Dedicated to Simon Donaldson on the occasion of his 60th birthday

Abstract: Let (X,L) be a polarized projective complex mani-
fold. We show, by a simple toric one-dimensional example, that
Mabuchi’s K-energy functional on the geodesically complete space
of bounded positive (1, 1)-forms in c1(L), endowed with the
Mabuchi-Donaldson-Semmes metric, is not strictly convex mod-
ulo automorphisms. However, under some further assumptions the
strict convexity in question does hold in the toric case. This leads
to a uniqueness result saying that a finite energy minimizer of
the K-energy (which exists on any toric polarized manifold (X,L)
which is uniformly K-stable) is uniquely determined modulo auto-
morphisms under the assumption that there exists some minimizer
with strictly positive curvature current.

1. Introduction

Let (X,L) be a polarized compact complex manifold and denote by H the
space of all smooth metrics φ on the line bundle L with strictly positive cur-
vature, i.e the curvature two-form ωφ of φ defines a Kähler metric on X.
A leading role in Kähler geometry is played by Mabuchi’s K-energy func-
tional M on H, which has the property that a metric φ in H is a critical
point for M if and only if the Kähler metric ωφ has constant scalar curva-
ture [25]. From the point of view of Geometric Invariant Theory (GIT) the
K-energy can, as shown by Donaldson [18], be identified with the Kempf-Ness
“norm-functional” for the natural action of the group of Hamiltonian diffeo-
morphisms on the space of all complex structures on X, compatible with a
given symplectic form.

As shown by Mabuchi the functional M is convex along geodesics in
the space H endowed with its canonical Riemannian metric (the Mabuchi-
Semmes-Donaldson metric). More precisely, as indicated by the GIT interpre-
tation, M is strictly convex modulo the action of the automorphism group
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G of (X,L) in the following sense: let φt be a geodesic in H (parametrized so
that t ∈ [0, 1]) then

(1.1) t �→ M(φt) is affine iff φ(t) = g(t)φ0,

where g(t)φ0 denotes the action on φ0 of a one-parameter subgroup in G,
i.e. φt is equal to the pull-back of φ0 under the flow of a holomorphic vector
field on X. However, the boundary value problem for the geodesic equation
in H does not, in general, admit strong solutions [24]. In order to bypass
this complication Chen introduced a natural extension of M to the larger
space H1,1 consisting of all (singular) metrics φ on L such that the curvature
ωφ is defined as an L∞-form. The advantage of the latter space is that it
is geodesically convex (in the sense of metric spaces; see [15] and references
therein). It was conjectured by Chen [13] and confirmed in [3] that M is
convex on H1,1. However, the question whether M is strictly convex modulo
the action of G on H1,1 was left open in [3]. In this short note we give a
negative answer to the question already in the simplest case when X is the
Riemann sphere and the metrics are S1-invariant.

Theorem 1. Let L → X be the hyperplane line bundle over the Riemann
sphere. There exists an S1-invariant geodesic φt in H1,1 such that M(φt) is
affine, but φt is not of the form g(t)φ0.

In terms of the standard holomorphic coordinate z on the affine piece C

of X the geodesic φt in the previous theorem can be taken so that φt is equal
to the Fubini-Study metric φ0 on the lower-hemisphere, flat on a t-dependent
collar attached to the equator and then glued to a one-parameter curve of the
form g(t)∗φ0 in the remaining region of the upper hemi-sphere.

The failure of the strict convexity of M on H1,1 modulo G appears to
be quite surprising in view of the fact that the other canonical functional in
Kähler geometry – the Ding functional D – is strictly convex on H1,1 modulo
G. In fact, the Ding functional (which is only defined in the “Fano case”,
i.e. when L is the anti-canonical line bundle over a Fano manifold) is even
strictly convex modulo the action of G on the space of all L∞-metrics on L
with positive curvature current [9].

