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Could the universe have an exotic topology?
Vincent Moncrief and Puskar Mondal

Abstract: A recent article uncovered a surprising dynamical mech-
anism at work within the (vacuum) Einstein ‘flow’ that strongly
suggests that many closed 3-manifolds that do not admit a locally
homogeneous and isotropic metric at all will nevertheless evolve,
under Einsteinian evolution, in such a way as to be asymptotically
compatible with the observed, approximate, spatial homogeneity
and isotropy of the universe [1]. Since this previous article, how-
ever, ignored the potential influence of dark-energy and its corre-
spondent accelerated expansion upon the conclusions drawn, we
analyze herein the modifications to the foregoing argument neces-
sitated by the inclusion of a positive cosmological constant — the
simplest viable model for dark energy.

1. Introduction and topological background

Viewed on a sufficiently coarse-grained scale the portion of our universe that is
accessible to observation appears to be spatially homogeneous and isotropic.
If, as is usually imagined, one should be able to extrapolate these features
to (a suitably coarse-grained model of) the universe as a whole then only a
handful of spatial manifolds need be considered in cosmology — the famil-
iar Friedmann-Lemaître-Robertson-Walker (FLRW) archetypes of constant
positive, vanishing or negative curvature [1, 2, 3]. These geometries consist,
up to an overall, time-dependent scale factor, of the 3-sphere, S3, with its
canonical ‘round’ metric, Euclidean 3-space, E3, hyperbolic 3-space, H3 and
the quotient space RP (3) ≈ S

3/± I obtainable from S
3 by the identification

of antipodal points [4]. Of these possibilities only the sphere and its 2-fold
quotient RP (3) are closed and thus compatible with a universe model of fi-
nite extent. It is not known of course whether the actual universe is spatially
closed or not but, to simplify the present discussion, we shall limit our atten-
tion herein to models that are. More precisely we shall focus on spacetimes
admitting Cauchy hypersurfaces that are each diffeomorphic to a smooth,
connected 3-manifold that is compact, orientable and without boundary.
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On the other hand if one takes literally the cosmological principle that
only manifolds supporting a globally homogeneous and isotropic metric should
be considered in models for the actual universe then, within the spatially
compact setting considered here, only the 3-sphere and RP (3) would remain.
But the astronomical observations which motivate this principle are neces-
sarily limited to a (possibly quite small) fraction of the entire universe and
are compatible with models admitting metrics that are only locally, but not
necessarily globally, spatially homogeneous and isotropic. As is well-known
there are spatially compact variants of all of the basic Friedmann-Lemaître-
Robertson-Walker cosmological models, mathematically constructable (in the
cases of vanishing or negative curvature) by taking suitable compact quotients
of Euclidean 3-space E

3 or of hyperbolic 3-space H
3. One can also take in-

finitely many possible quotients of S3 to obtain the so-called spherical space
forms that are locally compatible with the FLRW constant positive curvature
geometry but are no longer diffeomorphic to the 3-sphere.

Still more generally though we shall find that there is a dynamical mecha-
nism at work within the Einstein ‘flow’, suitably viewed in terms of the evolu-
tion of 3-manifolds to develop 4-dimensional, globally hyperbolic spacetimes,
and extended to include a positive cosmological constant Λ, that strongly
suggests that even manifolds that do not admit a locally homogeneous and
isotropic metric at all will nevertheless evolve in such a way as to be asymptot-
ically compatible with the observed homogeniety and isotropy. This reflects
an argument which we shall sketch that, under Einsteinian-Λ evolution, the
summands making up M (in a connected sum decomposition) that do sup-
port locally homogeneous and isotropic metrics will tend to overwhelmingly
dominate the spatial volume asymptotically as the universe model contin-
ues to expand and furthermore that the actual evolving (inhomogeneous,
non-isotropic) metric on M will naturally tend to flow towards a homoge-
neous, isotropic one on each of these asymptotically volume-dominating sum-
mands.

We do not claim that this mechanism is yet so compelling, either math-
ematically or physically, as to convince one that the actual universe has a
more exotic topology but only that such a possibility is not strictly excluded
by current observations. However, it is intriguing to investigate the possibility
that there may be a dynamical reason, provided by Einstein’s equations, for
the observed fact that the universe seems to be at least locally homogeneous
and isotropic and that this mechanism may therefore allow an attractive log-
ical alternative to simply extrapolatating observations of necessarily limited
scope to the universe as a whole.



Could the universe have an exotic topology? 923

But what are the (compact, connected, orientable) 3-manifolds avail-
able for consideration? This question has been profoundly clarified in recent
years by the dramatic progress on lower dimensional topology made possible
through the advancements in Ricci flow [5]. One now knows for example that,
since the Poincaré conjecture has finally been proven, any such 3-manifold
M that is in fact simply connected must be diffeomorphic to the ordinary
3-sphere S3. Setting aside this so-called ‘trivial’ manifold the remaining pos-
sibilities consist of an infinite list of nontrivial manifolds, each of which is
diffeomorphic (designated herein by ≈) to a finite connected sum of the fol-
lowing form:

(1)
M ≈
S3/Γ1 # · · ·# S3/Γk︸ ︷︷ ︸

k spherical factors

# (S2 × S1)1 # · · ·#(S2 × S1)�︸ ︷︷ ︸
� wormhols (or handles)

# K(π1, 1)1 # · · ·# K(π1, 1)m︸ ︷︷ ︸
m aspherical factors

Here k, � and m are integers ≥ 0, k+�+m ≥ 1 and if either k, � or m is 0 then
terms of that type do not occur. The connected sum M # N of two closed
connected, oriented n-manifolds is constructed by removing the interiors of
an embedded closed n-ball in each of M and N and then identifying the result-
ing Sn−1 boundary components by an orientation-reversing diffeomorphism.
The resulting n-manifold will be smooth, connected, closed and consistently
oriented with the original orientations of M and N. The above decomposition
of M is only uniquely defined provided we set aside S3 since M ′ # S3 ≈ M ′

for any 3-manifold M ′.
In the above formula if k ≥ 1, then each Γi, 1 ≤ i ≤ k is a finite, nontrivial

(Γi �= [I]) subgroup of SO(4) acting freely and orthogonally on S
3. The indi-

vidual summands S3/Γi are the spherical space forms alluded to previously
and, by construction, each is compatible with an FLRW metric of constant
positive spatial curvature (i.e., k = +1 models in the usual notation). The
individual ‘handle’ summands S2 ×S1 admit metrics of the Kantowski-Sachs
type that are homogeneous but not isotropic and so not even locally of FLRW
type.

The remaining summands in the above ‘prime decomposition’ theorem
[6, 7, 8] are the K(π, 1) manifolds of Eilenberg-MacLane type wherein, by
definition π = π1(M), the fundamental group of M and all of the higher
homotopy groups are trivial, that is πi(M) = 0 for i > 1. Equivalently, the
universal covering space of M is contractible and, in this case, known to be
diffeomorphic to R

3 [9]. Since the higher homotopy groups, πi(M) for i > 1,
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can be interpreted as the homotopy classes of continuous maps Si → M ,
each such map must be homotopic to a constant map. For this reason K(π, 1)
manifolds are said to be aspherical.

This general class of K(π, 1) manifolds includes, as special cases, the
3-torus and five additional manifolds, finitely covered by the torus, that are
said to be of ‘flat type’ since they are the only compact, connected, orientable
3-manifolds that each, individually, admits a flat metric and thus supports
spatially compactified versions of the FLRW spaces of flat type (i.e., k = 0
models).

Other K(π, 1) spaces include the vast set of compact hyperbolic manifolds
H

3/Γ where here Γ is a discrete torsion-free (i.e., no nontrivial element has
finite order) co-compact subgroup of the Lie group Isom+ (H3) of orientation-
preserving isometries of H3 that, in fact, is Lie-group isomorphic to the proper
orthochronous Lorentz group SO†(3, 1). Each of these, individually, supports
spatially compactified versions of the FLRW spacetimes of constant negative
(spatial) curvature (i.e., k = −1 models).

Additional K(π, 1) manifolds include the trivial circle bundles over higher
genus surfaces Σp for p ≥ 2 (where Σp designates a compact, connected, ori-
entable surface of genus p) and nontrivial circle bundles over Σp for p ≥ 1.
Note that the trivial circle bundles S2 × S1 and T 2 × S1 ≈ T 3 are already
included among the previous prime factors discussed and that nontrivial cir-
cle bundles over S2 are included among the spherical space forms S3/Γ for
suitable choices of Γ. The circle bundles over higher genus surfaces will reap-
pear later as the basic spatial manifolds occurring in the so-called U(1) prob-
lem. Still further examples of K(π, 1) manifolds are compact 3-manifolds that
fiber nontrivially over the circle with fiber Σp for p ≥ 1. Any such manifold
is obtained by identifying the boundary components of [0, 1] × Σp with a
(nontrivial) orientation-reversing diffeomorphism of Σp.

It is known however that every prime K(π, 1) manifold is decomposible
into a (possibly trivial but always finite) collection of (complete, finite vol-
ume) hyperbolic and graph manifold components. The possibility of such a
(nontrivial) decomposition arises whenever the K(π, 1) manifold under study
admits a nonempty family {Ti} of disjoint embedded incompressible two-tori.
An embedded two-torus T 2 is said to be incompressible if every incontractible
loop in the torus remains incontractible when viewed as a loop in the am-
bient manifold. A closed oriented 3-manifold G (possibly with boundary) is
a graph manifold if there exists a finite collection {T ′

i} of disjoint embedded
incompressible tori T ′

i ⊂ G such that each component Gj of G \ ∪ T ′
i is
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a Seifert-fibered space.1 Thus a graph manifold is a union of Seifert-fibered
spaces glued together by toral automorphisms along toral boundary compo-
nents. The collection of tori is allowed to be empty so that, in particular, a
Seifert-fibered manifold itself is a graph manifold. Decomposing a 3-manifold
by cutting along essential two-spheres (to yield its prime factors) and then
along incompressible tori, when present, are the basic operations that reduce
a manifold to its ‘geometric’ constituents [8]. The Thurston conjecture that
every such 3-manifold can be reduced in this way has now been established
via arguments employing Ricci flow [5].

For comparison’s sake we recall that the two dimensional analogue of
the foregoing (prime) decomposition theorem is the classical result that any
compact, connected, orientable surface is either S2, T 2 or a higher genus
surface Σp diffeomorphic to the connected sum of p 2-tori for p ≥ 2. These
surfaces provide the spatial topologies for ‘cosmological’ 2 + 1 dimensional
Einstein gravity and, as we have mentioned, circle bundles over these provide
the arenas for the U(1) problem in full 3 + 1 dimensional gravity.

