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A flow approach to Bartnik’s static metric extension
conjecture in axisymmetry

Carla Cederbaum, Oliver Rinne, and Markus Strehlau

This paper is dedicated to Robert Bartnik on the occasion of his 60th
birthday. Happy Birthday, Robert!

Abstract: We investigate Bartnik’s static metric extension con-
jecture under the additional assumption of axisymmetry of both
the given Bartnik data and the desired static extensions. To do
so, we suggest a geometric flow approach, coupled to the Weyl–
Papapetrou formalism for axisymmetric static solutions to the Ein-
stein vacuum equations. The elliptic Weyl–Papapetrou system be-
comes a free boundary value problem in our approach. We study
this new flow and the coupled flow–free boundary value prob-
lem numerically and find axisymmetric static extensions for axi-
symmetric Bartnik data in many situations, including near round
spheres in spatial Schwarzschild of positive mass.
Keywords: General Relativity, axisymmetry, Weyl–Papapetrou
coordinates, geometric flow, free boundary value problem.

1. Introduction

In [5], Robert Bartnik introduced within the theory of General Relativity a
new notion of quasi-local “mass” or “capacity” for bounded spatial regions
in an initial data set in a given spacetime. This definition, which is now re-
ferred to as the Bartnik mass, is given as an infimum over the ADM masses
of all “admissible” asymptotically flat initial data set extensions of the given
bounded region – with no reference to the spacetime in which the region is
contained to begin with. Bartnik then conjectured that the infimum should
be attained by a stationary, vacuum, asymptotically flat initial data set that
attaches to the given bounded region in a suitably regular manner. This leads
to the related question of whether or not such stationary, vacuum, asymp-
totically flat initial data sets extending the given region in a suitably regular
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manner will generically exist. This question of existence of stationary “ex-
tensions” of bounded spatial regions remains open until today to the best
knowledge of the authors.

More is known when one restricts to the time-symmetric (or Riemannian)
case, as we will do here. In the time-symmetric context, a bounded spatial re-
gion is described by a smooth compact Riemannian 3-manifold (Ω, γ̆) with
non-empty boundary ∂Ω �= ∅. For simplicity and definiteness, we will assume
that this boundary is diffeomorphic to S

2, ∂Ω ≈ S
2, has positive Gaussian

curvature K > 0, and positive mean curvature H > 0 (with respect to the
outward pointing unit normal).1 Furthermore, we assume that the scalar cur-
vature Rγ̆ ≥ 0 is non-negative, or in other words that the (Riemannian)
dominant energy condition is satisfied. In the time-symmetric setting, the
question of existence of stationary extensions reduces to a question that is
known as Bartnik’s static metric extension conjecture: Given a bounded spa-
tial region (Ω, γ̆) as described above, does there always exist an asymptotically
flat Riemannian 3-manifold (M, γ), called the static metric extension, such
that (Ω, γ̆) ↪→ (M, γ) isometrically, (M, γ) is smooth except possibly across
∂Ω, and is (standard) static vacuum in the sense that there exists a smooth
lapse function N : M\ Ω → R

+ with N → 1 suitably fast in the asymptotic
end, so that the static vacuum Einstein equations

N Ricγ = ∇2
γN(1.1)

�γN = 0(1.2)

hold on M\Ω. Here, Ricγ denotes the Ricci curvature tensor of γ, and ∇2
γ and

�γ denote the Hessian and the Laplacian with respect to γ, respectively. Note
that the static vacuum Einstein equations (1.1), (1.2) imply scalar flatness of
(M\Ω, γ), Rγ = 0, such that the (Riemannian) dominant energy condition is
automatically satisfied in the extension (M, γ), away from ∂Ω. Furthermore,
one requests that (M, γ) be regular enough across ∂Ω so that the scalar
curvature of γ can be assumed to be distributionally non-negative.

Depending on the precise definition of Bartnik mass one uses, additional
conditions will need to be requested of the static extension in order to connect
the static metric extension problem to the search of a minimizer of Bartnik’s
quasi-local mass in the time-symmetric context. One such condition would be
that ∂Ω needs to be area outer minimizing in (M\ Ω, γ) or that there shall
be no minimal surfaces in (M\ Ω, γ) (homologous to ∂Ω).

1Our convention for the mean curvature is such that the round spheres of radius
r in Euclidean 3-space will have mean curvature H = 2

r with respect to the outward
unit normal.
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It has become customary to study the following simplified “boundary ver-
sion” of Bartnik’s static metric extension conjecture, replacing the isometric
embedding condition with suitable regularity across ∂Ω by a boundary condi-
tion compatible with the distributional non-negativity condition on the scalar
curvature. This is the conjecture we will address in this paper.

Conjecture and Definition (Bartnik’s static metric extension conjecture,
boundary version). Let (Σ ≈ S

2, g) be a smooth Riemannian 2-manifold with
positive Gaussian curvature, and let H : Σ → R

+ be a smooth positive func-
tion. The tuple (Σ, g,H) is called Bartnik data. Then there conjecturally is
a smooth Riemannian 3-manifold (M, γ) with boundary ∂M and a smooth,
positive lapse function N : M → R

+ such that the static system (M, γ,N)

1. satisfies the static vacuum Einstein equations

N Ricγ = ∇2
γN

�γN = 0,

2. is asymptotically flat, i.e. there exists a smooth diffeomorphism ϕ =
(xi) : M\K → R

3 \B, with B ⊂ R
3 some bounded, open ball, K ⊂ M

is compact, and

(ϕ∗γ)ij = δij + O2(r−1),
ϕ∗N = 1 + O2(r−1)

as r :=
√

(x1)2 + (x2)2 + (x3)2 → ∞, where δij denotes the Euclidean
metric on R

3 \B,
3. and has inner boundary (∂M, γ|∂M) isometric to (Σ, g) with induced

mean curvature H with respect to the unit normal pointing to the asymp-
totic end in M.

If (M, γ,N) exists, we call it a static metric extension of (Σ, g,H).

Remarks. Let us make the following remarks.

• We do not request any “outward minimizing property” nor any “no min-
imal surfaces condition”. We do, however, consistently with either of
those assumptions, assume that the lapse function N be positive.

• We do not explicitly request that there be a fill-in (Ω, γ) with bound-
ary ∂Ω ≈ Σ, such that (∂Ω, γ̆|∂Ω) is isometric to (Σ, g) and has mean
curvature H. For a more thorough discussion on fill-ins, see e.g. [18].

• We do not make any claim about uniqueness of the static metric exten-
sion (M, γ,N).
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Clearly, if (M, γ,N) is a static system satisfying (1), (2) above and is
such that ∂M is diffeomorphic to S

2, has positive Gaussian curvature K > 0,
and positive mean curvature H > 0 with respect to the unit normal pointing
to the asymptotically flat end, then its induced Bartnik data (∂M, g,H)
naturally possess the static metric extension (M, γ,N). Of course, we do not
know if this is the only static metric extension of (∂M, g,H). Neither do
we know of an explicit method of reconstructing (M, γ,N) from the Bartnik
data (∂M, g,H) in general.

The static metric extension conjecture becomes much simpler, and indeed
a priori resolved, once one restricts one’s attention to spherically symmetric
Bartnik data (Σ, g,H), i.e. to the case where (Σ, g) is round, meaning iso-
metric to (S2, R2σ) with some radius R > 0 and σ denoting the canonical
metric on the unit sphere, and H > 0 is a constant. Such spherically symmet-
ric Bartnik data are always extended by the well-known Schwarzschild static
system of mass M∗, more precisely by (M, γ,N) given by

M = (R,∞) × S
2,

γ = N−2dr2 + r2σ,

N = N(r) =

√
1 − 2M∗

r
,

(1.3)

where the mass can be picked as the “Hawking mass” of the Bartnik data,

M∗ := mH = R

2

(
1 − H2R2

4

)
,(1.4)

see below. From (1.4), one recovers the Euclidean case H = 2
R , where N ≡ 1

and M∗ = 0. It is well-known [24] that the Schwarzschild static systems are
the only spherically symmetric solutions of the static vacuum Einstein equa-
tions (1.1), (1.2). A simple computation shows that the mass M∗ computed
in (1.4) is the only one that induces the given Bartnik data. In this sense, one
can say that static metric extensions are “unique in the category of spheri-
cally symmetric extensions”. Again, we do not know in general if there will
be an additional, non-spherically symmetric static metric extension of given
spherically symmetric Bartnik data.