One important motivation for studying strict convexity properties of the
Mabuchi functional M on suitable completions of H comes from the Yau-
Tian-Donaldson conjecture. In its uniform version the conjecture says that
the first Chern class c1(L) of L contains a Kähler metric of constant scalar
curvature iff (X,L) is uniformly K-stable (in the L1-sense) relative to a max-
imal torus of G [10, 17]. The “only if” direction was established in [8] when
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G is trivial (and a similar proof applies in the general case [5]). The proof in
[8] uses the convexity of M on the finite energy completion E1 of H.1 The
remaining implication in the Yau-Tian-Donaldson conjecture is still widely
open, in general, but a first step would be to establish the existence of a
minimizer of M in the finite energy space E1, by generalizing the variational
approach to the “Fano case” introduced in [4]. Leaving aside the challenging
question of the regularity of a minimizer one can still ask if the minimizer is
canonical, i.e. uniquely determined modulo G? (as conjectured in [16]). The
uniqueness in question would follow from the strict convexity of M on E1

modulo the action of G. However, by the previous theorem such a strict con-
vexity does not hold, in general. On the other hand, it would be enough to
establish the following weaker strict convexity property:

t �→ M(φt) is constant =⇒ φ(t) = g(t)φ0,

(the converse implication holds if (X,L) is K-stable). This may still be too
optimistic, but here we observe that this approach towards the uniqueness
problem can be made to work in the toric case if one assumes some a priori
positivity of the curvature current of some minimizer.

Theorem 2. Let (X,L) be an n-dimensional polarized toric manifold. As-
sume that (X,L) is uniformly K-stable relative to the torus action. Then there
exists a finite energy minimizer φ of M and the minimizer is unique modulo
the action of C∗n under the assumption that there exists some finite energy
minimizer φ0 whose curvature current is strictly positive on compacts of the
dense open orbit of C∗n in X.

1.1. Relations to previous results

In view of its simplicity it is somewhat surprising that the counterexample in
Theorem 1 does not seem to have been noticed before. The key point of the
proof is a generalization of Donaldson formula for the Mabuchi functional M
in the smooth toric setting to a singular setting (see Lemma 5 and Lemma
7), showing that

(1.2) M(φ) = F(u),
1The space E1 was originally introduced in [22] from a pluripotential point of

view and, as shown in [15], E1 may be identified with the metric completion of H
with respect to the L1-Finsler version of the Mabuchi-Semmes-Donaldson metric
on H
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where the non-linear part of the functional F only depends on the non-
singular part (in the sense of Alexandrov) of the Hessian of the convex func-
tion on the moment polytope of (X,L), corresponding to the metric φ. This
leads, in fact, to a whole class of counter-examples to the strict convexity in
question, by taking φt to be any torus invariant geodesic φt, emanating from
a given φ0 ∈ H, whose Legendre transform ut is of the form

ut = u0 + tv,

for a convex and piece-wise affine function v. Such a curve defines a geodesic
ray associated to a toric test configuration for (X,L) and the fact that φt ∈
H1,1 then follows from general results (see [14, 27, 28, Section 7]). A by-
product of formula 1.2 is a slope formula for the K-energy along toric geodesics
of finite energy (see Section 7).

The functional F has previously appeared in a series of papers by Zhou-
Zhu (see Remark 8). In particular, it was shown in [31, Section 6] (when
n = 2) that a minimizer u of F is uniquely determined, modulo the com-
plexified torus action, under the stronger assumption that there exists some
minimizer u0 of F which is C∞-smooth and strictly convex in the inte-
rior (while our assumption is equivalent to merely assuming that u is C1,1-
smooth in the interior). We also recall that in the toric surface case (i.e
when n = 2) it was shown by Donaldson [19] that uniform K-stability is
equivalent to K-stability. Moreover, the Yau-Tian-Donaldson in the latter
case was settled by Donaldson in a series of papers culminating in [21] (as
a consequence, any minimizer of M is then smooth and positively curved).
Theorem 2 should also be compared with the general uniqueness result for
finite energy minimizers of M on any Kähler manifold which holds under the
assumption that there exists some minimizer which is smooth and strictly
positively curved. The proof of the latter result, which generalizes the unique-
ness result in [3], exploits a weaker form of strict convexity which holds on
the linearized level around a bona fide metric with constant scalar curva-
ture.

