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On the evolution of the spacetime Bartnik mass
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of his 60th birthday

Abstract: It is conjectured that the full (spacetime) Bartnik mass
of a surface Σ is realised as the ADM mass of some stationary
asymptotically flat manifold with boundary data prescribed by Σ.
Assuming this holds true for a 1-parameter family of surfaces Σt

evolving in an initial data set with the dominant energy condition,
we compute an expression for the derivative of the Bartnik mass
along these surfaces. An immediate consequence of this formula is
that the Bartnik mass of Σt is monotone non-decreasing whenever
Σt flows outward.
Keywords: Quasi-local mass, initial data.

1. Introduction

The problem of quasi-local mass in general relativity is the problem of deter-
mining a reasonable notion of mass associated to a closed spacelike 2-surface.
Over the years, there have been many candidates for a suitable quasi-local
mass, and while each of them has physical motivations, they do not all agree
in general. One important definition is that due to Robert Bartnik [7], which
inspired by the notion of electrostatic capacity, is defined as the infimum of
the ADM mass of suitable asymptotically flat extensions of the surface.

A Riemannian 3-manifold (M, g) is said to be asymptotically flat (with
one end) if, after excising a compact set, it is diffeomorphic to R

3 minus a
closed ball with appropriate decay on the metric. The standard decay condi-
tions are that the metric approaches the flat metric near infinity at a rate of
|x|−1/2−ε, with its first two derivatives each decaying one power of |x| faster,
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and that the scalar curvature be integrable. Asymptotically flat initial data
for the Einstein equations is then a triple (M, g,K) where Kij is a symmetric
tensor decaying at a rate of |x|−3/2−ε with its first derivative decaying one
power of |x| faster.

Under such conditions, it is well-known [6, 12] that the ADM energy
and momentum are well-defined, and indeed the energy is independent of
coordinates while the linear momentum transforms appropriately as a vector
in R

3, under changes of coordinates. In rectangular coordinates near infinity,
the ADM energy can be computed using the standard expression [5]:

EADM = 1
16π lim

R→∞

∫
SR

∂igij − ∂jgii dS
j ,

while the linear momentum is computed as

pi = 1
8π lim

R→∞

∫
SR

(Kij − gijtrgK) dSj ,

where SR := {|x| = R} denotes a large coordinate sphere. The spacetime
positive mass theorem [20, 24] then says E2 ≥ pip

i, and the total ADM mass
is defined by mADM =

√
E2 − pipi. The Bartnik mass of a closed two-surface

Σ bounding a domain Ω in an initial data set, is then taken to be

mB(Σ) = inf{mADM (M, g,K) : (M, g,K) is an admissible extension of Σ}.

Here an admissible extension refers to an asymptotically flat initial data set
that extends Ω in an appropriate way, satisfying the positive mass theorem.
Bartnik conjectured that the above infimum is realised by initial data cor-
responding to a stationary vacuum solution; that is, vacuum Killing initial
data (KID). In order to better explain what constitutes an admissible exten-
sion and KID, we must first introduce the Einstein constraint equations. We
therefore reserve discussion of this until the following section.

It should be remarked that a significant portion of the literature to date
focusses only on the time-symmetric case. In which case, one expects that the
infimum is realised by a static metric; this is the crux of the static metric ex-
tension conjecture. However, here we would like to consider the full spacetime
definition of Bartnik mass.

A more recent definition of quasi-local mass that possesses significant
promise is that due to M.-T. Wang and S.-T. Yau [22, 23], which is based
on a Hamiltonian analysis. An intriguing question is whether there exists a
relationship between the Bartnik mass and the Wang-Yau mass. In [11], the
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Wang-Yau mass with reference to static spaces was introduced by P.-N Chen,
M.-T. Wang, Y.-K. Wang, and S.-T. Yau. In the time-symmetric setting,
recent work by S. Lu and the second-named author [14] indicates that, if the
static metric extension conjecture holds, the derivative of the Bartnik mass
along an evolving family of surfaces agrees with the derivative of the Wang-
Yau mass with reference to the static metric extension of the given surface.
In making this observation, the derivative formula of the Bartnik mass in
time-symmetric initial data (see [17]) plays a key role.

In this article, we present a computational formula for the derivative of
the full spacetime Bartnik mass, under the assumption that the Bartnik mass
is achieved and is differentiable. The main result is the following.

Theorem 1. Let (M, g,K) be an initial data set for the Einstein equations.
Let {Σt} be a family of closed, embedded surfaces evolving in M . We assume
the evolution is given in terms of a smooth map X : Σ × I → M by

(1.1) dX

dt
= ηn.

Here I is an interval, n is the unit normal pointing towards infinity in M ,
and η denotes the speed of Σt = X(Σ, t).

Suppose that for each Σt there exists an admissible extension (in the sense
of Section 2) (Mt, gt, Kt) realizing the Bartnik mass of Σt that is stationary
and vacuum. Moreover, suppose {(Mt, gt, Kt)}t∈I depends smoothly on t. De-
note by Nt, X

A
t , X

ν
t the projections of the stationary Killing field orthogonal

to the initial data slice, tangential to Σt, and orthogonal to Σt in Mt, respec-
tively.