Using a subtle implicit function theorem argument, Miao [20] showed that,
given Bartnik data (Σ, g,H) that are close to Euclidean unit round sphere
Bartnik data (S2, g = σ,H = 2) in a suitable Sobolev norm, and that pos-
sess a certain Z2 × Z2 × Z2-symmetry, there exists a static metric extension
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close to the Euclidean static system ((1,∞) × S
2, γ = dr2 + r2σ,N = 1) in

a suitably weighted Sobolev norm. This result easily generalises to Bartnik
data near round sphere data of arbitrary radius [23]. Later, this result was
generalised by Anderson–Khuri [2] and by Anderson [1] for more general per-
turbations of the flat background. A related result by the first author can
heuristically be stated as saying that the number of (functional) degrees of
freedom of Bartnik data coincides with the number of (functional) degrees
of freedom of asymptotically flat static vacuum systems, see [7, Sec. 3.4] for
details.

In this paper, we will address Bartnik’s static metric extension conjec-
ture in the form stated above under the additional assumption that both the
Bartnik data (Σ, g,H) and the desired static metric extensions (M, γ,N) be
“compatibly axisymmetric” in the following sense.

Definition (Axisymmetric Bartnik data and extensions). Let (Σ, g,H) be
Bartnik data. We say that (Σ, g,H) is axisymmetric if there is a Killing vector
field X on (Σ, g), LXg = 0, with closed orbits that keeps the mean curvature
H invariant in the sense that

X(H) = 0.(1.5)

Now let (M, γ,N) be a static metric extension of Bartnik data (Σ, g,H) that
are axisymmetric with respect to some field X on Σ. We say that (M, γ,N)
is a compatibly axisymmetric static metric extension of (Σ, g,H) or more
sloppily is axisymmetric if X extends to a smooth Killing vector field X̂ of
(M, γ), LX̂γ = 0, with closed orbits that keeps N invariant in the sense that

X̂(N) = 0.(1.6)

Naturally, the spherically symmetric situation discussed above is a spe-
cial case of this axisymmetric setup. Again, we only address the question of
whether, given axisymmetric Bartnik data, there exists a compatibly axisym-
metric static metric extension, and make no assertions about uniqueness nor
about (in)existence of non-axisymmetric extensions. We thus address the fol-
lowing conjecture which speaks about a smaller category but voices a stronger
expectation.

Conjecture 1 (Bartnik’s static metric extension conjecture in axisymmetry).
Let (Σ, g,H) be axisymmetric Bartnik data. Then there conjecturally exists a
compatibly axisymmetric static metric extension (M, γ,N).
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To the best knowledge of the authors, the notion of axisymmetry has not
yet been considered before in this context. We do not know of any reasons
derived from the original derivation of Bartnik’s static metric extension con-
jecture that leads to the expectation that axisymmetric Bartnik data should
possess axisymmetric extensions in general. This may in fact be an interesting
question to study in its own right. However, as we will see in Section 2, the
axisymmetric setup suggested here allows for the introduction of ideas and
tools that are very different from those that have been used in the generic
scenario and that allow us to achieve at least some positive numerical results.

In practice, we will make an additional assumption of compatible reflec-
tion symmetry of the Bartnik data and the desired static metric extensions in
order to simplify our analysis of Conjecture 1 across a plane orthogonal to the
axis of rotation, see Convention 3. Altogether, our symmetry assumptions im-
ply the Z2×Z2×Z2-symmetry assumption in Miao’s work [20]. Again, we do
not know of any reason why a static metric extension of reflection symmetric
Bartnik data should a priori be reflection symmetric.

Strategy To discuss Conjecture 1, we will draw on the work of Weyl [26]
and Papapetrou [21] and adopt global quasi-isotropic coordinates (r, θ, ϕ)
adapted to the axisymmetry of the desired static metric extension (M, γ,N).
In these so-called Weyl–Papapetrou coordinates, the static vacuum equa-
tions (1.1), (1.2) will take on a particularly simple form (2.5), (2.6) which
we will call the Weyl–Papapetrou equations. In particular, the coordinate ϕ
corresponding to the axial Killing vector field X̂ = ∂ϕ will drop out and the
equations as well as the remaining two scalar function variables (U, V ) sub-
ject to the Weyl–Papapetrou equations will be stated in a symmetry-reduced
form in the (r, θ)-half-plane orthogonal to the axis of symmetry. Due to the
compatible axisymmetry, the Bartnik data will symmetry-reduce to a curve Γ
in this half-plane which will take the role of a free boundary for the Weyl–
Papapetrou equations as we do not know the values of the coordinates (r, θ)
along Γ a priori.

We will then approach Conjecture 1 as follows: Interpret given axisym-
metric Bartnik data (Σ, g,H) as a free boundary curve Γ in the half-plane
orthogonal to the axis of symmetry of a potential compatibly axisymmet-
ric static metric extension. The metric g then prescribes Dirichlet boundary
values for the free field U along Γ (and V can be obtained from U by inte-
gration). The mean curvature H takes the role of a consistency condition to
ensure that the free boundary is located correctly. The asymptotic decay con-
ditions prescribe boundary values at infinity, while smoothness requirements
provide additional compatibility conditions along the axis. If we knew the
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position of the curve Γ in the Weyl–Papapetrou coordinates of the desired
extension it would in fact be straightforward to solve the Weyl–Papapetrou
equations and compute the solution (U, V ), allowing us to reconstruct the
desired compatibly axisymmetric static metric extension (M, γ,N).

However, we do of course not know Γ in Weyl–Papapetrou coordinates a
priori. We thus adopt a strategy that couples solving the Weyl–Papapetrou
equations to a geometric flow of the boundary curve: We guess an initial curve
Γ in Weyl–Papapetrou coordinates as well as an initial solution (U, V ) of the
Weyl–Papapetrou equations compatible with the asymptotic decay conditions
and the compatibility requirements along the axis. For these initial guesses,
we do not request that the geometry of the Bartnik data be consistent with
the inner boundary values of (U, V ). Then, we deform Γ by a geometric flow in
the background geometry of the half-plane initially given by the initial (U, V );
the chosen flow naturally depends on the geometry of the given Bartnik data.
At the same time, we compute the boundary values for (U, V ) induced by
the geometry of the given Bartnik data on the current (flowing) boundary
curve and solve the Weyl–Papapetrou equations to update the fields (U, V ).
The flow is chosen such that the flowing curve Γt shall ideally approach the
“true” position of the boundary curve in case this true position exists in the
constantly updated background described by (U, V ).

The paper is structured as follows We will first remind the reader very briefly
of some notions from Mathematical Relativity that will be used to formulate
our approach and to analyse the numerical results. Then, in Section 2, we
formulate our approach to the axisymmetric version of Bartnik’s static metric
extension conjecture 1, including the definition of the geometric flow we use
and the derivation of the free boundary value Weyl–Papapetrou problem. In
Section 3.1, we study some analytic and geometric properties of the flow in a
flat background. Then, in Section 4, we introduce and describe our numerical
schemes for the geometric flow and the free boundary value Weyl–Papapetrou
system. We present our numerical results in Section 5 and discuss them in
Section 6.