2. Proofs

We start with some preparations. To keep things as simple as possible we
mainly stick to the one-dimensional situation (see [2] for the general convex
analytical setup and its relations to polarized toric varieties).
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2.1. Convex preparations

Let φ(x) be a lower semi-continuous (lsc) convex function on R (taking values
in ] −∞,∞]). Its point-wise derivative φ′(x) exists a.e. on R and defines an
element in L∞

loc(R). We will denote by ∂φ the subgradient of φ, which is a
set-valued map on R with the property that (∂φ)(x) is a singleton iff φ′(x)
exists at x. Similarly, we will denote by ∂2φ the measure on R defined by the
second order distributional derivative of φ. By Lebesgue’s theorem we can
decompose

∂2φ = ∂2
sφ + φ′′,

where ∂2
sφ denotes the singular part of the measure ∂2φ and φ′′ ∈ L1

loc(R)
denotes the regular part (wrt Lebesgue measure dx), which coincides with
the second order derivative of φ almost everywhere on x. We set

(2.1) φ0(x) := log(1 + ex)

and
P+(R) := {φ : φ convex onR, φ− φ0 ∈ L∞(R)}

(∂2φ is a probability measure for any such φ). Given a function φ in P+(R)
we will denote by u its Legendre transform which defines a finite lsc convex
function u on [0, 1] (which is equal to ∞ on ]0, 1[c)

u(y) := (φ∗)(y) := sup
x∈R

xy − φ(x)

Since φ = u∗ the map φ �→ u gives a bijection

P+(R) ←→ {u : u convex on [0, 1]} ∩ L∞[0, 1]

which is an isometry wrt the L∞-norms. Moreover, φ is smooth and strictly
convex on R iff u is smooth and strictly convex on ]0, 1[, as follows from the
formula

(2.2) φ(x) = xy − u′(y),

if x = u′(y) and u is differentiable at y (and vice versa if φ is replaced by u).
Moreover, if u is two times differentiable at y = 0 and u′′(y) > 0 then φ′′ is
differentiable at x and

(2.3) φ′′(x) = 1/u′′(y)
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2.2. Complex preparations

Let (X,L) := (P1,O(1)) be the complex projective line P1 endowed with the
hyperplane line bundle O(1). Realizing P

1 as the Riemann sphere (i.e. the
one-point compactification of the complex line C) a locally bounded metric Φ
on O(1) may, in the standard way, be identified with a convex function Φ(z)
on C such that

Φ − Φ0 ∈ L∞(C), Φ0(z) := log(1 + |z|2),

where Φ0 corresponds to the Fubini-Study metric on O(1), which defines a
smooth metric with strictly positively curvature ω0 on P

1 (coinciding with the
standard SU(2)-invariant two-form on P

1). Moreover, the metric Φ on O(1)
has semi-positive curvature ωΦ on P

1 iff Φ(z) is subharmonic on C. More
precisely,

(2.4) ωΦ|C = i

2π∂∂̄Φ := i

2π
∂2Φ
∂z∂z̄

dz ∧ dz̄

We will denote by HS1

b the space of all bounded (i.e L∞) metrics Φ on O(1) →
P

1 with semi-positive curvature which are S1-invariant (wrt the standard
action of S1). Setting

x := log |z|2

gives a correspondence

HS1

b ←→ P+(R), Φ(z) �→ φ(x) := Φ(e2x)

