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Abstract: In this short note, we prove positivity of Brown-York
mass under quasi-positive boundary data which generalizes some
previous results by the authors. The corresponding rigidity result
is obtained.
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1. Introduction

Let (Ωn, g) be a compact manifold with smooth boundary ∂Ω. In this work,
we always assume that Ω is connected and orientable. It is an interesting
question to understand the relation between the geometry of Ω in terms of
scalar curvature and the intrinsic and extrinsic geometry of ∂Ω in terms of
the mean curvature. The question is closely related to the notion of quasi-local
mass in general relativity. On other hand, given an compact manifold (Σ, γ)
without boundary and given a smooth function H on Σ, one basic problem
in Riemannian geometry is to study: under what kind of conditions so that γ
is induced by a Riemannian metric g with nonnegative scalar curvature, for
example, defined on Ωn, and H is the mean curvature of Σ in (Ωn, g) with
respect to the outward unit normal vector? These two problems are closely
related and there are no satisfactory answers yet.
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In this kind of study, a result was proved by the authors which implies
the positivity of Brown-York quasi-local mass introduced by Brown and York
in [2, 3], denoted by mBY (Σ; Ω, g). For its definition please see (2.1) below.
More specifically, using the quasi-spherical metrics introduced by Bartnik [1],
in [13] the authors proved the following:

Theorem 1.1. Let (Ω3, g) be a compact, connected Riemannian three mani-
fold with nonnegative scalar curvature with smooth boundary ∂Ω with positive
mean curvature, which consists of spheres with positive Gaussian curvature.
Then,

(1.1) mBY (Σ�; Ω, g) ≥ 0

for each component Σ� ⊂ ∂Ω, � = 1, . . . , k. Moreover, equality holds for some
� = 1, . . . , k if and only if ∂Ω has only one component and (Ω, g) is isometric
to a domain in R

3.

Clearly Theorem 1.1 provides a necessary condition for a boundary data
(Σ, γ,H) to be the one induced by a Riemannian metric defined on the ambi-
ent manifold and with nonnegative scalar curvature and with positive mean
curvature H. Here γ is a metric on Σ with positive Gaussian curvature. The
existence of quasi-spherical metric in the proof of the theorem uses the fact
that the mean curvature is positive at the boundary, see [1, 13, 14]. Otherwise,
it is unclear if one can construct such kind of metrics. With these facts in
mind, it is natural to ask if Theorem 1.1 is still true in a more general con-
text. In this note, we consider the problem in the situation of quasi-positive
boundary data. Here a function defined on a set is said to be quasi positive
if it is nonnegative and is positive somewhere. The specific results are the
following:

Theorem 1.2. Let (Ω, g) be a compact three manifold with smooth boundary
∂Ω. Let Σ be a component of ∂Ω. Assume the following:

(a) ∂Ω has nonnegative mean curvature.
(b) Σ has quasi positive Gaussian curvature.
(c) (Ω, g) has nonnegative scalar curvature.

Then we have:

(i) Positivity: mBY (Σ; Ω, g) ≥ 0.
(ii) Rigidity: Suppose mBY (Σ; Ω, g) = 0, then ∂Ω is connected, Ω is home-

omorphic to the unit ball in R
3 and (Ω, g) is isometric to a domain

in R
3.
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We first remark that in case ∂Ω has quasi positive Gaussian curvature
and has positive mean curvature or ∂Ω has positive Gaussian curvature and
has nonnegative mean curvature, then the positivity part of Theorem 1.2 was
proved in [14] and [15] respectively. However, the rigidity part in the first
instance was studied in [14] but not solved very satisfactorily. The rigidity
part in the second instance was not addressed in [15].

