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Abstract: There are two chief statements regarding the Bondi-
Trautman mass [3, 29, 37, 33, 34] at null infinity: one is the pos-
itivity [30, 20], and the other is the mass loss formula [3], which
are both global in nature. In this note, we compute the limit of
the Wang-Yau quasi-local mass on unit spheres at null infinity of
an asymptotically flat spacetime in the Bondi-Sachs coordinates.
The quasi-local mass leads to a local description of radiation that
is purely gravitational at null infinity. In particular, the quasi-local
mass is evaluated in terms of the news function of the Bondi-Sachs
coordinates.

1. Introduction

An observer of gravitational radiation created by an astronomical event is
situated at future null infinity, where light rays emitted from the source ap-
proach. The study of the theory of gravitational radiation at null infinity in
the last century culminated in a series of papers by Bondi and his collabo-
rators [3, 29, 37, 33, 34], in which the Bondi-Trautman mass and the mass
loss formula at null infinity are well understood. In particular, the Bondi-
Trautman mass was proved to be positive in the work of Schoen-Yau [30] and
Horowitz-Perry [20]. Both the positivity of mass and the mass loss formula are
global statements on null infinity: knowledge of the mass aspect is required
in every direction. For reasons that are both theoretical and experimental, it
is highly desirable to have a quasi-local statement of mass/radiation at null
infinity.

In [11, 12], we embarked on the evaluation of the Wang-Yau quasi-local
mass on surfaces of fixed size near null infinity of a linear gravitational per-
turbation of the Schwarzschild spacetime. The ideas and technique in [11, 12]
were further developed to address the case of the Vaidya spacetime in [15].
The construction of these spheres of unit size at null infinity will be reviewed
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in the next section. In the Vaidya case, we proved in [15] that the quasi-local
mass of a unit size sphere at null infinity is directly related to the derivative
of the mass aspect function with respect to the retarded time u. In particular,
the positivity of the quasi-local mass is implied by the decreasing of the mass
aspect function in u. This is in turn a consequence of the positivity of mat-
ter density in the Vaidya spacetime. In order to investigate radiation that is
purely gravitational, in this article we take on the general case of an asymp-
totically flat vacuum spacetime described in the Bondi-Sachs coordinates.

A new ingredient in this article is a variational formula (see Theorem
4.1) which facilitates a more straightforward computation of the O(d−2) term
than the one in [15]. Similar to [15], it is still crucial to compute the O(d−1)
term of the optimal embedding. This is done in Lemma 5.1 and Lemma 5.2 of
the current article. As in Lemma 3.3 of [15], the optimal embedding equation
is reduced to two ordinary differential equations. However, it does not seem
possible to obtain explicit solutions to the ODE’s as in the Vaidya case. The
quasi-local mass is then evaluated by combining Theorem 4.1 and the optimal
embedding.

The structure of the paper is as follows: in Section 2, we review the general
framework of quasi-local mass at null infinity. In Section 3, we compute the
geometric quantities on the spheres at null infinity that are necessary to eval-
uate the quasi-local mass. In Section 4, we derive the formula for the leading
order term of the quasi-local mass. In Section 5, we evaluate the quasi-local
mass based on the formula derived in Section 4. See Theorem 5.3. In the last
section, Section 6, we look at several special examples.

2. General framework of quasilocal mass at null infinity

We consider a null geodesic γ parametrized by an affine parameter d with
d0 ≤ d < ∞ and a family of surfaces Σd(s) for s > 0 centered at γ(d)
in the following sense. For each fixed d and s, Σd(s) is a spacelike surface
that bounds a ball Bd(s) with ∂Bd(s) = Σd(s), such that as s → 0, we
have lims→0 Bd(s) = lims→0 Σd(s) = γ(d). We evaluate the quasilocal mass
of Σd(s) as d → ∞. In particular, when s = 1, limd→∞ Σd(1) is the unit
sphere limit referred on our previous work. The choice of such a family of
spacelike surfaces/balls depends on a timelike direction field along γ. More
precisely, one chooses a normal coordinate {Xα} centered at γ(d) with ∂

∂X0

pointing to the given timelike direction and defines Σd(s) = {X0 = 0, (X1)2+
(X2)2 + (X3)2 = s2}. It is, however, technically more convenient to define
Σd(s) coordinate-wise by exploiting a Cartesian coordinate system built from
the Bondi-Sachs coordinates.
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In practice, such an evaluation is conducted by choosing a family of para-
metrizations Fd from the unit ball B3, Fd : B3 → Bd(1) and considering the
pull-backs of geometric quantities on Bd(1) as geometric quantities on B3 that
depend on the parameter d. In particular, Σd(s) is the image of the sphere of
radius s in B3 under Fd. The unit sphere limit is obtained by setting s = 1
and taking the limit as d → ∞.