1.1. Some notions from mathematical relativity

In the numerical analysis of the geometric flow and the combined free bound-
ary value approach we suggest, we will use several notions of total and quasi-
local mass to gain some insight into the numerical solutions. We will briefly
discuss these notions and their relevant properties here, adjusted to the con-
text of asymptotically flat solutions (M, γ,N) of the static vacuum Einstein
equations (1.1), (1.2).
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In this context, the (total) Arnowitt–Deser–Misner (ADM) mass [3],
mADM, is given by

mADM := 1
16π lim

r→∞

∫
S2
r

(γii,j − γij,i)
xj

r
dA,(1.7)

where dA denotes the (Euclidean) area element on S
2
r , γij is short for (ϕ∗γ)ij ,

r2 = δijx
ixj , and commas denote partial (coordinate) derivatives. The ADM

mass is well-defined as the scalar curvature vanishes due to the static vacuum
Einstein equations (1.1), (1.2) and because of the asymptotic decay conditions
we assume, see [4, 9].

We will numerically compute two quasi-local masses, namely the Hawk-
ing mass mH [15] already alluded to above and the pseudo-Newtonian mass
mPN [7], which is genuinely only defined in the static realm. The Hawking
mass of Bartnik data (Σ, g,H) is given by

mH :=

√
|Σ|g

16π

(
1 − 1

16π

∫
Σ
H2 dAg

)
.(1.8)

Here, |Σ|g denotes the area of Σ and dAg the area element with respect to g.
It follows from Huisken–Ilmanen’s proof of the Penrose inequality [17] that

mH ≤ mADM(1.9)

holds for the Hawking mass of any Bartnik data (Σ, g,H) sitting inside an
asymptotically flat static system (M, γ,N) of ADM mass mADM in an area
outer minimizing way, meaning that any 2-surface Σ̃ ↪→ (M, γ) homologous
to Σ with induced metric g̃ will have area at least as big as that of Σ, |Σ|g ≤
|Σ̃|̃g. We will make use of this generalised Penrose inequality (1.9) to check
consistency of our numerical results, see Sections 5 and 6.

The pseudo-Newtonian mass mPN of Bartnik data (Σ, g,H) ↪→ (M, γ,N)
in an asymptotically flat static system (M, γ,N) is defined in [7] as

mPN := 1
4π

∫
Σ
ν(N) dAg,(1.10)

where ν denotes the unit normal to Σ in (M, γ) pointing to the asymptotically
flat end. A straightforward computation shows that the notion of pseudo-
Newtonian mass in fact coincides with that of Komar mass [19]. Moreover, it
follows from the divergence theorem that the pseudo-Newtonian mass mPN
of Bartnik data (Σ, g,H) ↪→ (M, γ,N) indeed coincides with the ADM mass
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mADM of the surrounding static system (M, γ,N) if (M, γ,N) solves the
static vacuum Einstein equations (1.1), (1.2):

mPN = mADM,(1.11)

see [7, Chapt. 4]. This fact will also be used to check consistency of our
numerical results; see Sections 5 and 6.

2. Formulation of the problem

From this section onwards, we will overline all functions and tensor fields cor-
responding to or induced by prescribed Bartnik data in order to distinguish
them from fields of the same geometric kind that we are flowing or other-
wise computing. For example, Bartnik data themselves will from now on be
denoted by (Σ, g,H).

Recall that a given axisymmetric surface (Σ ≈ S
2, g) can be rewritten in

terms of an arclength parametrisation of its rotational profile as

g = dτ 2 + λ
2
dφ2,(2.1)

where τ ∈ [0, L] denotes the arclength coupling parameter, φ ∈ [0, 2π) the
angle of rotation, L the total length of the rotation profile, and λ = λ(τ)
is a function induced by g determining the intrinsic geometry of (Σ, g). Ac-
cordingly, a given function H : Σ → R, can be understood as a function
H : [0, L] → R, slightly abusing notation. We will pursue this perspective for
Bartnik data (Σ, g,H) throughout the remainder of this work.

2.1. Axisymmetric static systems

Let us now consider the axisymmetric version of Bartnik’s static metric ex-
tension conjecture, Conjecture 1, using the global ansatz

γ = e−2U [e2V (dr2 + r2dθ2) + r2 sin2 θ dφ2](2.2)
N = eU(2.3)

in global Weyl–Papapetrou coordinates (r, θ, φ) for the axisymmetric metric
γ and lapse function N of a static system (M, γ,N), where ∂φ = X̂ denotes
the axial Killing vector field. This ansatz goes back to Weyl [26] and Papa-
petrou [21]. We identify the manifold M with a domain Ω× [0, 2π) with free
inner boundary of the coordinate range (R+ × [0, π])× [0, 2π). Here, the free
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functions U = U(r, θ) and V = V (r, θ), (r, θ) ∈ Ω ⊂ R
+ × [0, π], denote

smooth real valued functions that contain all the geometric information of
the given static system. Using this ansatz, we obtain the following standard
formula for the length λ of the axial Killing vector field ∂φ = X̂

λ = √
γφφ = e−Ur sin θ.(2.4)

The static vacuum Einstein equations (1.1), (1.2) for a metric and lapse
of the form (2.2), (2.3) reduce to the Weyl–Papapetrou equations

Δδ U = U,rr + 2
r
U,r + 1

r2 (U,θθ + cot θ U,θ) = 0,(2.5)

V,r = r sin2 θ U2
,r + 2 sin θ cos θ U,rU,θ −

sin2 θ

r
U2
,θ,

V,θ = −r2 sin θ cos θ U2
,r + 2r sin2 θ U,rU,θ + sin θ cos θ U2

,θ.

(2.6)

Here, Δδ denotes the 3-dimensional Euclidean Laplacian in spherical polar
coordinates. Observe that the first equation, (2.5), is a standard (Euclidean)
Laplace equation for U and thus linear second-order elliptic. It is decoupled
from the second set of equations and in particular does not depend on V . The
second set of equations, (2.6), gives the first partial derivatives of V in terms
of (first partial derivatives of) U .

To incorporate the asymptotic flatness condition imposed on static metric
extensions, we furthermore assume that the Weyl–Papapetrou coordinates
are consistent with the asymptotic flatness assumptions in the sense that the
asymptotic coordinates (xi) can be chosen such that they are the Cartesian
coordinates corresponding to the spherical polar coordinates (r, θ, φ). This
leads to the asymptotic decay conditions

U, V = O2(r−1) as r → ∞.(2.7)

Now assume we are given a smooth, 2-dimensional, compatibly axisym-
metric surface (Σ, g) isometrically sitting inside a static system (M, γ,N) of
the form (2.2), (2.3) that satisfies (2.5), (2.6). Clearly, Σ can be described in
Weyl–Papapetrou coordinates by a curve Γ = (r, θ) : I → R

+ × [0, π], where
I = [0, b] is some interval. For smoothness reasons, the curve Γ has to stay
away from the axis {z := r cos θ = 0} except at the endpoints, where it needs
to be horizontal. This horizontality condition is equivalent to requesting that
Γ satisfies the boundary conditions

θ(0) = 0, θ(b) = π,

r′(0) = 0, r′(b) = 0.
(2.8)
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If Γ = Γ(τ) = (r(τ), θ(τ)) is parametrised by arclength on I = [0, L] with
arclength parameter τ and total length L determined by (Σ, g), the metric
can — by compatibility of the intrinsic axisymmetry and the axisymmetry of
the surrounding static system — be written as

g = dτ 2 + λ2dφ2,(2.9)

with λ = λ(τ), or equivalently, in view of (2.1),

λ(τ) = λ(τ),(2.10)

which ensures that the embedding (Σ, g) ↪→ (M, γ,N) is indeed isometric,
for τ ∈ [0, L], φ ∈ [0, 2π), see (2.1). The restriction of U to the surface Σ can
then be expressed as

U ◦ Γ(τ) = − ln λ(τ)
r(τ) sin θ(τ)(2.11)

for τ ∈ [0, L] via (2.4). The condition that the surface (Σ, g) ↪→ (M, γ,N) be
isometrically embedded, or equivalently that the curve parameter τ indeed
be the arclength parameter, can also be stated as

�2 := e2(V−U)◦Γ(r′2 + r2θ′2) ≡ 1(2.12)

on [0, L], where a prime denotes a derivative w.r.t. τ . For notational simplicity,
we will from now on drop ◦Γ after U , V , etc. in expressions such as the one
in (2.12) and hope that no confusion will arise from this.