It may seem entirely academic to consider such general, ‘exotic’ 3-mani-
folds as the composite (i.e., nontrivial connected sum) ones described above
as arenas for general relativity when essentially all of the explicitly known
solutions of Einstein’s equations (in this spatially compact setting) involve
only individual, ‘prime factors’. As we shall see however some rather general
conclusions are derivable concerning the behaviors of solutions to the field
equations on such exotic manifolds and astronomical observations do not log-
ically exclude the possibility that the actual universe could have such a global
topological structure. It is furthermore conceivable that the validity of central
open issues in general relativity like the cosmic censorship conjecture could
depend crucially upon the spatial topology of the spacetime under study.

2. Yamabe classification

In the following we shall focus attention on the subset of these 3-manifolds
of so-called negative Yamabe type. By definition these admit no Riemannian
metric γ having scalar curvature R(γ) ≥ 0. Within the above setting a closed
3-manifold M is of negative Yamabe type if and only if it lies in one of the
following three mutually exclusive subsets [1, 10]: (1) M is hyprbolizable (that
is admits a hyperbolic metric); (2) M is a non-hyperbolizable K(π, 1) manifold

1A Seifert-fibered space is a 3-manifold foliated by circular fibers in such a way
that each fiber has a tubular neighborhood (characterized by a pair of co-prime
integers) of the special type known as a standard fibered torus.
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of non-flat type (the six flat K(π, 1) manifolds are of zero Yamabe type); and
(3) M has a nontrivial connected sum decomposition (i.e., M is composite)
in which at least one factor is a K(π, 1) manifold. In this case the K(π, 1)
factor may be either of flat type or hyperbolizable. The six flat manifolds
comprise by themselves the subset of zero Yamabe type. These admit metrics
having vanishing scalar curvature (the flat ones) but no metrics having strictly
positive scalar curvature. Finally manifolds of positive Yamabe type provide
the complement to the above two sets and include the stand-alone S3, the
spherical space forms S3/Γi, S

2 × S1 and connected sums of the latter two
types (recalling that M ′#S3 ≈ M ′ for any 3-manifold M ′).

It follows immediately from the form of the Hamiltonian constraint that
any solution of the Einstein field equations with Cauchy surfaces of negative
Yamabe type (i.e., diffeomorphic to a manifold in one of the three subsets
listed above) and strictly non-negative energy density and non-negative cos-
mological constant (with either or both allowed to vanish) cannot admit a
maximal hypersurface. Thus such a universe model, if initially expanding,
can only continue to do so (until perhaps developing a singularity) and can-
not cease its expansion and ‘recollapse’.

For such manifolds Yamabe’s theorem [11] guarantees that each smooth
Riemannian metric on M is uniquely, globally conformal to a metric γ having
scalar curvature R(γ) = −1. Thus, in a suitable function space setting [12],
one can represent the conformal classes of Riemannian metrics on M by the
infinite dimensional submanifold:

(2) M−1(M) = {γ ∈ M(M)|R(γ) = −1}

where M(M) designates the corresponding space of arbitrary Riemannian
metrics on M.

The quotient of M−1(M) by the natural action of D0(M) = Diff0(M),
the connected component of the identity of the group D+(M) = Diff+(M) of
smooth, orientation preserving diffeomorphisms of M, defines an orbit space
(not necessarily a manifold) given by T(M) = M−1(M)/D0(M). Because of
it’s resemblance to the corresponding Riemannian construction of the actual
Teichmüller space T(Σp) for a higher genus surface Σp [13] we refer to T(M)
(informally) as the ‘Teichmüller space of conformal structures’ of M. The
actual Teichmüller space T(Σp) of the higher genus surface Σp is diffeomorphic
to R

6p−6 hence always a smooth manifold. By contrast T(M) may either be
a manifold or have orbifold singularities or consist of a stratified union of
manifolds representing the different isometry classes of conformal Riemannian
metrics admitted by M (i.e., metrics γ with R(γ) = −1).
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In certain cases however, T(M) proves to be a global, smooth and even
contractible (infinite-dimensional) manifold [14] and thus to have all of the
essential features (except the finite dimensionality) of an actual Teichmüller
space. The infinite dimensionality of this Teichmüller-like space, T(M), which
will play the role of reduced configuration space for Einstein’s equations (in
the vacuum case for simplicity), is of course needed to accommodate the
gravitational wave degrees of freedom that are absent in 2 + 1 dimensional
Einstein gravity [15, 16]. One could perhaps however argue that a still more
natural choice for the reduced configuration space would be the analogue
of Riemann moduli space, wherein one would quotient M−1(M) by the full
group, D+(M) = Diff+(M) of orientation preserving diffeomorphisms of M,
instead of just its identity component. But since this construction invariably
introduces orbifold singularities even in the 2 + 1 dimensional problem it
would also disturb the smooth character of even the favorable cases men-
tioned above in 3+1 dimensions. For this reason we shall retain T(M) as our
preferred definition for the reduced configuration space keeping in mind that
the different conformal classes of M may thus not be uniquely represented.

3. The gauge fixed Einstein-Λ field equations

Let M be a compact, connected, orientable C∞ manifold of dimension n ≥ 2
and set M̄ = R × M . We define t : M̄ → R by projection onto the first
factor and consider Lorentzian metrics ḡ on M̄ such that the level sets of
t,Mt = {t} ×M , are Cauchy hypersurfaces of the spacetime {M̄, ḡ}. When
there is no chance for confusion we shall simply write M for Mt.

Given {M̄, ḡ} let T be the unit (timelike) future directed normal field to
Mt and define the lapse function N and shift vector field X such that

(3) ∂t = NT + X

with N > 0 (since, by assumption T is future directed) and X tangent to Mt.
Letting {xi}ni=1 be local charts for M and taking {xα}nα=0 ={t, x1, . . . , xn},

with x0 = t, as corresponding (local) charts for M̄ we can express the Lorentz
metric ḡ in the form

(4) ḡ = −N2dt⊗ dt + gij(dxi + X idt) ⊗ (dxj + Xjdt)

where g := gijdx
i ⊗ dxj is the induced, Riemanian metric on M. The second

fundamental form k of M in M̄ is given by

(5) kij = − 1
2N (∂tgij − (LXg)ij)
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where L denotes the Lie derivative operator. The corresponding mean curva-
ture τ of M is given by

(6) τ := trg k = gijkij

where

(7) gij
∂

∂xi
⊗ ∂

∂xj
= g−1

is the contravariant form of the metric g and trg denotes ‘trace’ with respect
to g.

The vacuum Einstein equations with a cosmological constant Λ (referred
to herein as the Einstein-Λ equations) given by

(8) R̄μν(ḡ) −
1
2R̄(ḡ)ḡμν + Λḡμν = 0

can be written as a system of evolution and constraint equations for (g,k).
The Einstein-Λ evolution equations are

∂tgij = −2Nkij + (LXg)ij ,

(9a)

∂tkij = −∇i∇jN + N

(
Rij(g) + (trg k)kij − 2kimkmj −

2Λ
n− 1gij

)
+ (LXk)ij

(9b)

whereas the constraints take the form

R(g) − |k|2 + (trg k)2 = 2Λ,(10a)
∇jkij −∇i(trg k) = 0,(10b)

where ∇i designates covariant differentiation with respect to g, |k|2 = kijk
ij

and where Rij(g) and R(g) are the Ricci tensor and curvature scalar of this
metric.

A solution to the Einstein-Λ evolution and constraint equations is a
curve t �→ (g, k,N,X) which satisfies (9–10). Assuming sufficient regularity
the spacetime metric ḡ given in terms of (g,N,X) by (4) solves the vac-
uum Einstein-Λ field equations (8) if and only if the corresponding curve
(g, k,N,X) solves (9–10). The system (9–10) is however not hyperbolic so
that to get a well-posed evolution problem we must modify this system by
suitably fixing the gauge.
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Let ĝ be a fixed C∞ Riemannian metric on M with Levi-Civita covariant
derivative ∇̂ and Christoffel symbols Γ̂k

ij . Define the vector field V k by

(11) V k = gij
(
Γk
ij(g) − Γ̂k

ij(ĝ)
)
.

Then −V k is the ‘tension field’ of the identity map Id : (M, g) → (M, ĝ)
so that Id is harmonic precisely when V k = 0 (see [17] for background on
harmonic maps).

The constant mean curvature and spatial harmonic (CMCSH) gauge con-
dition that we shall employ is defined by the equations

trg k := τ = t (constant mean curvature)(12a)
V k = 0 (spatial harmonic coordinates)(12b)

Let the second order operator Δ̂g be defined on symmetric 2-tensors by

(13) (Δ̂gh)ij = 1
μg

∇̂m

(
gmnμg(∇̂nh)ij

)

where μg =
√

det g is the volume element on (M, g). Using the identity
∇̂m(μgg

−1)mn = −V nμg, (Δ̂gh)ij may be written in the form

(14) (Δ̂gh)ij = gmn(∇̂m∇̂nh)ij − V m(∇̂mh)ij

so that, if the gauge condition V k = 0 is satisfied, (Δ̂gh)ij → gmn(∇̂m∇̂nh)ij .
A computation shows that

(15) Rij(g) = −1
2(Δ̂gg)ij + Sij [g, ∂g] + αij

where the symmetric tensor αij is defined by

(16) αij = 1
2(∇iVj + ∇jVi)

and S[g, ∂g] is at most of quadratic order in the first derivatives of gij (c.f.
Section 3 of Ref. [18] for the explicit formula). Thus the system gij �→ Rij(g)−
αij is quasi-linear elliptic.

In order to construct solutions to the Cauchy problem for the system con-
sisting of the Einstein-Λ evolution and constraint equations (9–10) together
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with the gauge conditions (12) we shall consider the following modified form
of the Einstein-Λ evolution equations

∂tgij = −2Nkij + (LXg)ij ,

(17a)

∂tkij = −∇i∇jN + N

(
Rij(g) + (trg k)kij − 2kimkmj −

2Λ
n− 1gij − αij

)(17b)

+ (LXk)ij

coupled to the elliptic defining equations for N, X, needed to preserve the
imposed gauge conditions,

−ΔgN + N

(
|k|2 − 2Λ

n− 1

)
= 1,

(18a)

(ΔgX)i + Ri
m(g)Xm − (LXV )i = (−2Nkmn + 2∇mXn)

(
Γi
mn(g) − Γ̂i

mn(ĝ)
)

+ 2(∇mN)kim − (∇iN)kmm

(18b)

where (ΔgX)i := (∇m∇mX)i,ΔgN := ∇m∇mN„ etc.
If V k = 0, so that αij = 0, then (17) coincides with the Einstein-Λ

evolution equations specialized to the spatial harmonic (SH) gauge. In the
Appendix below we shall sketch the proof that the system (17–18), supple-
mented by the gauge conditions (12) satisfies a local well-posedness theorem
so that, in particular, the constraints and gauge conditions are conserved
by the evolution equations. It will thus follow that the original system (9–10)
obeys a well-posed Cauchy problem when specialized to the chosen (CMCSH)
gauge. In view of the fact that gij �→ Rij(g) − αij is elliptic, the system (17)
is hyperbolic and the coupled system (17–18) is elliptic-hyperbolic.

