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Abstract: Flatly Foliated Relativity (FFR) is a new theory which
conceptually lies between Special Relativity (SR) and General Rel-
ativity (GR), in which spacetime is foliated by flat Euclidean spaces.
While GR is based on the idea that “matter curves spacetime”,
FFR is based on the idea that “matter curves spacetime, but not
space”. This idea, inspired by the observed spatial flatness of our
local universe, is realized by considering the same action as used
in GR, but restricting it only to metrics which are foliated by flat
spatial slices. FFR can be thought of as describing gravity without
gravitational waves.

In FFR, a positive cosmological constant implies several inter-
esting properties which do not follow in GR: the metric equations
are elliptic on each euclidean slice, there exists a unique vacuum
solution among those spherically symmetric at infinity, and there
exists a geometric way to define the arrow of time. Furthermore, as
gravitational waves do not exist in FFR, there are simple analogs
to the positive mass theorem and Penrose-type inequalities.

Importantly, given that gravitational waves have a negligible
effect on the curvature of spacetime, and that the universe ap-
pears to be locally flat, FFR may be a good approximation of
GR. Moreover, FFR still admits many notable features of GR in-
cluding the big bang, an accelerating expansion of the universe,
and the Schwarzschild spacetime. Lastly, FFR is already known
to have an existence theory for some simplified cases, which pro-
vokes an interesting discussion regarding the possibility of a more
general existence theory, which may be relevant to understanding
existence of solutions to GR.

1. Introduction

It is an honor and a privilege to contribute an article to this volume cel-
ebrating the 60th birthday of Robert Bartnik. Robert is one of the most
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influential researchers who have used geometry and analysis to understand
deep questions in general relativity. From showing that the total ADM mass
of a spacetime is well-defined, to his formulation of the Bartnik mass, it is
impossible to do geometric relativity without encountering many of Robert’s
wonderful ideas. His friendship, advice, and encouragement for young people
has also helped make the geometric analysis community what it is today.

In this paper, we define flatly foliated relativity (FFR) to be a new theory
of gravity in which the spatial flatness of the universe is strictly required.
This requirement is captured in the following fundamental assumption:

Assumption 1. Spacetime is foliated by flat three dimensional Euclidean
spaces.

The purpose of this paper is to investigate the consequences of this as-
sumption while otherwise leaving the action of GR unchanged. Recall that
this action contains a parameter Λ, referred to as the cosmological constant;
we will see that several qualitative features of FFR depend on the sign of Λ.

On the one hand, FFR is general enough to include several of the most
important spacetimes of GR such as the Schwarzschild solution and the Fried-
mann–Lemaître–Robertson–Walker (FLRW) spacetimes with spatial curva-
ture k = 0. More generally, any spherically symmetric spacetime can be flatly
foliated if there exists a single flat slice [9]. There are also analogues to the
positive mass theorem [13], [15] and Penrose inequality [10], [3].

On the other hand, FFR is simpler than GR in the sense that, when
the cosmological constant is positive, the main equations are elliptic rather
than hyperbolic. In particular, this has the consequence that we obtain an
existence theory when the vector field J , the current density of energy and
momentum as measured by an observer moving perpendicular to the flat
foliation, vanishes. In comparison, the existence theory for GR – even in
special cases – is still a big open problem.

Some similarities to GR include:

1. The universe is locally modeled by SR. In particular there is a spe-
cial speed, called the speed of light, which is locally the same for all
observers.

2. Matter which may not go faster than the speed of light in GR also may
not go faster than the speed of light in FFR.

3. The big bang is modeled by FLRW spacetimes, but with k = 0.
4. Spacetime outside black holes, gravitational lensing, the gravitational

redshift of light, and the gravity of spherically symmetric bodies like
stars and planets, including the precession of the perihelion of the orbit
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of Mercury, may be modeled by the exterior region of the Schwarzschild
spacetime, which is foliated by flat slices.

Some differences to GR include:

1. A positive cosmological constant implies the existence of a well-defined
geometric arrow of time, whereas a negative or zero cosmological con-
stant does not.

2. A positive cosmological constant implies that there exists a unique vac-
uum solution among solutions which are spherically symmetric at infin-
ity, whereas a negative or zero cosmological constant does not. In fact,
we will prove a result stronger than this in Section 5.

3. A positive cosmological constant makes the resulting spacetime metric
equations elliptic on each Euclidean space, a highly desirable analytic
feature when trying to prove existence, uniqueness, and regularity of
solutions, whereas a negative or zero cosmological constant does not.

4. Gravitational waves moving at the speed of light do not exist.
5. The speed of gravity is infinity, similar to Newtonian physics.

As seen in the list above, FFR has several nice properties when the cos-
mological constant is positive, and further these properties are not generically
present otherwise. For this reason, we propose another assumption on FFR
spacetimes:

Assumption 2. The cosmological constant Λ is strictly positive.

In addition to the nice properties it yields, this assumption is physically
motivated by observations of the universe which indicate a positive cosmolog-
ical constant within the standard ΛCDM model of cosmology [7], [12]. The
first of the nice properties we’ve mentioned is that Assumption 2 gives rise
to a well-defined, geometrically preferred arrow of time.

An arrow of time separates the notion of the future from the past. There
are two connected components of time-like vectors at every point of a space-
time; an arrow of time defines, globally and in a continuous manner, which
component represents future time-like vectors. For spatially foliated space-
times like ours, an arrow of time is equivalent to a globally and continuously
defined unit time-like vector perpendicular to the space-like foliation. We will
show in Section 4.1 that Assumption 2, along with a nonnegative energy den-
sity, allows us to choose the direction of the flat foliation’s mean curvature
vector as our arrow of time. Further, with this choice, the volume form of
the flat foliation is always getting bigger, in agreement with the cosmological
arrow of time given by the universe’s expansion in the FLRW spacetime.
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Our main result is summarized as follows:

Theorem 1. Suppose Assumption 2 holds and consider the FFR spacetimes
with non-negative energy density at a critical point of the Einstein Hilbert
action when varied with respect to spacetimes satisfying Assumption 1. Then

• For each such spacetime, there exists a geometrically preferred arrow of
time.

• For each such spacetime, the volume form of the flat foliation is always
getting bigger with respect to this arrow of time.

• For each such spacetime, the equations describing the evolution of the
spacetime metric are elliptic on each Euclidean slice, and uniformly
elliptic assuming the bounds in equation (56).

• There exists a unique vacuum solution among solutions which are spher-
ically symmetric at infinity.

The fact that such innocent looking assumptions can have such nontrivial
consequences makes these assumptions very interesting to study. These as-
sumptions are also compatible with the axioms proposed by the author in [2],
which imply the Einstein-Hilbert action with a cosmological constant, as well
as a geometrically natural model for dark matter. However, Assumptions 1
and 2 are logically independent from those axioms, so we will focus only on
the former in this paper.

While FFR is not a candidate for the true theory of gravity due to the obser-
vation of gravitational waves [6], there are many reasons that studying FFR
is useful:

1. Approximating GR in computer simulations. The equations of FFR
are simpler to solve than those of GR in many ways, in part because
gravitational waves do not exist in the theory. There is also a canonical
foliation.

2. Exact solutions for FFR may be interpreted as approximate solutions
for GR.

3. Understanding the theoretical properties of GR. Take your favorite open
problem in GR, and then solve it first for FFR, which may be quite a
bit easier.

4. As seen in Section 6.2, FFR avoids the insides of black holes in the
Schwarzschild case and at least somewhat more generally, which may
be important for problems where avoiding spacetime singularities is
useful.

5. Applications of elliptic techniques. Whereas the Einstein equation for
GR is hyperbolic, the analogous equations for FFR are elliptic.
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A large hurdle in understanding the existence theory of GR is under-
standing how to handle the singularities which arise inside black holes. This
problem is actually avoided in FFR, as stated in item 4 above. This, along
with the fact that FFR is already known to have an existence theory for
special cases (J = 0), suggests that it could be possible for FFR to have a
more general existence theory. If this is true, then another question arises:
how could such an existence theory of FFR be used to understand existence
of solutions in GR? Though it is first necessary to understand whether or
not FFR has a general existence theory, this question regarding GR provides
relevance to approaching the problem in FFR.

Our paper is structured as follows: in Sections 2 and 3 we establish geo-
metric preliminaries and derive the fundamental FFR equations. These will
be studied in more detail in Sections 4 and 5 where we prove in particular that
Assumption 2 implies the existence of a geometrically preferred arrow of time,
the adoption of which implies ellipticity. In Section 6, we analyze some explicit
examples such as the Schwarzschild spacetime and the FLRW spacetimes.

2. Geometric preliminaries

Another nice consequence of Assumption 1 is that it is always possible to
choose globally defined coordinates. In this section we define the spacetime
metric of FFR in very natural coordinates, as well as the second fundamental
form of each flat, constant time slice of the flat foliation. We also establish
conventions in our notation.