Taking a τ -derivative of (2.12) and using (2.6) to replace derivatives of V
with derivatives of U , we obtain the identity

0 = C := �−2�′ = e2(V−U)�−3(r′r′′ + rr′θ′2 + r2θ′θ′′)

+ �2
[
− r′U,r − θ′U,θ

+ (r sin θ U2
,r −

sin θ

r
U2
,θ)(r′ sin θ − rθ′ cos θ)

+ 2 sin θ U,rU,θ(r′ cos θ + rθ′ sin θ)
]
.

(2.13)

We will use this identity in the definition of the geometric flow below.
Finally, a straightforward computation shows that the induced mean cur-

vature H of (Σ, g) ↪→ (M, γ,N) with respect to the unit normal pointing to
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the asymptotically flat end can be expressed as a function H = H(τ) by

H = e2(V−U)�−3(−rr′′θ′ + 2r′2θ′ + rr′θ′′ + r2θ′3)

+ �−1
[
− r′

r
cot θ + θ′ + 2

(
r′

r
U,θ − rθ′U,r

)
+

(
r sin θ U2

,r −
sin θ

r
U2
,θ

)
(r′ cos θ + rθ′ sin θ)

− 2 sin θ U,rU,θ(r′ sin θ − rθ′ cos θ)
]
.

(2.14)

This expression is valid even if τ is a parameter different from arclength.

2.2. Static metric extensions in Weyl–Papapetrou form

We can thus rephrase Conjecture 1 as follows.

Conjecture 2 (Bartnik’s static metric extension conjecture in axisymmetry
in Weyl–Papapetrou form). Let (Σ, g,H) be axisymmetric Bartnik data. Then
there conjecturally exists a domain Ω ⊂ R

+ × [0, π] containing the asymptot-
ically flat end in the sense that (r0,∞) × [0, π] ⊆ Ω for some r0 > 0, and a
solution (U, V ) of the Weyl–Papapetrou equations

Δδ U = U,rr + 2
r
U,r + 1

r2 (U,θθ + cot θ U,θ) = 0,

V,r = r sin2 θ U2
,r + 2 sin θ cos θ U,rU,θ −

sin2 θ

r
U2
,θ,

V,θ = −r2 sin θ cos θ U2
,r + 2r sin2 θ U,rU,θ + sin θ cos θ U2

,θ

on Ω with asymptotic decay

U, V = O2(r−1) as r → ∞

such that the inner boundary ∂Ω of the domain Ω can be written as a curve
Γ = (r, θ) : [0, L] → R

+ × [0, π], ∂Ω = Γ([0, L]), parametrised by arclength,

� = e2(U−V )(r′2 + r2θ′2) ≡ 1,

satisfying the boundary conditions

θ(0) = 0, θ(L) = π,

r′(0) = 0, r′(L) = 0,
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staying away from the axis in the sense that θ(τ) ∈ (0, π) for τ ∈ (0, L), and
inducing the Bartnik data

g = dτ 2 + λ
2
dφ2 = dτ 2 + λ2dφ2,(2.15)
H = H(2.16)

on ∂Ω, where λ and H are given by

λ := e−Ur sin θ,(2.17)
H := e2(V−U)�−3(−rr′′θ′ + 2r′2θ′ + rr′θ′′ + r2θ′3)

+ �−1
[
− r′

r
cot θ + θ′ + 2

(
r′

r
U,θ − rθ′U,r

)
+

(
r sin θ U2

,r −
sin θ

r
U2
,θ

)
(r′ cos θ + rθ′ sin θ)

− 2 sin θ U,rU,θ(r′ sin θ − rθ′ cos θ)
]
.

(2.18)

We will call ([0, L], λ,H) (Weyl–Papapetrou) Bartnik data and (Ω, U, V )
(Weyl–Papapetrou) static metric extensions for simplicity.

Condition (2.15) combined with (2.17) can be considered as giving Dirich-
let boundary values for U along Γ, closing the first Weyl–Papapetrou equa-
tion (2.5). Once the unique solution for U is found, the second Weyl–Papa-
petrou equations (2.6) together with the asymptotic condition V → 0 as
r → ∞ uniquely determine V .

Note that a resolution of this conjecture will indeed resolve Conjecture 1 as
discussed above. However, Conjecture 2 is slightly stronger than Conjecture 1
as we have assumed existence of global Weyl–Papapetrou coordinates which
furthermore need to be compatible with the asymptotic flatness assumptions
in the derivation of Conjecture 2.

Convention 3 (Reflection symmetry). From now on, we will assume in addi-
tion that the Bartnik data (Σ, g,H) and static metric extensions we consider
are (compatibly) reflection symmetric in the following sense: once cast in
Weyl–Papapetrou coordinates, we request that the free boundary curve Γ and
thus the domain Ω satisfy

Γ(L− τ) = Γ(τ)(2.19)
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for all τ ∈ [0, L]. In terms of the polar coordinates (r, θ) along Γ, this reads

r(L− τ) = r(τ),
θ(L− τ) = π − θ(τ)

(2.20)

for τ ∈ [0, L]. We will refer to condition (2.19) or (2.20) as reflection sym-
metry of Γ. This condition is compatible with all other conditions stated in
Conjecture 2.

Assuming reflection symmetry will allow us to exploit parity and restrict
to one half of the computational domain in the numerical scheme we will de-
scribe in Section 4. Furthermore, assuming reflection symmetry ensures that
the geometric flow we will devise in the next section cannot “slide up” the
axis of symmetry even though the flow equation (2.23) is invariant under
translations of the curve along the axis. There would of course be other so-
lutions to this sliding issue such as fixing the center of mass, but we prefer
to work with symmetry, here. Note that this condition in fact implies the
Z2 × Z2 × Z2-symmetry assumed in [20].

2.3. A geometric flow

Before we write down the geometric flow we suggest for studying Conjec-
ture 2 under the additional assumption of reflection symmetry explained in
Convention 3, let us first introduce some helpful notation. First of all, we
will now switch to abstract index notation and write the boundary curve
Γ: [0, L] → R

+ × [0, π] as Γ =: xa, a = 1, 2. We do not assume here that
Γ is parametrised by arclength, but will stick with [0, L] for the domain of
definition of Γ nevertheless. The unit tangent ta and outward unit normal na

(pointing to the asymptotic end) to the curve Γ in the domain Ω bounded by
∂Ω = Γ([0, L]) with geometry induced by (U, V ) as described above can then
be computed to be

ta = �−1(r′, θ′),(2.21)

na = �−1
(
rθ′,−r′

r

)
,(2.22)

recalling the definition of � given in (2.12). If Γ is parametrised by arclength,
of course � ≡ 1 and (2.21) and (2.22) simplify accordingly.