Whereas our proof of well-posedness is, for convenience, expressed in
terms of the ‘Lagrangian’ variables (g, k) it will be useful, for the balance of
our analysis, to convert the evolution, constraint and gauge equations to the
corresponding Hamiltonian picture by reexpressing them in terms of ‘canoni-
cal’ variables (g, π) where the momentum π, conjugate to the first fundamen-
tal form g, is defined, via a Legendre transformation, by

(19) πij = −μg

(
kij − (trg k)gij

)
.



Could the universe have an exotic topology? 931

The Hamiltonian dynamics of the Einstein-Λ system is given by the fol-
lowing complete set of evolution and constraint equations

∂tgij = 2N
μg

(
πij −

( trg π
n− 1

)
gij

)
+ ∇iXj + ∇jXi,(20a)

∂tπ
ij = −Nμg

(
Rij(g) − 1

2g
ijR(g)

)
+ Ngij

2 μg

(
πmnπmn − (trg π)2

n− 1

)

− 2N
μg

(
πimπj

m − πij

n− 1(trg π)
)

+ μg(∇i∇jN − gij∇k∇kN)

−NΛμgg
ij + ∇m(Xmπij) − (∇mX

i)πmj − (∇mX
j)πim,

(20b)

Ji(g, π) := −2 ∇jπ
j
i = 0,

(20c)

H(g, π) := 1
μg

(
πj

iπ
i
j −

1
(n− 1)(trg π)2

)
− μgR(g) + 2Λμg = 0,

(20d)

which is equivalent to the system (9–10). The CMCSH gauge conditions (12)
now take the form

τ = trg k = 1
(n− 1)

trg π
μg

= t,(21a)

and

V k = gij
(
Γk
ij(g) − Γ̂k

ij(ĝ)
)

= 0(21b)

whereas the elliptic equations for the lapse and shift needed to preserve these
gauge conditions become

− ΔgN + N

[
πtrn
m πtrm

n

(μg)2
+ τ 2

n
− 2Λ

(n− 1)

]
= 1,(22a)

(ΔgX)i + Ri
m(g)Xm − (LXV )i(22b)

=
(

2N
μg

(
πmn − 1

(n− 1)(trg π)gmn

)
+ 2∇mXn

)

×
(
Γi
mn(g) − Γ̂i

mn(ĝ)
)

− 2(∇mN) 1
μg

(
πim − 1

(n− 1)g
im(trg π)

)
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− (∇iN)
(

trg π
(n− 1)μg

)

where, in the above, we have used the notation

trg π := gijπ
ij

for the trace of the momentum π and

(23) (πtr)ij := πij − 1
n
gij(trg π)

for its trace free part.
Note that when the CMC gauge condition is enforced one has ∇i(trg π) =

0 so that the momentum constraint, Ji(g, π) = 0, reduces to

(24) − 2 ∇j(πtr)ji = 0.

Thus πtr is constrained to be both ‘transverse’ (i.e., divergence free) as well
as traceless. Under these circumstances we shall write πTT for πtr so that, in
particular,

(25) πij → (πTT)ij + 1
n
gij trg π

and the Hamiltonian constant, H(g, π) = 0, now becomes

(26) πTT · πTT

μg
− (n− 1)

n
τ 2μg + 2Λμg − μgR(g) = 0

where we have written πTT ·πTT for (πTT)nm(πTT)mn. Note especially that in
both of the equations (22a) and (26) the quantities τ 2 and Λ appear only in
the particular combination τ 2−2nΛ/(n−1). Since we are interested primarily
in the case Λ > 0 it might appear that this quantity could be negative. But
then the Hamiltonian constraint would imply that R(g) ≥ 0 everywhere on
M which is impossible for a manifold of negative Yamabe type. Thus for the
spacetimes of interest herein we shall always have

(27) τ 2 − 2nΛ
(n− 1) > 0

and, for expanding universe models,

(28) −∞ < τ < −
√

2nΛ
n− 1 .
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In any dimension n ≥ 2 there is a well-known technique, pioneered
by Lichnerowicz, for solving the constraint equations on a constant-mean-
curvature hypersurface (see Choquet-Bruhat [19] and Bartnik and Isenberg
[20] for detailed expositions of this ‘conformal’ method). If n = 2 and M ≈ Σp

with p ≥ 2, or if n ≥ 3 and M is of negative Yamabe type, then every Rie-
mannian metric g on M is uniquely globally (pointwise) conformal to a metric
γ which satisfies R(γ) = −1. In this case every Riemannian metric g on M
can be uniquely expressed as

(29) g =

⎧⎨
⎩e2ϕγ if n = 2 and M ≈ Σp, p ≥ 2
ϕ

4
(n−2) γ if n ≥ 3 and M is of negative Yamabe type

with the conformal metric γ normalized so that R(γ) = −1 and where the
specific form of the coefficient conformal factor has been chosen to simplify
calculations involving curvature tensors. When n ≥ 3 ϕ is positive and thus
the space of all Riemannian metrics on M is parametrized by M−1(M) (c.f.
Eq. (2)) and the space of scalar functions ϕ > 0 on M.

4. The reduced Hamiltonian and its monotone decay

Given a scalar function ϕ (with ϕ > 0 if n ≥ 3) we define, in terms of the
‘physical’ variables (g, πTT) a set of ‘conformal’ variables (γ, pTT) by setting

(30) (g, πTT) =

⎧⎨
⎩(e2ϕγ, e−2ϕpTT) if n = 2

(ϕ
4

(n−2) γ, ϕ
− 4

(n−2) pTT) if n ≥ 3

where, as above, M is assumed to be of negative Yamabe type, R(γ) = −1
and πTT is transverse-traceless with respect to g. It is straightforward to verify
that (the symmetric tensor density) pTT is transverse-traceless with respect
to γ, i.e. that

γij(pTT)ij = 0, and(31)
∇j(γ)(pTT)ij = 0,(32)

if and only if πTT is transverse-traceless with respect to g. We therefore define
a ‘reduced phase space’, Preduced(M), of conformal variables by Preduced(M) ={
(γ, pTT)|γ ∈ M−1(M) and pTT is a 2-contravariant, symmetric tensor den-

sity that is transverse and traceless with respect to γ
}
.

Any point (γ, pTT) ∈ Preduced(M) combined with an arbitrary scalar func-
tion ϕ (with ϕ > 0 if n ≥ 3) determines, via (30), a solution to the momentum
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constraint, Ji(g, π) = 0, in CMC gauge (with, for the moment, an arbitrary
constant choice for the mean curvature τ) and indeed every such solution is
obtained in this way by allowing (γ, pTT) to range over the full reduced phase
space Preduced(M) and ϕ to range over the full space of allowed scalar fields
on M.

The choice of ϕ however is naturally fixed by now imposing the Hamil-
tonian constraint, H(g, π) = 0, which, in terms of the conformal variables,
takes the form of Lichnerowicz’s equation [19, 20]

H(g, π) = ϕ(2n−4)/(n−2)μγ

(4(n− 1)
(n− 2) ϕ−1Δ′

γϕ−R(γ)
)

+ ϕ−2n/(n−2)μ−1
γ (pTT · pTT)

− ϕ2n/(n−2)μγ

((n− 1)
n

τ 2 − 2Λ
)

= 0

(33)

for n ≥ 3 and

H(g, π) = μγ

(
2 Δ′

γϕ−R(γ)
)

+ e−2ϕpTT · pTTμ−1
γ

− e2ϕμγ

(
τ 2

2 − 2Λ
)

= 0

(34)

for n = 2, where Δ′
γϕ = γij∇i(γ)∇j(γ)ϕ and

pTT · pTT = γikγj�(pTT)ij(pTT)k�

= gikgj�(πTT)ij(πTT)k� = πTT · πTT(35)

Note that in the first term the center dot denotes γ-metric contraction whereas
in the last term it denotes g-metric contraction. More precisely, we adopt, for
convenience, the convention that indices on pTT are raised and lowered with
respect to γ whereas for πTT they are raised and lowered with respect to g.

By standard methods involving, for example, that of sub- and super-
solutions (see, e.g., [19, 20]) one can prove that (33) has a unique positive
solution ϕ = ϕ(γ, pTT, τ) for arbitrary (γ, pTT) ∈ Preduced(M) and arbitrary
(constant) τ satisfying inequality (27) and, similarly, that (34) has a unique
solutions ϕ = ϕ(γ, pTT, τ) for arbitrary (γ, pTT) and arbitrary constant τ
such that τ 2 − 4Λ > 0. By contrast no solution exists if these inequalities are
violated since then Eqs. (33–34) would imply that Δ′

γϕ < 0 on M which is
impossible since M is compact. To obtain solutions with τ 2−2nΛ/(n−1) ≤ 0
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would require that one relax the condition that M be of negative Yamabe
type.

We focus on negative values of τ (c.f., Eq. (28)) since, with our conven-
tion, these correspond to expanding universes whereas positive values for τ
would correspond to time-reversed, collapsing universes. To derive the reduced
Hamiltonian we begin with the ADM (Arnowitt, Deser and Misner [21, 22])
action functional IADM defined on the cylinder Ī×M , where Ī = [to, t1] ⊂ R,
by

(36) IADM =
∫
Ī
dt

∫
M

dnx
{
πij∂tgij −NH(g, π) −X iJi(g, π)

}
.