Then the evolution of the Bartnik mass is given by

d

dt
mB(Σt) = 1

16π

∫
Σt

ηNt

(
|Π(M)

t − Π(S)
t |2 + |K(M)

tΣ −K
(S)
tΣ |2

)
dμt

+ 1
8π

∫
Σt

ηXν
t

(
K

(M)
tΣ −K

(S)
tΣ

)
·
(
Π(M)

t − Π(S)
t

)
dμt

+
∫

Σt

η
(
Ntρ + XA

t JA + Xν
t Jn

)
dμt,

(1.2)

where the superscripts (S) and (M) refer to quantities defined on the station-
ary extension Mt and on the original manifold M respectively; Πt is the second
fundamental form of Σt in Mt; dμt is the volume form of Σt; a subscript Σ
refers to the restriction to Σ; and (ρ, JA, Jn) is the energy-momentum covec-
tor corresponding to (M, g,K), projected tangentially (JA) and orthogonally
(Jn) to Σ.
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Under the key assumptions imposed in Theorem 1, one sees that an imme-
diate consequence of formula (1.2) is that, if (M, g,K) satisfies the dominant
energy condition, then d

dt
mB(Σt) ≥ 0 along any {Σt} that flows outward. We

now give a few remarks concerning the main assumptions.

Remark 1. Existence and uniqueness of a stationary vacuum extension re-
alizing the Bartnik mass is a fundamental question that has remained open
since the definition was proposed in [7]. In the time-symmetric setting, recent
progress on static vacuum extensions has been made by M. Anderson and M.
Khuri [4], and by M. Anderson and J. Jauregui [3]. In particular, examples of
boundary surfaces with zero Bartnik mass that do not admit a mass minimizer
have been constructed by M. Anderson and J. Jauregui [3].

Remark 2. The continuity and differentiability of the Bartnik mass is an-
other challenging question that remains to be rigorously analyzed. In the time-
symmetric setting, partial results on the continuity of the Bartnik mass has
been given by the first-named author [15]. In the general case, existence and
smooth dependence of stationary vacuum extensions of boundary data close
to a round sphere in the Minkowski spacetime R

3,1 has been recently obtained
by Z. An [1].

In the derivation of (1.2), as the proof in Section 4 shows, one only needs
the 1-parameter family {(gt, Kt)}t∈I to be differentiable in an appropriate
space of initial data (on a fixed manifold with boundary Σ) so that one can
differentiate the Hamiltonian along this curve, for example in an appropriate
weighted Sobolev or Hölder space

Remark 3. Formula (1.2) was first found by Robert Bartnik and the second-
named author in 2007 (see [17, Section 3]). Unfortunately the drafts referred
to in [17] were never completed. It is our pleasure to present this formula
here, and dedicate it to Robert on the occasion of his 60th birthday.

This article is organized as follows: In Section 2, we recall the Einstein
constraint equations and some other basic definitions. In Section 3, we com-
pute the first variation of the Reggie-Teitelboim Hamiltonian and give this
expression in a form promoting Bartnik’s geometric boundary data. Then in
Section 4 we use the computations in Section 3 to derive the evolution formula
(1.2).
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2. Setup

Let (M, g) be a Riemannian 3-manifold and Kij be a symmetric 2-tensor on
M . The constraint map Φ is given by

Φ0(g,K) : = R(g) + (trgK)2 − |K|2

Φi(g,K) : = 2(∇jKij −∇i(trgK)).
(2.3)

This allows one to write the Einstein constraint equations simply as

Φ0(g,K) = 16πρ
Φi(g,K) = 16πJi,

where ρ and Ji correspond to appropriate projections of a source energy-
momentum tensor from the spacetime 4-manifold.

Naturally, the energy-momentum source terms should not be completely
arbitrary; one usually imposes the dominant energy condition, which amounts
to the condition ρ2 ≥ JiJ

i. This is a standard assumption under which the
positive mass theorem holds.

We now turn back to discuss the notion of admissible extensions, defining
the Bartnik mass. Let Σ be a 2-surface bounding some domain Ω in a given
initial data set (M̂, ĝ, K̂). We would like to consider an admissible extension of
Σ to be some initial data set (M, g,K) with interior boundary ∂M isometric
to Σ, matching Ω in some sense. In particular, we would like to ask that the
resultant manifold obtained by gluing Ω to M along Σ, satisfies the dominant
energy condition. Of course, g and K are not necessarily smooth along Σ,
so the best we can ask for is that the dominant energy condition is satisfied
distributionally.

Assuming momentarily that the data is smooth, in a neighborhood of Σ,
we can foliate M by level sets of the distance function to Σ and let H denote
the mean curvature of each level set. It follows from the second variation of
area that

∇νH = −Rνν − |Π|2,
where ν is the unit normal to Σ, Rνν = Ric(ν, ν) is the Ricci tensor of g and
Π is the second fundamental form of Σ. By the Gauss equation, we have

(2.4) 16πρ = Φ0(g,K) = R(gΣ) − |Π|2 −H2 − 2∇νH + (trgK)2 − |K|2,

where R(gΣ) is the scalar curvature of Σ with the induced metric. Therefore,
in order to avoid a distributional ‘Dirac delta’ type of spike in ρ, one asks
that the mean curvature on each side of Σ agree. The remaining geometric
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boundary conditions come from the momentum constraint. In what follows,
and indeed throughout the remainder of this article, it will be useful to work
in coordinates adapted to Σ. Let ν be the unit normal to Σ ∼= ∂M pointing
towards infinity and let {∂A} with A = 1, 2 be a frame on Σ.

From the momentum constraint, we have

8πJν = ∇A(KAν) −∇ν(trΣK);

a tangential derivative that is bounded, and a normal derivative of trΣK. That
is, we must ask that trΣK matches on both sides of Σ to avoid a distributional
spike in Jν . The momentum constraint also gives (cf. (4.28) below)

8πJA = ∇B
ΣKAB + KνBΠB

A + KνAH + ∇νKAν −∇A(trΣK) −∇Σ
AKνν .