When the spacetime is equipped with a global structure at null infinity
that corresponds to limits of null geodesics, these unit sphere limits provide
information on gravitational radiation observed at null infinity. We illustrate
the construction in the Vaidya case where the spacetime metric takes the
simple form:

−
(

1 − M(u)
r

)
du2 − 2dudr + r2dθ2 + r2 sin2 θdφ2.

Let γ be a null geodesic on the null hypsersurface u = 0 and with θ =
θ̃, φ = φ̃, where θ̃ and φ̃ are constants. We first consider a global coordinate
change from (u, r, θ, φ) to (t, y1, y2, y3) with t = u + r, y1 = r sin θ sinφ, y2 =
r sin θ cosφ, and y3 = r cos θ. In terms of the coordinate system (t, y1, y2, y3),
the parametrization Fd is then given by

Fd(s, θ̂, φ̂) = (d, dd̃1 + s sin θ̂ sin φ̂, dd̃2 + s sin θ̂ cos φ̂, dd̃3 + s cos θ̂),

where (s, θ̂, φ̂) is a coordinate system on B3 and the constants (d̃1, d̃2, d̃3)
satisfy d̃2

1 + d̃2
2 + d̃2

3 = 1 and indicate the direction of the null geodesic which
is parametrized by d �→ (d, dd̃1, dd̃2, dd̃3). In the ball centered at a point on
the null geodesic in the direction of (d̃1, d̃2, d̃3), we have

r =
√
d2 + 2sdZ + s2,

u = d−
√
d2 + 2sdZ + s2,

y1

r
= dd̃1 + s sin θ̂ sin φ̂√

d2 + 2sdZ + s2
, etc.

where
Z = d̃1 sin θ̂ sin φ̂ + d̃2 sin θ̂ cos φ̂ + d̃3 cos θ̂.
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The pull-back of the global coordinate (u, r, θ, φ) under Fd defines func-
tions on B3 depending on d. As d → ∞ we have

(2.1) lim
d→∞

F∗
du = −sZ, lim

d→∞
F∗
dθ = θ̃, lim

d→∞
F∗
dφ = φ̃,

where θ̃, φ̃ are related to d̃1, d̃2 and d̃3 through d̃1 = sin θ̃ sin φ̃, d̃2 = sin θ̃ cos φ̃,
and d̃3 = cos θ̃. In [15], we evaluate the Wang-Yau quasi-local mass on Σd(1)
as d approaches infinity. In the following, we review the definition of the
Wang-Yau quasi-local mass.

Let Σ be a closed spacelike 2-surface in a spacetime N with spacelike mean
curvature vector H. Denote the induced metric and connection one-form of
Σ by σ and

(2.2) αH(·) =
〈
∇N

(·)
J

|H| ,
H

|H|

〉

where J is the reflection of H through the incoming light cone in the normal
bundle. Given an isometric embedding X : Σ → R

3,1 and future timelike
unit Killing field T0 in R

3,1, we consider the projected embedding X̂ into the
orthogonal complement of T0, and denote the induced metric and the mean
curvature of the image surface Σ̂ by σ̂ and Ĥ.

The quasi-local energy with respect to (X , T0) is

E(Σ,X , T0) = 1
8π

∫
Σ̂
Ĥdvσ̂

− 1
8π

∫
Σ

(√
1 + |∇τ |2 cosh θ|H| − ∇τ · ∇θ − αH(∇τ)

)
dvσ,

(2.3)

where τ = −〈X , T0〉 is considered as a function on the 2-surface, and ∇ and
Δ are the gradient and Laplace operator with respect to σ, and

θ = sinh−1
(

−Δτ

|H|
√

1 + |∇τ |2

)
.

Moreover, we say that τ solves the optimal embedding equation if

(2.4) divσ

(
ρ∇τ −∇

[
sinh−1

(
ρΔτ

|H0||H|

)]
− αH0 + αH

)
= 0,
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where H0 and αH0 are the mean curvature and connection 1-form of X (Σ)
and

ρ =

√
|H0|2 + (Δτ)2

1+|∇τ |2 −
√
|H|2 + (Δτ)2

1+|∇τ |2√
1 + |∇τ |2

.