Substituting an arbitrary differentiable curve of solutions to the constraints
into this expression after imposing the CMC condition that τ = τ(t) one gets,
upon noting that

(37) πij∂tgij = (pTT)ij∂tγij −
2(n− 1)

n
(∂tτ)μg + 2

n
∂t(trg π),

the following expression for the reduced action

(38) Ireduced =
∫
Ī
dt

∫
M

dnx

(
(pTT)ij∂tγij −

2(n− 1)
n

(∂tτ)μg

)

where we have discarded a boundary term of the form
∫
M

2
n(trg π)dnx|t1t0 since

this will not contribute to the resulting equations of motion.
We now choose a time coordinate t so that

(39) dτ

dt
= n

2(n− 1)

(
τ 2 − 2nΛ

(n− 1)

)n/2

and the reduced action becomes

(40) Ireduced =
∫
Ī
dt

∫
M

dnx

[
(pTT)ij∂tγij −

(
τ 2 − 2nΛ

(n− 1)

)n/2
μg

]

from which we can read off the effective reduced Hamiltonian

Hreduced =
∫
M

(
τ 2 − 2nΛ

(n− 1)

)n/2
dμg

=
∫
M

(
τ 2 − 2nΛ

(n− 1)

)n/2
ϕ

2n
(n−2) dμγ

(41)
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for n ≥ 3 and

(42) Hreduced =
∫

Σp

(τ 2 − 4Λ)e2ϕdμγ

if n = 2. Here ϕ = ϕ(τ, γ, pTT) is that positive functional of the reduced
phase space variables determined uniquely by the corresponding Lichnerowicz
equation ((33) or (34) respectively).

Note that, strictly speaking, the reduced action is not in canonical Hamil-
tonian form until we restrict γ further to lie in a local D0-cross-section of M−1
which represents a local chart for the quotient space M−1(M)/D0(M). Such
a cross-section has, at any point γ, a tangent space modeled on the space of
transverse-traceless tensors relative to γ and thus a ‘dimension’ which matches
that of the cotangent bundle fiber space whose elements are of the momenta
pTT. Thus in the fully reduced setting the isometry class [γ] ranges over the
orbit space M−1(M)/D0(M) and the pair

(
[γ], pTT) ∈ Preduced represents ‘co-

ordinates’ for T ∗ (M−1(M)/D0(M)). This additional restriction is not needed
in most of what follows since we are mainly interested in computing the be-
havior of D0-invariant quantities such as the reduced Hamiltonian itself and
for that reason we shall refrain from enforcing it to simplify the analysis.

The reduced Hamiltonian depends explicitly upon the time variable t
both through the multiplicative factor

(
τ 2(t) − 2nΛ/(n− 1)

)n/2 and through
the fact that the conformal factor depends upon τ(t) in view of the lat-
ter’s explicit occurrence in the Lichnerowicz equation. Thus the actual re-
duced dynamics takes place on the corresponding contact manifold ≈ R ×
T ∗ (M−1(M)/D0(M)) and the reduced Hamiltonian is not a conserved quan-
tity. In fact, as we shall see below, Hreduced is universally monotonically decay-
ing except on very special solutions which exist only if M admits a negative
Einstein metric in which case Hreduced is constant.

Again, since we are dealing primarily with D0-invariant quantities, we
shall take

Ī × Preduced =
{

(τ, γ, pTT)|τ ∈ Ī =
(
−∞,−

√
2nΛ

(n− 1)

)
, (γ, pTT) ∈ Preduced

}
(43)

as the ‘contact’ manifold on which Hreduced is defined.
A straightforward calculation, using the ADM form of the Einstein-Λ field

eqs. (c.f. 20) specialized to CMC gauge and the time coordinate t defined via
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(39), yields

(44) dHreduced

dt
=

∫
M

Nτ

(
τ 2 − 2nΛ

(n− 1)

)(n/2)−1
n

(
πTT · πTT

(μg)2

)
dμg

where we have exploited the elliptic equation for the lapse function N given
by

∂τ

dt
= n

2(n− 1)

(
τ 2 − 2nΛ

(n− 1)

)n/2

= −ΔgN + N

[
πTT · πTT

(μg)2
+ τ 2

n
− 2Λ

(n− 1)

](45)

that is needed to preserve the CMC slicing condition. A standard maximum
principle argument applied to (45) shows that N > 0 on M whereas since
πTT · πTT = (πTT) n

m (πTT) m
n ≥ 0 and τ < 0 we clearly get

(46) dHreduced

dt
≤ 0

with equality holding (perhaps only instantaneously) if and only if πTT = 0
at that instant.

We now go further to show that Hreduced is actually strictly monotonically
decreasing except for a set of extremely special solutions for which the confor-
mal metric γ is a fixed (i.e, time-independent) Einstein metric and Hreduced
is constant.

Suppose that at some instant πTT did vanish. Then clearly from (44),
both dHreduced

dt and d2Hreduced
dt2 vanish at that instant, whereas

(47) d3Hreduced

dt3
=

∫
M

Nτ

(
τ 2 − 2nΛ

(n− 1)

)(n/2)−1
n
∂tπ

TT · ∂tπTT

(μg)2
dμg

which is strictly negative unless ∂tπ
TT = 0 also at that instant.

Thus suppose that on some CMC slice we have πTT = 0 and ∂tπ
TT = 0

simultaneously. The elliptic equation (45) for the lapse then has the unique
solution

(48) N = n2

2(n− 1)

(
τ 2 − 2nΛ

(n− 1)

)n
2 −1
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and the ADM field equations (20) can be combined to yield

(49) Rij(g) = −(n− 1)
n2

(
τ 2 − 2nΛ

(n− 1)

)
gij

so that g is necessarily a negative Einstein metric on the chosen slice. When
πTT = 0 the unique, positive solution to the Lichnerowicz equation is easily
shown to be given by

(50) ϕ4/(n−2) = −R(γ)(
(n−1)

n τ 2 − 2Λ
) = 1(

(n−1)
n τ 2 − 2Λ

)
for n ≥ 3, and

(51) e2ϕ = −R(γ)(
τ2

2 − 2Λ
) = 1(

τ2

2 − 2Λ
)

when n = 2 so that γ = ϕ−4/(n−2)g or γ = e−2ϕg, respectively, satisfies

(52) Rij(γ) = − 1
n
γij ∀ n ≥ 2.

When πTT = 0, trg π
μg

= (n − 1)τ = constant and g is an Einstein metric
satisfying (49) on an initial CMC Cauchy hypersurface the full set of field
equations may be integrated explicitly to yield the warped-product solution
given by

(53) ds2 = −n2(
τ 2 − 2nΛ

(n−1)

)2 dτ
2 + 1(

(n−1)
n τ 2 − 2Λ

)γijdxidxj

where γ = γijdx
i ⊗ dxj is a fixed (i.e., τ -independent) Einstein metric on M

satisfying (52) so that, in particular, R(γ) = −1.
The reduced Hamiltonian is easily verified to be constant (i.e., ‘time’-

independent) when evaluated on these ‘warped-product’ solutions (53) which
thus provide the only Einstein-Λ spacetimes on which it fails to be strictly
monotonically decaying in the temporal direction of cosmological expansion.
Each of these special solutions admits a (future directed) timelike, conformal
Killing field Y given by

(54) Y = Y α ∂

∂xα
=

(
τ 2 − 2nΛ

(n− 1)

)1/2 ∂

∂τ
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with

(55) LY ḡ = −2τ(
τ 2 − 2nΛ

(n−1)

)1/2 ḡ

where ḡ = ḡμνdx
μ⊗dxν is a metric with line element given by (4). In the spe-

cial case for which Λ = 0 Y reduces to the homothetic Killing field Y = −τ ∂
∂τ

with LY ḡ = 2ḡ and the associated spacetimes are the self-similar ‘Lorentz
cone’ ones analyzed in Refs. [23, 24, 25].

When Λ �= 0 one can show, by methods virtually identical to those of
Section 4.2 in [24],2 that the conformal data points (γ, pTT) ∈ Preduced such
that pTT = 0 and γ is an Einstein metric with R(γ) = −1 are precisely the
critical points of the reduced Hamiltonian and thus precisely the fixed points
of the corresponding Hamiltonian flow.

In the special case n = 2, M = Σp, p ≥ 2, a simple formula for Hreduced
can be derived. By combining (29), (34) and (42) we find that

Hreduced(τ, γ, pTT) =
∫

Σp

(τ 2 − 4Λ)e2ϕ(τ,γ,pTT)dμγ

=
∫

Σp

(τ 2 − 4Λ)dμg

= 2
∫

Σp

(det (e2ϕγ))−1pTT · pTTdμ(e2ϕγ) − 2
∫

Σp

R(g)dμg

= 2
∫

Σp

e−2ϕ(det γ)−1(pTT · pTT)dμγ − 8π χ(Σp)

= 2
∫

Σp

e−2ϕ(det γ)−1(pTT · pTT)dμγ + 16π (p− 1)

(56)

where ϕ = ϕ(τ, γ, pTT) is the solution to the Lichnerowicz equation (34),
χ(Σp) = 2(1 − p) is the Euler characteristic of the genus p surface Σp, and
where we have used the Gauss-Bonnet theorem

(57)
∫

Σp

R(g)dμg = 4π χ(Σp) = 8π (1 − p)

to simplify the resulting formula.
2One need only make the replacement of τ2 in the Λ = 0 argument with τ ′2 :=

τ2 − 2nΛ
(n−1) to handle the cases for which Λ > 0.
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Since
(58)
Hreduced(τ, γ, pTT)=2

∫
Σp

e−2ϕ(det γ)−1(pTT·pTT)dμγ+16π(p−1)≥16π(p−1)

the infimum of Hreduced is attained precisely when pTT = 0 and this infimum
coincides with the topological invariant −8π χ(Σp) = 16π (p − 1) which
characterizes the surface Σp. As we shall see shortly an analogous result holds
for n ≥ 3.

Using special methods, applicable only for n = 2, one can prove that
every solution to the Einstein-Λ field equations (for Λ ≥ 0) evolves so that
the infimum of Hreduced is asymptotically achieved in the limit as τ ↗ 2

√
Λ

(i.e., in the limit of infinite ‘volume’ expansion) [16, 26, 27, 28]. While no
such general ‘global existence’ result is available in the higher dimensional
cases one can nevertheless rigorously analyze the (fully-nonlinear) stability
of those special solutions (53) that exist when M admits a negative Einstein
metric γ [25, 29]. Indeed, for the special cases with Λ = 0 one can prove that
these n-dimensional Einstein spaces {M,γ} are, in a natural dynamical sense,
‘attractors’ for the (vacuum) Einstein ‘flow’ [25] and a result of the same type
is anticipated to hold when Λ > 0 as well.

Indeed, a detailed proof of the asymptotic stability of solutions of the type
(53) is currently in preparation by one of us (P. Mondal, c.f. Ref. [30]). On
the other hand, the Lyapunov stability of such solutions has already been
established by D. Fajman and K. Kröncke in Refs. [31] and [32].3

Here however we are more interested in those ‘exotic’ topologies in higher
dimensions for which no Einstein metric exists at all. This is therefore the
topic to which we now return.