As above, due to the term ∇ν(KνA), we must ask that ω⊥
A := KνA match on

either side of Σ to avoid a distributional spike in JA. It may be noticed that
the dominant energy condition can only be violated if the distributional spikes
in (ρ, Ji) decrease ρ2 − JiJ

i. In fact, recent work of Shibuya [21, Section VI]
shows that the positive mass theorem indeed still holds for such a manifold
that is not smooth along Σ provided that the distributional spike ‘jumps the
right way’, if such a jump exists (cf. [16]).

This motivates us to insist that an admissible extension of Σ is an initial
data set (M, g,K) with boundary, such that on ∂M the quantities
(g∂M , H, ω⊥

A , tr∂MK) are prescribed by the corresponding quantities on Σ in
(M̂, ĝ, K̂). These geometric boundary conditions were first proposed by Bart-
nik; indeed the explanation given above and some related discussion can be
found in [8].

In particular, an admissible extension in the context of the Bartnik mass
depends on the geometric boundary data (Σ, gΣ, H, ω⊥

A , trΣK). An admissible
extension of Σ (or of (Σ, gΣ, H, ω⊥

A , trΣK)) is an asymptotically flat initial
data set (M, g,K), containing no apparent horizons, whose boundary data
agrees with (Σ, gΣ, H, ω⊥

A , trΣK). The condition that the extension contains
no apparent horizons is required in order to exclude extensions where Σ is
hidden behind a horizon. If this were not excluded then the mass would
always be zero, as we could consider extensions where Σ is hidden behind
an arbitrarily small horizon and the mass could be made arbitrarily small.
Taking this to be the definition of an admissible extension, we recall the
Bartnik mass is defined to be

mB(Σ) = mB(Σ, gΣ, H, ω⊥
A , trΣK)

= inf{mADM (M, g,K) : (M, g,K) is an admissible extension of Σ}.
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Central to the computations to follow are the linearization of Φ and its
formal adjoint. The linearization of Φ with respect to (g,K) acts on pertur-
bations (h, L) by

DΦ0 (g,K)[h, L] = − Δg(trgh) + ∇i∇jh
ij − hijRij + 2hijKk

i Kkj

+ 2
(
trg(K)

(
trg(L) − hijK

ij
)
− LijK

ij
)

DΦi (g,K)[h, L] = 2
(
∇jLij − hjk∇kKij + ∇i

(
trg(L) − hjkKjk

))
−Kjk∇ihjk + Kij∇jtrg(h) − 2Kij∇kh

jk.

(2.5)

The formal L2-adjoint is then computed by pairing this with some lapse-
shift ξ = (N,X i) and formally integrating by parts. This is directly computed
as

DΦ∗
1 (g,K)[ξ] = − gijΔg(N) + ∇i∇jN −NRij + gij∇k(X lKk

l )

+ 2NKikKj
k − 2Ntrg(K)Kij − 2Xk∇iKj

k

+ ∇k(XkKij) + ∇k(Xk)Kij + 2∇i(XkKj
k)

DΦ∗
2 (g,K)[ξ] = 2N(gijtrg(K) −Kij) − 2∇jX i − 2gij∇kX

k,

(2.6)

where the subscripts 1 and 2 refer to the components of DΦ∗
(g,K)[ξ] that are

paired with h and L respectively.
The Regge-Teitelboim Hamiltonian [19] is expressed in terms of the con-

straint map and a fixed choice of lapse-shift, ξ. We fix a choice of ξ that is
asymptotic to a constant vector ξ∞ ∈ R

3,1. We refer readers to [9, Section 4
and 5] for a precise explanation of the asymptotics required of ξ in terms of
weighted Sobolev spaces.

The Regge-Teitelboim Hamiltonian is then given by

(2.7) H(g,K; ξ) := 16πP(g,K) · ξ∞ −
∫
M

ξ · Φ(g,K)√g,

where P ∈ R
1,3 is the ADM energy momentum co-vector, ξ∞ ∈ R

1,3 is the
asymptotic value of ξ, and √

g denotes the volume form associated to g.
It is now well-known that (2.7) generates the correct equations of mo-

tion. Furthermore, results of Moncrief [18] show that a vacuum spacetime is
stationary if and only if, at the initial data level there exists a non-trivial
element in the kernel of DΦ∗

(g,K). Note that by a result of Beig and Chruściel
[10] we have that if DΦ∗

(g,K)[ξ] = 0 then ξ∞ is parallel to P; in particular, if
we assume |ξ∞|R1,3 = 1, we have ξ∞ · P(g,K) = mADM (M, g,K).
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3. Variation of the Hamiltonian

Our expression for the evolution of the Bartnik mass is derived from an expres-
sion of the first variation of the Regge–Teitelboim Hamiltonian on a manifold
with boundary. We therefore compute the first variation of the Hamiltonian
in this section, and make some geometric interpretations of it.

Let (M, g,K) be vacuum initial data; that is, Φ(g,K) = 0. We again
fix some lapse-shift ξ on M that is asymptotic to a constant translation
ξμ∞ = − 1

mP
μ(g,K). In what follows, we consider (2.7) to be defined with

respect to this choice of ξ. If we formally take the variation of (2.7) with
respect g and K, discarding boundary terms, we then obtain

16πDm(g,K)[h, L] −
∫
M

(h, L) ·DΦ∗
(g,K)[ξ]

√
g,

where we have made use of the fact that (g,K) is vacuum and that

ξμ∞Pμ(g,K) = m.