3. Unit sphere at null infinity in Bondi-Sachs coordinates

The spacetime metric in Bondi-Sachs coordinates is given by

−
(

1 − M

r
+ O(r−2)

)
du2 − 2

(
1 + O(r−2)

)
dudr

− 2
(
U

(−2)
A + O(r−1)

)
dudvA + (r2σ̃AB + rCAB + O(1))dvAdvB,

where vA = θ, φ and σ̃ABdv
AdvB = dθ2 +sin2 θdφ2 is the standard unit round

metric on two-sphere. Each metric coefficient is expanded in inverse integral
powers of r, and M , U (−2)

A , and CAB depend on u and vA. Einstein’s equation
gives further constraints on the metric coefficients. See for example [3, 29].
However, we do not need to use these constraints explicitly. Instead, we will
use the vacuum constraint equation on the spacelike hypersurface defined
below.

Substituting u = t− r, the metric becomes, up to lower order terms,

−
(

1 − M

r

)
dt2 +

(
1 + M

r

)
dr2 − 2M

r
dtdr

− 2U (−2)
A (dt− dr)dvA + (r2σ̃AB + rCAB)dvAdvB.

The unit timelike normal of t = d slice is given by

�n =
(

1 + M

r

)
∂t + M

r
∂r + U

(−2)
A

r

∂A
r

+ O(r−2).

We compute

〈∇∂r∂r, ∂t〉 = −1
2
Mu

r
+ O(r−2),

〈∇∂A∂B, ∂t〉 = −r

2(CAB)u + O(1),
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to get the second fundamental form of t = d slice

krr = 1
2
Mu

r
+ O(r−2)

kAB = r

2(CAB)u + O(1).
(3.5)

We again consider a global coordinate change from the standard Bondi-
Sachs coordinates (u, r, θ, φ) = (u, r, vA) to a Cartesian coordinate system
(t, y1, y2, y3) with

(3.6) t = u + r, y1 = r sin θ sinφ, y2 = r sin θ cosφ, y3 = r cos θ.

A null geodesic with u = 0, θ = θ̃, φ = φ̃ corresponds to points with the
new coordinates

(t, y1, y2, y3) = (d, dd̃1, dd̃2, dd̃3).

Let di = dd̃i. We consider the sphere Σd of (Euclidean) radius 1 centered at
a point (d, d1, d2, d3) on the null geodesic and the ball Bd bounded by Σd in
t-slice. Namely,

Σd = {(t, y1, y2, y3)| t = d,
∑
i

(yi − di)2 = 1},(3.7)

Σd(s) = {(t, y1, y2, y3)| t = d,
∑
i

(yi − di)2 = s2},(3.8)

Bd = {(t, y1, y2, y3)| t = d,
∑
i

(yi − di)2 ≤ 1}.(3.9)

In this article, we study the Wang-Yau quasi-local mass of the family
of surfaces Σd defined in (3.7) as d → ∞ using the frame work outlined in
Section 2. Namely, we consider a family of embedding of spheres centered at
the point (d, d1, d2, d3):

Fd(s, θ̂, φ̂) = (d, dd̃1 + s sin θ̂ sin φ̂, dd̃2 + s sin θ̂ cos φ̂, dd̃3 + s cos θ̂),

where (t, y1, y2, y3) is related to the Bondi-Sachs coordinates through (3.6).
In particular, Fd maps the sphere of radius s, Σ(s) in B3 onto Σd(s). The
pull-backs of M , U (−2)

A and CAB under Fd defines tensors on B3 depending
on d. By (2.1), their limits as d → ∞ depend only on sZ. We define the
following:
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Definition 3.1. We define F (x), PAB(x) and QA(x) to be functions of a
single variable x such that

F (sZ) = lim
d→∞

F∗
dM

PAB(sZ) = lim
d→∞

F∗
dCAB

QA(sZ) = lim
d→∞

F∗
dU

(−2)
A .

We use F ′, P ′
AB and Q′

A to denote the derivative of these functions with
respect to x.

We recall that Z = sin θ̃ sin φ̃ sin θ̂ sin φ̂+sin θ̃ cos φ̃ sin θ̂ cos φ̂+cos θ̃ cos θ̂
is an eigenfunction with eigenvalue −2 on S2 with respect to the Laplace
operator Δ̃ the unit round metric σ̃ = dθ̂2 + sin2 θ̂dφ̂2.