2.1. The spacetime metric

We choose (t = x0, x = x1, y = x2, z = x3) as our coordinates so that the
spacetime metric is globally expressed as

gαβ =

⎡
⎢⎢⎢⎣
−η2 + |ω|2 −ω1 −ω2 −ω3

−ω1 1 0 0
−ω2 0 1 0
−ω3 0 0 1

⎤
⎥⎥⎥⎦(1)

= (−η2 + |ω|2)dt2 − (ω ⊗ dt + dt⊗ ω) + δR3

where ω = ω1dx
1 +ω2dx

2 +ω3dx
3 is a one form, |ω|2 = ω2

1 +ω2
2 +ω2

3 , and δR3

is the flat metric on R3. Note that det(gαβ) = −η2, so the above form can be
realized for any flatly foliated spacetime with signature −+++. Further note
that scaling the pair (ω, η) by a positive multiplicative constant is equivalent
to doing the same to the coordinate time t.
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Equation (1) highlights how FFR is a cross between SR and GR. When
η ≡ 1 and ω ≡ 0, the spacetime metric g is the Minkowski spacetime metric
of SR. On the other hand, GR allows for any spacetime metric, not one
necessarily restricted to the form of equation (1). Said another way, FFR is
spatially like SR, but otherwise like GR.

On the other hand, because of the coordinate chart invariance for GR,
FFR is more like GR than SR, in the following sense: whereas the components
of a general spacetime metric are 10 functions, 4 of these functions may be
effectively specified by a choice of coordinate chart. Hence, GR is locally
described by 6 functions on the spacetime, which is only 2 more than the 4
functions η, ω1, ω2, ω3 which describe FFR.

Define ∂k = ∂
∂xk . We will raise and lower indices of three dimensional

vectors and covectors using the flat metric on R3 so that, for example, ωk =
ωk. We will tend to stick with the lowered indices. Because of this, whenever
we repeat an index, whether raised or lowered, summation will be implied.
As usual, we will use New Roman indices to range from 1 to 3 and Greek
indices to range from 0 to 3.

Thus, for example, the dual vector �ω to ω is just

(2) �ω = ωi∂i = ω1∂1 + ω2∂2 + ω3∂3.

The orthogonal flow vector for the flat, constant time slices is

(3) �η = ∂t + �ω = (1, ω1, ω2, ω3) in coordinates,

which is orthogonal to each constant time slice since g(�η, ∂k) = 0, for k =
1, 2, 3. Also note that g(�η, �η) = −η2, so η is in fact the length of the time-like
vector �η. Hence, if we define

(4) n = �η

η
,

an orthonormal basis at each point is {n, ∂1, ∂2, ∂3}.
We will assume that everything is smooth and that η > 0 so that the

inverse of g exists and is smooth too. Note that

(5) gαβ =

⎡
⎢⎢⎢⎢⎢⎣

− 1
η2 −ω1

η2 −ω2
η2 −ω3

η2

−ω1
η2 1 − ω2

1
η2 −ω1ω2

η2 −ω1ω3
η2

−ω2
η2 −ω2ω1

η2 1 − ω2
2

η2 −ω2ω3
η2

−ω3
η2 −ω3ω1

η2 −ω3ω2
η2 1 − ω2

3
η2

⎤
⎥⎥⎥⎥⎥⎦ = −

(
�η

η

)2
+δR3 = −n⊗n+δR3 ,

which is easiest to see when �ω is pointing in the x1 direction.
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2.2. The second fundamental form

Now we will show that the second fundamental form �k = kn of each constant
time slice is

(6) kij = ωi,j + ωj,i

2η ,

so that the mean curvature of each constant time slice is

(7) K = tr kij = ωi,i

η
= ∇ · ω

η
,

where ∇ · ω is the divergence of ω on R3.
An elegant way to derive equation (6) using other well known formulas is

to use the fact that η = ∂t + �ω is the orthogonal flow vector for the constant
time slices. Expressing the rate of change of the flat metrics as a function of
time in terms of their second fundamental forms gives

(8) d

dt
δR3 = −2〈�η,�kij〉 = 2η kij .

Meanwhile, the rate of change of the flat metrics also just amounts to a
reparametrization of these metrics, which may be expressed in terms of the
Lie derivatives of the flat metrics,

(9) d

dt
δR3 = L�ω(δR3) = ωi,j + ωj,i.

Together, the last two equations imply equation (6).
To compute the second fundamental form directly, we need to know one

of the Christoffel symbols [11] of the spacetime metric. For handy future
reference, we include all of them here, where 1 ≤ i, j, k,m ≤ 3:

Γ 0
00 = η0

η
− ωm ηm

η
+ ωj ωj,m ωm

η2(10)

Γ k
00 = −ωk,0 − ωm ωm,k + η ηk + ωk Γ 0

00(11)

Γ 0
i0 = ηi

η
− ωm

2η2 (ωi,m + ωm,i)(12)

Γ k
i0 = 1

2(ωi,k − ωk,i) + ωk Γ 0
i0(13)

Γ 0
ij = 1

2η2 (ωi,j + ωj,i)(14)
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Γ k
ij = ωk Γ 0

ij(15)

Since n is the future pointing normal vector to each flat constant time
slice, the second fundamental form may be expressed as

(16) �k(∂i, ∂j) = nor(∇∂i∂j) = k(∂i, ∂j)n,

where k is real-valued. Hence,

kij = k(∂i, ∂j) = −〈n,∇∂i∂j〉 = −〈n,Γ 0
ij ∂t + Γ m

ij ∂m〉

= −
〈
∂t + �ω

η
, Γ 0

ij (∂t + �ω)
〉

= η Γ 0
ij = 1

2η (ωi,j + ωj,i),(17)

where to go from the first line to the second line, we used the fact that n is
perpendicular to all of the vectors tangent to the flat slice.

As a final comment, the second fundamental form kij is a geometric in-
variant and hence may be thought of as a physical quantity. By contrast, ω
is not a geometric invariant at any given point and, with a change of coordi-
nates, may even be chosen to be zero along any smooth time-like curve. Since
η is the orthogonal flow speed of the flat slices, it is a physical quantity, but
only up to multiplying by a function of t (corresponding to the freedom in
how one parametrizes the flat slices in t).

3. Derivation of the fundamental equations

We begin with a quick review of how the Einstein equation is derived from the
Einstein-Hilbert action of GR. We then adapt these computations to FFR.

3.1. A quick review of general relativity

General Relativity is most precisely defined by saying that the universe (in-
cluding the spacetime metric and all of its matter fields) is at a critical point
of a real-valued function F called the action. The Einstein-Hilbert action of
GR, where the speed of light and the universal gravitational constant have
been set to one, is

(18) F =
∫

(S − 2Λ + 16πL) dV,

where S is the scalar curvature of the spacetime, dV is the volume form, Λ is
a fixed constant of nature called the cosmological constant, and L represents
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additional matter field terms which may be added. As one might guess, the −2
and the 16π are completely arbitrary conventions, often chosen to reproduce
the usual form of the Einstein equation. Though the cosmological constant
is occasionally considered part of L in other treatments, we choose to keep
them separate. We will also assume, as is standard, that L may be expressed
geometrically so that the action is invariant under reparametrizations of the
metric.

For example, to derive the Einstein-Maxwell equations, let L = −1
4 |dA|2g,

where A is the co-vector potential of electromagnetism. (Typically, L involves
the spacetime metric g as well as the matter fields: in this case, the metric g
is used to take the norm of dA.) The spacetime metric g and the one form
A would then both have to be chosen to be at a critical point of F . These
critical point equations are called the Euler-Lagrange equations for g and A.
The Euler-Lagrange equation for A is the Maxwell equation d∗dA = 0 on
a spacetime which describes how A (and hence the Faraday tensor F = dA
whose components are the electric and magnetic fields) evolves over time.

In this paper, we will focus on the Euler-Lagrange equation for g, which
as we will show is the Einstein equation with a cosmological constant. Note
that the integral in the action is taken over smooth open bounded regions of
the spacetime and that g will be required to be at a critical point for all of
these regions, for all variations of g compactly supported inside the region.

Given a one parameter family of spacetime metrics g(s), let ġ= d
dsg(s)|s=0.

Continuing with this dot notation, standard calculations give us that

Ṡ = −〈Ric, ġ〉 + ∇ · (∇ · ġ) − Δ(tr g)(19)
= −〈Ric, ġ〉 + ∇ · (irrelevant stuff)(20)

Combining this with ˙dV = 1
2〈g, ġ〉 dV and using the divergence theorem to

get rid of the irrelevant divergence terms, we compute the standard formula
for the first variation Ḟ of the action F :

(21) Ḟ =
∫
〈ġ , 8πT − Λg −G〉 dV

where G = Ric − 1
2Sg is the Einstein curvature tensor and T , called the

stress-energy tensor, collects all of the terms coming from L by definition.
Note that the divergence theorem boundary term is zero since ġ is zero there.

The only way for Ḟ to equal zero for all possible ġ is for

(22) G = 8πT − Λg,
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which is the Einstein equation with a cosmological constant. Note that the
cosmological constant is often absorbed into the definition of T .

A solution to GR, then, is a spacetime manifold equipped with a smooth
metric g and associated matter fields satisfying their equations of motion such
that G = 8πT − Λg.