In general though, the boundary terms that we just discarded do not vanish;
we must also consider the term∫

M

(
(h, L) ·DΦ∗

(g,K)[ξ] − ξ ·DΦ(g,K)[h, L]
) √

g.

This expression can be divided into two sets of boundary terms; sur-
face integrals at infinity, and surface integrals on the interior boundary Σ.
The boundary terms at infinity cancel exactly with the variation of the mass
term, which is indeed motivation for the Regge-Teitelboim Hamiltonian [19].
This cancellation is very carefully checked by Bartnik in [9], and the inter-
ested reader is directed there to see the details. In particular, one finds that
DH(g,K;ξ)[h, L] is equal to −

∫
M (h, L) · DΦ∗

(g,K)[ξ]
√
g plus some boundary

terms on Σ. We therefore seek a geometric meaning of these boundary terms.
The boundary terms can be easily read off from the linearization of the con-
straint map (2.5) and its adjoint (2.6), however dealing with all of these terms
simultaneously quickly becomes an unwieldy mess. For this reason, we first
focus only on the terms containing N . These terms are

(3.8)
∫

Σ

(
N(∇i(trg(h)) −∇j(hj

i ) + hj
i∇j(N) − trg(h)∇iN

)
νidS,
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where we take νi to be the unit normal pointing towards infinity. As this
computation has been checked in the time-symmetric case and has been con-
sidered several times before in the literature, we omit the calculation here for
brevity. We simply state that (3.8) can be expressed as∫

Σ
νi∇i(N)trΣ(h) −NhABΠAB − 2NDHg[h] dS,

and the interested reader is directed to Proposition 3.7 of [4], for example,
to see the computation carried out (see also Lemma 3.1 in [17]). Note that
we again let {∂A} with A = 1, 2 be a frame on Σ, and Π denotes the second
fundamental form of Σ.

This allows us to write the variation of the Hamiltonian as

DH(g,K;ξ)[h, L] =
∫

Σ
νi∇i(N)trΣ(h) −NhABΠAB − 2NDHg[h] dS

+
∫

Σ

(
2X iLj

i + XjKikhik − 2X iKk
i h

j
k + X itrg(h)Kj

i − 2Xjtrg(L)
)
νjdS.

(3.9)

It will be useful to split X into components along Σ and orthogonal to Σ,
and group terms in (3.9) according to which component of ξ = (N,XA, Xν)
they contain. The terms containing N are entirely contained in the first line
of (3.9), so we now proceed to gather the terms containing XA, which are

XA
(
2Lν

A − 2Kk
Ah

ν
k + trg(h)Kν

A

)
= XA

(
2Lν

A − ω⊥
Ah

ν
ν − 2KB

Ahν
B + trΣ(h)ω⊥

A

)
.

(3.10)

The terms containing Xν are given by

Xν
(
2Lνν + Kikhik − 2Kk

νhkν + trg(h)Kνν − 2trg(L)
)

= Xν (−2trΣ(L) + KΣ · hΣ + trΣ(h)Kνν) .
(3.11)

Similar to the appearance of DgH[h] in the terms containing N , we hope
to write these terms in terms of the variation of the other geometric boundary
data, ω⊥ and trΣK. We first compute

(3.12) Dω⊥
(g,K)[h, L] = D(KiAν

i)(g,K)[h, L] = LνA + KiAD(νi)g[h].

The variation of the unit normal vector is computed via the key properties
defining it:

gijν
iνj = 1 and giAν

i = 0.



906 Stephen McCormick and Pengzi Miao

Differentiating these conditions gives

hνν + 2gijνjD(νi)g[h] = 0

and
hνA + gνiD(νi)g[h] = hνA + gABD(νB)g[h] = 0.

From which we obtain

D(νA)g[h] = −hA
ν and D(νν)g[h] = −1

2hνν .

From (3.12), we now have

Dω⊥
(g,K)[h, L] = LνA −KABh

B
ν − 1

2KAνhνν .

Comparing this to (3.10), we find that the terms containing XA are

XA
(
2D(ω⊥

A)(g,K)[h, L] + trΣ(h)ω⊥
A

)

We now turn to compute

D(trΣK)[h, L] = trΣL + D(gAB)g[h]KAB = trΣL− hABKAB.

We then can write the terms containing Xν as

Xν
(
−2D(trΣK)(g,K)[h, L] −KΣ · hΣ + trΣ(h)Kνν

)
.

Bringing this all back together gives us the following expression for the
variation of the Hamiltonian:

DH(g,K;ξ)[h, L] =

2
∫

Σ
−NDHg[h] + XAD(ω⊥

A)(g,K)[h, L] −XνD(trΣK)(g,K)[h, L] dS

+
∫

Σ
νi∇i(N)trΣ(h) −NhABΠAB + XAtrΣ(h)ω⊥

A dS

+
∫

Σ
Xν (−KΣ · hΣ + trΣ(h)Kνν)

(3.13)

−
∫
M

(h, L) ·DΦ∗
(g,K)[ξ]

√
g.
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We now take a moment to reflect on the various terms in the expression
above for the variation of the Hamiltonian. First note that the first line clearly
vanishes for all perturbations preserving the geometric boundary data. The
second and third lines entirely vanish when hAB is zero; that is, they vanish
for all perturbations preserving the metric on the boundary. The fourth line
is the only bulk integral, and vanishes if and only if ξ is a Killing vector
associated to (g,K).

4. Evolution of mass formula

We now turn to use the formula derived in the preceding section to derive
our formula for the evolution of the Bartnik mass.