Together with the functions (cos θ̃ cos φ̃) sin θ̂ cos φ̂+(cos θ̃ sin φ̃) sin θ̂ sin φ̂
− sin θ̃ cos θ̂ and − sin φ̃ sin θ̂ cos φ̂+cos φ̃ sin θ̂ sin φ̂, which are denoted as ZA,
they form an orthogonal basis of the −2 eigenfunctions on S2, with respect
to the unit round metric σ̃ on S2.

For simplicity, we denote the coordinate (θ̂, φ̂) by ua where a = 1, 2 and
the unit round metric σ̃abdu

adub = dθ̂2 + sin2 θ̂dφ̂2. In terms of Z and ZA,
the transformation formula [15, page 3] gives

dr = Zds + sZbdu
b + O(d−1)

dvA = (1
r
ZA)ds + (s

r
ZA
b )dub + O(d−2).

(3.10)

Let ḡ be the pull-back of the metric on the hypersurface t = d by Fd. In terms
of the coordinate system {s, ua} on B3, we have

ḡss =1 + 1
d

(
F (sZ)Z2 + 2QA(sZ)ZZA + PAB(sZ)ZAZB

)
+ O( 1

d2 )

ḡsa =s

d

(
F (sZ)ZZa + QA(sZ)(ZZA

a + ZaZ
A) + PAB(sZ)ZA

a Z
B
)

+ O( 1
d2 )

ḡab =s2σ̃ab + s2

d

(
F (sZ)ZaZb + QA(sZ)(ZaZ

A
b + ZbZ

A
a ) + PAB(sZ)ZA

a Z
B
b

)
+ O( 1

d2 ).

(3.11)

We first compute geometric data σ, the induced metric, and αH (2.2) on
Σd(s).
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Lemma 3.2. On Σd(s), we have σab = s2σ̃ab + 1
dσ

(−1)
ab + O(d−2) where

σ
(−1)
ab = s2

[
F (sZ)ZaZb + QA(sZ)(ZaZ

A
b + ZbZ

A
a ) + PAB(sZ)ZA

a Z
B
b

]

and

1
2
[
∇̃a∇̃bσ

(−1)
ab − trσ(−1) − Δ̃(trσ(−1))

]
=s2

[
− 1

2sF
′(sZ)Z(1 − Z2) − F (sZ)(1 − 2Z2)

+
(
sQ′

A(sZ)Z2 − sQ′
A(sZ) + 4QA(sZ)Z

)
ZA

+
(
s2P ′′

AB(sZ) + sP ′
AB(sZ)Z + 4PAB(sZ)

)
ZAZB

]

Remark 3.3. In the proof we denote functions such as F (sZ), F ′(sZ) and
QA(sZ) by F , F ′ and QA.

Proof. On Σd, we have

∇̃a∇̃bσ
(−1)
ab = F ′′(1 − Z2)2 − 7F ′Z(1 − Z2)2 − 3F (1 − 3Z2)

+
[
−2Q′′

AZ(1 − Z2) − 6Q′
A(1 − Z2) + 8Q′

AZ
2 + 18QAZ

]
ZA

+
[
P ′′
ABZ

2 + 7P ′
ABZ + 9PAB

]
ZAZB

Δ̃(trσ(−1)) = F ′′(1 − Z2)2 − 6F ′Z(1 − Z2)2 + F (6Z2 − 2)

− 2
[
Q′′

AZ(1 − Z2) − 6Q′
AZ

2 + 2Q′
A − 6QAZ

]
ZA

−
[
P ′′
AB(1 − Z2) − 6P ′

ABZ − 6PAB

]
ZAZB

The computation on Σd(s) is similar. We get a factor of s after each deriva-
tive.

Lemma 3.4. On Σd, we have (αH)a = 1
d(α

(−1)
H )a + O(d−2) where

(α(−1)
H )a = −F ′ZZa + 1

4F
′′(1 − Z2)Za + 1

4P
′′
ABZaZ

AZB + 1
2P

′
ABZ

A
a Z

B

2∇̃a(α(−1)
H )a = 1

2F
′′′(1 − Z2)2 − 4F ′′Z(1 − Z2) − 2F ′(1 − 3Z2)

+
(1

2P
′′′
AB(1 − Z2) − 4P ′′

ABZ − 6P ′
AB

)
ZAZB.
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Proof. The unit normal of Σd is ν = ∂s + O(d−1). By (3.10), we have

∂s = Z∂r + 1
d
ZA∂A + O(d−2),

∂a = Za∂r + 1
d
ZA
a ∂A + O(d−2).