To show Theorem 1.1 we used the method of quasi-spherical metric in-
troduced by Bartnik [1]. However, if the mean curvature is only assumed to
be nonnegative, a parabolic equation involved in the quasi-spherical metric
may be degenerated. To overcome this difficult, in case ∂Ω is disconnected,
we adopt a careful conformal perturbation on the ambient metric g so that
one can use Theorem 1.1 and its generalization for the case that the bound-
ary has positive mean curvature and quasi-positive Gaussian curvature [14].
In case ∂Ω = Σ, we use an approximation so that the mean curvature is
positive but the scalar curvature may be bounded below by a small negative
constant. We then embed the boundary to an hyperbolic space with small
negative constant curvature, and use a result in [17] to get nonnegativity of
Brown-York mass.

To prove the rigidity part of Theorem 1.2, first we show that if the Brown-
York mass is zero, then Ω is homeomorphic to the unit ball in R

3 and g is scalar
flat. Then we show that g is Ricci flat. To do this, by suitable approximations,
as in [7], one can construct a weak solution of the inverse mean curvature flow
(IMCF) in (Ω, g) with a point p ∈ Ω as the initial data (see Lemma 3.3 below).
We then approximate g by metrics so that Σ has positive Gaussian curvature
and positive mean curvature, and so that it also has zero scalar curvature
outside certain level sets of the IMCF. We can show that the level sets near p
have zero Hawking mass. Using the method as in the work of Husiken-Ilmanen
[7], one then conclude that g is Ricci flat near p.

It is still an open question whether the Brown-York mass is nonnegative
if the mean curvature is negative somewhere.

The remaining part of the paper goes as follows: in Section 2, we prove
the positivity result of Theorem 1.2; in Section 3, we prove the rigidity result
of the theorem.

2. Positivity

Let us first clarify the definition of Brown-York mass. Let (Ω, g) be compact
three manifold with smooth boundary ∂Ω. Let Σ be a connected component
of ∂Ω with induced metric γ. Suppose the Gaussian curvature of (Σ, γ) is
quasi positive. Then it can be C1,1 isometrically embedded in R

3 as a convex
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surface with mean curvature H0 which is defined almost everywhere in Σ.
Moreover, ∫

Σ
H0dσ

is well-defined and is positive, see [5, 6, 14]. It is well-defined in the sense
that it is the same for any C1,1 isometric embedding. Here and below mean
curvature is computed with respect to the unit outward normal and the mean
curvature of the boundary of the unit ball in R

3 is 2. The Brown-York mass
[2, 3] of Σ in (Ω, g) is defined as follows:

(2.1) mBY (Σ; Ω, g) = 1
8π

∫
Σ
(H0 −H)dσ.

Here H is the mean curvature of Σ in (Ω, g). In this section, we want to prove
on the positivity of Brown-York mass in Theorem 1.2.
Remark 2.1. We always use the following fact. Suppose the scalar curvature
R of (Ω, g) is nonnegative. Let u be the solution of{

8Δgu−Ru = 0 in Ω
u = 1 on ∂Ω.

Then u is positive, so that u4g has zero scalar curvature and the mean curva-
ture of ∂Ω with respect to u4g is no less than its mean curvature with respect
to g.

Lemma 2.1. Let (Ω, g) and Σ be as in Theorem 1.2. Suppose ∂Ω \ Σ �= ∅,
then

mBY (Σ; Ω, g) > 0.

Proof. In the following, the area element of ∂Ω with respect to the metric
induced by g will be denoted by dσg, and the mean curvature will be denoted
by Hg, etc. Let γ = g|T (Σ) and let H0 be the mean curvature when (Σ, γ) is
C1,1 isometrically embedded in R

3

By Remark 2.1, we may assume that the scalar curvature of (Ω, g) is zero.
Moreover, since

∫
Σ H0dσg > 0, we may assume that H(x0) > 0 somewhere

in Σ. Let Σ′ = ∂Ω \ Σ �= ∅.
First, we want to find a smooth metric g1 on Ω such that

(i) g1 has zero scalar curvature;
(ii) the mean curvature Hg1 of ∂Ω is positive; and
(iii) g and g1 induce the same metric on Σ′.
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To construct g1, let U be a neighborhood of x0 in Σ such that Hg ≥ c0 > 0
in U . Let 0 ≤ φ ≤ 1 be a smooth cutoff function with support in U so that
φ = 1 in a neighborhood of x0. Given ε > 0 and let u be the solution of{

Δgu = 0 in Ω
u = 1 − εφ on ∂Ω.