3.2. Flatly foliated relativity

Equation (21) is still true for FFR. However, because the metric g has a
restricted form due to equation (1), the variation of the action Ḟ does not
have to equal zero for all ġ. Instead, we must differentiate equation (1),

(23) ġ = (−2ηη̇ + 2〈ω, ω̇〉)dt2 − (ω̇ ⊗ dt + dt⊗ ω̇),

and then plug this in to equation (21), to get

Ḟ =
∫

gαγ gβθ ġαβ (8πT − Λg −G)γθ

(24)

=
∫

(−nαnγ + δαγR3) (−nβnθ + δβθR3) (8πT − Λg −G)γθ

(25)

[(−2ηη̇ + 2〈ω, ω̇〉) δ0α δ0β − ω̇α δ0β − ω̇β δ0α] dV,

= 2
∫

[−η̇ (8πT − Λg −G)(n, n) + ω̇i(8πT − Λg −G)(n, ∂i)] dt dx dy dz
(26)

where we used equation (5) to go from the first line to the second line and
the fact that

(27) dV = | det(gij)|1/2 dt dx dy dz = η dt dx dy dz

to go from the second line to the third, which also involves a fair amount of
algebra.

The only way for Ḟ to equal zero for all possible η̇ and ω̇i is for

0 = (8πT − Λg −G)(n, n)(28)
0 = (8πT − Λg −G)(n, ∂i), for i = 1, 2, 3.(29)

In other words, FFR only implies that the Einstein equation must be satisfied
in the direction of n. Said another way, only the energy and momentum
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density as observed by an observer going in the direction n, the direction
perpendicular to the flat foliation, affects the curvature of the spacetime.

A solution to FFR, then, is a spacetime manifold equipped with a smooth
metric g, associated matter fields satisfying their equations of motion, and a
particular flat foliation by Euclidean spaces such that equations (28) and (29)
are satisfied. Again, this is not as far from GR as one might think. While at
first glance it appears that we are ignoring 6 components of the stress energy
tensor, the fact that the stress energy tensor has zero divergence (which is
a vector equation) means we are actually only ignoring 2 degrees of freedom
of the stress energy tensor. That is, FFR curves spacetime using 4 of the 6
degrees of freedom of the stress energy tensor. Note that a solution to FFR
need not still be a solution if one considers a different flat foliation; however,
given a solution to GR, it is a solution to FFR for any choice of flat foliation,
assuming one exists.

Now we will express our fundamental equations in terms of η and ω. The
Gauss and Codazzi equations imply that

G(n, n) = 1
2((tr k)2 − ||k||2)(30)

G(n, ∂i) = (∇ · k)i − d(tr k)i(31)

since the scalar curvature of each constant time slice is zero. Also, as is stan-
dard, define

μ = T (n, n)(32)
Ji = T (n, ∂i)(33)

Plugging in equation (6) for k and simplifying, we get

The Flatly Foliated Relativity Equations

2Λ + 16πμ = 1
η2

[
(∇ · ω)2 − 1

4 ||ωi,j + ωj,i||2
]

(34)

16πJi = 1
η

(Δωi − d(∇ · ω)i) + 2
η2 (∇ · ω)ηi −

1
η2 (ωi,j + ωj,i)ηj(35)

where we are using the standard convention that ωi,j is the coordinate deriva-
tive of ωi in the direction of ∂j , ∇·ω = ωi,i (summation of i from 1 to 3 implied)
is the divergence of ω, Δωi = ωi,jj is the Laplacian of the flat metric on R3

of ωi, d(∇ · ω)i = ωj,ji, and ||ωi,j + ωj,i||2 =
∑3

i,j=1(ωi,j + ωj,i)2. Note that
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since each constant time slice is flat, the coordinate derivatives are equal to
the covariant derivatives. Also, instead of writing η,i to denotes the derivative
of η in the direction of ∂i, we will just write ηi.

One feature of the above equations which is remarkable is that there
are not any time derivatives! That is, it appears that η and ω, and hence the
metric on each constant time slice, are determined by equations only involving
spatial derivatives on each slice. Since the metric determines the paths of
geodesics which have gravitational interpretations, this fact is reminiscent of
the Poisson equation for Newtonian gravity.

But how does one solve for η and ω given μ and J? To make progress on
this question, we note that equation (35) implies the useful and somewhat
surprising identity

(36) 8π ∇ · (J η2) = (∇ · ω)Δη − 1
2(ωi,j + ωj,i)ηij .

Even more progress is made by replacing ω with two new variables, f and ζ,
where we let

(37) ω = df + ζ

for some real-valued function f and one form ζ, chosen so that

(38) ∇ · ζ = 0.

This decomposition, which is equivalent to solving Δf = ∇ · ω, can often be
achieved. For example, the Helmholtz decomposition theorem yields such a
decomposition if ω decays faster than 1/|x| [8], and in the spherically sym-
metric case, where ω = ω(r)dr, this is solved with ζ ≡ 0 by integrating
f ′(r) = ω(r). Beautifully, when we plug equation (37) into equations (34),
(35), and (36), the third derivatives of f cancel out and the equation for ζ sim-
plifies nicely, resulting in the following system of partial differential equations
(PDEs) for f , ζ, and η:

The Flatly Foliated Relativity Equations in Elliptic Form

(Δf)2 − ||Qij ||2 = (16πμ + 2Λ) η2(39)

Δζi = 16πJi η −
2
η

(Δf · δij −Qij) ηj(40)

(Δf · δij −Qij) ηij = 8π∇ · (J η2)(41)
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where Qij = fij+ 1
2(ζi,j+ζj,i) and we require that limx→∞∇·ζ = 0 (which the-

orem 2 shows implies ∇· ζ = 0 everywhere). Equivalently, all three equations
may be written in divergence form:

∇j · (fii fj − fij fi − 2fi ζj,i) = 1
4 ||ζi,j + ζj,i||2 + (16πμ + 2Λ) η2(42)

∇j · (ζi,j) = 16πJi η −
2
η

(Δf · δij −Qij) ηj(43)

∇j · (fii ηj − fij ηi − ζj,i ηi) = 8π∇ · (J η2)(44)

When μ ≥ 0 and Λ > 0, the above system of equations is elliptic, as shown
in Section 4.2.

Comment The fact that the above system of equations may be written in
divergence form allows for weak solutions in the distributional sense to be
defined. For example, in Section 6.2.2 the Schwarzschild spacetime is realized
as the solution to the above system of equations when μ = mδ0, J = 0, and
Λ = 0, where δ0 is the Dirac-delta distribution at the origin.

Equations (34) and (35) are a system of PDEs in (η, ω), whereas equations
(39), (40), and (41) are a system of PDEs in (η, f, ζ). It turns out these
systems are equivalent under very general circumstances.

Theorem 2. For smooth solutions with η > 0, equations (34) and (35) plus
the requirement that there exists an f which solves Δf = ∇ ·ω are equivalent
to equations (39), (40), and (41) plus the requirement that limx→∞∇ · ζ = 0.

Proof. Suppose we are given η and ω which solve equations (34) and (35)
and an f which solves Δf = ∇ · ω. Let ζ = ω − df and note that ∇ · ζ = 0.
Substituting ω = df + ζ into equations (34), (35), and (36) and simplifying
then results in equations (39), (40), and (41).

Conversely, suppose we are given η, f , and ζ which solve equations (39),
(40), and (41) and the fact that limx→∞∇ · ζ = 0. Multiply equation (40) by
η, take the divergence of both sides, and then subtract two times equation
(41). Then divide by η to get

(45) Δ(∇ · ζ) − 〈∇η

η
,∇(∇ · ζ)〉 = 0.

Since limx→∞∇ · ζ = 0, by the maximum principle applied to this second
order uniformly elliptic equation in ∇·ζ, it follows that ∇·ζ = 0 everywhere.
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Now let ω = df + ζ. Since ζ has zero divergence,

Δf = ∇ · ω(46)

Qij = fij + 1
2(ζi,j + ζj,i) = 1

2(ωi,j + ωj,i)(47)

Δζi = Δ(ωi − dfi) = Δωi − d(∇ · ω)i(48)

Substituting these facts into equations (39) and (40) proves equations (34)
and (35).

By assumption, spacetime is foliated by flat three dimensional Euclidean
spaces, so we have global coordinates (t = x0, x = x1, y = x2, z = x3), for
some interval of t values. All of the spacetime phenomena of FFR, such as
gravity and the big bang, are then encoded in the real-valued function η and
the 3-vector valued function ω = (ω1, ω2, ω3). Said even more explicitly, the
spacetime metric of the theory is determined by four real-valued functions,
η(t, x, y, z), ω1(t, x, y, z), ω2(t, x, y, z), and ω3(t, x, y, z), whose values are de-
termined by solving equations (34) and (35), or equivalently equations (39),
(40), and (41), on each three dimensional Euclidean space.

Of course, there is still the issue of various choices of matter fields that one
might choose to use to define the matter Lagrangian L. Each matter field will
have its own equations of motion, determined as the Euler-Lagrange equations
of L. These equations, which in general will depend on η and ω as well as the
matter fields, will determine how the energy density μ and momentum vector
density J evolve over time, and hence how η and ω must evolve over time
through equations (34) and (35). Note that it therefore makes sense to pose
the question of how η and ω evolve from initial conditions of η, ω, J , and μ,
even though equations (34) and (35) have no time derivatives.