As is well-known, under the Legendre transform the Mabuchi-Donaldson-
Semmes metric on HT corresponds the standard flat metric induced from
L2[0, 1]. It follows that a geodesic Φt in HS1

b corresponds to a curve φt in
P+(R) with the property that the corresponding curve

ut := φ∗
t

of bounded convex functions on [0, 1] is affine wrt t.
In particular, taking φ0 to be defined by 2.1, the following curve defines

a geodesic in HS1

b :

φt(x) := (u0 + tv)∗, u0(y) := φ∗
0(y) = y log y + (1 − y) log(1 − y),
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where v is the following convex piece-wise affine function on [0, 1]:

v(y) := 0, y ∈ [0, 1
2], v(y) = −1

2 + y, y ∈ [ 12 , 1]

Lemma 3. Assume that t ∈]0, 1]. Then φt defines an S1-invariant metric
on O(1) → P

1 which is C1,1-smooth on P
1 with semi-positive curvature and

C∞-smooth and strictly positively curved on the complement of a t-dependent
neighborhood of the equator. More precisely, in the logarithmic coordinate
x ∈ R we have φt(x) = φ0(x) when x ≤ 0 and φt(x) = φ0(0) + x/2 when
x ∈ [0, t] and φt(x) = φ0(x− t) + t/2 when x ≥ t.

Proof. Step 1: φt is in C1,1(R).
This step only uses that v is convex and bounded on [0, 1]. Let v(j) be a se-

quence of smooth strictly convex function on [0, 1] such that
∥∥∥v(j)−v

∥∥∥
L∞[0,1]

→
0. Set u(j)(t) := u0 + tv(j) and φ(j) := u(j)∗. Since the Legendre transform
preserves the L∞-norm we have

∥∥∥φ(j) − φ
∥∥∥
L∞(R)

→ 0. By construction, u(j)
t

is smooth and satisfies (u(j)
t )′′ ≥ (u0)

′′ ≥ 1/C > 0. Hence, by 2.3, (φ(j)
t )′′ ≤ C

and letting j → ∞ thus implies that ∂2φ = φ′′ ≤ C, showing that φt is in
C1,1(R).

Step 2: Explicit description of φt

We fix t > 0 and observe that the map y �→ u′t(y) induces two diffeomor-
phisms (with inverses x �→ φ′

t(x))

(2.5) u′t : Y− :=]0, 1
2[→ X− :=] −∞, 0[, Y+ :=]12 , 1[→ X− :=]t,∞[

This follows directly from the fact that u
′
t is strictly positive on Y± and

converges to 0 and t when y → 1/2 from the left and right, respectively. We
claim that this implies, by general principles, that the restriction of φt to X±
only depends on the restriction of ut to Y±. Indeed, if x = u′t(y) for y ∈ Y±
then formula 2.2 shows that φt|X± only depends on the restriction of u to X−.
Hence, the restriction of φt to X− is given by u∗0 = φ0 and the restriction of
φt to X+ is given by the Legendre transform of u0(y) + t(y − 1/2), which is
equal to φ0(x−t)+t/2. Finally, it follows from the diffeomorphism 2.5 (using,
for example, that φ′

t is increasing) that φ′
t = 1/2 on [0, t].

Remark 4. A more symmetric form of the geodesic φt may be obtained by
setting φ̃t(x) := 2φt(x) − x, which has the property that φ̃t(x) := φ̃0(x) :=
log(e−x + ex) when x ≤ 0 and φ̃t(x) = φ̃0(0) when x ∈ [0, t] and φ̃t(x) =
φ̃0(x − t) when x ≥ t. Geometrically, φ̃t defines a geodesic ray of metrics on
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O(2) → P
1, expressed in terms of the trivialization of O(2) over C