For ε > 0 small enough, u > 0 and g1 = u4g has zero scalar curvature.
Moreover,

Hg1 = 1
u2

(
Hg + 4

u

∂u

∂ν

)
where ν is the unit outward normal. By the strong maximum principle Hg1 > 0
outside U . Insider U , Hg > 0 and so Hg1 > 0 provided ε is small enough. Fix
such an ε1 > 0. Hence g1 = u4g satisfies the conditions mentioned above. In
particular, the mean curvature at Σ′ with respect to g1 is bounded below by
some positive constant a > 0.

Next, for any ε > 0 let v be the harmonic function in Ω so that v = 1 on
Σ and v = 1 − ε on Σ′. Then for ε small enough, v4g is a smooth metric on
Ω such that the mean curvature of Σ with respect to v4g is larger than the
mean curvature with respect to g. Moreover, the mean curvature of Σ′ with
respect to v4g is bounded in absolute value by a

2 , provided ε is small enough.
Choose such an ε2 > 0. Let g2 = v4g. Then g2, g induce the same metric on
Σ and (1 − ε2)4g1 and g2 induce the same metric on Σ′.

Let M1 = Ω with metric (1 − ε2)4g1 and M2 = Ω with metric g2. We can
glue the M1 and M2 along Σ′. Denote the resulting manifold by M3 and the
resulting metric by g3. Then the boundary of M3 consists of two copies of Σ
denoted by Σ1 and Σ2. Moreover the following are true:

(i) g3 is smooth except along Σ′. Moreover, g3 is Lipschitz and is smooth
on each side of Σ′.

(ii) The scalar curvature of g3 is zero away from Σ′.
(iii) The mean curvature of Σ1 and Σ2 are positive.
(iv) The mean curvature jump at Σ′ is positive. Namely, if we choose the

unit normal pointing outside Σ′ in M1, then the mean curvature jump
is at least a− a

2 = a
2 > 0.

(v) g and g3 induce the same metric on Σ which corresponds to Σ2.
(vi) The mean curvature of Σ2 with respect to g3 is larger than the mean

curvature of Σ with respect to g.
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We claim that

(2.2)
∫

Σ2

(H0 −Hg3)dσg3 ≥ 0.

If the claim is true, then by (v) and (vi) above, we conclude the lemma is
true.

To prove the claim we further glue two copies of M3 along Σ1. Denote
the resulting manifold by M4 and the resulting metric by g4. The boundary
of M4 consists of two copies of Σ2, denoted by Σ̃1, Σ̃2. The following are true:

(i) g4 is smooth except along those parts coming from Σ′ or from Σ1.
Moreover, g4 is Lipschitz and is smooth on each side of these surfaces.

(ii) The scalar curvature of g4 is zero away from those parts coming from
Σ′ or from Σ1.

(iii) The mean curvature of Σ̃1 and Σ̃2 with respect to g4 are positive. In
fact they are equal the mean curvature of Σ2 with respect to g3.

(iv) The mean curvature jump at those parts coming Σ′ or Σ1 are positive,
because the mean curvature of Σ1 with respect to g3 is positive.

(v) Σ̃1, Σ̃2 with respect to the induced metric from g4 is isometric to
(Σ, g|T (Σ)).

By [9, Theorem 3.3], there exists a smooth metric h on M4 with nonnegative
scalar curvature so that h, and g4 induce the same metric on ∂M4 and∫

∂M4

Hhdσh >

∫
∂M4

Hg4dσg4 = 2
∫

Σ
Hg3dσg3 .