To stay as general as possible, we will not focus on any one particu-
lar choice of matter field in this paper. Matter fields which come from ac-
tions which are invariant under reparametrizations of the metric (which we
will always require) produce stress-energy tensors T with zero divergence by
Noether’s theorem (first observed by Hilbert in this special case). Hence, we
will assume that

(49) ∇ · T = 0,

which may be interpreted as the local conservation of energy and momentum
of the matter fields. Many commonly studied matter fields also satisfy the
dominant energy condition on T , that T (u, v) ≥ 0 for all future time-like
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vectors u and v. When one of the two vectors is the normal vector to the flat
foliation, the dominant energy condition implies

(50) μ ≥ |J |,

which corresponds to positive matter density, not exceeding the speed of
light. For the results of this paper, we will only need to assume the weaker
condition

(51) μ ≥ 0,

which corresponds to positive matter density, with no control on whether or
not it exceeds the speed of light. Finally, it is often convenient to make as-
sumptions on the smoothness and behavior at infinity of μ and J , which we
will do as needed.

4. Properties of the flatly foliated relativity equations

One of the biggest problems for GR is that, even after a great deal of effort,
no one has yet proved that it has a general, long-time existence theory. That
is, given initial conditions at t = 0 for a spacetime, there is no guarantee that
the equations of GR may be solved for all time, even in vacuum. The best
guess for what one might hope to be true is known as the cosmic censorship
conjecture. However, even after more than a century since the discovery of
GR, a proof of this conjecture remains elusive.

An existence theory for FFR, on the other hand, would be significantly
different. While the Euler-Lagrange equations for the matter fields may still
be hyperbolic, the equations which govern how the spacetime metric evolves
are elliptic on each Euclidean space, as we demonstrate in this section. For
example, for J = 0 the FFR equations reduce to the k-Hessian equation (with
k = 2) for which there is an existence theory [4].

We start by establishing that Assumption 2 yields a geometrically pre-
ferred arrow of time, which we will then adopt to prove ellipticity. Given these
results, we will be in a position to pose the question of an existence theory
for FFR.

4.1. A geometric arrow of time and Λ > 0

In this section, we establish the intimate relationship between the requirement
Λ > 0 of Assumption 2 and the existence of a geometrically preferred arrow
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of time. This is significant because the universe, upon inspection, does appear
to have an arrow of time, and there is good evidence that the cosmological
constant of the universe is greater than zero [7], [12]; furthermore, the lines of
reasoning leading to each of these conclusions are quite independent. Hence,
the idea that these properties might in general be closely related, or in some
sense even equivalent, is very interesting.

Theorem 3. If Λ > 0, every μ ≥ 0 solution to FFR has a geometrically
preferred arrow of time given by the direction of the mean curvature vector.

Proof. We have by equation (34) that

(52)
(∇ · ω

η

)2
≥ 2Λ + 16πμ > 0,

since Λ > 0 and μ ≥ 0. Hence, ∇·ω
η is never zero and so, by our smoothness

assumption, can never change sign. Thus, by equation (7), the mean curvature
vector of each slice of the flat foliation is

(53) �K = Kn =
(∇ · ω

η

)
n 	= 0,

where n = (∂t + �ω)/η is a smoothly defined unit normal to the flat foliation.
Hence, the mean curvature vector �K, which is geometrically defined indepen-
dent of any choice of coordinates or conventions, is a smooth, time-like vector,
everywhere perpendicular to the foliation, with length never equal to zero, so
we get an arrow of time by defining the future to be in the direction of �K.

Given Assumption 2, then, the direction of �K is either everywhere n or
everywhere −n. Without loss of generality, we will always choose our coordi-
nate t (which we could always replace with −t) so that the direction of �K is
everywhere n.

Convention 1. When Λ > 0, we may adopt the convention that n points in
the direction of �K and hence the future, from which it follows that

(54) K = ∇ · ω
η

= Δf

η
> 0,

where f is defined in equation (37).

Similarly, we can tell the difference between the future and the past in
terms of the rate of change of the volume form of each slice. As time increases,
volumes increase, when flowing between slices orthogonally.
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Corollary 1. When Λ > 0, flowing from slice to slice along the orthogo-
nal flow vector �η = ∂t + �ω causes the volume form of the flat foliation to
increase.

Proof. The first variation formula for flowing the volume form dV of each
slice perpendicularly to each slice is

(55) d

dt
dV = −〈�η, �K〉 dV = ηK dV.

Since η > 0 and K > 0, the volume form is increasing.

As an interesting remark, Theorem 3 has a converse: for any Λ ≤ 0, there
exist μ ≥ 0 solutions to FFR with no geometric arrow of time possible. In
particular, in this case we may choose a spacetime where 16πμ = −2Λ ≥ 0 and
J = 0 everywhere. There exist matter fields with this property, for example
one whose Lagrangian L is just a constant, where 16πL− 2Λ = 0. The FFR
equations, equations (34) and (35), are then solved by letting η = 1 and
ω = 0, representing the Minkowski spacetime with its standard foliation of
the flat, constant time slices.

However, the Minkowski spacetime with its standard foliation is time
symmetric, meaning that the operation t → −t is an isometry preserving the
foliation. Hence, it is impossible for the geometry of this standard foliation
on the Minkowski spacetime to produce an arrow of time; any such arrow of
time would, being preserved by the t → −t isometry, be equal to its negation,
a contradiction. Thus, if one fixes Λ among the solutions to FFR, Assumption
2 is equivalent to the existence of a geometric arrow of time for every μ ≥ 0
solution.

4.2. Λ > 0 implies ellipticity

Theorem 4. A positive cosmological constant implies that equations (39),
(40), and (41) form a weakly elliptic system of equations on each flat, constant
time slice. Taken one at a time on each slice with respect to the variables f , ζ,
and η, respectively, they are also each elliptic, and uniformly elliptic if there
exist functions ηmin(t) and Qmax(t) such that

(56) η ≥ ηmin(t) > 0 and |Qabνaνb| ≤ Qmax(t),

for all unit vectors ν = νa∂a.
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Proof. Since Λ > 0, we may use the convention in equation (54) which im-
plies that Δf > 0 (where as always we continue to assume η > 0). Hence,
by equation (39), for all unit vectors ν = νa∂a, where again all indices are
summed from 1 to 3,

Δf −Qabνaνb =
(
||Q||2 + (16πμ + 2Λ) η2

)1/2
−Qabνaνb(57)

≥
(
(Qabνaνb)2 + 2Λ η2

)1/2
−Qabνaνb(58)

≥ (Q2
max + 2Λ η2

min)1/2 −Qmax > 0,(59)

since (x2 + c2)1/2 − x is a decreasing function of x. Note that we have not
only used Λ > 0, but also that the energy density μ ≥ 0.

The above inequality shows that (Δf · δab −Qab) is uniformly positive
definite on each flat, constant time slice, which is exactly what is required for
the second order operator

(60) L = (Δf · δab −Qab)
∂2

dxadxb

to be uniformly elliptic on each slice. Ellipticity of nonlinear equations is
defined in terms of their linearizations around solutions, which for equations
(39), (40), and (41) are, respectively,

2 (Δf · δab −Qab)ḟab = lower order terms(61)

(δab)ζ̇i,ab +
(2ηi

η
δab −

2ηb
η

δia

)
ḟab = lower order terms(62)

(Δf · δab −Qab)η̇ab + (Δη · δab − ηab) ḟab = lower order terms(63)

where we have only shown the top order variation terms, which are all that are
relevant for ellipticity. The positive definiteness of the leftmost expressions in
each of the above three equations proves that equations (39), (40), and (41)
are each uniformly elliptic on each slice in f , ζ, and η, respectively.

To show weak ellipticity for the system of equations represented by equa-
tions (39), (40), and (41), we should first recognize that equation (40) is
actually three equations since i goes from 1 to 3, making a total of five equa-
tions. We also have five functions, which we order as (f, ζ1, ζ2, ζ3, η). Keeping
this ordering of the equations and the functions, the principal symbol of the
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system has the form

(64) σ =

⎡
⎢⎢⎢⎢⎢⎣

+ 0 0 0 0
? + 0 0 0
? 0 + 0 0
? 0 0 + 0
? 0 0 0 +

⎤
⎥⎥⎥⎥⎥⎦

where + represents a positive entry, 0 represents a zero entry, and ? represents
an entry whose sign is undetermined. Weak ellipticity is equivalent to this
matrix always being invertible, which it is because of its lower diagonal form
with positive entries along the diagonal.

Note that if Λ ≤ 0, the Minkowski spacetime example given at the end
of the previous section is a μ ≥ 0 solution wherein Δf · δab = Qab = 0, so the
conclusion of the above theorem does not hold.

4.3. Physically reasonable boundary conditions at infinity

Elliptic systems of equations require boundary conditions, which in physical
terms describe the asymptotics of the spacetime at infinity. Our discussion
here is analogous to requiring that the Newtonian gravitational potential, for
a finite amount of matter in a bounded region, go to a constant at infinity.
This requirement is a boundary condition at infinity for the Poisson equation
of Newtonian gravity.

Before stating the boundary conditions, it is useful to note that when
Λ ≥ 0 there is a natural vacuum solution for μ = 0 and J = 0, namely η = 1,
ζ = 0, and

f =

√
Λ
12r

2 =

√
Λ
12(x2 + y2 + z2)(65)

We now state the boundary conditions in terms of f̃ = f −
√

Λ
12r

2, the
difference from the vacuum solution. In the following, R3

t is the flat slice
of the spacetime at coordinate time t.