By (3.5), we get

−k(ν, ∂a) = 1
2
Mu

d
ZaZ − 1

2d(CAB)uZA
a Z

B + O(d−2),

trΣk = −1
2
Mu

d
(1 − Z2) − 1

2d(CAB)uZAZB + O(d−2).

The assertion follows from αH = −k(ν, ∂a) + ∂a
trΣk
|H| + O(d−2).

4. The expansion of the Wang-Yau quasi-local mass

We consider the Wang-Yau quasi-local mass on the unit sphere constructed
in the previous section.
Theorem 4.1. For T0 = (1, 0, 0, 0),

E(Σd, X, T0) = 1
8πd2

[ ∫
B3

1
8 σ̃

ADσ̃BE(CAB)u(CDE)u − det(h(−1)
0 − h(−1))

+ 1
4

∫
S2

(trΣk
(−1))2 − τ (−1)Δ̃(Δ̃ + 2)τ (−1)

]
+ O(d−3)

(4.12)

where τ (−1) is the solution to the optimal embedding equation

Δ̃(Δ̃ + 2)τ (−1) = 1
2F

′′′(1 − Z2)2 − 4F ′′Z(1 − Z2) − 2F ′(1 − 3Z2)

+
(1

2P
′′′
AB(1 − Z2) − 4P ′′

ABZ − 6P ′
AB

)
ZAZB.

Here h0(s) and h(s) are the second fundamental forms of Σd(s) in the slice
{t = d} and in R

3 (through the isometric embedding) respectively. Also recall
that k stands for the second fundamental form of {t = d} in the spacetime.
Proof. We write

E(Σd, X, T0) = EBY (Σd) + (ELY (Σd) − EBY (Σd)) + (E(Σd, X, T0) − ELY )
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where EBY and ELY denote the Brown-York mass and the Liu-Yau mass,
respectively. From Lemma 3.1 of [7], we conclude

EBY = 1
8πd2

∫
B3

|k(−1)|2 − (trk(−1))2

2 − det(h(−1)
0 − h(−1)) + O(d−3),

where we also use the vacuum constraint equation

R = |k|2 − (trk)2.

It is easy to see that

ELY − EBY = 1
32πd2

∫
S2

(trΣk
(−1))2 + O(d−3).

From the second variation of the Wang-Yau mass in [8, 9], we have

E(Σd, X, T0) − ELY = 1
32πd2

∫
S2

τ (−1)Δ̃(Δ̃ + 2)τ (−1) + O(d−3).

Finally, we apply (3.5) to evaluate |k(−1)| and trk(−1).

Remark 4.2. The formula in Theorem 4.1 should be compared with the stan-
dard mass loss formula, e.g. (5.102) on page 92 of [14], which states that (in
our notations):

∂M

∂u
= −1

8 σ̃
ADσ̃BE(CAB)u(CDE)u + 1

4∇̃
A∇̃B(CAB)u.

On a region D = {u1 < u < u2} between two level sets {u = u1} and
{u = u2} of u, the energy radiated away is thus given by the integral of the
density −1

8 σ̃
ADσ̃BE(CAB)u(CDE)u over D (the second term is a divergence

term). The integral over D is a global quantity which requires the information
in every direction of null infinity. The first term on the right hand side of (4.1)
is the principal term that corresponds to this density integral. We believe that
the three other terms on the right hand side of (4.1) are correction terms that
are necessary due the quasi-local and BMS invariance nature of the quantity.

5. Evaluating the quasi-local mass

Recall the O( 1
d) terms of the metric coefficients on Bd

ḡ(−1)
ss = F (sZ)Z2 + 2QA(sZ)ZZA + PAB(sZ)ZAZB
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ḡ(−1)
as = s

[
F (sZ)ZZa + QA(sZ)(ZZA

a + ZaZ
A) + PAB(sZ)ZA

a Z
B
]

ḡ
(−1)
ab = s2

[
F (sZ)ZaZb + QA(sZ)(ZaZ

A
b + ZbZ

A
a ) + PAB(sZ)ZA

a Z
B
b

]

To apply Theorem 4.1, we need to compute h
(−1)
0 − h(−1) and τ (−1). We

first derive a formula for h(−1)
0 − h(−1).