Let (M, g,K) be some fixed initial data set and consider a 1-parameter
family of closed surfaces {Σt} evolving in M . Assume there exists an admis-
sible vacuum stationary extension (Mt, g

S
t , K

S
t ) of each Σt that realizes the

Bartnik mass of Σt, and that this family of extensions is smooth with respect
to t.

We assume that the Killing lapse-shift ξt = (Nt, Xt) of each stationary
extension is asymptotic to a constant translation as in the preceding sections,
and scale it so that N2

t − |Xt|2gt is asymptotic to 1.
Below we recall the statement of Theorem 1 and give its proof.

Theorem 2. Let (M, g,K) be an initial data set for the Einstein equations.
Let {Σt} be a family of closed, embedded surfaces evolving in M . We assume
the evolution is given in terms of a smooth map X : Σ × I → M by

(4.14) dX

dt
= ηn.

Here I is an interval, n is the unit normal pointing towards infinity in M ,
and η denotes the speed of Σt = X(Σ, t).

Suppose that for each Σt there exists an admissible extension (in the sense
of Section 2) (Mt, gt, Kt) realizing the Bartnik mass of Σt that is stationary
and vacuum. Moreover, suppose {(Mt, gt, Kt)}t∈I depends smoothly on t. De-
note by Nt, X

A
t , X

ν
t the projections of the stationary Killing field orthogonal

to the initial data slice, tangential to Σt, and orthogonal to Σt in Mt, respec-
tively.
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Then the evolution of the Bartnik mass is given by

d

dt
mB(Σt) = 1

16π

∫
Σt

ηNt

(
|Π(M)

t − Π(S)
t |2 + |K(M)

tΣ −K
(S)
tΣ |2

)
dμt

+ 1
8π

∫
Σt

ηXν
t

(
K

(M)
tΣ −K

(S)
tΣ

)
·
(
Π(M)

t − Π(S)
t

)
dμt

+
∫

Σt

η
(
Ntρ + XA

t JA + Xν
t Jn

)
dμt,

(4.15)

where the superscripts (S) and (M) refer to quantities defined on the station-
ary extension Mt and on the original manifold M respectively; Πt is the second
fundamental form of Σt in Mt; dμt is the volume form of Σt; a subscript Σ
refers to the restriction to Σ; and (ρ, JA, Jn) is the energy-momentum covec-
tor corresponding to (M, g,K), projected tangentially (JA) and orthogonally
(Jn) to Σ.

Proof. Throughout this proof, we use the superscripts (S) and (M) as de-
scribed in the statement of the theorem, except for when referencing covariant
derivatives. Throughout the computation, covariant derivatives always corre-
spond to the quantities on which they are acting (or it does not matter which
of the two connections is used). For example, ∇K(M) refers to a covariant
derivative on M .

Since we assume each (Mt, g
S
t , K

S
t ) is vacuum (Φμ(gt, Kt) = 0), we have

H(gt, Kt; ξt) = 16πξt∞ · P(gt, Kt) = 16πmB(Σt),

for each t. From this we are able to differentiate with respect to t to obtain

16π d

dt
mB(Σt) = DH(gt,Kt;ξt)[ht, Lt, ft],

where ht = d
dtgt, Lt = d

dtKt, ft = d
dtξt. We are able to use this to directly

compute the variation of the Bartnik mass.
Since the asymptotic value of ξ depends only on gt, Kt (via P), and since

Φ(gt, Kt) = 0, the linearization of H with respect to ξ vanishes. We therefore
simply write

(4.16) 16π d

dt
mB(Σt) = DH(gt,Kt;ξt)[ht, Lt].

The formula for the evolution of mass then follows from the computations
in the preceding section, with a bit of extra work. Since each (Mt, gt, Kt) is
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stationary, the bulk term in (3.13) vanishes, leaving only boundary terms.
In what follows, we will omit reference to the parameter t when it is clear
from context what we mean. As in the preceding section, we will analyze the
remaining terms in (3.13) in groups. We begin with the terms containing N .

For this, we make use of the fact that we have

h = d

dt
g = 2ηΠ(M)

and the well-known expression for the evolution of the mean curvature (see
[13, Theorem 3.2]):

DHg[h] = d

dt
H = −ΔΣtη − η

(
|Π(M)|2 + Ric(M)

ij ninj
)
.

After integrating by parts, the terms involving N in (3.13) can be ex-
pressed as ∫

Σt

2η
(
ΔΣtN + H(M)νi∇iN + NRic(M)

ij ninj
)
dμ

+
∫

Σt

2ηN
(
|Π(M)|2 − Π(M)ABΠ(S)

AB

)
dμ.(4.17)

Note that, by the geometric boundary conditions we have H(M) = H(S) so
we simply write H. We also omit reference to M and Mt for other quantities
that are the same on both by the boundary conditions.

In order to proceed further with the term ΔΣtN +Hνi∇iN , we make use
of the identity

(4.18) ΔΣtN + Hνi∇iN = (gij − νiνj)∇2
ijN

combined with the fact that (Mt, gt, Kt) is stationary. In particular, we make
use of the Killing initial data (KID) equations:

(4.19) N
(
2KikK

k
j − Ricij −Kk

kKij

)
+ LXKij + ∇2

ijN = 0

and

(4.20) 2NKij + LXgij = 0.