Definition 1. Suppose that Λ > 0, μ and J are smooth, and μ and J are
zero outside a bounded region on R3

t , thereby representing a finite amount
of matter in a bounded region, except for the positive cosmological constant.
Then we will say that a solution to equations (39), (40), and (41) on R3

t has
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“physically reasonable boundary conditions at infinity” or “physically reason-
able asymptotics” if

lim
�x→∞

∂rf̃(t, �x) = 0(66)

lim
�x→∞

ζ(t, �x) = 0(67)

lim
�x→∞

η(t, �x) = 1.(68)

Note that because of its Neumann boundary condition, f̃ is only unique
up to an additive constant, unlike the other two variables which have Dirichlet
boundary conditions. One nice consequence of requiring lim�x→∞ η(t, �x) = 1
is that this implies that the speed of the orthogonal flow of flat slices at spa-
tial infinity is one; hence, the coordinate t is the proper time experienced
by observers traveling perpendicularly to the flat foliation, in the limit that
they are positioned at spatial infinity. These boundary conditions are primar-
ily motivated, however, by explicit examples of solutions we present later in
the paper. These examples also suggest the following question of existence,
uniqueness, and regularity of solutions to equations (39), (40), and (41):
Question 1. Suppose that Λ > 0, μ and J are smooth, and μ and J are
zero outside a bounded region on R3

t , thereby representing a finite amount of
matter in a bounded region, except for the positive cosmological constant. Does
there then exist a smooth solution (f, ζ, η) to equations (39), (40), and (41)
on R3

t with η > 0 and physically reasonable boundary conditions at infinity,
as defined above? In addition, can we conclude that all of the kth partial
derivatives of df̃ , ζ, and η− 1 converge to zero at infinity as well, for k ≥ 0?
Finally, is this solution unique up to adding a constant to f̃?

Since η = 0 is a solution to equation (41), it is reasonable to hope that
this solution may be used as a barrier, thereby guaranteeing that η > 0 for
solutions with η going to one at infinity.

Observe that, when J = 0, the hypotheses of this question imply through
equations (40) and (41) that ζi = 0 and η = 1 by application of the max-
imum principle, justified by the previous ellipticity result. Hence, equation
(39) reduces in this case to:

(69) 2
∑
i�=j

fiifjj = 16πμ + 2Λ

The left hand side of the above equation is the second symmetric polynomial
of ∇2f , so this is the k-Hessian equation for k = 2. The J = 0 case, then,
already has an existence theory akin to that suggested above [4].
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If the answer to the above question or one similar is yes, it would be a first
step towards an existence theory for solutions to FFR coupled to matter fields,
given appropriate initial conditions. While the question is certainly nontrivial
given the full nonlinearity of equations (39), (40), and (41), whether or not
it is true should eventually be possible to determine since it is an elliptic
system, as shown in the previous section. Even if the answer is yes, however,
the point of highest interest is the existence theory for GR, which then leads
to the following question:

Question 2. Is there a connection between the existence theory of FFR and
the existence theory of GR? More precisely, does there exist a clever foliation
of spacetime (for example a scalar flat one) which simplifies the existence
theory?

5. Λ > 0 implies a unique vacuum solution

In this section, we prove that a positive (but not a negative or zero) cos-
mological constant implies that there exists a unique vacuum solution to the
FFR equations, equations (34) and (35), among solutions which are spheri-
cally symmetric at infinity. Indeed, the FFR equations are so rigid that even
mild approximate spherical symmetry is enough to deduce uniqueness of the
solution when Λ > 0. There are two parts to the claim we wish to prove:
existence and uniqueness. We will show that Λ < 0 fails at existence, Λ = 0
fails at uniqueness, but that Λ > 0 has both.

By contrast, GR has many vacuum solutions which are spherically sym-
metric at infinity, known as gravitational waves. The simplest gravitational
wave solutions are perturbations of the Minkowski spacetime [14], though
these are not spherically symmetric at infinity. Imposing the spherical sym-
metry at infinity condition may be achieved using results by Corvino and
Schoen in [5], at least for Λ ≥ 0. The analogous Λ < 0 case would follow by
a Corvino-Schoen style result in the asymptotically hyperbolic setting, which
is a reasonable conjecture.

We define “existence” to mean the existence of a solution (ω, η) which is
smooth with η > 0. Also, our notion of “uniqueness” considers two vacuum
solutions (ω1, η1) and (ω2, η2) to be the same if they only differ by an overall
positive multiplicative constant (i.e., a rescaling of the coordinate time t).
Hence, without loss of generality, we may assume η(0) = 1, for example.
Finally, we define “spherically symmetric at infinity” to mean that (ω, η) is
spherically symmetric for r ≥ r0 in R3, for some r0 > 0.
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The purpose of the “spherically symmetric at infinity” hypothesis is two-
fold. First, this hypothesis highlights a difference between GR and FFR. Sec-
ond, without this hypothesis, the next theorem would not be true. A nice way
of understanding the necessity of this hypothesis is to return to the Poisson
equation ΔV = 4πμ = 0 in the vacuum case. If the Newtonian potential V
is required to go to zero at infinity, then the maximum principle implies that
V = 0 everywhere. However, without any control at infinity, V could be any
harmonic function, such as 2x2 − y2 − z2, which one could think of as rep-
resenting infinite amounts of matter, infinitely far away. Requiring spherical
symmetry at infinity is a condition which rules out these exotic solutions. In
particular, spherical symmetry at infinity means that on a sufficiently large
sphere, V = c for some constant c, which by the maximum principle implies
that V = c everywhere.

In the case of Λ > 0, instead of proving directly the existence and unique-
ness of vacuum solutions which are spherically symmetric at infinity, we prove
a slightly stronger result:

Theorem 5. Assume Λ > 0 and f is approximately spherically symmetric
at ∞, whereby we mean f − f̄ is bounded and

lim
r→∞

sup
x∈Sr

r2‖∇2(f − f̄)∇(f − f̄)‖ → 0,

where f̄ is the spherical symmetrization of f . Then under the boundary condi-
tions (67) and (68), there is a unique (up to an additive constant on f) smooth
vacuum solution to the FFR equations in elliptic form, equations (39)-(41).

Proof. In the vacuum case, the elliptic FFR equations reduce to

(Δf)2 − ||Qij ||2 = 2Λ η2,(70)

Δζi = −2
η

(Δf · δij −Qij) ηj ,(71)

(Δf · δij −Qij) ηij = 0.(72)

Observe that by the boundary condition η → 1 at ∞, for every ε > 0 there
exists an r0 > 0 such that for any r ≥ r0, we have

1 − ε < η < 1 + ε

on Sr. Since Λ > 0, theorem 4 yields that equation (72) is elliptic, so we may
apply the maximum principle to η on Br, which yields that the above bounds
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hold on all of Br. Since this is true for every r ≥ r0, the bounds hold on all
of R3. Since ε > 0 was arbitrary, we conclude η ≡ 1 and thus Δζi = 0.

Similarly, applying the maximum principle to ζi, 1 ≤ i ≤ 3, with the
boundary condition ζ → 0 at ∞, we have ζ ≡ 0.

Hence, we have reduced the theorem to proving there exists a unique
solution to

(73) (Δf)2 − ||fij ||2 = 2Λ

which is approximately spherically symmetric at infinity. Following our stan-
dard arrow of time convention (this has been implicitly invoked already by
citing Theorem 4’s ellipticity result), Δf > 0, so this is equivalent to

(74) Δf =
√

2Λ + ||fij ||2.

Recall that the spherical symmetrization of a function ψ(r, θ, φ) in R3 is
defined to be

ψ̄(r) = 1
|S2|

∫
S2

ψ(r, θ, φ) dσS2(75)

= 1
4π

∫ π

0

∫ 2π

0
ψ(r, θ, φ) sin θ dφ dθ.(76)

Equivalently, ψ̄ is the average over all (origin fixing) rotations R ∈ SO(3) of
ψ,

ψ̄(x) = 1
|SO(3)|

∫
R∈SO(3)

ψ(R(x)) dσSO(3),(77)

where we have abused notation slightly with ψ̄(x) = ψ̄(|x|) = ψ̄(r). We have

1
|SO(3)|

∫
R∈SO(3)

‖fij(R(x))‖dσSO(3)

≥ 1
|SO(3)|

∥∥∥∥∥
∫
R∈SO(3)

fij(R(x))dσSO(3)

∥∥∥∥∥
by Jensen’s inequality with equality if and only if ‖ · ‖ is linear. However, this
is by the triangle inequality only the case if fij(R(x)) are all contained in the
same 1-dimensional subspace. Thus equality implies that fij(R(x)) = fij(x)
or fij(R(x)) = −fij(x) and hence by continuity f = f̄ .
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Using once more Jensen’s inequality applied to the convex function y =√
2Λ + x2, we obtain

(78) Δf̄ = Δf =
√

2Λ + ||fij ||2 ≥
√

2Λ + ||fij ||
2 ≥

√
2Λ + ||f̄ij ||2,

so that

(79) (Δf̄)2 − ||f̄ij ||2 ≥ 2Λ,

with equality if and only if the Hessian of f(R(x)) is equal to the Hessian
of f̄(x), for all rotations R ∈ SO(3), which is the case if and only if f = f̄
(since two function with equal Hessians differ by a linear function, and f − f̄
is bounded). In summary, we have:

Lemma 1. Given a function f which is approximately spherically symmetric
at infinity and satisfies

(80) (Δf)2 − ||fij ||2 = 2Λ,

its spherical symmetrization f̄ satisfies

(81) (Δf̄)2 − ||f̄ij ||2 ≥ 2Λ,

with equality if and only if f is spherically symmetric everywhere.