∗ ⊂ P
1

induced from the embedding C
∗ → C

2 → P
2 defined by F (z) := (z−1, z) ∈

C
2, where X is identified with the closure F (C) of F (C) in P

2 and O(2)
with the restriction of OP2(1) to F (C). A direct calculation reveals that φ̃t(x)
(and hence also φt(x)) is in fact C1,1-smooth when viewed as a function on
R× R. This implies that the Laplacian of the corresponding local potentials
over P1 × D∗ (where D∗ denotes the punctured unit disc with holomorphic
coordinate τ such that t := − log |τ |2) is locally bounded, i.e. the geodesic has
Chen’s regularity [12] in the space-time variables. It should also be pointed
out that φ̃t can be realized as the geodesic ray, emanating from the Fubini-
Study metric, associated to the toric test configuration of (X,L) := (P1,O(2))
determined (in the sense of [19, 14, 28]) by the piece-wise affine function
ṽ(y) = max{0, y} on the moment polytope [−1, 1] of (P1,O(2)) (as in [14]).
Using this realization the C1,1-regularity also follows from the general results
in [27, 14] which show that the Laplacian (or equivalently complex Hessian)
of the corresponding potential is locally bounded over X×D∗. Indeed, in the
toric setting boundedness of the complex Hessian is equivalent to boundedness
of the real Hessian, i.e. to C1,1-regularity.

2.2.1. The K-energy Let (X,L) be a polarized compact complex mani-
fold. We recall that the K-energy functional was originally defined by Mabuchi
[25] on the space H of all smooth metrics Φ on L with strictly positive cur-
vature by specifying its differential (more precisely, this determines M up to
an additive constant). Chen extended M to the space H1,1 consisting of all
(singular) metrics φ on L such that the curvature ωΦ of Φ is defined as an
L∞-form [13]. The extension is based on the Chen-Tian formula for M on H
which may be expressed as follows in terms of a fixed Kähler form ω0 on X:

M(u) =
(

R̄

n + 1E(Φ) − ERicω0(Φ)
)

+ Hωn
0
(ωn

Φ), R̄ := nc1(X) · [ω0]n−1

[ω0]n
,

(2.6)

where

(2.7) Hμ0(μ) :=
∫
X

log
(
μ

μ0

)
μ

and E and ERicω0 are defined, up to an additive constant, by their differentials
on H:

(2.8) dE|Φ = (n + 1)ωn
Φ, dERicω0

|Φ = nωn−1
Φ ∧ Ricω0
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with Ricω0 denoting the two-form defined by the Ricci curvature of ω0 (see
[3] for a simple direct proof of the Chen-Tian formula). The extension of M to
H1,1 is obtained by observing that both terms appearing in the rhs of formula
2.6 are well-defined (and finite) when Φ ∈ H1,1. We note that the functional
appearing in the first bracket of the formula is continuous wrt the L∞-norm
on H1,1. Indeed, it follows readily from the definitions that both E and ERicω0

are even Lip continuous wrt the L∞-norm.
In the present setting where X = P

1 we can, for concreteness, take ω0 =
ωΦ0 , whose restriction to C is equal to a constant times e−2Φ0dz ∧ dz̄.

2.3. Conclusion of proof of Theorem 1

The proof will follow from the following extension to HS1
1,1 of a formula due

to Donaldson when Φ ∈ HS1 [19, Prop 3.2.8].
Lemma 5. Assume that Φ is in HS1

1,1. Then

M(Φ) = L(u) −
∫

[0,1]
log(u′′(y))dy, L(u) = 1

2(u(1) + u(0)) −
∫ 1

0
u(y)dy

where u′′ ∈ L1
loc denotes the non-singular part of ∂2u.

Proof. Step 1: Assume that Φ ∈ HS1
1,1. Then

M(Φ) = L(u) +
∫
R

φ
′′(x) log φ′′(x)dx

In the case when Φ ∈ HS1 (or more generally when u is continuous on [0, 1]
and smooth and strictly convex in the interior) this follows from Donaldson’s
formula [19]. To extend the formula to the case when Φ ∈ HS1

1,1 first observe
that

(2.9)
∫

φ0(x)φ′′(x)dx < ∞,

as follows directly from estimating φ′′ ≤ Cφ′′
0 ≤ Ae−|x|/B and φ0(x) ≤ |x|+C.