Moreover, Hh > 0 on ∂M4. Since each component of ∂M4 with metric induced
by h is isometric to Σ with metric induced by g, it has quasi positive Gaussian
curvature. By [14, Theorem 0.2], we conclude that

2
∫

Σ
H0dσ ≥

∫
∂M4

Hhdσ ≥ 2
∫

Σ
Hg3dσg3 .

Hence the claim is true. This completes the proof of the lemma.

Lemma 2.2. Let (Ω, g) and Σ be as in Theorem 1.2. Suppose ∂Ω = Σ, then

mBY (Σ; Ω, g) ≥ 0.

Proof. By Remark 2.1, we may assume that g is scalar flat. Note that ∂Ω = Σ
is a sphere because its Gaussian curvature is quasi positive. Moreover, we may
assume that the mean curvature H of Σ is quasi positive. Let x0 ∈ Σ with
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H(x0) > 0. Let U be an neighborhood of x0 in Σ such that Hg ≥ c0 > 0 in U .
Let 0 ≤ φ ≤ 1 be a smooth cutoff function with support in U so that φ = 1
in a neighborhood of x0. Given ε > 0 and let u = u(ε) be the solution of{

Δgu = 0 in Ω
u = 1 − εφ on ∂Ω.

For ε > 0 small enough, g(ε) = u4g has zero scalar curvature so that ∂Ω has
positive mean curvature. Let γ(ε) be the metric on Σ induced by g(ε) and let
K(ε) be the Gaussian curvature of Σ with respect to γ(ε). Then

(2.3) K(ε) > −κ2(ε)

where κ(ε) > 0, κ(ε) → 0 as ε → 0. By [12], we can isometrically embed
(Σ, γ(ε)) in H−κ2(ε) as a strictly convex surface in the ball model defined in
the ball

{|x| < κ−2(ε)}.

Moreover, we may assume that the origin is inside the embedded surface. Let
H(ε) be the mean curvature of Σ with respect to g(ε) and let Hκ(ε) be the
mean curvature when (Σ, γ(ε)) is isometrically embedded in the hyperbolic
space H−κ2(ε) with constant curvature −κ(ε). By [17], we have

(2.4)
∫

Σ
(Hκ(ε) −H(ε)) cosh(κ(ε)r)dσg(ε) ≥ 0

where r is the distance from the origin in Hκ(ε).
Observe that we can find εi → 0 such that g(εi) → g in C∞ norm on Ω.

Hence the intrinsic diameter of (Σ, γ(εi)) is bounded by a constant indepen-
dent of i, we conclude that r is bounded by a constant independent of i. By
[8, p.7152-7154], one can choose εi → 0 such that:

• Hκ(εi) are uniformly bounded from above. (Note that Hκ(εi) > 0).
• If Xi = (x1, x2, x3) is the isometric embedding of (Σ, γ(εi)), then the
C2 norm with respect to the fixed metric σ are uniformly bounded.

Together with (2.4), we conclude that

lim inf
i→∞

∫
Σ
(Hκ(εi) −Hg)dσ ≥ 0.
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Moreover, Xi converge to a C1,1 embedding of (Σ, σ) in R
3 as a convex surface.

As in [14], one can conclude that

lim
i→∞

∫
Σ
Hκ(εi)dσ =

∫
Σ
H0dσ,

where H0 is the mean curvature of Σ when (Σ, γ) is isometrically C1,1 em-
bedded in R

3. Here γ = g|T (Σ). From this the lemma follows.

Proof of Theorem 1.2 (i) Positivity. Let (Ω, g), Σ be as in Theorem 1.2. Then
by Lemmas 2.1 and 2.2, we have

mBY (Σ; Ω, g) ≥ 0.

3. Rigidity

In the section, we will prove the rigidity part in Theorem 1.2. First we have
the following:

Lemma 3.1. Let (Ω, g),Σ be as in Theorem 1.2 so that ∂Ω = Σ. Suppose Ω
is not homeomorphic to the unit ball in R

3, then

mBY (Σ; Ω, g) > 0.