Our next step to prove Theorem 5 is based on the identity

∇ ·
(

Δf ∇f − Hess f(∇f, ·) − Λ
3 · 2r∂r

)
= (fiifj − fijfi)j −

Λ
3 Δ(r2)(82)

= (Δf)2 − ||fij ||2 − 2Λ,(83)

since Δ(r2) = Δ(x2 + y2 + z2) = 6.
Using the assumption that f is approximately spherically symmetric at

∞, we obtain for any δ > 0, there exists an r1 > 0 such that for any R ≥ r1,
we have: ∫

BR

[
(Δf̄)2 − ||f̄ij ||2 − 2Λ

]
dV(84)

=
∫
SR

〈
Δf̄ ∇f̄ − Hess f̄(∇f̄ , ·) − Λ

3 · 2r∂r, ∂r
〉

dA(85)

=
∫
SR

〈
Δf∇f − Hess f(∇f, ·) − Λ

3 · 2r∂r, ∂r
〉

dA(86)
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−
∫
SR

〈
Δ(f̄ − f)∇(f̄ − f) − Hess(f̄ − f)(∇(f̄ − f), ·), ∂r

〉
dA(87)

+
∫
SR

〈
Δ(f̄ − f)∇f̄ + Δf̄∇(f̄ − f), ∂r

〉
dA(88)

−
∫
SR

〈
Hess(f̄ − f)(∇f̄ , ·) + Hess f̄(∇(f̄ − f), ·), ∂r

〉
dA(89)

Hereby line (87) can be bounded by δ by approximate spherical symmetry.
The first term of line (88) vanishes since∫

SR

〈
Δ(f̄ − f)∇f̄ , ∂r

〉
dA(90)

= ∂rf̄

∫
SR

(ΔSR + 2
R
∂r + ∂r,r)(f̄ − f) dA(91)

= ∂rf̄( 2
R
∂r + ∂r,r)

∫
SR

f̄ − f dA = 0.(92)

The second term vanishes in a similar fashion. For line (89), observe

Hess(f̄ − f)(∇f̄ , ∂r) = ∂r,r(f̄ − f)∂rf̄

and
Hess f̄(∇(f̄ − f), ∂r) = ∂r,rf̄∂r(f̄ − f).

Since ∂rf̄ , ∂2
r,rf̄ are constant on SR and we can move ∂2

r,r, ∂r outside the
integral, line (89) vanishes too. Hence we obtain∫

BR

[
(Δf̄)2 − ||f̄ij ||2 − 2Λ

]
dV(93)

≤
∫
SR

〈
Δf∇f − Hess f(∇f, ·) − Λ

3 · 2r∂r, ∂r
〉

dA + δ(94)

=
∫
BR

[
(Δf)2 − ||fij ||2 − 2Λ

]
dV + δ = δ.(95)

By the lemma, the original integrand is always nonnegative, so the integral
increases with R; thus, δ is a bound on the original integral for every R > 0.
Since δ > 0 was arbitrary, the integral vanishes for each R > 0, showing
(Δf̄)2 − ||f̄ij ||2 − 2Λ ≡ 0 by smoothness. By the lemma again, then, f is
spherically symmetric.

A standard computation yields that the eigenvalues of the Hessian of a
spherically symmetric function f(r) are frr, fr/r and fr/r again. Hence,

2Λ = (Δf)2 − ||fij ||2(96)
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=
(
frr + 2 fr

r

)2
−

(
f2
rr + 2 f2

r

r2

)
(97)

= 4
r
fr frr + 2

r2 f
2
r(98)

= 2
r2

(
rf2

r

)
r

(99)

which implies that

(100) f =

√
Λ
12 r2 + c,

for some constant c, since fr = 0 at r = 0 for f to be smooth. This proves
that f is unique up to the constant c and completes the proof of Theorem
5.

We now use this theorem to deduce, in the Λ > 0 case, the existence
and uniqueness of a vacuum solution to FFR that is spherically symmetric at
infinity.

Corollary 2. Suppose the cosmological constant Λ > 0. Then there exists
a unique vacuum solution to the FFR equations, equations (34) and (35),
among solutions which are spherically symmetric at infinity.

Proof. For existence, take the solution (f, ζ, η) to the elliptic equations pro-
duced in theorem 5 and consider that ζ ≡ 0, so ∇ · ζ ≡ 0 and theorem 2
implies that this gives rise to a vacuum solution (ω, η), with ω = df , to the
FFR equations, equations (34) and (35). This solution is spherically symmet-
ric.

For uniqueness, we show that any vacuum solution (ω, η) to FFR that
is spherically symmetric at infinity induces a smooth vacuum solution to the
FFR equations in elliptic form satisfying the hypotheses of Theorem 5. Let
ω = ωSS + ωC , where ωSS = ωSS(r)dr is spherically symmetric and ωC has
compact support, which is possible since ω is spherically symmetric outside
a finite radius. Then we may define f = fSS + fC , where dfSS = ωSS and
ΔfC = ∇·ωC are solved, respectively, by integrating f ′

SS(r) = ωSS(r) and by
convolving with the Green’s function Φ for the Laplacian in R

3. By Theorem
2, the triple (f, ζ, η) with ζ = ω − df = ωC − dfC , which satisfies ∇ · ζ = 0,
is a vacuum solution to the elliptic FFR equations, equations (39), (40), and
(41).

By spherical symmetry at infinity and the maximum principle, η is con-
stant, so since our notion of uniqueness of (ω, η) is equality up to an overall
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positive multiplicative constant, we may take η ≡ 1 (recall that η is restricted
to η > 0), and in particular boundary condition (68) is satisfied. We claim
that ζ = ω − df is identically zero; since η is constant, we have that Δζi = 0
by equation (40), so it suffices (as in the proof of Theorem 5) to show ζ → 0
at infinity, or that boundary condition (67) is satisfied. Outside the support
of ωC , we have ζ = −dfC , where as noted before

(101) fC(x) =
∫
R3

Φ(y)(∇ · ωC)(x− y)dy.

Since ωC is smooth and has compact support, standard analysis arguments
yield that

∇fC(x) =
∫
R3

Φ(y)(∇(∇ · ωC))(x− y)dy =
∫
R3

Φ(x− y)(∇(∇ · ωC))(y)dy,
(102)

so ‖ζ‖ = ‖dfC‖ = ‖∇fC‖ → 0 as ‖x‖ → ∞ since, in the last integral above,
Φ(x− y) decays like ‖x− y‖−1 and y can be restricted to the support of ωC .
Thus, ζ ≡ 0.

Finally, this implies that ω = df , so f is spherically symmetric at infinity
because ω is, and hence f is approximately spherically symmetric at infinity.
By Theorem 5, then, f is of the form given in equation (100), showing ω =
df =

√
Λ
3 rdr, establishing uniqueness.

Theorem 1 has now been proved: it follows from corollaries 1 and 2
and Theorems 3 and 4. Now that we have proved that Λ > 0 implies that
there exists a unique vacuum solution to the FFR equations with spherical
symmetry at infinity, we will show that Λ = 0 fails at uniqueness and Λ < 0
fails at existence.

Lemma 2. Suppose the cosmological constant Λ = 0. Then there exist many
vacuum solutions to the FFR equations, equations (34) and (35), among so-
lutions which are spherically symmetric at infinity.

Proof. By Theorem 2, we obtain a solution to the FFR equations, equations
(34) and (35), from each solution to the FFR equations in elliptic form, equa-
tions (39), (40), and (41), which for μ = 0, J = 0, and Λ = 0 are

(Δf)2 − ||Qij ||2 = 0(103)

Δζi = −2
η

(Δf · δij −Qij) ηj(104)

(Δf · δij −Qij) ηij = 0(105)
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where Qij = fij + 1
2(ζi,j + ζj,i) and we require that limx→∞∇· ζ = 0. Further,

any (f, ζ, η) of the form

f = 0(106)
ζ = 0(107)
η = any function which is spherically symmetric at infinity(108)

is a vacuum solution to the above system which is spherically symmetric at
infinity.

Clearly, the proof of the above lemma even gives many examples of solu-
tions which satisfy the physically reasonable boundary conditions defined in
Section 4.3.
Lemma 3. Suppose the cosmological constant Λ < 0. Then there does not
exist a vacuum solution to the FFR equations, equations (34) and (35), among
solutions which are spherically symmetric at infinity.
Proof. Suppose there exists a vacuum solution which is spherically symmetric
at infinity. We will now derive a contradiction, proving that such a solution
is not possible.