Hence, we can rewrite the Chen-Tian formula 2.6 as

(2.10) M(Φ) = E0(Φ) +
∫
R

φ
′′(x) log φ′′(x)dx,

where

E0(Φ) =
(

R̄

n + 1E(Φ) − ERicω0(Φ)
)

+ 2
∫
R

φ0(x)φ′′(x)dx,
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Now take a sequence Φj ∈ HS1 such that ‖Φj − Φ‖L∞ → 0 (which equiva-
lently means that ‖uj − u‖L∞[0,1] → 0) and ωΦj ≤ CωΦ0 , i.e.

(2.11) φ
′′
j (x) ≤ Cφ

′′
0(x)

We claim that

(2.12) E0(Φj) → E0(Φ).

Indeed, as pointed out above the first term appearing in the definition of
E0 is continuous wrt the L∞-norm. To handle the second term first observe
that, since ‖Φj − Φ‖L∞(X) → 0, the probability measures φ

′′
j (x)dx converge

weakly towards φ
′′(x)dx and hence, for any fixed R > 0,

lim
j→∞

∫
|x|≤R

φ0(x)φ′′
j (x)dx =

∫
|x|≤R

φ0(x)φ′′(x)dx

Moreover, the uniform bound 2.11 gives

lim sup
R→∞

lim sup
j→∞

∫
|x|≥R

φ0φ
′′
j (x)dx ≤ C lim sup

R→∞

∫
|x|≥R

φ0(x)φ′′
0(x)dx = 0

Hence, letting first j → ∞ and then R → ∞ proves 2.12.
Now take a sequence Φj ∈ HS1 such that ‖Φj − Φ‖L∞ → 0 which equiv-

alently means that ‖uj − u‖L∞[0,1] → 0. By Donaldson’s formula

E0(φj) = L(uj)

and since both sides are continuous wrt the convergence of Φj towards Φ this
concludes the proof of Step 1.

Step 2: Let φ be a convex function on R such that ∂2φ is a probability
measure which is absolutely continuous wrt dx. Then

(2.13)
∫
R

φ
′′(x) log φ′′(x)dx = −

∫
[0,1]

log(u′′(y))dy,

if the left hand side is finite (and then u′′(y) > 0 a.e.).
This formula is a special case of McCann’s Monotone change of variables

theorem [26, Theorem 4.4]. But it may be illuminating to point out that a
simple direct proof can be given in the present setting when φ is of the form
φt appearing in Lemma 3. Indeed, then ρ := φ′′ = 0 on a closed intervall
I of R and φ′ diffeomorphism of the complement I onto ]0, 1[−{1/2}. Since
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ρ log ρ = 0 if ρ = 0 the formula 2.13 then follows directly from making the
change of variables y = φ′(x) on R− S.

Now, let Φt be the geodesic in HS1
1,1 defined by the curve φt appearing in

Lemma 3. Since v is piece-wise affine we have u′′t = u′′0 a.e on R and hence
the previous lemma gives

M(Φt) = −
∫

[0,1]
log(u′′(y))dy + tL(v)

which is affine in t. Moreover, φt is not induced from the flow of a holomorphic
vector field (since this would imply that v is affine on all of [0, 1]). This
concludes the proof of Theorem 1.
Remark 6. The functional E0 in formula 2.10 coincides with the (attractive)
Newtonian energy of the measure μ = ∂2φ:

E0(μ) = 1
4

∫
R2

|x− y|μ(x) ⊗ μ(y)

and the continuity property of E0 used in the in Step 1 can be alternatively
deduce from the fact that E is continuous on the space P1(R) of all prob-
ability measures with finite first moment (endowed with the L1-Wasserstein
topology). This point of view is further developed in the higher dimensional
toric setting in [1].