5. The infimum of Hreduced and the σ-constant of M

Since the reduced Hamiltonian is bounded from below (as a rescaled volume of
CMC hpersurfaces) and is universally monotonically decaying in the direction
of cosmological expansion (except for the ‘warped product’ solutions (53) on

3The results derived in Refs. [31, 32] show that solutions with Cauchy data
close (in a suitable Sobolev topology) to that for one of the type (53) remain
close to this solution throughout their entire future developments whereas those of
[30] show that Einstein metrics are actual attractors for the Einstein-Λ flow and
futhermore that this holds even in cases for which the ‘target’ Einstein metrics are
not necessarily isolated but instead form a (finite dimensional) ‘center manifold’ of
such (non-isometric) attractors.
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which it is constant) it is natural to ask what its infimum is and whether
this infimum is ever attained, at least asymptotically, by solutions of the field
equations. The answer, in part, is provided by a theorem that characterizes
the infimum of Hreduced (taken, at fixed τ , over all of T ∗T(M)) in terms of
a topological invariant known as the σ-constant (or Yamabe invariant) of M
[33, 34]:

(59) inf
(γ,pTT)∈T ∗T(M)

Hreduced(τ, γ, pTT) =
[(

n

(n− 1)

)
(−σ(M))

]n/2
.

The σ constant is, in a sense, a natural generalization of the Euler character-
istic χ(Σp) of a compact surface since, when restricted to two dimensions, its
definition leads to:

(60) σ(Σp) = 4π χ(Σp) = 8π (1 − p).

More generally, for manifolds of negative Yamabe type in higher dimensions,
the precise definition leads to the formula:

(61) σ(M) = −
(

inf
γ∈M−1(M)

vol(M,γ)
)2/n

where vol(M,γ) :=
∫
M dμγ (c.f., Section 4.6 of Ref. [24] for a more extensive

discussion of this formula).
To compute the infimum of

(62) Hreduced(τ, γ, pTT) =
∫
M

(
τ 2 − 2nΛ

(n− 1)

)n/2
ϕ2n/(n−2)(τ, γ, pTT)dμγ

for n ≥ 3 we first fix τ ∈
(
−∞,−

√
2nΛ

(n−1)

)
and γ ∈ M−1(M) and vary the

fibre variable pTT of the cotangent bundle

(63) T ∗ (M−1(M)/D0(M)) = T ∗T(M).

A straightforward maximum principle argument, applied to the Lichnerow-
icz equation (33), shows that the unique positive solution ϕ = ϕ(τ, γ, pTT)
satisfies

(64) ϕ2n/(n−2) ≥
(

n

(n− 1)

)n/2 1(
τ 2 − 2nΛ

(n−1)

)n/2
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with equality holding everywhere on M if and only if pTT vanishes identically
on M. In that case Hreduced simplifies to

(65) Hreduced(τ, γ, 0) =
(

n

n− 1

)n/2 ∫
M

dμγ

which thus is now independent of τ and depends only on the volume of γ ∈
M−1(M). It follows that, for arbitrary but fixed τ ∈

(
−∞,−

√
2nΛ

(n−1)

)
,

inf
T ∗T(M)

Hreduced =
(

n

n− 1

)n/2
inf

γ∈M−1(M)

∫
M

dμγ

=
(

n

n− 1

)n/2
(−σ(M))n/2

(66)

thereby confirming the statement (59) made above.
If matter sources obeying a suitable energy condition are allowed the

argument goes through in much the same way as above in that the rescaled
volume (which need however no longer be an actual Hamiltonian for the
augmented field equations) is still monotonically decaying in the direction of
cosmological expansion and has the aforementioned infimum only in the limit
that the matter sources be ‘turned off’ or, at least, become asymptotically
negligible.

It has long been realized that a graph 3-manifold G has σ(G) = 0 since,
roughly speaking, a sequence of conformal metrics seeking to achieve the
indicated infimum tends to collapse its circular or Σp fibers. Thus no actual
metric on G has a volume that realizes the σ constant; the latter can only be
approached in a degenerating limit. Thanks to the recent progress in Ricci
flow, however, it is now known that the σ constant of a hyperbolizable manifold
is actually achieved by its hyperbolic metric. Using different methods some of
the σ constants of positive Yamabe type manifolds have also been computed
[35].

Of most interest to us however is the fact that Ricci flow techniques have
been used to determine the σ constant (and therefore the infimum of the
reduced Hamiltonian) of the most general compact 3-manifold of negative
Yamabe type. The result is given simply by:

(67) |σ(M)| = (vol−1H)2/3

where vol−1 H is the volume of the hyperbolic part of M computed with
respect to the hyperbolic metric normalized to have scalar curvature = −1
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[36, 37]. In particular, any graph manifolds G, spherical space forms S3/Γi

or handles S2 × S1, even if present in M, make no contribution to the sigma
constant of M and hence none as well to the infimum of the reduced Hamil-
tonian.

Since the reduced Hamiltonian, which geometrically is nothing but the
rescaled spatial volume of the expanding universe model, is universally mono-
tonically decaying towards its infimum and since that infimum is determined
entirely by the hyperbolic component or components of M we are naturally
led to the conclusion sketched in the introduction that Einstein’s equations
potentially incorporate a dynamical mechanism for driving the universe model
to an asymptotic state that is volume dominated by hyperbolic components
equipped with their canonical, locally homogeneous and isotropic metrics.

6. Stability results — the vacuum limit

To decide the extent to which the reduced Hamiltonian actually does de-
cay to its infimum (or is instead perhaps obstructed from doing so) is a
very demanding open problem on the global properties of solutions to the
field equations. Aside from some highly symmetric examples (e.g., vacuum
Bianchi models) for which one can do explicit calculations [38, 10] or in 2 + 1
dimensions, wherein one can verify the expected, decay-to-infimum behav-
ior through the use of special techniques [16], available results are currently
limited to stability theorems for some rather special families of ‘background’
solutions and to theorems which assume a priori bounds upon spacetime cur-
vature [39, 40, 41, 42]. An important class of solutions for which dynamical
stability results can be proven directly is provided by the vacuum, self-similar
‘Lorentz cone’ spacetimes discussed above following Eq. (55).

Einstein’s vacuum field equations, written in their conventional form, are
an autonomous system of partial differential equations for the spacetime met-
ric. When the gauge is fixed by the CMC slicing condition however this
autonomous character is apparently broken since both the constraint and
evolution equations, as well as the associated elliptic equation for the lapse
function, all depend explicitly upon the mean curvature, which is now playing
the role of ‘time’. For the vacuum equations (or in the presence of scale in-
variant matter sources but not including a cosmological constraint) however
one can restore the autonomous character of the gauge-fixed field equations
by rewriting them in terms of suitable rescaled, dimensionless variables, using
appropriate powers of the mean curvature as scale factors [23, 24, 25]. The
natural, dimensionless time coordinate for the rescaled equations is now given
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by T = − ln(τ/τ0) and has maximal range (−∞,∞) and thus serves as an
effective ‘Newtonian time’ for this reduced, newly autonomous system.4

When this reformulation is carried out on a hyperbolic 3-manifold M (or
one admitting a negative Einstein metric in higher dimensions) the result-
ing dynamical system has the Lorentz cone solutions described previously as
its unique fixed points [24, 25]. Since, moreover, in 3 + 1 dimensions these
solutions are known to realize the infimum of the reduced Hamiltonian it
is natural to ask whether these isolated fixed points (in the reduced phase
space) are in fact actual attractors for the associated, reduced Einstein flow.
If so then at least sufficiently nearby solutions (in a suitable function space
setting) will indeed tend asymptotically to approach the same infimum for
Hreduced and, more significantly, the rescaled spatial metric will tend to ap-
proach the (locally homogeneous and isotropic) hyperbolic one in the limit of
infinite cosmological expansion.

As a first step towards establishing this conclusion one can analyze the
linearized field equations, taking an arbitrary Lorentz cone solution as the
background to perturb. While the results of such analyses confirm one’s
expectations [24, 25] they fall mathematically short of proving the conjec-
tured property for the full nonlinear Einstein flow. For that purpose one
needs to develop more sophisticated techniques. The vacuum field equations
in 2 + 1 dimensions are so special (primarily in excluding the possibility
of gravitational waves) that one can actually resolve this conjecture (af-
firmatively) for arbitrarily large perturbations away from the self-similar,
Lorentz cone ‘backgrounds’ [16, 26, 27, 28]. In 3 + 1 and higher dimen-
sions however the currently available methods of stability analysis require
a certain smallness condition on the nonlinear perturbations for their suc-
cessful implementation. These methods proceed by defining suitable ‘energy’
functionals that, while positive for nontrivial perturbations actually vanish
on the backgrounds and bound the norms needed for control of the exis-
tence times of ‘nearby’, perturbed solutions. One aims to show that the ap-
propriate energy functional decays asymptotically to zero, in the direction
of cosmological expansion, for any solution whose ‘initial values’ (at some
nonzero value τ0 < 0 of the mean curvature) are sufficiently close to the
those of the background and to deduce therefrom the desired stability re-
sult.

However even the local (i.e. short time) existence of solutions in CMC
slicing is not covered by the classical existence and uniqueness theorem for

4Though the reduced system is autonomous the rescaled variables are not strictly
canonical so there is no reason to expect the corresponding Hamiltonian to be
conserved.
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Einstein’s equations [43] since this theorem assumes a spacetime harmonic
(or Lorentz type) gauge condition to reduce the field equations to hyper-
bolic form. By imposing instead only the aforementioned spatial harmonic (or
Coulomb type) gauge condition to supplement the CMC time-slicing condi-
tion one arrives at an elliptic-hyperbolic system of field equations for which,
however, a well-posedness theorem for the vacuum (i.e., Λ = 0) equations
was established in [18]. In n + 1 dimensions, for n > 2, this theorem requires
(as does the traditional one) the metric to lie in a Sobolev space for which
s > n/2+1 of its (spatial) derivatives are square integrable over M. To extend
this local existence result to a global one one needs to prove that the corre-
sponding Sobolev norm of a solution cannot blowup in a finite time. This will
be possible whenever one can make the energy arguments alluded to above
work in practice.

One rather geometrically elegant implementation of this program involves
defining certain, higher-order Bel-Robinson type energy functionals that con-
sist essentially of Sobolev norms of spacetime curvature. These can be em-
ployed to verify the anticipated dynamical stability for all hyperbolic 3-
manifolds except the (nonempty, proper) subset admitting so-called nontriv-
ial traceless Codazzi tensors [29]. Any member of this latter subset allows a
certain finite dimensional moduli space of nontrivial but still flat spacetime
perturbations (that are not however of self-similar type). These are invisible
to the curvature based Bel-Robinson energies and so cannot be controlled
by them. One can either fill this gap by a separate independent argument
or instead develop non-curvature-based energies to handle the full range of
possibilities more uniformly [25].