Lemma 5.1. Let AAB(Z, s) be a trace-free, symmetric 2-tensor that solves
the ODE

A′′
AB(Z, s)(1 − Z2) − 6A′

AB(Z, s)Z − 4AAB(Z, s)

= − s3

2 P ′′
AB(sZ) − s2

2 P ′
AB(sZ)Z − 2sPAB(sZ),

(5.13)

for each 0 < s ≤ 1. Here A′
AB means ∂AAB

∂Z . Then the difference of second
fundamental forms on the sphere of radius s is given by

h
(−1)
0 − h(−1)

= −A′′
ABZaZbZ

AZB + (s
2

2 P ′
AB(sZ) − 2A′

AB)
(
ZaZ

A
b + ZbZ

A
a

)
ZB

+
(
A′

ABZ + AAB − s

2PAB(sZ)
)
ZAZBσ̃ab

+
(
sPAB(sZ) − s2

2 P ′
AB(sZ)Z − 2AAB

)
ZA
a Z

B
b .

Proof. We start with h(−1). The unit normal is given by

ν̄ =
(

1 − ḡ
(−1)
ss

2d

)(
∂s −

s−2σ̃abḡ
(−1)
as

d
∂b

)
+ O(d−2).

We compute

hab =1
2(〈D∂a ν̄, ∂b〉 + 〈D∂b ν̄, ∂a〉)

=sσ̃ab + 1
d

(
1
2∂sḡ

(−1)
ab − ∇̃aḡ

(−1)
bs + ∇̃bḡ

(−1)
as

2 − ḡ
(−1)
ss

2 sσ̃ab

)
+ O(d−2).

For h
(−1)
0 , we expand the isometric embedding X as

X = sX̃ + 1
d
X(−1) + O(d−2)
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where X̃ denote the unit sphere in R
3. We decompose X(−1) into X(−1) =

αa∂a + βν. The linearized isometric embedding equation reads

(5.14) σ
(−1)
ab = s2(σ̃ac∇̃bα

c + σ̃bc∇̃aα
c) + 2βsσ̃ab.

From the computation in [36, pages 938-939], (5.14) implies that

(5.15) h
(−1)
0 = −∇̃a∇̃bβ − βσ̃ab + 1

s
σ

(−1)
ab .

Putting these together, we obtain

h
(−1)
0 − h(−1) = − ∇̃a∇̃bβ − βσ̃ab + 1

s
σ

(−1)
ab

− 1
2(∂sḡab)(−1) + ∇̃aḡ

(−1)
bs + ∇̃bḡ

(−1)
as

2 + ḡ
(−1)
ss

2 sσ̃ab.

(5.16)

To solve β, we consider the expansion of the Gauss curvature K(d, s) of Σd(s).
Let

K(d, s) = 1
s2 + 1

d
K(−1) + O(d−2)

On the one hand, from the metric expansion, we get

K(−1) = 1
s2

(
−∇̃a∇̃bσ

(−1)
ab + trS2σ(−1) + Δ̃trS2σ(−1)

)
.

On the other hand, combining (5.15) and the Gauss equation, we conclude
that

K(−1) = 2
s
(Δ̃ + 2)β

As a result, β is the solution of

2s(Δ̃ + 2)β = −∇̃a∇̃bσ
(−1)
ab + trS2σ(−1) + Δ̃trS2σ(−1).(5.17)

For the right hand side, we compute

− ∇̃a∇̃bσ
(−1)
ab + trS2σ(−1) + Δ̃trS2σ(−1)

=s3F ′(sZ)Z(1 − Z2) + s2F (2 − 4Z2)
+ s3Q′

A(sZ)(2 − 2Z2)ZA − 8s2QA(sZ)ZZA

+
(
−s4P ′′

AB(sZ) − s3P ′
AB(sZ) − 4s2PAB(sZ)

)
ZAZB



Quasi-local mass at null infinity in Bondi-Sachs coordinates 887

On the other hand, let F and QA be an antiderivative of F and QA respec-
tively, and AAB satisfy (5.13). One verifies that

(5.18) β = F(sZ)
2 Z + QA(sZ)ZA + AAB(Z, s)ZAZB

solves the linearized isometric embedding equation (5.17) since, for a trace-
free, symmetric 2-tensor AAB(Z, s),

(Δ̃ + 2)
(
AAB(Z, s)ZAZB

)
=

(
A′′

AB(Z, s)(1 − Z2) − 6A′
AB(Z, s)Z − 4AAB(Z, s)

)
ZAZB.