Momentarily, we are suppressing the superscript (S), however the following
computation is to be understood as entirely on (Mt, gt, Kt).
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We first compute

(gij − νiνj)LXKij = gAB
(
Xk∇kKAB + 2KkA∇BX

k
)

= gAB
(
XC∇CKAB + Xν∇νKAB

)
+ 2

(
KAB∇AXB + KνA∇AXν

)
= gAB

(
XC∇CKAB + Xν∇νKAB

)
− 2

(
N |KΣ|2 −KνA∇AXν

)
,

where the last equality follows from (4.20). We now turn to compute

(gij − νiνj)
(
2KikK

k
j − Ricij −Kk

kKij

)
=

= 2|K|2 −R− (trgK)2 − 2KνkK
k
ν + Ricνν + trg(K)Kνν

= 2(|KΣ|2 + 2|ω⊥|2 + K2
νν) −R− ((trΣK)2 + 2trΣ(K)Kνν + K2

νν)
− 2(|ω⊥|2 + K2

νν) + Ricνν + (trΣ(K)Kνν + K2
νν)

= 2|KΣ|2 + 2|ω⊥|2 −R− (trΣK)2 − trΣ(K)Kνν + Ricνν .

Now combining these expressions with (4.18), we are able to deal with
the term ΔΣtN + Hνi∇iN appearing in (4.17). In particular, (4.17) can be
written as
∫

Σt

2ηN
(
R(S) − 2|ω⊥|2 + (trΣK)2 + trΣ(K)K(S)

νν + Ric(M)
nn − Ric(S)

νν

)
dμt

+
∫

Σt

2ηN
(
|Π(M)|2 − Π(M) ijΠ(S)

ij

)
dμt

−
∫

Σt

2η
(
2ω⊥A∇A(Xν) + gAB

(
XC∇CK

(S)
AB + Xν∇νK

(S)
AB

))
dμt.

(4.21)

For now, we continue to focus on the terms containing N and therefore we
will consider only the first two lines in the above expression for now. We will
return to the remaining terms containing X later. In order to proceed, the
Gauss equation will be required both on M and Mt. We have

K(Σt) = R(M) − 2Ric(M)
nn + H2 − |Π(M)|2

K(Σt) = R(S) − 2Ric(S)
νν + H2 − |Π(S)|2,
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which gives

Ric(M)
nn − Ric(S)

νν = 1
2
(
R(M) −R(S) + |Π(S)|2 − |Π(M)|2

)
.

Substituting this into the first two lines of (4.21) gives
∫

Σt

2ηN
(
R(S) − 2|ω⊥|2 + (trΣK)2 + trΣ(K)K(S)

νν

)
dμt

+
∫

Σt

2ηN
(
|Π(M)|2 − Π(M) ijΠ(S)

ij

)
dμt(4.22)

+
∫

Σt

2ηN
(1

2
(
R(M) −R(S) + |Π(S)|2 − |Π(M)|2

))
dμt.

Making use of the Hamiltonian constraint (2.5) on (g,K), we can write this
as

∫
Σt

2ηN
(

8πρ + 1
2 |K

(M)
Σ |2 + 1

2(trΣK)2 + trΣ(K)(K(S)
νν −K(M)

nn

)
dμt

+
∫

Σt

ηN
(
|Π(M) − Π(S)|2 + R(S) − 2|ω⊥|2

)
.

Next note that the Hamiltonian constraint on (gt, Kt), which is vacuum, then
gives

∫
Σt

2ηN
(

8πρ + 1
2 |K

(M)
Σ |2 + 1

2(trΣK)2 + trΣ(K)(K(S)
νν −K(M)

nn )
)

dμt

+
∫

Σt

ηN
(
|Π(M) − Π(S)|2 + (|K(S)

Σ |2 − (trΣK)2 − 2K(S)
νν trΣ(K))

)
=

∫
Σt

ηN
(
16πρ + |K(M)

Σ −K
(S)
Σ |2 + 2K(S)

Σ ·K(M)
Σ − 2trΣ(K)K(M)

nn

)
dμt

+
∫

Σt

ηN
(
|Π(M) − Π(S)|2

)
dμt.

Recall that this expression is the contribution to d
dtmB(Σt) depending on N ,

so at first glance it may appear to be inconsistent with (4.15). However, recall
that via (4.20) we are able to exchange terms containing N and K with terms
containing X. In particular, we have

(4.23) NK
(S)
Σ ·K(M)

Σ = −∇AXBK
(M)
AB
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and

(4.24) NtrΣ(K) = −gAB∇AXB.

That is, after making these substitutions, all of the remaining terms con-
taining N agree with those in (4.15). Unfortunately, we have traded some
undesirable terms for a different kind of undesirable term – we have terms of
the form ∇X to deal with.

We next would like to simplify the terms in (3.13) containing X. Before
doing that, we take a moment to examine the full expression for the derivative
of the Bartnik mass after the simplifications made so far:

16π d

dt
mB(Σt) =

∫
Σt

ηN
(
16πρ + |Π(M) − Π(S)|2 + |K(M)

Σ −K
(S)
Σ |2

)
dμt

+
∫

Σt

Xν
(
−2D(trΣK)(g,K)[h, L] −KΣ · hΣ + trΣ(h)Kνν

)
dμt

+
∫

Σt

XA
(
2D(ω⊥

A)g[h, L] + trΣ(h)ω⊥
A

)
dμt

−
∫

Σt

2η
(
∇AXBK

(M)
AB −K(M)

nn gAB∇AXB

)
dμt,

−
∫

Σt

2η
(
2ω⊥A∇A(Xν) + gAB

(
XC∇CK

(S)
AB + Xν∇νK

(S)
AB

))
dμt,

where the last line comes from the X-terms we dropped from (4.21) and the
second last line comes from (4.23) and (4.24). We note that in the second and
third lines in the above expression, we are yet to make use of the particular
form of of the perturbations h and L.

We focus on the third line, noting that trΣ(h) = 2ηH, we simply must
determine how ω⊥

A = KAin
i varies along the evolution.