Proof. Since the Gaussian curvature of Σ is quasi positive, Σ is a topological
sphere. If Ω is a handle body, then it is homeomorphic to the unit ball.
Suppose this is not the case, then Ω is not a handle body. By [10, Theorem
1’ and Proposition 1] there is an embedded minimal surface S which is either
a sphere or a minimal projective space inside Ω.

Case 1: Suppose S is a sphere. Since S is orientable, there is a smooth
unit normal vector field on S and there is an embedding F : S× (−1, 1) → Ω
so that F (· , 0) = S and the image of F is a tubular neighborhood N of S in
Ω. Then N \ S is a manifold so that part of its boundary are two copies of
S with two components. Hence Ω \ S is a manifold with boundary consisting
of ∂Ω and two copies of S. Let Ω̃ be the connected component of Ω \ S
containing ∂Ω = Σ. Then (Ω̃, g) has nonnegative scalar curvature so that
∂Ω̃ is disconnected, and mBY (Σ,Ω, g) = mBY (Σ, Ω̃, g), which is positive by
Lemma 2.1.

Case 2: Suppose S is a projective space. f : RP2 → Ω is an embedding
with S = f(RP2). We want to construct a double cover p : Ω̂ → Ω so that
p−1(f(RP2)) ∼= S

2.
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Let V be the normal bundle of the embedding f . Note that RP2 has only
two non-isomorphic real line bundles, namely the tautological line bundle
and the trivial one. Since Ω is orientable, V is isomorphic the tautological
line bundle ((S2 × R)/ ∼) → (S2/ ∼) ∼= RP

2 with (x, k) ∼ (−x,−k) on
S

2 × R.
By the tubular neighborhood theorem, there exists an open embedding

G : ((S2 × R)/ ∼) ∼= V → Ω whose restriction on the zero section is equal to
f . Let Ω′ = G((S2 × [−1, 1])/ ∼) and Ω′′ = Ω \ G((S2 × (−1, 1))/ ∼). Then
Ω = Ω′ ∪ Ω′′ with Ω′ ∩ Ω′′ = ∂Ω′ ∼= S

2.
Let Ω+, Ω− be two identical copies of Ω′′. Define φ : S

2 × {−1, 1} →
Ω+ � Ω− by φ(x, 1) = g([(x, 1)]) ∈ Ω+ and φ(x,−1) = g([(x,−1)]) ∈ Ω−
for x ∈ S

2. Let Ω̂ = S
2 × [−1, 1] ∪φ (Ω+ � Ω−). Then the obvious map

p : Ω̂ → Ω has the desired properties. By the construction, we see that
(Ω̂, ĝ) has nonnegative scalar curvature and ∂Ω̂ two components, each of them
has quasi-positive mean curvature with respect to outward unit norm vector
and quasi-positive Gauss curvature. In fact, near each component, (Ω̂, ĝ) is
isometric to neighborhood of Σ in (Ω, g). On the other hand, 2mBY (Σ,Ω, g) =
mBY (∂Ω̂, Ω̂, g), which is positive by Lemma 2.1. This completes the proof of
the lemma.

Let (Ω, g) and Σ be as in Theorem 1.2. Suppose mBY (Σ; Ω, g) = 0. By
Lemmas 2.1 and 3.1, we conclude that ∂Ω = Σ and Ω is homeomorphic to the
unit ball. By Remark 2.1, we conclude that g is scalar flat. Moreover, since Σ
has quasi positive Gaussian curvature, we conclude that Σ has quasi positive
mean curvature, otherwise mBY (Σ; Ω, g) > 0. In the rest of this section, we
always assume the above facts. In remains to prove that g is Ricci flat.

We need the following two lemmas.