As in the proof of Corollary 2, given such a solution (ω, η) to the FFR
equations, we may write ω = ωC + ωSS where ωC has compact support and
ωSS is spherically symmetric, and further we may find a spherically symmetric
function fSS such that ωSS = dfSS , so that ω = dfSS outside the support of
ωC . Now writing f = fSS , we have that, as in the derivation of the FFR
equations in elliptic form, substituting ω = df in the FFR equations with
μ = 0, J = 0 gives

(Δf)2 − ||fij ||2 = 2Λ η2(109)
(Δf · δij − fij) ηj = 0(110)

outside the support of ωC , say for r ≥ r0; we now restrict our considerations
to this region. Simplifying equation (109) as done in equations (96) to (99),
we get

(111)
(
rf2

r

)
r

= Λr2η2 < 0

which shows that rf2
r is a strictly decreasing function of r since Λ < 0 and

smooth solutions require η > 0. Since it is true in general that rf2
r ≥ 0, this

further shows that rf2
r can never equal zero. Thus,

(112) fr 	= 0.
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On the other hand, equation (110) (which is really three equations, one for
each 1 ≤ i ≤ 3) implies that

(113) 0 =
[(

frr + 2
r
fr

)
− frr

]
ηr = 2

r
frηr

so that

(114) ηr = 0

and hence η = c, for some constant c > 0 on our region of interest. Inserting
this back into equation (111) we get

(115)
(
rf2

r

)
r

= Λc2r2 < 0,

which is clearly not possible since the integral of the right hand side will
eventually make rf2

r negative, a contradiction. Hence, when Λ < 0, there does
not exist a vacuum solution which is spherically symmetric at infinity.

6. Explicit solutions to flatly foliated relativity

Now that we have established some of the basic theory of FFR, we present
some of the most important explicit solutions of the theory. After we repro-
duce the results of GR for cosmological spacetimes describing the big bang
and the accelerating expansion of the universe, we show how the Schwarzschild
spacetime metric is a distributional solution to the FFR equations, where a
finite amount of matter is concentrated at the origin as a Dirac-delta distri-
bution on each flat Euclidean slice.

6.1. Friedmann–Lemaître–Robertson–Walker spacetimes

FFR is consistent with the standard FLRW cosmological spacetimes of GR,
but with the requirement that the curvature of each constant time slice is k =
0. These spacetimes, along with the fact that observations are in agreement
with the hypothesis k = 0 [1], are one of the main motivations for FFR.

The usual form of these spacetime metrics, in spherical coordinates, is

g = −dt2 + a(t)2δR3(116)
= −dt2 + a(t)2

(
dR2 + R2dσ2

)
,(117)
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where dσ2 = dθ2 + sin(θ)2dφ2 is the metric on the unit sphere. As usual, a(t)
represents the relative linear size of the universe as a function of time. To
convert the above form to the standard form for FFR as in equation (1), we
define a new coordinate r = a(t)R, which implies

R = r

a(t)(118)

a(t)dR = dr −H(t) r dt,(119)

where

(120) H(t) = a′(t)
a(t)

is the “Hubble constant,” which is actually a function of time. Hence, in (t, r)
coordinates, the spacetime metric is

(121) g =
(
−1 + H(t)2r2

)
dt2 −H(t) r (dr ⊗ dt + dt⊗ dr) + dr2 + r2dσ2,

where we note that the last two terms are the flat metric on R3 in spherical
coordinates. Hence, this spacetime metric is in the form of equation (1) with
η = 1 and ω = H(t) r dr. Equivalently, in our elliptic coordinates,

f = 1
2 H(t) r2 = 1

2 H(t) (x2 + y2 + z2)(122)

ζ = 0(123)
η = 1.(124)

Plugging this into equations (40) and (41) just gives J = 0, as is true in the
FLRW models. Since

fij = H(t) δij(125)
Δf = 3H(t),(126)

equation (39) implies that

16πμ + 2Λ = (Δf)2 − ||fij ||2(127)
= 9H(t)2 − 3H(t)2,(128)

which yields
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The First Friedmann Equation

(129) 8πμ + Λ
3 = H(t)2,

with k = 0. Note that μ ≥ 0 and Λ > 0 implies that H(t) 	= 0, so that once
the universe starts expanding, it can never stop. The above equation is also
the statement that, in this model with k = 0, the density of the universe is
always at the critical density.

FLRW spacetimes are assumed to be filled with matter whose stress en-
ergy tensor is homogeneous and isotropic on each constant time slice. The
implication of this assumption is that the stress energy tensor for each mat-
ter field has the form

(130) T =

⎡
⎢⎢⎢⎣
μ(t) 0 0 0
0 P (t) 0 0
0 0 P (t) 0
0 0 0 P (t)

⎤
⎥⎥⎥⎦ = −μg + (μ + P )δR3 ,

where the matrix represents the components of T with respect to the or-
thonormal frame {n, ∂1, ∂2, ∂3}. As usual, we assume ∇·T = 0, and in lemma
4 we will prove the well known result, but using our language, that this implies

The Conservation Equation

(131) μ′(t) = −3H(t)(μ + P )

for each matter field.
Together, equations (129) and (131) form a system of ordinary differential

equations whose solutions very accurately model the observed expansion of
the universe [7], [12]. Equation (129) determines the rate of change of the
relative size of the universe as represented by a(t) and equation (131) deter-
mines the rate of change of the matter density of each matter field (typically
by assuming that for each individual matter field, P = wμ, for some con-
stant w determined by the nature of the matter field). Thus, FFR derives the
same equations and hence gives exactly the same results as GR for FLRW
spacetimes with k = 0.

We comment that equations (129) and (131) also imply the second Fried-
mann equation, for which we have no need. It is worth noting that we can
not derive the second Friedmann equation the usual way by taking the trace
of the Einstein equation G = 8πT −Λg. This is because, as described in Sec-
tion 3.2, in FFR we only have equations (28) and (29). However, we still get
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all that we need in this case from the fact that the divergence of the stress
energy tensor is still zero. This suggests ∇ · T = 0 is very important for FFR
in other settings as well, especially when we want to understand how matter
is conserved.

Equation (131) also implies conservation laws for matter fields depending
on how their pressure relates to their energy density. Let P = wμ, for some
−1 ≤ w ≤ 1 (so as not to violate the dominant energy condition). For ex-
ample, the cosmological constant (a.k.a. dark energy) has w = −1, cold dark
matter and regular baryonic matter moving at slow speeds are approximated
with w = 0, and electromagnetic radiation is approximated by w = 1/3, as
explained in standard texts [14]. Then

(132) μ(t) · a(t)3(1+w) = constant.

The time derivative of the above conservation identity is equivalent to equa-
tion (131).

Lemma 4. ∇ · T = 0 implies equation (131).

Proof. Since the covariant derivative of a metric is always zero, the hardest
part of taking the divergence of equation (130) is computing the divergence
of δ = δR3 . Note that

(∇ · δ) (n) =
3∑

α=0
(∇∂αδ) (∂α, n)

=
3∑

α=0
∂α (δ(∂α, n)) − δ(∇∂α∂α, n) − δ(∂α,∇∂αn)

= −
3∑

j=1
δ(∂j ,∇∂jn) = −

3∑
j=1

g(∂j ,∇∂jn) =
3∑

j=1
g(∇∂j∂j , n)

= − tr k = −Δf = −3H(t).(133)

Hence,

0 = (∇ · T ) (n)
= −dμ(n) + (μ + P ) (∇ · δ) (n)
= −μ′(t) + (μ + P ) (−3H(t)) ,(134)

which proves equation (131).
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6.2. The Schwarzschild solution

The Schwarzschild solution to GR may, in a precise sense, almost be given
a flat foliation via the Gullstand-Painlevé coordinates to make it a solution
to FFR. While this spacetime has Λ = 0 and hence does not satisfy the
hypotheses invoked in Section 4, we will see that the mean curvature vector
associated to the foliation (or equivalently, ∇·ω = Δf) is everywhere nonzero,
so we may still adopt convention 1. Further, the Schwarzschild spacetime with
this foliation and convention is a limit of qualitatively similar spacetimes that
are honest Λ > 0 solutions to FFR, so we understand the properties of these
by studying the Schwarzschild case.

Understanding the Schwarzschild solution in FFR is very instructive in
several regards. For instance, the FFR solution for the Schwarzschild space-
time never enters the black hole and so avoids the black hole singularity. In
other words, FFR does not attempt to solve for the spacetime metric in the
vicinity of the Schwarzschild black hole singularity. This suggests the possi-
bility that the FFR equations might have a nice existence theory.

While the flat foliation does enter the white hole and intersects the white
hole singularity, FFR treats this singularity as a point particle with a Dirac-
delta matter distribution at the origin of each flat three dimensional Euclidean
space. In fact, while curvatures blow up at the white hole singularity, the FFR
equations are still solvable at the singularity in the distributional sense. In
addition, one may perturb away the Schwarzschild singularity entirely, if one
wishes, within the class of spherically symmetric spacetimes by convolving
the matter density with a bump function. In doing so, the topology changes:
the punctured three dimensional flat slices of the Schwarzschild spacetime
become complete three dimensional Euclidean spaces.

Although we are about to show how a Schwarzschild white hole can be
thought of as a point particle with a Dirac-delta matter distribution at the
origin, this does not mean that this represents a physical matter field satis-
fying the dominant energy condition. Since inside a white hole r is always
increasing along future timelike curves, physical matter fields focused at a
point would be expected to be unstable and fly apart very quickly.

This interpretation of the Schwarzschild white hole spacetime as a static
point particle raises the question of what a moving point particle would look
like. It also suggests the possibility that point particles, complete with their
own dynamics, might be a rigorous concept which exists in FFR, completely
analogous to the Newtonian n-body problem. If so, this could be a way to
approximately model stars, planets, and moons, and perhaps even binary
pulsars.
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The first part of this section presents the Schwarzschild spacetime in
three coordinate systems: Kruskal coordinates, static coordinates, and then
Gullstrand–Painlevé coordinates. The Gullstrand–Painlevé coordinates are a
special case of FFR coordinates, equation (1), when solving the FFR equa-
tions, equations (39), (40), and (41), in the distributional sense with μ = m·δ0,
J = 0, and Λ = 0, where δ0 is the Dirac-delta distribution with integral one,
located at the origin. We then show how to understand this solution as the
limit of solutions with smooth matter densities μ which are concentrating at
the origin, and how the solution changes with a positive cosmological con-
stant.