This latter approach can be made to work as well in higher dimensions
when the background, self-similar solution is a Lorentz cone over an arbitrary
(negative) Einstein metric (that need no longer be hyperbolic) provided that
the spectrum of its associated elliptic, Lichnerowicz Laplacian satisfies a suit-
able condition [25]. In this more general setting a finite dimensional space
of Einstein metrics provides the ‘center manifold’ towards which the rescaled
spatial metric is flowing in the limit of infinite cosmological expansion. All of
the spacetimes that can be handled in this way (as sufficiently small pertur-
bations of self-similar backgrounds that satisfy the needed spectral condition)
can be shown to be causally geodesically complete in this same temporal di-
rection. Large families of such backgrounds (and their perturbations) can be
constructed by taking Riemannian products of negative Einstein spaces that
satisfy the needed spectral condition and verifying that the spectral condition
is automatically preserved in the process [25].
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Energy arguments of the same general type as those described above had,
even earlier, been shown to be applicable to U(1)-symmetric vacuum met-
rics defined on circle bundles over higher genus surfaces [44, 45, 46]. Though
limited at the outset to spacetimes having a spacelike Killing symmetry (gen-
erating the assumed U(1) action) these results are especially intriguing in the
challenge they provoke for an attack on the corresponding large data stability
problem. Large data global existence results are currently available (in the
vacuum, cosmological setting under discussion here) only for so-called Gowdy
spacetimes which, by definition, have (spacelike) U(1)×U(1) isometry groups
[47] or spacetimes (such as Bianchi models) that have even higher symmetry
[48]. Genuine progress on the actual, large data U(1) problem would represent
a ‘quantum leap’ forward in one’s understanding of such issues and therefore
deserves a major effort.

In it’s basic form the vacuum U(1) problem can be expressed (through a
variant of Kaluza-Klein reduction) as the 2 + 1 dimensional Einstein equa-
tions coupled to a wave map with (two-dimensional) hyperbolic target. The
global existence problem for such wave maps on a fixed (2 + 1 dimensional)
Minkowski background has recently been solved [49, 50]. In the simplest, so-
called ‘polarized’ case however, which requires that the bundle be trivial for
its formulation, the wave map reduces to a wave equation. The global ex-
istence of such (linear) wave equations is of course already well-established
even on curved (globally hyperbolic) backgrounds [51]. To handle the fully
coupled U(1)-symmetric field equations though requires simultaneous control
over the wave map (or wave equation) and the Teichmüller parameters of the
2+1 dimensional Lorentz metric which now is no longer a given background.
While it is not currently known how to do this it seems encouraging that
the formation of black holes in such spacetimes is obstructed by the imposed
symmetry. It thus seems plausible to conjecture that every solution should
exist for the maximum possible range of its geometrically defined (CMC) time
and, in particular, to expand forever without developing singularities to the
future.

It does not seem likely however that such large data global existence ques-
tions can be settled (either for the U(1) problem or, a fortiori, for the fully
general non-symmetric one) by pure (higher order) energy arguments. The
reduced Hamiltonian is always at hand, and applicable to arbitrarily large
data, but can only bound, in principle, an H1(M) × L2(M) Sobolev-type
norm of the reduced phase space variables {γ, pTT}. The best available lo-
cal existence theorem (for the general, non-symmetric problem), on the other
hand, requires these variables to lie in the higher order H2(M) ×H1(M), or
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Bel-Robinson energy level, Sobolev space [52, 53]. But the Bel-Robinson en-
ergy, unlike the monotonically decaying reduced Hamiltonian, is not, a priori,
under control.

There is however a rather ambitious program under development to con-
trol not only the Bel-Robinson energy but also the pointwise (or L∞ – norm)
behavior of spacetime curvature through the use of what we shall informally
refer to as light-cone estimates. We shall briefly outline one particular variant
of this far-reaching program in the final section below.

7. An integral equation for spacetime curvature

It has long been realized that the Yang-Mills equations, especially when for-
mulated in a curved background spacetime, have many similarities to the
Einstein equations and thus, since methods are already at hand for bound-
ing Yang-Mills curvature [54, 55, 56, 57], similar techniques might well be
applicable to the Einstein problem. These similarities are most pronounced
when Einstein’s theory is expressed in the Cartan, orthonormal frame formal-
ism wherein the Riemann curvature tensor appears as a matrix of two-forms
{Râ

ĉμνdx
μ ∧ dxν} expressible in terms of the matrix of (Lorentz connection)

one-forms {ωâ
ĉμdx

μ} via

Rĉ
âμν = θĉγh

λ
âR

γ
λμν

= ∂μω
ĉ

âν − ∂νω
ĉ

âμ + ωĉ
d̂μω

d̂
âν − ωĉ

d̂νω
d̂

âμ.
(68)

Here hâ = hμ
â

∂
∂xμ and θâ = θâμdx

μ are the orthonormal frame and co-frame
fields which determine the Lorentz connection by means of the vanishing
torsion condition

(69) ∂νθ
ĉ
μ − ∂μθ

ĉ
ν + ωĉ

âνθ
â
μ − ωĉ

âμθ
â
ν = 0.

Equation (68) is formally identical to that for Yang Mills curvature
{F â

ĉμνdx
μ ∧ dxν} in terms of its connection {Aâ

ĉμdx
μ} but Eq. (69) has no

correspondent in Yang-Mills theory wherein the connection is the fundamen-
tal field.

The Ricci tensor also has no analogue in Yang-Mills theory but when the
contracted Bianchi identities are combined with the vanishing Ricci tensor
(vacuum field equation) condition they imply the vanishing of the divergence
of spacetime curvature which is an equation of precisely Yang-Mills type.
Furthermore, in each case one can compute the divergence of the associated
Bianchi identity, commute covariant derivatives and impose the vanishing
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of the divergence of curvature to derive a natural hyperbolic equation sat-
isfied by the corresponding curvature tensor. For the Einstein problem, ex-
pressed in the Cartan formalism, this wave equation for curvature takes the
form:

∇α∇αR
â
b̂μν + Rμν

ρσRâ
b̂ρσ = 2Râ

ĉμσR
ĉ
b̂ν

σ − 2Râ
ĉνσR

ĉ
b̂μ

σ

− gαβ{∇β [ωâ
ĉαR

ĉ
b̂μν −Râ

ĉμνω
ĉ
b̂α]

+ ωâ
ĉβ[∇αR

ĉ
b̂μν + ωĉ

d̂αR
d̂
b̂μν −Rĉ

d̂μνω
d̂
b̂α]

− [∇αR
â
ĉμν + ωâ

d̂αR
d̂
ĉμν −Râ

d̂μνω
d̂
ĉα]ωĉ

b̂β}

(70)

where here, ∇α designates the covariant derivative with respect to spacetime
indices only, which ignores frame indices, and the ‘correction’ terms for the
latter are reinstated explicitly through the terms involving ωâ

ĉμ that have
been moved over to the right.

The operator acting on curvature on the left hand side of Eq. (70) has the
same form as that acting on the Faraday tensor of a solution to Maxwell’s
equations on a vacuum background spacetime. If one pretends for the mo-
ment that the terms on the right side of Eq. (70) are a given ‘source’ for
this Maxwell-like field then it is straightforward to apply the well-known
Hadamard/Friedlander analysis of wave equations on curved spacetimes [58,
51] to write an integral expression for this tensor in terms of integrals over
the past light cone from an arbitrary spacetime point p to an ‘initial’, Cauchy
hypersurface and additional integrals over the intersection of this cone with
the initial surface. Of course for the present problem these ‘source’ terms
are not really given since they all involve the unknown but, for nonlinear
problems generally, wherein one could hardly expect to derive a true rep-
resentation formula for the solution, this analysis will nevertheless yield an
integral equation that can serve as the basis for making light-cone estimates
of the unknown.

In a curved spacetime however, where Huygens’ principle fails to hold
in general, the resulting Hadamard/Friedlander formulas are complicated by
the appearance of integrals not only over the (3-dimensional) mantles of the
light cones in question and their (2-dimensional) intersections with the ini-
tial, Cauchy surfaces but also by integrals over the (4-dimensional) interiors
of those cones and their (3-dimensional) intersections with the initial hyper-
surfaces. It has recently been realized however that one can transform the
conventional Hadamard/Friedlander formulas in such a way that only cer-
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tain integrals over the 3-dimensional mantles of the cones involved and their
2-dimensional intersections with the initial, Cauchy surfaces actually occur
[59, 60]. At first sight it might seem that one has thereby miraculously re-
stored Huygens’ principle even in a curved spacetime where one knows it
shouldn’t hold, but this is not the case. For purely linear wave equations for
example (for which the meaning of Huygens’ principle is transparent) this
procedure invariably produces integrals over the cone mantles that involve
the unknowns themselves in contrast to the original Hadamard/Friedlander
formulation which provides genuine, explicit representation formulas for the
solutions of linear equations in terms of their Cauchy data (albeit ones with
the aforementioned Huygens’ principle violating complications).

The Hadamard/Friedlander formulas are most conveniently expressed
in terms of normal coordinates {xν} based at the vertex of the light cone
in question and defined throughout a normal neighborhood of this point
[59, 60, 61]. When the Cartan formalism is employed one can most natu-
rally fix the associated orthonormal frame (throughout such a normal neigh-
borhood in terms of its arbitrarily chosen value at the vertex point) by a
parallel propagation condition (analogous to the so-called Cronström condi-
tion often used with the Yang-Mills equations [54, 55, 56, 57]) that takes the
form:

(71) < ωĉ
â, ṽ >= ωĉ

âνx
ν = 0.

Remarkably, in this gauge one can not only compute the connection explicitly
in terms of curvature (as Cronström showed for the Yang-Mills problem)
via

(72) ωĉ
âμ(x) = −

∫ 1

0
dλ λxνRĉ

âμν(x · λ),

but also express the orthonormal (co-) frame in terms of the connection (and
hence the curvature) by

(73) θĉμ(x) = θĉμ(0) +
∫ 1

0
dλ[ωĉ

âμ(λx)(λxνθâν(0))].