2.4. Proof of Theorem 2

In this higher dimensional setting we will be rather brief and refer to [1] for
more details. Let (X,L) be an n-dimensional toric manifold and denote by
P the corresponding moment lattice polytope in R

n which contains 0 in its
interior. We will denote by dσ the measure on ∂P induced from the standard
integer lattice in R

n (which is comparable with the Lebesgue measure on
∂P ) [19]. The n-dimensional real torus acting on (X,L) will be denoted by
T . As above we can then identify a T -invariant metric Φ on L with positive
curvature current with a convex function φ(x) on R

n (whose sub-gradient
maps into P ) and, via the Legendre transform, with a convex function u on
P . We will denote by ∂2φ the distributional Hessian of φ and by (∇2φ)(x)
the Alexandrov Hessian of φ which is defined for almost all x (on the subset
where φ is finite).

Assume that (X,L) is uniformly K-stable relative to the torus T (in the
L1-sense). Concretely, this means (see [23]) that there exists δ > 0 such that
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for any rational piece-wise affine convex function u on P ,

L(u) :=
∫
P
udy − c

∫
∂P

u ≥ δ inf
l∈(Rn)∗

(∫
P
(u− l)dy − inf

P
(u− l)

)
,(2.14)

c :=
∫
P
dy/

∫
∂P

dσ,

where the inf ranges over all linear functions l on R
n (which, geometrically,

may be identified with an element of the real part of the Lie algebra of the
complex torus). We note that, by a standard approximation argument, the
inequality 2.14 holds for the space C(P ) of all convex functions u on P such
that u ∈ L1(P )∩L1(∂P ) (where u|∂P (y) is defined as the radial boundary limit
of u).2 The uniform K-stability implies, by [29, 23], that M is coercive relative
to T , i.e. there exist C > 0 such that the following coercivity inequality holds
on HT :

M(Φ) ≥ inf
g∈C∗n

J(gΦ)/C − C,

where J denotes Aubin’s J-functional. The functional M admits a canonical
extension to the space E1 of all (singular) metrics on L with positive curvature
current and finite energy (namely, the greatest lsc extension of M from H to
E1, endowed with the strong topology [6, 7]). The coercivity of M combined
with the results in [6] (which show that M is lsc wrt the weak topology on
E1) implies that there exists a T -invariant minimizer Φ0 of M on the space
E1(X,L) of all (singular) metrics on L with positive curvature current and
finite energy.

A generalization of the argument used in the proof of Lemma 5 gives
the following lemma which extends Donaldson’s formula in [19] to the finite
energy setting (the proof is given in [1]):

Lemma 7. Assume that Φ ∈ E1(X,L)T and M(Φ) < ∞. Then u ∈ C(P )
and

(2.15) M(Φ) = F(u) := L(u) −
∫
P

log det(∇2u(y))dy,

where ∇2u denotes the Alexandrov Hessian of u and both terms are finite (in
particular, ∇2u(y) > 0 a.e. on P ).

Remark 8. The functional F on C(P ) has previously been studied in a series
of papers by Zhou-Zhu (see [30, 29]). In particular it was shown in [30] that F
admits a minimizer u. But the point of the previous formula is that it identifies

2In fact, if u is convex on P and in L1(∂P ), then automatically u ∈ L1(P ).
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F with the Mabuchi functional on the space E1(X,L)T . As a byproduct this
gives a new proof of the existence of a minimizer u of F .