6.2.1. Coordinate chart representations of the Schwarzschild space-
time The three most important coordinate chart representations of the
Schwarzschild spacetime, for our purposes, are listed below:

Kruskal Coordinates

(135) g = F (r) (du⊗ dv + dv ⊗ du) + r2dσ2

Static Coordinates

(136) g = −
(

1 − 2m
r

)
dT 2 +

(
1 − 2m

r

)−1
dr2 + r2dσ2

Gullstrand–Painlevé Coordinates for Flatly Foliated Relativity

(137) g = −
(

1 − 2m
r

)
dt2 −

√
2m
r

(dt⊗ dr + dr ⊗ dt) + dr2 + r2dσ2

where

F (r) = 8m2

r
exp

(
1 − r

2m

)
,(138)

uv = f(r) = (r − 2m) exp
(

r

2m − 1
)
,(139)

and dσ2 = dθ2 + sin(θ)2dφ2(140)

is the metric on the unit sphere of radius one, in spherical coordinates. Techni-
cally, we have replaced t with −t in the usual form of the Gullstrand–Painlevé
coordinates to be compatible with our arrow of time that requires the mean
curvature vector of the flat slices to point in the direction of the future. The
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effect of this time reversal is that, whereas the usual Gullstrand–Painlevé co-
ordinates foliate the exterior region of Schwarzschild and the inside of the
black hole, our coordinates foliate the exterior region of Schwarzschild and
the inside of the white hole, as depicted in Figure 1.

With our conventions, Kruskal coordinates are (u, v, θ, φ) (where r =
f−1(uv)), static coordinates are (T, r, θ, φ), and Gullstrand–Painlevé coordi-
nates are (t, r, θ, φ). Note that there is some overlap in these coordinates. For
example, all three sets of coordinates use the same angle coordinates (θ, φ)
and any spherically symmetric sphere with radius coordinate r is always de-
fined to have area 4πr2. Finally, the isometric transformations between these
coordinate charts is summarized by the equations

√
f(r) exp

(
− T

4m

)
= u =

(√
r +

√
2m

)
exp

(
r − t

4m −
√

r

2m − 1
2

)
(141)

√
f(r) exp

(
T

4m

)
= v =

(√
r −

√
2m

)
exp

(
r + t

4m +
√

r

2m − 1
2

)
(142)

which imply that

(143) T = 2m
(
log

(√
r −

√
2m

)
− log

(√
r +

√
2m

))
+
√

8mr + t.

These relationships are depicted graphically in Figure 1.

6.2.2. The Schwarzschild spacetime as a distributional solution to
the FFR equations Note that the above Gullstrand–Painlevé coordinates
fit the form of our flatly foliated spacetimes in equation (1) with η = 1 and
ω =

√
2m
r dr, which is equivalent to

f = 2
√

2mr(144)
ζ = 0(145)
η = 1.(146)

The above values for f , ζ, and η are, as one would expect, a solution to
equations (39), (40), and (41) with μ = 0, J = 0, and Λ = 0, away from
the singularity at r = 0, since the Schwarzschild spacetime is vacuum with
zero cosmological constant. However, if we include the singularity, we get
something importantly different.
Theorem 6. The above values for f , ζ, and η are a solution in the distribu-
tional sense to equations (39), (40), and (41), where

μ = m · δ0(147)
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Figure 1: The images above show how the unit mass Schwarzschild spacetime
(Kruskal coordinates on the left and static coordinates on the right) may be
foliated by flat three dimensional Euclidean spaces. In both cases, our arrow
of time, defined by the mean curvature vector, points up, the orthogonal speed
of the foliation η = 1, and −∞ < t < ∞, with the integer valued constant t
slices drawn and the t = 0 slice colored blue. Note that the foliation on the
left, while it enters the white hole, never enters the black hole, even though
it continues to flow into the future, perpendicularly to each slice, with speed
one.



Flatly foliated relativity 743

J = 0,(148)

Λ = 0, and δ0 is the Dirac delta distribution with integral one, located at the
origin.

Comment Note that while Gullstrand–Painlevé coordinates require r 	= 0,
the FFR equations have no such restriction. The equations are true in the
distributional sense for all r. Hence, we have effectively filled in the puncture
r 	= 0, thereby changing the topology of each constant time slice to that of
R3. Even so, this is not strictly a solution to FFR in the sense defined in
Section 3.2, as the associated metric cannot be smoothly extended to r = 0.

Proof. Since ζ = 0, η = 1, and J = 0, equations (40) and (41) are automat-
ically satisfied. Hence, all we need to do is to verify equation (39), which in
this case is the distributional equation

(149) (Δf)2 − ||fij ||2 = 16πm · δ0.

Let φ be any smooth test function with compact support. Then

∫
R3

φ
[
(Δf)2 − ||fij ||2

]
dV =

∫
R3

φ ∇ · (Δf df − Hess f(∇f, ·)) dV

(150)

= −
∫
R3

〈dφ , Δf df − Hess f(∇f, ·)〉 dV(151)

= −
∫
R3

〈
dφ , (frr + 2

r
fr)fr dr − frr fr dr

〉
dV(152)

= −
∫ ∞

0

〈
dφ̄ ,

2
r
f2
r dr

〉
4πr2dr(153)

= −
∫ ∞

0
φ̄r · 16πm dr(154)

= 16πm · φ̄(0)(155)
= 16πm · φ(0)(156)

where φ̄ is the spherical symmetrization of φ around the origin. This proves
equation (149).

Comment Since the FFR equations (equations (39), (40), and (41)) may be
written in divergence form (equations (42), (43), and (44)), weak solutions
in the distributional sense to these equations may be defined. To be more
precise, the integrals in equations (150) are defined to equal the integral in
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equation (151). A weak solution, then, is any solution to the equations which
holds true when integrated against any smooth test function with compact
support, as above.

6.2.3. The spherically symmetric, J = 0 case Another way to under-
stand the Schwarzschild spacetime as a distributional solution to the elliptic
FFR equations is to exhibit it as a limit of smooth solutions. To that end,
here we find all smooth J = 0 solutions to FFR in the spherically symmetric
case when the cosmological constant Λ > 0. Recall that in the spherically
symmetric case, we may always solve ω = df , so it suffices to consider the
elliptic FFR equations, equations (39), (40), and (41), with J = 0, ζ ≡ 0.
As we’ve seen before, spherical symmetry and ellipticity of the last equation
imply that η is constant, so without loss of generality we may rescale the
coordinate time t such that η ≡ 1. Hence, we are left with only the first
equation, which becomes

(157) (Δf)2 − ||fij ||2 = 16πμ + 2Λ.

Reducing the left hand side of this result as in equations (96) to (99), we have

(158) 2
r2

(
rf2

r

)
r

= 16πμ + 2Λ.

It then follows that

(159) rf2
r = 2M(r) + Λ

3 r
3

where by symmetry and smoothness we have imposed fr(0) = 0 and where

(160) M(r) =
∫ r

0
μ(ρ) · 4πρ2 dρ,

which we recognize as the integral of the energy density μ inside the sphere
of radius r. Hence, it follows that, up to an irrelevant integration constant,

(161) f(r) =
∫ r

0

(Λ
3 ρ

2 + 2M(ρ)
ρ

)1/2
dρ.

Now suppose that the cosmological constant is zero (the above is still a
solution in this case, though we no longer expect it is unique), and further
that μ(r) ≥ 0 is smooth and M(r) = m for r > δ, for some constant m. Then
in the limit as δ goes to zero, equation (161) implies that f(r) converges
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to 2
√

2mr, the Schwarzschild white hole solution. Hence, the Schwarzschild
spacetime may be realized as the limit of smooth FFR spacetimes with zero
cosmological constant and J = 0, in the limit as the matter density μ(r)
concentrates at the origin.

More generally, from equations (1) and (161) we conclude that the general
form of the metric for a spherically symmetric, J = 0 FFR solution is

g = −
(

1 − Λ
3 r

2 − 2M(r)
r

)
dt2 −

√
Λ
3 r

2 + 2M(r)
r

(dt⊗ dr + dr ⊗ dt)

(162)

+ dr2 + r2dσ2.

Compare this result to the Schwarzschild case of equation (137). Setting
M(r) = m in this equation then gives the analog to the Schwarzschild solu-
tion with cosmological constant, sometimes called the deSitter Schwarzschild
spacetime (the above metric with M(r) = m is expressed in slightly differ-
ent coordinates than the standard presentation of the deSitter Schwarzschild
metric – the required change is analogous to that from static coordinates to
Gullstrand-Painlevé coordinates seen in Section 6.2.1). If the restriction of μ
to each Euclidean slice is compactly supported, equation (162) agrees with
the deSitter Schwarzschild solution outside the support of μ and tends to-
wards the unique vacuum solution of Section 5 as r → ∞. One can make this
more general by allowing μ to be a function of time as well, in which case
M(r) simply becomes M(r, t) in the obvious way.
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