When the aforementioned reduction transformation is applied to the wave
equation for spacetime curvature itself, the resulting integral equation may
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be expressed as:

Râ
b̂αβ

(x) = θêα(x)θf̂β(x)
{

1
2π

∫
Cp

μΓ(x′)
{[

−ωd̂
êσ′(x′)Dσ′

(
κ(x, x′)Râ

b̂d̂f̂
(x′)

)
−ωd̂

f̂σ′(x′)Dσ′
(
κ(x, x′)Râ

b̂êd̂
(x′)

)
−ωd̂

b̂σ′(x′)Dσ′
(
κ(x, x′)Râ

d̂êf̂
(x′)

)
+ωâ

d̂σ′(x′)Dσ′
(
κ(x, x′)Rd̂

b̂êf̂
(x′)

)]
+ κ(x, x′)

[
−2Râ

ĉêd̂
(x′)Rĉ d̂

b̂f̂
(x′) + 2Râ

ĉf̂ d̂
(x′)Rĉ d̂

b̂ê
(x′)

+Râ
b̂ĉd̂

(x′)R ĉd̂
êf̂

(x′)
]

+ Râ
b̂êf̂

(x′)
(
∇γ′∇γ′κ(x, x′)

)
+

(
2∇σ′

κ(x, x′)
)
·
[
ωd̂

êσ′(x′)Râ
b̂d̂f̂

(x′) + ωd̂
f̂σ′(x′)Râ

b̂êd̂
(x′)

+ωĉ
b̂σ′(x′)Râ

ĉêf̂
(x′) − ωâ

ĉσ′(x′)Rĉ
b̂êf̂

(x′)
]}

+ 1
2π

∫
σp

dσp
{
2κ(x, x′)

(
ξσ

′(x′)Dσ′Râ
b̂êf̂

(x′)
)

+ κ(x, x′)Θ(x′)Râ
b̂êf̂

(x′)

+ κ(x, x′)ξσ′(x′)
[
Râ

b̂d̂f̂
(x′)ωd̂

êσ′(x′)

+ Râ
b̂êd̂

(x′)ωd̂
f̂σ′(x′) + Râ

d̂êf̂
(x′)ωd̂

b̂σ′(x′)

−Rd̂
b̂êf̂

(x′)ωâ
d̂σ′(x′)

]}}

(74)

where the notation follows that of [59, 60] which in turn is based on that of
Friedlander [51]. As promised, only integrals over the light cone mantle Cp

and over its (two-dimensional) intersection σp with the initial surface now
occur. One can, by a further transformation, trade the derivatives of the cur-
vature appearing in the light cone integrals above for terms involving the
divergence of the Lorentz connection which seems, superficially at least, to
be an improvement [62]. But this latter formulation has always proven more
problematic to estimate (even in the corresponding Yang-Mills case) than
the former one so we shall here sketch what seems to be the most promising
approach.

By well known methods, which have their origins in the original studies
of the Yang-Mills problem [54, 55, 56, 57], one can bound the integrals of
those terms that are purely algebraic in curvature by expressions that involve
the fluxes of the Bel-Robinson energy. The latter would be controlled by
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the Bel-Robinson energy but, unlike in the Yang-Mills problem, this natural
energy is not itself, a priori under control. Of course the Bel-Robinson energy
would be strictly conserved in the presence of a (conformal) Killing field but
the existence of such a field is an absurdly strong restriction to place on
spacetimes of interest.

However, when the orthonormal frame fields of the Cartan formalism are
subjected (without loss of generality) to the parallel propagation gauge fixing
condition described above one can show that these fields (when parallel prop-
agated from the vertex of a particular light-cone) satisfy the Killing equations
approximately, with an error term that is explicitly expressible in terms of
curvature and that tends to zero at a well defined rate as one approaches the
vertex of the chosen cone [59, 60]:

(75) θâμ;ν + θâν;μ = −ωâ
b̂νθ

b̂
μ − ωâ

b̂μθ
b̂
ν .

To handle the terms in Eq. (74) involving the (covariant) gradients of curva-
ture one needs a higher order energy for curvature and the expression for this
that seems most natural from the point of view taken herein is provided by:

(76) T̃ grav
μν := DμR ·DνR− 1

2gμνDγR ·DγR

where now

DμR
â
b̂êf̂

= ∂μR
â
b̂êf̂

+ Rĉ
b̂êf̂

ωâ
ĉμ −Râ

ĉêf̂
ωĉ

b̂μ

−Râ
b̂ĉf̂

ωĉ
êμ −Râ

b̂êĉ
ωĉ

f̂μ

(77)

with

(78) R ·R =
∑
â,b̂,êf̂

(Râ
b̂êf̂

)2.

The analogous derivations can all be applied to the Yang-Mills prob-
lem and shown to yield a dramatically simplified proof of the no-blow-up of
Yang-Mills curvature on a curved (globally hyperbolic background) [60] but
of course the Yang-Mills problem is significantly less challenging than the
gravitational one in that, for Yang-Mills fields, the orthonormal frame field
and its (spacetime) curvature are part of the given background and do not
require control. How best to modify the arguments in the Einstein problem
to achieve the optimal results is currently under intense investigation.
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It should be especially interesting to develop these techniques further and
to use them to study the vital interplay between spatial topology and global
evolution. Do any spherical space form or handle summands in the prime de-
composition always tend to recollapse and ‘pinch off’ from the K(π, 1) sum-
mands even as the model universe as a whole continues to expand? If so would
some kind of mathematical surgery be necessary (as it is in Ricci flow) to al-
low the evolution to continue and, if so, what implications does this have for
the existence, or perhaps non-existence, of such spherical factors in the actual
universe? Do the graph manifold components, though continuing to expand
always play a comparatively negligible role, through collapse of their rescaled
metrics, in the asymptotic evolutions? Are the Cauchy hypersurfaces always
asymptotically volume-dominated by their hyperbolic components with the
rescaled metrics on these components asymptotically approaching homoge-
niety and isotropy? How is the fundamental question of cosmic censorship
influenced by answers to these questions?

Appendix A. Local well-posedness of the Einstein-Λ Cauchy
problem

Andersson and Moncrief proved in Ref. [18] a well-posedness theorem for the
Cauchy problem for a family of elliptic-hyperbolic systems that included the
(n + 1–dimensional) vacuum Einstein equations in CMSCH gauge. We shall
sketch herein how to apply their theorem to the gauge-fixed Einstein-Λ field
equations given by (17–18) and (10). Since the Einstein-Λ field equations only
differ from the vacuum equations by the addition of some rather innocuous,
low order terms most of the technicalities of this extended application of their
theorem are straightforward to verify. For this reason we shall mostly refer
the reader to the relevant sections of [18] rather than reiterate the detailed
arguments herein.

There is however a subtle point in the elliptic analysis of this earlier
work that deserves a more substantial discussion. It was assumed in [18] that
the spatial manifold M admitted a Riemannian, ‘background’ metric ĝ of
negative sectional curvature to serve as the reference metric for the spatial
harmonic gauge condition imposed throughout. This assumption, though not
necessary, was sufficient to ensure that the elliptic equation determining the
shift field X always had a unique solution or, equivalently, that the associated
linear operator always defined an isomorphism between the relevant (Sobolev)
spaces (c.f., Lemma 5.2 of [18]). While this implicit topological restriction
upon the choice of M was not unduly limiting for the applications that the
authors of [18] had in mind at the time (c.f., their followup articles [25, 29]),
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it could potentially be so for our purposes and thus we should like to remove
it from the hypotheses. Fortunately this issue is not a very ‘delicate’ one and
we shall be able to replace the aforementioned constraint upon the choice
of the ‘reference’ metric ĝ with a different condition that is not, in itself,
topologically restrictive.

First of all though we shall discuss the modifications to the arguments
of Section 3 of Ref. [18] that are sufficient to allow their application to the
Einstein-Λ field equations when Λ > 0 and where M is an arbitrary (compact,
connected, orientable and smooth) n-manifold of negative Yamabe type.

As we have shown already shown in Section 4 above the Lichnerowicz
equation (i.e., Hamiltonian constraint H(g, π) = 0) has a unique, smooth
positive solution for the relevant ‘conformal factor’ if and only if the (spa-
tially constant) mean curvature τ satisfies the inequality τ 2 > 2nΛ/(n − 1)
and has no solutions otherwise. When this holds the linear elliptic operator
occurring in the lapse equation (45) (designed to preserve the CMC slicing
condition) has trivial kernel and thus defines an isomorphism between the rel-
evant function spaces. Indeed this equation is identical in form to that dealt
with in [18] since it results simply from the replacement of one positive con-
stant, τ 2/n, by another (namely τ2

n − 2Λ
(n−1) subject to the inequality discussed

above). Since the analysis of this lapse equation given in [18] did not depend
upon the actual value of this constant but only upon its positivity, it goes
through without modification for the present case.

The elliptic operator arising in the equation for the shift vector field (des-
ignated by P in Section 3 and 5 of [18]) remains unchanged upon inclusion of
a cosmological constant. Thus the analysis for it given in the earlier reference
applies equally well here. On the other hand the operator P does depend
non-trivially upon the chosen reference metric ĝ which thus enters into the
question of when P defines an isomorphism between the relevant (Sobolev)
spaces. We shall return to this question below but for now simply assume that
ĝ has been chosen so that P has trivial kernel ∀ g (the ‘dynamical’ metric) in
an open set that includes the ‘initial data’. In this setup one may need to alter
the choice of ĝ ‘stroboscopically’ as g evolves so as to avoid the development
of a non-trivial kernel for P (which depends upon both metrics). Thus for
the sake of topological generality we may need to employ different choices for
the (time independent) metric ĝ over different subintervals of the full time of
existence (designated T ∗ in [18]) of any given solution to the field equations
but this merely amounts to representing the spacetime being developed in a
collection of (overlapping) SH coordinate gauges rather than a single one.

The only modification to the evolution equations needed to accommo-
date the inclusion of the cosmological constant Λ is the replacement of Fij
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(c.f., Eqs. (3.12) and (3.13) of Ref. [18]) by Fij + (4ΛN/(n− 1))uij where, in
the notation of that reference, we write (uij , vij) for the symmetric 2-tensors
(gij ,−2kij). But the addition of this linear, algebraic term to the vij evolution
equation causes no difficulty in the verification that this Λ-modified system is
elliptic-hyperbolic in the sense defined therein. In particular one thus readily
proves that the analogue of the Theorem 3.1 of [18] holds for the Λ-modified
system of interest to us here.