Lemma 3.2. Let (Ω, g) and Σ be as above. For any p in Ω and for any ρ > 0
small enough, there is a sequence of smooth metrics gi on Ω with the following
properties:

(i) gi → g in C∞ norm in Ω as i → ∞.
(ii) Σ has positive mean curvature Hi with respect to gi.
(iii) Let γi be the induced metric of gi on Σ. Then the Gaussian curvature

of (Σ, γi) has positive Gaussian curvature.
(iv) The scalar curvature of gi is zero outside B(p, 2ρ).
(v) The mean curvature of ∂Bg(p, s) with respect to gi is positive for all

s < 2ρ for all i.
(vi) mBY (Σ; Ω, gi) → 0 as i → ∞.
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Proof. Let ρ > 0 be small enough so that ∂Bg(p, s) is diffeomorphic to the
sphere and so that its mean curvature is larger than 1/s for all 0 < s < 2ρ.
Fix a smooth cutoff function φ ≥ 0 so that φ = 1 in B(p, ρ) and φ = 0 outside
B(p, 2ρ). Let v be the solution of Δgv = εφ in Ω and v = 1 on Σ. Then for
ε > 0 small enough, v > 0. Let gε = v4g. For ε small enough, gε satisfies:

• gε → g in C∞ norm in Ω as ε → 0.
• The scalar curvature of gε is zero outside B(p, 2ρ).
• The mean curvature of Σ with respect to gε is positive. This follows

from the strong maximum principle that ∂v
∂ν > 0 where ν is the unit

outward normal of Σ with respect to g.

Since v = 1 on Σ, the metrics induced by g, gε are equal, and will be denoted
by γ. In particular, the Gaussian curvature of Σ does not change. If the
Gaussian curvature of (Σ, γ) is positive, then gi = gεi with εi → 0 are the
required metrics. Otherwise, we can find a smooth function η on Σ such that
η ≤ 0, Δγη = −1 in an open set containing {K = 0}. For fixed ε > 0, for
τ > 0, and let w be the solution of Δgεw = 0 in Ω so that w = exp(1

2τη). Let
hτ = w4gε. Then

• hτ → gε in C∞ norm in Ω as τ → 0.
• The scalar curvature of hτ is zero outside B(p, 2ρ).
• The mean curvature of Σ is positive, provided τ is small enough.
• The Gaussian curvature of Σ with respect to the metric induced by hτ

is positive provided τ is small enough.

From these, it is easy to see the lemma is true.

The following lemma is basically from [7].

Lemma 3.3. Let (Ω, g), Σ be as above. For any p ∈ Ω, there is a weak
solution for the inverse mean curvature flow in (Ω, g) with p as the initial
data.

Proof. Let U be a small neighborhood of ∂Ω, then extend Ω ∪ U to be Eu-
clidean near infinity, the resulting metric is denoted by ĝ.

Let us consider the inverse mean curvature flow (IMCF) in (M, ĝ) with
∂Br(p) as the initial data where r > 0 is small enough. By Theorem 3.1 in
[7], there is a weak solution ur to this IMCF with ur|∂Br(p) = 0 and

|∇ur|(x) ≤ sup
∂Br(p)∩Bρ(x)

H+ + C

ρ
,
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for any 0 < ρ ≤ σ(x), here C is a universal constant independent on ρ and r,
σ(x) is defined in Definition 3.3 in [7], i.e. for any x ∈ Ω, let τ(x) ∈ (0,∞] be
the supremum of radii r such that Br(x) ⊂ Ω, and

Rc ≥ − 1
1000r2 in Br(x),

and there is a C2 function p on Br(x) such that p(x) = 0, p ≥ d2(, x),
and |∇p| ≤ 3d(, x), ∇2p ≤ 3g on Br(x), define σ(x) = min{τ(x), d(x, ∂Ω)}.
Let Ω′ ⊂⊂ Ω with dist(∂Ω′, ∂Ω) being any fixed small number and p ∈ Ω′.
Without loss of generality, it suffices to consider the case that x ∈ Ω′, so, we
may assume σ(x) ≥ σ0 for any x ∈ Ω′, here σ0 is a fixed number that depends
only on dist(∂Ω′, ∂Ω) and (Ω, g).