Consider now a one-parameter family of curves Γt(τ) = (rt(τ), θt(τ)) with
τ ∈ [0, L], not necessarily parametrised by arclength, with flow “time” pa-
rameter t ∈ [0, T ) for some T > 0, with T = ∞ allowed in principle. Using
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abstract index notation, the curves Γt =: xat will be evolved by the novel
geometric curve flow

dxat
dt

= −(Ht −H)na
t + Ctt

a
t + κπ

( 1
Lt

− 1
L

)
na
t ,(2.23)

where tat now denotes the unit tangent and na
t the outward unit normal to

Γt with respect to the geometry induced on the domain Ωt and its boundary
∂Ωt = Γt([0, L])) by (U, V ), see (2.21) and (2.22), κ is a coupling parameter,
Lt denotes the length of the curve Γt given by

Lt :=
∫ L

0
�t dτ,(2.24)

with �t as defined in (2.12), and Ct is defined as in (2.13), where both �t and
Ct are now computed for Γt.

The first term in (2.23) moves the curve in the normal direction by its
mean curvature or rather by the difference between its actual mean curvature
and the desired mean curvature from the Bartnik data. The second term
moves the points of the curve tangentially along the curve in order to drive the
parametrisation of the curve to the desired one in terms of arclength, which
corresponds to the isometric embedding of the Bartnik data. The precise
choice of this term is made such that (2.23) has parabolic character, see
Section 3.1. The third term counteracts the tendency of the mean curvature
flow to shrink any curve to a point, and instead drives the curve length Lt to
the target value L. Our analysis in Sections 3.2 and 3.3 will reveal that we
need the coupling parameter κ > 2.

At each instant of t, we evaluate U on Γt using (2.11) with the prescribed
embedding term function λ(τ). With this Dirichlet boundary condition for
U on Γt and asymptotic condition U → 0 as r → ∞, we solve the Laplace
equation (2.5) for U in the exterior and then determine V by integrating (2.6)
with asymptotic condition V → 0 as r → ∞. Now that we know U and V
in the exterior, we can evaluate all the terms on the right-hand side of (2.23)
on Γt, in particular the normal derivatives of U . We will give arguments in
favour of parabolicity of the symbol of (2.23) and of short-time existence of
solutions to (2.23) in Section 3.1.

As required in (2.8) for a single curve, we must impose the boundary
conditions

θt(0) = 0, θt(L) = π,

r′t(0) = 0, r′t(L) = 0,
(2.25)
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for all times t along the geometric flow (2.23). Imposing these boundary con-
ditions at the initial time t = 0 gives rise to compatibility conditions, namely

dr′t
dt

.= 0, dθt
dt

.= 0,(2.26)

at t = 0, where .= denotes equality at τ = 0 and τ = L. We have shown
(using computer algebra) that these are satisfied provided that

U,θ
.= V,θ

.= H
′ .= r′

.=
(

r′

sin θ

)′
.= r′′′

.= θ′′
.= 0.(2.27)

These conditions follow from elementary flatness on the axis and are auto-
matically enforced by the expansions (4.1) we use in the code.

Clearly, if (Ω, U, V ) corresponds to a (Weyl–Papapetrou) static metric ex-
tension of given (Weyl–Papapetrou) Bartnik data ([0, L], λ,H) parametrised
by arclength, the geometric flow (2.23) will be stationary, i.e. dxa

t

dt ≡ 0 for all
t ≥ 0. This observation is independent of the numerical value of κ. However,
as we will discuss in Section 3.4, free boundary positions with correctly in-
duced Bartnik data are not the only stationary states of the flow, even in a
fixed background.

3. Analysis of the geometric flow

In order to gain more insight into the novel geometric flow (2.23) we couple to
the Weyl–Papapetrou equations (2.5) and (2.6) in our numerical analysis, we
will now study its properties in some restricted scenarios such as in spherical
symmetry and/or in a fixed background. First, in Section 3.1, we analyse the
symbol of the geometric flow equation (2.23) and find that it is parabolic,
which suggests short-time existence of solutions. Next, in Section 3.2, we
study the geometric flow (2.23), and briefly the coupled system, in spheri-
cal symmetry (Euclidean and Schwarzschildean backgrounds). In particular,
we will discuss the chosen threshold for the coupling parameter κ there. In
Section 3.3, we will linearise the geometric flow in a fixed Euclidean back-
ground around a coordinate circle and study the behaviour of the linearised
flow. Finally, in Section 3.4, we will briefly discuss the occurrence of rather
unintended stationary states of the geometric flow (2.23) and the coupled
flow-Weyl–Papapetrou system.

It would of course be desirable both to study the flow in other fixed
backgrounds and to analyse the full coupled system. We will not pursue these
ideas here as they would lead too far for this first treatment of Bartnik’s
conjecture in axisymmetry.
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3.1. Short-time existence

Equation (2.23) is a system of parabolic partial differential equations in t and
τ for xat (τ). More precisely,

∂t

(
rt(τ)
θt(τ)

)
= �−2

(
r′′t (τ)
θ′′t (τ)

)
+ . . . ,

where the omitted terms do not contain any second derivatives; note also
from (2.12) that � contains up to first τ -derivatives of rt(τ) and θt(τ). Thus
we have a manifestly strongly parabolic quasi-linear system of second order.
If we disregard the last term in (2.23), which because of (2.24) contains a
τ -integral of the unknowns xat (τ), then standard theorems (e.g. Theorem 7.2
in [25]) imply that for smooth initial data, a unique smooth solution exists
for a finite time.

Given that an integral term of a very similar form occurs in area pre-
serving curve shortening flow [13] and other constrained curve flows [11], we
expect that short-time existence results for such flows [16, 22] will carry over
to our flow as well, even though we have not proven such a theorem (which
is complicated by the fact that the functions U, V occurring in the flow equa-
tion (2.23) are determined by elliptic equations in the coupled case).

We cannot make any statements about global existence, although our
numerical experiments indicate that in a variety of situations bounded smooth
solutions exist for infinite flow time.

3.2. Flowing in spherical symmetry

In this section, we will restrict our attention to the spherically symmetric case,
i.e. to the case where the axisymmetric static metric extensions characterised
by (U, V ) are indeed spherically symmetric and the free boundary curves
evolving under the geometric flow (2.23) are circles in coordinates adjusted to
the spherical symmetry and thus represent symmetry reductions of the orbital
spheres of the spherically symmetric static metric extensions. This of course
corresponds to prescribing Bartnik data that are spherically symmetric or in
other words that have a round metric and constant positive mean curvature,
see also the discussion on page 614.

We will first study evolving circles in a Euclidean background and give
a very brief insight into the coupled system with prescribed Bartnik data
corresponding to a centred coordinate sphere in a Euclidean background in
Section 3.2.1. Then, we will study the evolution of circles corresponding to
centred round spheres in a fixed Schwarzschild background in Section 3.2.2
and investigate the stability of the flow in a fixed Schwarzschild background.
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3.2.1. Euclidean case Let us first look at the geometric flow (2.23) in a
fixed Euclidean background, corresponding to U ≡ V ≡ 0. We will study
the evolution of coordinate circles in Weyl–Papapetrou coordinates, which
indeed coincide with standard (Euclidean) polar coordinates and represent
symmetry reductions of Euclidean coordinate spheres centred at the origin.
We will furthermore assume that these circles are parametrised proportionally
to arclength. Our Bartnik data are then uniquely determined by prescribing
their coordinate sphere radius R, and we have L = πR.

In Weyl–Papapetrou coordinates, circles evolving under (2.23) are de-
scribed by

rt(τ) ≡ Rt,

θt(τ) = πτ

L
,

(3.1)

and we obtain by direct computation from the formulas in Section 2 (or,
equivalently, by directly computing all the geometric notions for coordinate
spheres in Euclidean space) that

Ht = 2
Rt

, Ht ≡
2
R
,

na
t = (1, 0), Ct = 0,

(3.2)

so that the geometric flow (2.23) reduces to the ODE
dRt

dt
= (κ− 2)

( 1
Rt

− 1
R

)
.(3.3)

Provided κ > 2, the circle of radius Rt = R will be a stationary state of (3.3),
while circles with Rt > R will shrink and circles with Rt < R will expand
with Rt → R as t → ∞, as desired, showing global stability of the (unique)
stationary state Rt ≡ R (but see Section 3.4). For κ ≤ 2, the flow does not
produce the desired behaviour. This observation gives rise to the restriction
κ > 2 we introduced in Section 2.