Let now Φ0 and Φ1 be two given minimizers of M in E1(X,L)T and
denote by Φt the corresponding geodesic in E1(X,L)T (which corresponds to
ut := u0 + t(u1 − u0) under the Legendre transform). By the previous lemma
the function t �→ M(Φt) decomposes in two terms, where the first term is
affine in t and the second one is convex. Since M(Φt) is constant (and in
particular affine) it follows that the second term,

t �→ −
∫
P

log(det∇2ut(y))dy

is also affine. But this forces, using the arithmetic-geometric means inequality,
that

(2.16) ∇2u1 = ∇2u0 a.e. on P .

As a consequence the previous function in t is, in fact, constant. Since M(Φt)
is also constant in t formula 2.15 forces L(ut) = L(u0) for all t. Setting
v := u1 − u0 this means that

L(v) = 0.
Now, if v is convex, then it follows form the assumption of uniform relative
K-stability that v is affine and hence Φ0 and Φ1 coincide modulo the action of
C

∗n. All that remains is thus to show that v is convex. To this end we invoke
the assumption that the distributional Hessian of φ0 satisfies

∇2φ0 ≥ CKI

on any given compact subset K of Rn. We claim that this implies that u0 ∈
C1,1

loc (P ). Indeed, since Φ0 has finite energy it has full Monge-Ampère mass
and hence the closure of the sub-gradient image (∂Φ0)(Rn) is equal to P . It
follows (just as in the proof of Lemma 3) that

∂2u0 = ∇2u0 ≤ C−1
K I

on the closure of (∂Φ0)(K) in P . Since K was an arbitrary compact subset of
R

n it follows that u0 ∈ C1,1
loc (P ). The proof of the theorem is now concluded

by invoking the following lemma (see [26, Lemma 3.2]):
Lemma 9. Let u0 and u1 be two finite convex functions on an open convex
set P ⊂ R

n such that u0 ∈ C1,1
loc (P ) and the Alexandrov Hessians satisfy 2.16.

Then u1 − u0 is convex.
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2.5. A generalized slope formula for the K-energy

We conclude the paper by observing that a by-product of Lemma 7 is the
following generalization of the slope formula for the K-energy in [11] (which
concerns the case when Φt is defined by a bona fide metric on a test configu-
ration) to the present singular setting:

Proposition 10. (Slope formula) Let Φt be a geodesic ray in E1(X,L)T such
that Φ0 ∈ H(X,L)T and M(Φt) < ∞ for any t ∈ [0,∞[. Then

lim
t→∞

t−1M(Φt) = L(v) < ∞

where ut = u + tv is the curve of convex functions in L1(∂P ) corresponding
to Φt under Legendre transformation.

Proof. Since M(Φt) < ∞ Lemma 7 shows that ut = u0 + tv ∈ L1(∂P ) for
all t ≥ 0, where v := u1 − u0. Moreover, since ut is convex for any t ≥ 0 it
also follows that v is convex and v ∈ L1(∂P ). Now, since ∂2u0 is invertible
we can, denoting the inverse by A(y), write

∫
log(det∇2(u0 + tv)(y))dy = C0 +

∫
P

log(det(1 + tA(y)∇2v0(y))dy,

which is finite for any t (by Lemma 7). Moreover, since ∇2v0(y) ≥ 0 we have,
when t ≥ 1, that

0 ≤
∫
P

log(det(I + tA(y)∇2v0(y))dy

≤ Vol(P )n log t +
∫
P

log(det(I + A(y)∇2v0(y))dy,

where all terms are finite. Hence, dividing by t and letting t → ∞ concludes
the proof of the proposition.

In the terminology of [10, 11, 4] this formula shows that the slope of the
Mabuchi functional along a finite energy geodesic is equal to the Non-Archi-
medean Mabuchi functional of the corresponding (singular) Non-Archimedean
metric. It would be very interesting to extend this slope formula to the non-
toric setting. Indeed, this is the key missing ingredient when trying to extend
the variational approach to the (uniform) Yau-Tian-Donaldson conjecture in
the “Fano case” in [4] to a general polarized manifold (X,L), in order to
produce a finite energy minimizer of M.
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