In order to proceed, we consider a point in M where the speed η does not
vanish. Around this point, the metric g can be expressed in local coordinates
as

g = η2dt2 + gABdx
AdxB.

In determining the evolution of ω⊥, we are working entirely in the manifold
(M, g) so we drop the superscripts (M) for the sake of notational brevity.
Now, recall that D(ω⊥

A)g[h] = ∂
∂tω

⊥
A , which we compute as

∂

∂t
ω⊥
A = ∂

∂t
(η−1KAt)

= −η−2η,tKAt + η−1KAt,t
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= −∇n(η)KAn + η−1
(
∇tKAt + KiAΓi

tt + KtiΓi
At

)
.

Now,
Γi
tt∂i = ∇t(∂t) = η∇n(ηn) = η∇n(η)n + η2∇nn,

where ∇nn can be computed by exploiting the fact that ∇nn is tangent to
Σ. We compute

〈∇nn, ∂A〉 = −〈n,∇n∂A〉
= −

〈
n, η−1∇A∂t

〉
= −

〈
n, η−1∇A(ηn)

〉
= −η−1∇Aη.

We therefore have
Γi
tt∂i = η∇n(η)n− η∇Ση;

that is,
Γn
tt = η∇n(η) and ΓA

tt = −η∇Aη.

This gives us
KiAΓi

tt = ηKnA∇n(η) − ηKB
A∇Bη.

Similarly we have

KtiΓi
At = η∇AηKnn + η2KnBΠB

A ,

which allows us to write

∂

∂t
ω⊥
A = η

(
∇nKAn + KBnΠB

A

)
−∇B(η)KAB + ∇A(η)Knn.

While we computed this for points where η does not vanish, it is clear by
continuity that this expression is valid everywhere on Σt.

Finally, we turn to compute the evolution of trΣK,

∂

∂t
trΣ(K) = −2ηΠABKAB + gAB∂tKAB.

Similar to above, we compute

∂tKAB = ∇tKAB + KiBΓi
At + KiAΓi

Bt

= η∇nKAB + KnB∇Aη + KnA∇Bη + η
(
KCBΠC

A + KCAΠC
B

)
,
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which gives
∂

∂t
trΣ(K) = η∇n(trΣK) + 2KA

n ∇Aη.

We are now able to interpret each of the terms in (3.13) in terms of the
evolving surfaces, rather than h and L. However, the expression we have for
the evolution of quasi-local mass still looks quite far from (4.15). We collect
all of the terms once more, to see what remains:

16π d

dt
mB(Σt) =

∫
Σt

ηN
(
16πρ + |Π(M) − Π(S)|2 + |K(M)

Σ −K
(S)
Σ |2

)
dμt

+
∫

Σt

Xν
(
−2η∇n(trΣK(M)) − 4K(M)A

n ∇Aη
)
dμt

+
∫

Σt

Xν
(
2ηHK(S)

νν − 2ηK(S)
Σ · Π(M)

Σ

)
dμt

+
∫

Σt

2ηXA
(
∇nK

(M)
An + ω⊥

BΠ(M)B
A + Hω⊥

A

)
dμt

+
∫

Σt

2XA
(
∇A(η)K(M)

nn −∇B
Σ(η)K(M)

AB

)
dμt

−
∫

Σt

2η
(
∇AXBK

(M)
AB −K(M)

nn gAB∇AXB

)
dμt

−
∫

Σt

2η
(
+gAB

(
XC∇CK

(S)
AB + Xν∇νK

(S)
AB

))
dμt

−
∫

Σt

4ηω⊥A∇A(Xν) dμt.

(4.25)

Note here that we write ∇Σ (or ∇Σ) to denote the Levi-Civita connection on
(Σ, gΣ).

Before we continue and examine the Xν terms, it will be useful to first
group some terms. First we integrate by parts, the terms in the fifth line of
(4.25). We obtain

∫
Σt

2XA
(
∇A(η)K(M)

nn −K
(M)
AB ∇Bη

)
dμt

=
∫

Σt

2η
(
∇Σ

B(K(M)B
A XA) −∇Σ

A(XAK(M)
nn )

)
dμt

=
∫

Σt

2ηXA
(
∇Σ

B(K(M)B
A ) −∇Σ

A(K(M)
nn )

)
dμt

+
∫

Σt

2η
(
K

(M)
AB ∇B

ΣX
A −K(M)

nn ∇Σ
AX

A
)
dμt,
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of which the first integrand will be grouped with the other XA terms, and
the remaining integrand is very closely related to the sixth line of (4.25). In
particular, we make use of the fact

∇Σ
AXB = ∇AXB −XνΠAB,

to see that the aforementioned terms almost cancel. Making use of this, we
can rewrite the expression for the evolution of quasi-local mass as

16π d

dt
mB(Σt) =

∫
Σt

ηN
(
16πρ + |Π(M) − Π(S)|2 + |K(M)

Σ −K
(S)
Σ |2

)
dμt

+
∫

Σt

2ηXν
(
−∇n(trΣK(M)) −K

(S)
Σ · Π(M)

Σ + HK(S)
νν

)
dμt

−
∫

Σt

2ηXν
(
Π(S) ·K(M)

Σ −K(M)
nn H

)
− 4XνK(M)A

n ∇Aη dμt

+
∫

Σt

2ηXA
((

∇nK
(M)
An + ω⊥

BΠ(M)B
A

)
+ Hω⊥

A

)
dμt

+
∫

Σt

2ηXA
(
∇B

Σ(K(M)
AB ) −∇Σ

A(K(M)
nn ) + gBC∇AK

(S)
BC

)
dμt

−
∫

Σt

2η
(
2ω⊥A∇A(Xν) + gABXν∇νK

(S)
AB

)
dμt.