Now, still looking at Weyl–Papapetrou coordinate circles parametrised
proportionally to arclength, let us look at the coupled flow–Weyl–Papapetrou
system, meaning that we continuously solve for U und V outside the flowing
circles. Again, we consider Bartnik data corresponding to a target circle of
radius R. The corresponding target functions are

λ(τ) = L

π
sin

(
τπ

L

)
,(3.4)

H(τ) ≡ 2π
L
.(3.5)
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We start the coupled flow–Weyl–Papapetrou system with U0 ≡ V0 ≡ 0,
i.e. with fields corresponding to Euclidean space. During the flow, we assume
the flowing curve Γt = (rt, θt) remains a circle with a t-dependent radius Rt,
so that

rt(τ) ≡ Lt

π
,

θt(τ) = πτ

L
.

(3.6)

Hence, the free boundary condition for U = Ut, (2.11), evaluates to

(3.7) Ut ◦ Γt(τ) = − ln λ(τ)
rt(τ) sin θt(τ) = − ln L

Lt

along the evolving free boundary curve, i.e. Ut is constant along Γt, although
changing in time, and, in fact differs from the Euclidean U ≡ 0. Thus, in-
serting this Dirichlet boundary condition for Ut into the Weyl–Papapetrou
equation (2.5) for U = Ut and imposing the asymptotic flatness condition
Ut → 0 as r → ∞, we will thus get a spherically symmetric solution Ut which
is non-zero for finite time t, and thus corresponds to a non-Euclidean metric
(once we have also solved for Vt). If Lt → L as t → T for some T ≤ ∞, ap-
proaching a stationary state as one may expect, one sees that indeed Ut → 0
and indeed also Vt → 0 as t → T (see, however, Section 3.4). We indeed
observe this (temporary) deviation from Euclidean space for Euclidean Bart-
nik data and U0 ≡ V0 ≡ 0 numerically in much more general situations; see
Section 5.

3.2.2. Schwarzschild case Let us now look at the geometric flow (2.23) in
a fixed Schwarzschild background of mass M > 0, cf. (1.3). To do so, we will
need to express the Schwarzschild background in terms of potentials (U, V )
in Weyl–Papapetrou coordinates, see [14]. In cylindrical Weyl–Papapetrou
coordinates ρ = r sin θ and z = r cos θ, the fields U and V are given by

U = 1
2 ln R+ + R− − 2M

R+ + R− + 2M ,

V = 1
2 ln (R+ + R−)2 − 4M2

4R+R−
,

(3.8)

where

R± =
√
ρ2 + (z ±M)2.(3.9)
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In cylindrical Weyl–Papapetrou coordinates, the Schwarzschild metric be-
comes singular on the piece of the axis of rotation given by {ρ = 0, |z| < M}
which corresponds to the black hole horizon. The usual Schwarzschild coordi-
nates (rS , θS , ϕS = ϕ) (used in (1.3) without the index S) are related to the
Weyl–Papapetrou coordinates via the coordinate transformations

ρ =: M
√

(x2 − 1)(1 − y2),
z =: Mxy,

rS := M(x + 1),
cos θS := y.

(3.10)

In order to gain more insight into the geometric flow (2.23), now in a
fixed Schwarzschild background, i.e. with (U, V ) as in (3.8), let us consider
flowing Schwarzschild coordinate circles parametrised proportionally to ar-
clength, corresponding to centred Schwarzschild coordinate spheres from a
3-dimensional viewpoint. Note that it is not immediately obvious but in-
deed follows from the geometric nature of (2.23) that such Schwarzschild
coordinate circle solutions to (2.23) exist; in contrast to the Euclidean case
discussed in Section 3.2.1, they cannot be written as coordinate circles in
Weyl–Papapetrou coordinates.

In order to derive the ODE for the circle radius, we perform the following
computations. Let us first look at a single circle of Schwarzschild radius rS =
R in our fixed Schwarzschild background of mass M . Written as a curve in
Schwarzschild coordinates (rS , θS) which is parametrised proportionally to
arclength on some interval

[
0, L

]
, we find rS(τ) ≡ R and θS(τ) = τ

L
as in the

Euclidean case. Also, abbreviating R := L
π , one computes

L = πR,(3.11)

�(τ) ≡ R

R
,(3.12)

H(τ) = 2
R

√
1 − 2M

R
.(3.13)

Performing the canonical transformation into the cylindrical Weyl–Papapet-
rou coordinates (3.10) and then changing back into standard polar Weyl–
Papapetrou coordinates in which (2.23) is written, we obtain

r(τ) = M

√(
R

M
− 1

)2
− sin2

(
τ

R

)
,(3.14)
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θ(τ) = arctan

⎛⎝
√

1 − 2M
R

1 − M
R

tan
(
τ

R

)⎞⎠ .(3.15)

Now consider a flow of circles solving (2.23) with radius (rS)t(τ) ≡ Rt. The
geometric flow equation (2.23) then reduces to the system

drt
dt

=
(
−(Ht −H) + κπ

( 1
Lt

− 1
L

))
�−1
t rt θ

′
t,(3.16)

dθt
dt

=
(
−(Ht −H) + κπ

( 1
Lt

− 1
L

))
�−1
t

(
−r′t
rt

)
.(3.17)

Recall that ′ denotes a derivative with respect to τ . Here, H = 2
R

√
1 − 2M

R

and of course L = πR. Evaluating (3.11)–(3.15) along the flow and plug-
ging them into (3.16) and (3.17), both of these flow equations reduce to the
following ODE for the radius Rt of the flowing circles

dRt

dt
=

⎡⎣−
⎛⎝ 2
Rt

√
1 − 2M

Rt
− 2

R

√
1 − 2M

R

⎞⎠ + κ

( 1
Rt

− 1
R

)⎤⎦
×

√
1 − 2M

Rt
.

(3.18)

This ODE is consistent with the Euclidean case discussed above, where
(3.3) arises from (3.18) by setting M = 0, as expected. Clearly, this ODE
has a stationary solution Rt ≡ R such that the prescribed Bartnik data or
in other words the target circle rS = R is indeed a stationary state of the
flow. We will now perform a direct computation to show that there are no
other stationary states of this ODE for κ > 2, recalling that the Schwarzschild
radial coordinate needs to remain larger than the black hole radius, rS > 2M .
The same computation will demonstrate that circles with Rt > R will shrink
and circles with 2M < Rt < R will expand with Rt → R as t → ∞, as
in the Euclidean case and as desired, provided that κ > 2. In particular,
this computation will show that the stationary state Rt ≡ R is globally
stable as a stationary point of (3.18) as in the Euclidean case discussed in
Section 3.2.1 (but see Section 3.4). To prove these claims, let us set ρ := Rt

R
and rewrite (3.18) as

Rt√
1 − 2M

Rt

(
κ− 2

√
1 − 2M

R

) × dRt

dt
=

κ− 2
√

1 − 2M
ρR

κ− 2
√

1 − 2M
R

− ρ =: fκ
M (ρ).
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This gives fκ
M (1) = 0 and dfκ

M (ρ)
dρ < 0 as long as ρ > 2M

R
, which asserts both

that the only zero of fκ
M is ρ = 1, proving that Rt ≡ R is the only stationary

state of (3.18), and that the sign of dRt

dt is negative for Rt > R and positive
for Rt < R, as needed to assert global stability of the stationary state Rt ≡ R

as a solution of (3.18) (but see Section 3.4).