We are ready to compute (5.16) where β is given in (5.18). We have

−∇̃a∇̃bβ − βσ̃ab =s2

2 F ′ZZaZb + s

2FZ2σ̃ab − s2Q′
AZaZbZ

A

+ sQAZZ
Aσ̃ab −A′′

ABZaZbZ
AZB − 1

s
σ

(−1)
ab

− 2A′
AB(ZaZ

A
b + ZbZ

A
a )ZB + (sPAB − 2AAB)ZA

a Z
B
b

+ (A′
ABZ + AAB)ZAZBσ̃ab,

1
s
σ

(−1)
ab − 1

2∂sḡ
(−1)
ab

= − s2

2
(
F ′ZZaZb + Q′

AZ(ZaZ
A
b + ZbZ

A
a ) + P ′

ABZZ
A
a Z

B
b

)
,

1
2(∇̃aḡ

(−1)
bs + ∇̃bḡ

(−1)
as ) =s2F ′ZZaZb − sFZ2σ̃ab + s2

2 Q′
AZ(ZaZ

A
b + ZbZ

A
a )

+ s2Q′
AZaZbZ

A − 2sQAZZ
Aσ̃ab + 1

s
σ

(−1)
ab

+ s2

2 P ′
AB(ZaZ

A
b + ZbZ

A
a )ZB − sPABZ

AZBσ̃ab,

1
2 ḡ

(−1)
ss sσ̃ab =s

(1
2FZ2 + QAZZ

A + 1
2PABZ

AZB

)
σ̃ab.

We see that terms involving F,QA cancel and the result has the asserted
form.

Next we compute τ (−1).
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Lemma 5.2. Define the second order differential operator

LG(Z) =
[
(1 − Z2)G′

]′
(Z) − 4G′(Z)Z − 6G(Z).

Let BAB(Z) be a traceless, symmetric 2-tensor that solves the ODE

L(L + 2)BAB = 1
2P

′′′
AB(Z)(1 − Z2) − 4P ′′

AB(Z)Z − 6P ′
AB(Z).(5.19)

Then

τ (−1) = ZF(Z) + B(Z)ABZ
AZB

solves the leading order of optimal embedding equation

Δ̃(Δ̃ + 2)τ (−1) = 1
2F

′′′(1 − Z2)2 − 4F ′′Z(1 − Z2) − 2F ′(1 − 3Z2)

+
(1

2P
′′′
AB(Z)(1 − Z2) − 4P ′′

AB(Z)Z − 6P ′
AB(Z)

)
ZAZB.

Proof. The equation is linear. We look for τ (−1)
1 and τ

(−1)
2 such that

Δ̃(Δ̃ + 2)τ (−1)
1 = 1

2F
′′′(1 − Z2)2 − 4F ′′Z(1 − Z2) − 2F ′(1 − 3Z2),

Δ̃(Δ̃ + 2)τ (−1)
2 =

(1
2P

′′′
AB(Z)(1 − Z2) − 4P ′′

AB(Z)Z − 6P ′
AB(Z)

)
ZAZB.

From Lemma 3.3 of [15], τ (−1)
1 = ZF(Z) solves the first equation

Δ̃(Δ̃ + 2)(ZF(Z)) = 1
2F

′′′(1 − Z2)2 − 4F ′′Z(1 − Z2) − 2F ′(1 − 3Z2).

It is straightforward to verify that τ
(−1)
2 = BAB(Z)ZAZB solves the second

equation if the traceless, symmetric 2-tensor BAB(Z) solves (5.19).

We are ready to state the main theorem for the quasi-local mass,

Theorem 5.3. For T0 = (1, 0, 0, 0) and X solves the leading order term of
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the optimal embedding equation, the Wang-Yau quasi-local energy

E(Σd, T0, X)

= 1
d2

[ ∫
B3

1
8
∑
A,B

P ′
AB(sZ)P ′

AB(sZ) − det(h(−1)
0 − h(−1))

− 1
4

∫
S2

BDEZ
DZE

(1
2P

′′′
AB(Z)(1 − Z2) − 4P ′′

AB(Z)Z − 6P ′
AB(Z)

)
ZAZB

+ 1
4

∫
S2

1
4(P ′

ABZ
AZB)2

]
+ O(d−3)

where h
(−1)
0 −h(−1) is as determined in Lemma 5.1 and BAB is as determined

in Lemma 5.2.