We would now like to collect all of the terms containing Xν ; that is, the
second and third lines in the above expression, as well as the Xν terms in the
last line. We begin by noting that we should integrate the final term in the
third line by parts to obtain

(4.26) 4η
(
Xν∇Σ

AK
(M)A
n + ω⊥A∇Σ

AX
ν
)
,

which can then be written as

4η
(
Xν

(
∇A(K(M)A

n ) −HK(M)
nn + K

(M)
Σ · Π(M)

)
+ω⊥A∇AX

ν + ω⊥AΠ(S)
ABX

B
)
.

(4.27)

Now, the last term in (4.27) will be grouped with the XA terms, and we bring
together all of the Xν terms now. After factoring out 2ηXν , we obtain

−∇n(trΣK(M)) −K
(S)
Σ · Π(M)

Σ + HK(S)
νν − Π(S) ·K(M)

Σ + K(M)
nn H

+2∇A(K(M)A
n ) − 2HK(M)

nn + 2K(M)
Σ · Π(M) − gAB∇νK

(S)
AB.
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We can then simplify this using the momentum constraint applied to both M

and Mt,

8πJn = ∇A(K(M)
An ) −∇n(trΣK(M))

0 = ∇A(K(S)
Aν ) −∇ν(trΣK(S)).

The Xν terms now become

8πJn −K
(S)
Σ · Π(M) + H(K(S)

νν −K(M)
nn ) − Π(S) ·K(M)

Σ

+∇A(K(M)A
n ) + 2K(M)

Σ · Π(M) −∇AK
(S)
Aν .

We now make use of the fact

∇AKBn = ∇Σ
AKBn + KnnΠAB −KBCΠC

A,

for both M and Mt, to obtain

8πJn −K
(S)
Σ · Π(M) − Π(S) ·K(M)

Σ + ∇Σ
A(K(M)A

n −K(S)A
ν )

+K
(M)
Σ · Π(M) + K

(S)
Σ · Π(S).

Finally, making use of ω⊥
A = K

(M)
nA = K

(S)
νA , we obtain

8πJn + (K(M)
Σ −K

(S)
Σ ) · (Π(M) − Π(S)).

That is, collecting all of the terms in our evolution equation expression once
more, we have

16π d

dt
mB(Σt) =

∫
Σt

ηN
(
16πρ + |Π(M) − Π(S)|2 + |K(M)

Σ −K
(S)
Σ |2

)
dμt

+
∫

Σt

2ηXν
(
8πJn + (K(M)

Σ −K
(S)
Σ ) · (Π(M) − Π(S))

)
dμt

+
∫

Σt

2ηXA
(
∇nK

(M)
An + ω⊥

BΠ(M)B
A

)
dμt

+
∫

Σt

2ηXA
(
∇B

Σ(K(M)
AB ) −∇Σ

A(K(M)
nn )

)
dμt

+
∫

Σt

2ηXA
(
Hω⊥

A − gBC∇A(K(S)
BC) + 2ω⊥BΠ(S)

AB

)
dμt.
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Recall, it is our hope to interpret the coefficients of XA in terms of JA, so we
expand the momentum constraint as

8πJA = ∇B
ΣK

(M)
AB + ω⊥

BΠ(M)B
A + ω⊥

AH + ∇nK
(M)
An −∇A(trΣK(M)) −∇Σ

AK
M
nn.

(4.28)

Remarkably, all of our XA terms now can simply be written as

8πJA +
(
∇A(trΣK) − gBC∇AK

(S)
BC + 2ω⊥BΠ(S)

AB

)
.

However, we have

gBC∇AK
(S)
BC = gBC

(
∇Σ

AK
(S)
BC + K

(S)
νC Π(S)

AB + K
(S)
νB Π(S)

AC

)

so this simply reduces to 8πJA. The only remaining thing to note is that the
formula we have derived depends on Xν .

Therefore, we conclude

16π d

dt
mB(Σt) =

∫
Σt

ηN
(
|Π(M) − Π(S)|2 + |K(M)

Σ −K
(S)
Σ |2

)
dμt

+
∫

Σt

2ηXν(K(M) −K(S)) · (Π(M) − Π(S)) dμt

+
∫

Σt

η16π
(
Nρ + XνJn + XAJA

)
dμt.

This completes the proof of (4.15).

It is clear from the above derivation that, in the context of Theorem 2,
if one only assumes there exists a smooth 1-parameter family of stationary,
vacuum, asymptotically flat manifolds {(Mt, gt, Kt)} whose boundary data
agrees with Σt in (M, g,K) for each t, then

d

dt
mADM (Mt, gt, Kt)

= 1
16π

∫
Σt

ηN
(
|Π(M) − Π(S)|2 + |K(M)

Σ −K
(S)
Σ |2

)
dμt

+ 1
8π

∫
Σt

ηXν(K(M) −K(S)) · (Π(M) − Π(S)) dμt

+
∫

Σt

η
(
Nρ + XνJn + XAJA

)
dμt.

(4.29)
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We would like to bring readers’ attention to the recent work of Z. An [1],
in which the author proves that, for data (g,H, ω⊥, trgK) near the standard
data of a round sphere in a time-symmetric slice of the Minkowski spacetime
R

3,1, there exists a (locally unique) stationary vacuum extension (MS , gS , KS)
that depends smoothly on the boundary data. As a result, formula (4.29) is
applicable to such stationary extensions produced by Z. An in [1].
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