3.3. Linear stability analysis in a Euclidean background

In the above considerations, we have analysed the stability of the stationary
state Rt ≡ R in the spherically symmetric ODE setting and found global
stability both in a fixed Euclidean and a fixed Schwarzschild background.
Complementing this analysis, we will now linearise the geometric flow (2.23)
around such a stationary circle, but only in a Euclidean background, leaving
the computationally more involved Schwarzschild case for future work. As
the background is Euclidean, we have U ≡ V ≡ 0 and the stationary cir-
cle in Weyl–Papapetrou coordinates, parametrised by arclength, is given by
r(τ) ≡ R, θ(τ) = τ

R
, as above. Recall this circle corresponds to Bartnik data

consisting of a round sphere of radius R in Euclidean space centred at the
origin. We recall that

L = πR, H ≡ 2
R
,

C ≡ 0, � ≡ 1.
(3.19)

To compute the linearised flow equations, set

rt(τ) =: R + εμt(τ),(3.20)

θt(τ) =: τ

R
+ εψt(τ),(3.21)

for smooth families of functions μt, ψt : [0, L] → R, t ∈ [0, T ), and ε a small
parameter. In order to sustain the boundary conditions (2.8), we need to ask
that

μ′
t(0) = μ′

t(L) = 0,(3.22)
ψt(0) = ψt(L) = 0(3.23)

for all t ∈ [0, T ). Moreover, recalling our Convention 3 on reflection symmetry,
we need to ask in addition that
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μt(L− τ) = μt(τ),(3.24)
ψt(L− τ) = −ψt(τ)(3.25)

for τ ∈ [0, L] and all t ∈ [0, T ). As a consequence of (2.13), (2.14) as well
as (3.19) and (3.23), we find the following linearised system

dμt

dt
= μ′′

t + μ′
t

R
cot

(
τ

R

)
+ 2μt

R
2 − κ

πR
3

∫ L

0
μt(τ) dτ,(3.26)

dψt

dt
= μ′

t

R
2 + ψ′′

t .(3.27)

Observe that (3.26) decouples from (3.27) as it does not contain ψt. Equa-
tion (3.27) is an inhomogeneous linear heat equation for ψt, once μt has been
computed. To solve (3.26), we make an ansatz of separation of variables

μt(τ) = a(t) b(τ).(3.28)

Dividing as usual by ab, we rearrange (3.26) to

ȧ

a
= b′′

b
+ b′

bR
cot

(
τ

R

)
+ 2

R
2 − κ

b πR
3

∫ L

0
b(τ) dτ =: α + 2

R
2 ,(3.29)

where ȧ = da
dt and b′ = db

dτ as before, and α denotes a real parameter. Equa-
tion (3.29) can then immediately be seen to possess the unique solution

a(t) = aα exp
(
α + 2
R

2 t

)
(3.30)

for some aα ∈ R for a. In order to show linear stability of the stationary state
r ≡ R of the geometric flow (2.23), we need to show that only modes with
α + 2 < 0 prevail, or in other words that α ≥ −2 implies b ≡ 0.

So let us study solutions to (3.29) for b,

b′′ + b′

R
cot

(
τ

R

)
− κ

πR
3

∫ L

0
b(τ) dτ = α

R
2 b.(3.31)

From the boundary conditions (3.22), we find the boundary conditions

b′(0) = b′(L) = 0(3.32)
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for (3.31). To simplify this equation consistently with its boundary conditions,
we perform the following transformation of variables

x := cos
(
τ

R

)
,

b̂(x) := b(τ).
(3.33)

This transformation allows us to rewrite (3.31) as

(1 − x2) b̂ ′′(x) − 2x b̂ ′(x) − α b̂(x) = κ

π

∫ 1

−1

b̂(y)√
1 − y2

dy(3.34)

for x ∈ [−1, 1], where, slightly abusing notation, we denote x-derivatives by
′ as well. The transformation (3.33) is only allowed because of the boundary
conditions (3.32), it would otherwise be degenerate at the endpoints of [−1, 1].
There are no prescribed boundary values for b̂. By reflection symmetry (3.24),

b̂(−x) = b̂(x) for all x ∈ [−1, 1].(3.35)

To analyse solutions to (3.34), let us first treat the case α = 0. If α = 0,
the x-derivative of (3.34) gives(

(1 − x2) b̂ ′(x)
)′′

= 0,(3.36)

so that there exist constants λ, ρ ∈ R such that

(1 − x2) b̂ ′(x) = λx + ρ on [−1, 1].(3.37)

Plugging x = ±1 into (3.37) leads to λ = ρ = 0 or in other words b̂ must be
constant on [−1, 1]. This, however, together with the assumed α = 0 gives
b̂ ≡ b ≡ 0 when plugged into (3.34), as κ > 2 (cf. Section 3.2.1). Thus α = 0 is
excluded or in other words there is no mode in μt which grows exponentially
with rate 2

R
2 .

Let us now discuss the case α �= 0. The right hand side of (3.34) is
manifestly constant. This observation can be rephrased as saying that

(1 − x2) b̂′′(x) − 2x b̂′(x) − α b̂(x) = λ(3.38)

for some λ ∈ R. By setting

b̃(x) := b̂(x) + λ

α
,(3.39)
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we find the Legendre differential equation

(1 − x2) b̃′′(x) − 2x b̃′(x) − α b̃(x) = 0(3.40)

for b̃ on [−1, 1]. It is well known that the only solutions b̃ to (3.40) extending
continuously to [−1, 1] are the Legendre polynomials Pl, with l ∈ N0, where
α = −l(l + 1). We have already handled (excluded) l = α = 0. For l = 1,
α = −2, we find the translational mode b̃(x) = Bx with B ∈ R and thus
b̂(x) = Bx− λ

α . On the other hand, we know that

λ = κ

π

∫ 1

−1

b̂(y)√
1 − y2

dy = κ

π

(
0 − λ

α
π

)
,(3.41)

which implies λ = 0 or κ = −α = 2. As κ > 2, we deduce λ = 0. Moreover,
B = 0 by (3.35). But this leads to b̂ ≡ 0 in case l = 1 or α = −2, or in
other words there is no constant-in-time mode in μt. For all l ≥ 2 however,
α = −l(l + 1) < −2, which finishes the linear stability argument for μt.
Quantitatively speaking, we found that the most slowly decaying mode of μt

decays at least as fast as exp
(
− 4

R
2 t
)
.

Let us now study (3.27) to get information on ψt, exploiting that we have
already asserted that μt is decaying. By linearity of (3.27), we can separately
investigate the behaviour of the solutions to the homogeneous heat equation

dψt

dt
= ψ′′

t(3.42)

and that of special solutions to the inhomogeneous system (3.27), inserting
the individual modes of μt.

First, considering the homogeneous system (3.42), using the separation
of variables

ψt(τ) = c(t)d(τ),(3.43)

dividing as usual by cd, and rearranging (3.42), we find

ċ

c
= d′′

d
=: − β

R
2(3.44)

for some real parameter β. As above, (3.44) can then immediately be seen to
possess the unique solution

c(t) = cβ exp
(
− β

R
2 t

)
(3.45)
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for some cβ ∈ R for c. Thus, in order to show decay of the solutions to the
homogeneous part of (3.27), i.e. to (3.42), we need to ensure that β > 0.

Let us first study the case β = 0. In this case, (3.44) implies that there
are constants λ, ρ for which satisfies

d(τ) = λτ + ρ(3.46)

for τ ∈ [0, L]. The boundary conditions (3.23), or, alternatively, the reflection
symmetry condition (3.25), tell us that d(0) = d(L) = 0 so that ρ = λ = 0
and hence d ≡ 0 in this case. This rules out the case β = 0.