Proof. We start with Theorem 4.1 in which h
(−1)
0 − h(−1) is as determined

in Lemma 5.1 and τ (−1) is as determined in Lemma 5.2. We simplify the
expression

∫
S2

(trΣk
(−1))2 − τ (−1)Δ̃(Δ̃ + 2)τ (−1)

=
∫
S2

1
4F

2(1 − Z2)2 − τ
(−1)
1 Δ̃(Δ̃ + 2)τ (−1)

1

+
∫
S2

1
4
(
P ′
AB(Z)ZAZB

)2
− τ

(−1)
2 Δ̃(Δ̃ + 2)τ (−1)

2 .

We have ∫
S2

1
4F

2(1 − Z2)2 − τ
(−1)
1 Δ̃(Δ̃ + 2)τ (−1)

1 = 0

by [15, (3.6)]. This finishes the proof of the theorem.

Remark 5.4. By the definition of PAB in Definition 3.1, the first term on the
right hand of this formula is a quadratic expression of the news (CAB)u (the
first term on the right hand side of (4.1)), which is related to the mass loss
formula, see Remark 4.2.

In particular, we observe that the answer depends on the leading or-
der term of the news function on B3 since both ODEs in Lemma 5.1 and
Lemma 5.2 are linear ODEs where the right-hand side depends on PAB and
their derivatives. In general, we do not have explicit solutions to these ODEs.
In the following section, we compute the quasi-local mass explicitly for a few
special examples.
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6. Special cases

Writing E(Σd, T0, X) = d−2E(−2)+O(d−3), we evaluate E(−2) for a few special
cases of PAB. Let pAB, qAB be two constant symmetric traceless 2-tensors.

Proposition 6.1. If PAB(x) = pAB + qABx, E(−2) = 0. In particular, E(−2)

could vanish even in the presence of nonzero news.

Proof. One verifies that

AAB(Z, s) = s

2pAB + s2Z

4 qAB

BAB(Z) = −1
4qAB

solve (5.13) and (5.19) respectively. Direct computation then shows that
h

(−1)
0 − h(−1) = 0. Hence, we get 8πE(−2) is

1
8
∑
A,B

qABqAB · 4π
3 + 1

4

∫
S2

1
4
(
qABZ

AZB
)2

+ 1
4qDEZ

DZE · (−6qABZ
AZB).

Using the identity
∫
S2

ZAZBZDZE = 4π
15 (δABδDE + δADδBE + δAEδBD),(6.20)

we get E(−2) = 0.

Proposition 6.2. If PAB(x) = pABx
2. Then E(−2) = 1

20
∑

A,B pABpAB.

Proof. One verifies that

AAB(Z, s) = s3
(

(Z)2

6 + 1
3

)
pAB

BAB(Z) = −Z

6 pAB

solve (5.13) and (5.19) respectively. Direct computation shows that

h
(−1)
0 − h(−1) =s3

3
(
ZAZBσ̃ab − ZaZbZ

AZB + Z
(
ZaZ

A
b + ZbZ

A
a

)
ZB

−
(
(Z)2 + 2

)
ZA
a Z

B
b

)
pAB.
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We compute

∣∣∣h(−1)
0 − h(−1)

∣∣∣2
σ̃

= s2

9
(
9
(
pABZ

AZB
)2

+ (2(Z)2 − 8)δADZBZEpABpDE

+ ((Z)2 + 2)2δADδBEpABpDE

)
,

trσ̃
(
h

(−1)
0 − h(−1)

)
= sZAZBpAB

to get

det
(
h

(−1)
0 − h(−1)

)
=1

2

(
trσ̃

(
h

(−1)
0 − h(−1)

)
−

∣∣∣h(−1)
0 − h(−1)

∣∣∣2
σ̃

)

= − s2

18
( (

2(Z)2 − 8
)
δADZBZE +

(
(Z)2 + 2

)2
δADδBE

)
pABpDE .

Denote |p|2 =
∑

A,B pABpAB. The volume integral contributes

1
3

∫
S2

[
(Z)2

2 |p|2 + 1
18

(
(2(Z)2 − 8)δADZBZEpABpDE + ((Z)2 + 2)2|p|2

)]

which is 4π
9 |p|2 and the surface integral contributes

1
4

∫
S2

(Z)2(pABZ
AZB)2 − 10

3 (Z)2ZDZEpDEZ
AZBpAB = −2π

45 |p|
2,

where we used the identity
∫
S2(Z)2ZAZBZDZE = 4π

105(δABδDE + δADδBE +
δAEδBD).
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