Let us choose r small enough so that sup∂Br(p) H+ ≤ 3
r . Now, we claim

that for any x ∈ Ω′

(3.1) |∇ur|(x) ≤ C

d(x, p) ,

here C is a universal constant independent on r, d(x, p) is the distance func-
tion to p with respect to the metric g.

In fact, if d(x, p) ≤ 4r, then we take ρ = r
2 , here we assume r ≤ σ0

2 , we
get (3.1); if d(x, p) > 4r, let ρ = min{1

2dist(x, p),
σ0
2 }, together with the fact

dist(x, p) ≤ Λσ0, where Λ is a universal constant, we still get (3.1).
On the other hand, together with Theorem 2.1 in [7] and the remarks

following it, we know that by taking a subsequence of {ur}, denoted by {uri},
there is a constant Ci so that {uri − Ci} converges to the weak solution of
IMCF −∞ < u in (Ω′, g) with p as the initial data. Note that the mean
curvature of ∂Br(p) is positive for all r ≤ δ, we see that the level set of u in
Bδ(p) ⊂⊂ Ω′ cannot jump, and

|∇u|(x) ≤ C

d(x, p) ,

and −∞ < u ≤ t0, here t0 is a universal constant.

Let us first recall the definition of minimizing hull in Ω. A subset E
of Ω with locally finite perimeter is said to be a minimizing hull in Ω if
|∂∗E ∩K| ≤ |∂∗F ∩K| for any set F ⊂ Ω with locally finite perimeter such
that F ⊃ E and F \E � Ω and for any compact set K with F \E ⊂ K ⊂ Ω.
Here ∂∗E, ∂∗F are the reduced boundaries of E and F respectively.
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By the proof in [16, Theorem 2.5], we see that for t small enough, the
slice Nt = ∂{u < t} of the weak IMCF in Lemma 3.3 is the boundary of
a minimizing hull in (Ω, g) which is C1,α smooth and

∫
Nt

|A|2dσ < ∞, and
mH(Nt) ≥ 0.

We are ready to prove the rigidity part of Theorem 1.2.

Proof of Theorem 1.2 (ii) Rigidity. Let p ∈ Ω. Suppose g is not flat near p.
Choose r > 0 be small enough with B(p, 2r) � Ω, so that ∂B(p, s) is a sphere
with mean curvature at least 1/s for all s < 2r. Then by Lemma 3.3 and [7],
one can find a solution to the IMF given by a locally Lipschitz function u,
so that for some a, the following are true: (i) Et = {u < t} is precompact in
B(x, r) for t < a; (ii) ∂Et is connected; (iii) Et is a minimizing hull in (Ω, g);
(iv) mH(∂Et, g) > 0, for t < a. Here and below, mH(∂U, g) is the Hawking
mass of the boundary of U with respect to g.

Fix t0 < a so that mH(∂Et0 , g) ≥ b for some b > 0. In the following we
denote Et0 by E. For any θ > 0 small enough, we can find E ⊂ F � B(x, r)
such that

(3.2) |∂E|g ≤ |∂F |g ≤ |∂E|g + θ; mH(∂F ) ≥ mH(∂E) − θ > 0.

Moreover ∂F is smooth. Note that F depends on θ.
Since p ∈ Et0 which is open, we can find r > ρ > 0 such that B(p, 2ρ) � E.
Next, we want to approximate g. By the Lemma 3.2, for any ε > 0 small

enough, we can find a smooth metric gε on Ω so that (i) ||g−gε||C4 ≤ ε; (ii) Σ
has positive mean curvature Hε with respect to gε; (iii) the Gaussian curvature
of (Σ, gε|T (Σ)) has positive Gaussian curvature; (iv) the scalar curvature of gε
is zero outside B(p, 2ρ); (v) the mean curvature of ∂B(p, s) with respect to gε
is positive for all s < 2r; (vi) mBY (Σ,Ω, gε) ≤ ε; (vii) |∂F |gε ≤ |∂E|g + θ + ε,
mH(∂F, gε) ≥ mH(∂E, g)) − θ − ε > 0.