To show that the constraints and gauge conditions are preserved in time
by the Λ-modified evolutionary system we define the quantities

A = trg k − t(79)

V k = gij
(
Γk
ij(g) − Γ̂k

ij(ĝ)
)

(80)

F = R(g) + (trg k)2 − |k|2 −∇iV
i − 2Λ(81)

Di = ∇i trg k − 2∇mkmi(82)

and

αij = 1
2(∇iVj + ∇jVi)(83)

and show, by direct calculation using the Λ-modified evolution equations (17–
18), that the set of constraint and gauge quantities (A,F, V i, Di) satisfies ex-
actly the same induced evolution equations as those given in Eqs. (4.4a–d) of
Ref. [18]. Thus the energy argument given in Section 4 of this reference goes
through exactly as before and shows that if (A,F, V i, Di) = 0 for the initial
data (g0, k0), then (A,F, V i, Di) ≡ 0 along the solution curve (g, k,N,X).
Thus, in particular, one arrives at the conclusion that the analogue of Theo-
rem 4.2 of [18] holds for the Einstein-Λ field equations discussed herein and
thus that each such solution curve defines a spacetime metric ḡ that satisfies
Eqs. (8).

Returning now to the question of when the elliptic operator P arising in
the shift vector field equation defines an isomorphism between the relevant
Sobolev spaces we first note that any (globally defined) Killing vector field5

of the ‘dynamical’ metric g would lie in the kernel of this operator whenever
the SH gauge condition, V i = 0, is satisfied. Furthermore such a Killing
field (or conformal Killing field in 2 dimensions) would not automatically be

5For the special case of n = 2 any conformal Killing field would have this prop-
erty.
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L2-orthogonal to the ‘source’ term occurring in the shift equation6 and thus
would provide an immediate obstruction to the existence of a solution. Even
in those special cases for which a solution did exist the non-trivial kernel of
P would mitigate against its uniqueness unless a further condition (such as
requiring L2-orthogonality to the kernel) were imposed.

Fortunately though these aforementioned obstructions are essentially non-
existent for the ‘exotic’ 3-manifolds of primary interest to us here since one
can prove that such manifolds do not admit any Riemannian metric whatso-
ever that has non-trivial, global Killing symmetries (i.e., that admits a non-
vanishing, globally defined Killing field). Any compact manifold that supports
a metric with a continuous isometry group (which of necessity would be a com-
pact Lie group) must necessarily admit an SO(2) action and the (compact,
connected, orientable) 3-manifolds that do admit such actions have been fully
classified.7 For a rather complete discussion of this issue we refer the reader
to Ref. [14] and recall that, in the present context, we only consider those
3-manifolds of negative Yamabe type.

To summarize the results discussed therein no such composite 3-manifold
(i.e., non-trivial connect sum) of negative Yamabe type admits an SO(2)
action and the only prime such manifolds (again of negative Yamabe type)
that can admit such actions are ‘standalone’ K(π, 1) manifolds of non-flat
type8 whose fundamental group π has infinite cyclic center ≈ Z (in which case
M → M/SO(2) is a Seifert fibered space determined by it numerical Seifert
invariants). Thus any 3-manifold of hyperbolic type or that includes such a
(hyperbolic) summand in its prime decomposition (so that the arguments of
Section 7 apply) will not admit any SO(2) action and thus not support any
metric having non-trivial Killing symmetries. Even for those ‘exceptional’
K(π, 1) manifolds listed above the ‘generic’ metric that they do support will
have no Killing symmetries.

On the other hand, even for those 3-manifolds of negative Yamabe type
that admit no SO(2) actions (and hence no metrics having non-trivial Killing

6Except in extremely special cases such as if Kij = constant × gij .
7In the n = 2 case of (compact, connected, orientable) surfaces one can first

‘uniformize’ an arbitrary metric to one of constant curvature by a suitable confor-
mal transformation and then compute the covariant divergence of the (conformal)
Killing equation to derive an elliptic equation for the hypothetical (conformal)
Killing field from which it readily follows that only the sphere, S2, and torus, T 2,
can support metrics with Killing or conformal Killing symmetrics. The ‘more exotic’
higher genus surfaces cannot.

8The six (compact, connected, orientable) 3-manifolds of flat type are of zero
Yamabe type and five of these do admit SO(2) actions.
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symmetries) there is the remaining possibility (that we have not excluded)
that the operator P could still have a non-trivial kernel even when no Killing
fields are present to provide one ‘automatically’. The kernel of such an elliptic
operator, however, must necessarily be finite dimensional and one can now
exploit the non-trivial dependence of P upon the ‘arbitrary’ reference metric
ĝ to ensure that this kernel vanishes for all g in an open neighborhood of
the initial data g0.9 If this is accomplished (by a suitable choice of ĝ) then
one can evolve the initial data for some (open) interval of time and then
(‘stroboscopically’) change the choice of ĝ as needed to avoid the development
of a non-trivial kernel.

If for example the self-adjoint operator Qg (to which P reduces if one
takes g = ĝ) defined by

(84) QgY
i = gmn∇m∇nY

i + Ri
j(g)Y j

should happen to have trivial kernel at the initial data metric g0 we could
choose ĝ = g0 and hold this metric fixed as g evolves until such time as a new
choice of ĝ is called for. If however Qg0 should happen to have non-trivial
kernel then one can seek to perturb the choice of ĝ away from g0 (while
maintaining the SH gauge condition V i = 0) in such a way as to eliminate
the kernel of P.

In this regard let us first note that, on the manifolds of interest herein,
the equation

V i := gmn
(
Γi
mn(g) − Γ̂i

mn(ĝ)
)

= 0
(85)

defines, in a suitable function space setting [63], a sub-manifold in the space
of metrics ĝ for all ĝ sufficiently near the ‘fixed’ metric g.10 Computing the
differential of V i with respect to ĝ and evaluating the result at ĝ = g one gets

(86) DĝV
k(ĝ) · h

∣∣∣∣
ĝ=g

= −gk�
(
h

|i
i� − 1

2(h i
i )|�

)

9Note that this flexibility is not present when Killing fields occur since any such
field will automatically lie in the kernel of P independently of the choice of ĝ
provided that V i = 0, as we have assumed.

10A virtually identical argument would show that V i = 0 also defines a subman-
ifold in the space of metrics g, holding ĝ fixed, for all g sufficiently near ĝ.
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where here we write |� for ∇�, covariant differentiation with respect to g. The
adjoint operator DĝV

∗ is readily found to be

(87) (DĝV
∗(ĝ) · ω)ij = 1

2
(
ωi|j + ωi|j − gijω

�
|�

)

where ω = ωidx
i is an arbitrary one-form field. This operator is easily seen to

have injective (principal) symbol (and hence to be elliptic) and to have trivial
kernel on the manifolds of interest since any element of the kernel would have
to be a Killing field11 of (M, g) and, as we have shown, these are non-existent.

It thus follows from standard arguments (c.f., especially section 4.2 of
Ref. [63]) that the equation V i(ĝ) = 0 defines a submersion at ĝ = g and
hence yields a submanifold in the space of metrics ĝ for all ĝ sufficiently
near g. As mentioned above a corresponding result would hold for all metrics
g sufficiently near a fixed ĝ since, except for overall signs, the differential
DgV

k(g) and its adjoint, computed by holding ĝ fixed, are identical to those
given above for the case at hand.

The tangent space to the manifold of ĝ metrics defined by V k(ĝ) = 0 can
be conveniently computed by exploiting the (non-L2-orthogonal) decomposi-
tion of symmetric 2-tensors at ĝ = g given by12

(88) hij = hTT
ij + 1

n
ψgij + ∇iZj + ∇jZi

where hTT is ‘transverse-traceless’ with respect to g, i.e., satisfies

(89) gijhTT
ij = 0 and ∇jhTT

ij = 0.

To preserve the SH gauge condition V k = 0 any curve of metrics ĝ(λ)

11Or, conformal Killing field if n = 2 but, as shown above, these are non-existent
for higher genus surfaces.

12This decomposition can be derived from the closely related (L2-orthogonal)
one

hij = hTT
ij + 1

n
χgij + ∇kZj + ∇jZi −

2
n
gij∇�Z

�

by simply setting ψ = χ − 2gij∇�Z
�. If (M, g) admits conformal Killing fields the

choice of Zi (and hence also ψ) could be rendered unique by requiring that Zi be
L2-orthogonal to all of them.
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with ĝ(0) = g and ĝ′(0) = h would need to satisfy

d

dλ
V k (ĝ(λ))

∣∣∣∣
λ=0

= DĝV
k(ĝ) · h

∣∣∣∣
ĝ=g

= 0.
(90)

The general solution to this equation for the tangent field h is readily found
to be

(91) hij = ĥTT
ij + 1

n
ψ̂gij + ∇iẐj(ψ̂) + ∇jẐi(ψ̂)

where ĥTT is an arbitrary (transverse-traceless, symmetric) 2-tensor, ψ̂ is any
scalar field whose gradient is L2-orthogonal to the kernel of Qg and where
Ẑi(ψ̂) is a solution to

QgẐi := gmn∇m∇nẐi + Rj
i(g)Ẑj

=
(1

2 − 1
n

)
ψ̂|i

(92)

which we may require to be L2-orthogonal to the kernel of Qg.13

Now suppose that the kernel of Qg is spanned by a collection of k vector

fields
{

(A)
Y | A = 1, . . . , k

}
and ask whether we can smoothly deform these

along a chosen smooth curve of metrics ĝ(λ) (with ĝ(0) = g and ĝ′(0) = h)
that preserves the SH condition V i (ĝ(λ)) = 0 to curves of vector fields

(93)
{

(A)
Y (λ)|A = 1, . . . k with

(A)
Y (0) =

(A)
Y

}

that, either all or in part, continue to lie in the kernel of the operator P which,
through its dependence upon ĝ now varies smoothly with λ. Computing the

derivative of the defining condition, Pλ

(A)
Y (λ) = 0, with respect to λ and

setting λ = 0 one readily finds that a necessary condition for
(A)
Y (λ) to remain

in the kernel of Pλ is that

(94)
∫
M

dμg

{
(B)
Yi

(
∇m

(A)
Y n + ∇n

(A)
Y m

)
DĝΓ̂i

mn(ĝ) · h
∣∣∣
ĝ=g

}
= 0

13We here relax the aforementioned condition that Ẑi be L2-orthogonal to any
conformal Killing fields of g.
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for B = 1, . . . k. In the language of Rayleigh-Schrödinger perturbation theory
familiar from quantum mechanics the above correspond to the ‘matrix ele-
ments’ of the perturbation (to the operator P) that must necessarily vanish
if the vanishing of the corresponding eigenvalue is to be preserved.

The main point is that, for a ‘generic’ choice of the perturbation h, one
expects the conditions (94) to be maximally violated and thus for the kernel
of P to be fully annihilated by translation of ĝ along the corresponding curve
of metrics ĝ(λ). While a fully rigorous treatment of this issue would take some
further work we remind the reader that the starting point of this analysis was
the assumption that the operator Qg had a non-trivial kernel which, itself, is
seemingly a highly non-generic restriction on the initial metric g.
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