By (ii), (iii), we can glue Ω to the exterior of the a convex set in R
3

and solve the quasi-spherical metric as in [1, 13] so that the scalar curvature
outside the convex set is zero and is asymptotically flat. Denote the man-
ifold by M . We still denote this metric as gε. Note that gε has zero scalar
curvature outside B(x, 2ρ). However, gε may have negative scalar curvature
inside B(p, 2ρ). By the monotonicity in quasi-spherical metric [13], using the
Lemma 3.2 (vi) we may choose gε so that

mADM (gε) ≤ ε.

Fix such an ε. Using the method of Miao [11], for τ > 0 small enough, we
can find metrics hτ so that hτ = gε outside {x ∈ M |dgε(x,Σ) < τ} and the
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scalar curvature inside {x ∈ M |dgε(x,Σ) < τ} is uniformly bounded. Let Rτ

be the scalar curvature of gε. One can find a positive solution of

R̃τu− 8Δgεu = 0

with u → 1 near infinity. Here R̃τ = Rτ in {x ∈ M |dgε(x,Σ) < τ} and
R̃τ = 0 outside this set. Note that R̃τ is smooth. Hence one can approximate
gε by a smooth metrics hτ = u4gε on the manifold so that, hτ has zero scalar
curvature outside B(p, 2ρ) and

mADM (hτ ) ≤ 2ε.

Moreover, hτ → gε uniformly in M , hτ → gε in C∞ norm in any compact set
away from Σ.

Note that the mean curvature of Σ with respect to gε is positive and
mH(∂F, gε) > 0, one can find Fε which is the strictly minimizing hull of F
with respect to gε inside Ω, see [7]. Fε exists because the mean curvature of
Σ = ∂Ω is positive with respect to gε. Then Fε � Ω and is connected because
M is homeomorphic to R

3. Using the fact that the scalar curvature of gε is
zero outside ∂F , one can proceed as in the proof [14, Theorem 3.1], to obtain

2ε ≥ mADM (gε) ≥ mH(∂Fε, gε).

On the other hand, the mean curvature of ∂Fε is zero on ∂Fε \∂F is equal
to the mean curvature of ∂F on ∂Fε ∩ ∂F , see [7, p.372]. Hence

mH(∂Fε, gε) =

√
|∂Fε|gε
16π

(
1 − 1

16π

∫
∂Fε

H2dσgε

)

≥
√

|∂Fε|gε
16π

(
1 − 1

16π

∫
∂F

H2dσgε

)

=
√

|∂Fε|gε
|∂F |gε

mH(∂F, gε)

≥
√

|∂Fε|gε
|∂F |gε

(mH(∂E, g) − θ − ε).

Now

|∂F |gε ≤ (|∂E|g + θ + ε)
≤ (|∂Fε|g + θ + ε)
≤(1 + ε) (|∂Fε|gε + θ + ε)
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and
|∂F |gε ≥ (1 − ε)|∂F |g ≥ (1 − ε)|∂E|g

here we may assume that (1 + ε)−1g ≤ gε ≤ (1 + ε)g. Hence

|∂Fε|gε
|∂F |gε

≥ 1
1 + ε

− (θ + ε) · 1
|∂Fε|gε

≥ 1
1 + ε

− (θ + ε) · 1
(1 − ε)|∂E|g

Since mH(∂E, g) − θ − ε > 0 provided θ, ε are small enough, we have

2ε ≥
(

1
1 + ε

− (θ + ε) · 1
(1 − ε)|∂E|g

) 1
2

(mH(∂E, g) − θ − ε).

Let ε → 0 and then let θ → 0, we have

0 ≥ mH(∂E, g) > 0.

This is a contradiction.

Remark 3.1. It is not difficult to see that by the arguments in the above proof
of rigidity, we may also get mBY (Σ; Ω, g) ≥ 0 in case Ω is homeomorphic to
a ball.
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