Next, let us study the case β < 0. In this case, d can be written as

d(τ) = λ sinh
(√

−β

R
τ

)
+ ρ cosh

(√
−β

R
τ

)
(3.47)

for some constants λ, ρ. The boundary condition d(0) = 0 that follows
from (3.23) gives ρ = 0. The reflection symmetry condition d(L− τ) = −d(τ)
that follows from (3.25), together with the hyperbolic addition theorem, then
implies that cosh

(
π
√
−β

)
= 1 if λ �= 0, recalling L = πR. This, however, is

of course excluded for β < 0 so that λ = 0 and thus again d ≡ 0, which rules
out the case β > 0 and indeed asserts decay of all modes of the solution to
the homogeneous system (3.42).

In order to get a better idea of how fast the slowest mode of the the
solution to the homogeneous system (3.42) is decaying, let us briefly also
consider the case β > 0. Arguing as before, we find

d(τ) = λ sin
(√

β

R
τ

)
+ ρ cos

(√
β

R
τ

)
(3.48)

for some constants λ, ρ, and the boundary and reflection symmetry require-
ments, together with the trigonometric addition theorem, tell us that ρ = 0
and that cos

(
π
√
β
)

= 1. This leads to β = 4n2 for some n ∈ N>0. Hence, the
most slowly decaying mode of the solution to the homogeneous equation (3.42)
decays at least as fast as exp

(
− 4

R
2 t
)
.

We now turn our attention to the inhomogeneous system (3.27), inserting
a fixed mode solution

μt(τ) = a−l(l+1) exp
(2 − l(l + 1)

R
2 t

)
bl(τ)(3.49)
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for some l ≥ 2, where bl is the solution of (3.31) corresponding to the Legendre
polynomial Pl, and a−l(l+1) ∈ R. This leads to the equation

dψt

dt
=

a−l(l+1)

R
2 exp

(2 − l(l + 1)
R

2 t

)
b′l(τ) + ψ′′

t .(3.50)

Making the same ansatz (3.44) of separation of variables as before, we find

ċ(t)d(τ) =
a−l(l+1)

R
2 exp

(2 − l(l + 1)
R

2 t

)
b′l(τ) + c(t)d′′(τ).(3.51)

One special solution c, d of (3.51) is then given by

c(t) = exp
(2 − l(l + 1)

R
2 t

)
,(3.52)

with d being any solution of

2 − l(l + 1)
R

2 d(τ) − d ′′(τ) =
a−l(l+1)

R
2 b′l(τ).(3.53)

In particular, c decays as we have already established l ≥ 2. Combining
this with what we found out about the solutions of the homogeneous equa-
tion (3.42), we can conclude that all solutions ψt of the linearised flow equa-
tion (3.27) decay. As was the case for μt, we found that the most slowly
decaying mode of ψt decays at least as fast as exp

(
− 4

R
2 t
)
.

We have thus asserted full linear stability of the geometric flow (2.23) in
a Euclidean background U ≡ V ≡ 0 around a Euclidean coordinate circle,
r ≡ R, parametrised by arclength. We found that both μt and ψt decay at
least as fast as exp

(
− 4

R
2 t
)

as t → ∞, provided they exist for t ∈ [0,∞) (see
also Section 3.1). In light of the implicit function theorem, this is a strong
indication of fully non-linear stability of the geometric flow (2.23) near such
circles, as the decay rate is bounded away from zero. Such a non-linear analysis
would lead too far here, and we leave it for future work.

3.4. Stationary states

If the flow (2.23) approaches a stationary state, dxa
t

dt → 0 as t → ∞, we
immediately know from orthonormality of {tat , na

t } that Ct → 0, so that the
curve Γt = xat is asymptotically parametrised proportionally to arclength by
construction (cf. (2.13)). As the curve is given on the interval [0, L], there
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now are two cases: Either we indeed have L∞ := limt→∞ Lt = L so that the
stationary point condition together with � ≡ 1 implies

H∞ := lim
t→∞

Ht = H,(3.54)

so that by (2.12) and (2.14), we have indeed found a free boundary location
which induces the correct Bartnik data. In case L∞ �= L, the functions H∞
and H must differ by an additive constant determined by the size of the
coupling parameter κ and the difference L∞−L. We cannot rule out that our
flow might approach such unintended stationary states. In all the numerical
simulations presented in Section 5, we have ensured that LT agrees with L to
within numerical error at the final time T of the simulation. It would be an
interesting question for future research to investigate why the flow generically
does seem to approach the desired stationary state satisfying Lt → L as t →
∞, and if there any situations when different stationary states are reached.

4. Numerical methods

4.1. Flow

We solve the flow equation (2.23) numerically using a pseudo-spectral method
based on Fourier expansions. We will focus on outlining the details of our
method; for background material on pseudo-spectral methods the reader is
referred to textbooks such as [12, 6].

All functions of the curve parameter τ ∈ [0, L] encountered in our im-
plementation belong to two classes: even functions f(τ) satisfying f ′(0) =
f ′(L) = 0 and odd functions g(τ) satisfying g(0) = g(L) = 0. In particular,
due to the assumed reflection symmetry of the curves Γt, see Convention 3,
the spherical polar coordinate r(τ) is even and the modified angular coordinate
θ̂(τ) := θ(τ) − πτ/L is odd.

We expand these functions in truncated Fourier series,

(4.1) f =
N∑

n=0
f̃n cos nπτ

L
, g =

N−1∑
n=1

g̃n sin nπτ

L
.

The expansion coefficients {f̃n}Nn=0 and {g̃n}N−1
n=1 constitute one representation

of our numerical approximations to f and g.
Since the geometric flow (2.23) is non-linear, we will need to evaluate non-

linear terms numerically. In a pseudo-spectral method, this is done pointwise
at a set of collocation points τj , which we take to be τj = jL/N , 0 � j � N .
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We denote by fj := f(τj) the values of an even function f at these collocation
points, similarly for an odd function g.

The expansion coefficients and point values are obviously related by

fj =
N∑

n=0
Ajnf̃n, gj =

N−1∑
n=1

Bjng̃n(4.2)

with

Ajn = cos jnπ
N

, 0 � j, n � N,

Bjn = sin jnπ

N
, 1 � j, n � N − 1.

(4.3)

The inverse transformation is found to be

f̃j =
N∑

n=0
(A−1)jnfn, g̃j =

N−1∑
n=1

(B−1)jngn(4.4)

with

(A−1)nj = 2Ajn

N(1 + δn0)(1 + δj0)(1 + δnN )(1 + δjN ) , 0 � j, n � N,

(B−1)nj = 2
N
Bjn, 1 � j, n � N − 1.

(4.5)

Derivatives of functions can be computed analytically to the given order
of the expansion using the known derivatives of the basis functions in (4.1).
The derivative of an even function f is an odd function g = f ′ with expansion
coefficients

g̃n =
N∑

m=0
Cnmf̃m, Cnm = −nπ

L
δnm, 1 � n � N − 1, 0 � m � N.

Similarly, the derivative f = g′ of an odd function g is an even function f
computed as

f̃n =
N−1∑
m=1

Dnmg̃m, Dnm = nπ

L
δnm, 0 � n � N, 1 � m � N − 1.

In the code, we find it convenient to represent functions by their point
values. Derivatives can be computed directly in point space by combining the
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transformations discussed above as follows:

f ′
k =

N−1∑
m=1

N∑
n=0

N∑
j=0

BkmCmn(A−1)njfj =:
N∑
j=0

C(1)
kj fj ,(4.6)

f ′′
k =

N∑
p=0

N−1∑
m=1

N∑
n=0

N∑
j=0

AkpDpmCmn(A−1)njfj =:
N∑
j=0

C(2)
kj fj ,(4.7)

g′k =
N∑

m=0

N−1∑
n=1

N−1∑
j=1

AkmDmn(B−1)njgj =:
N−1∑
j=1

D(1)
kj gj ,(4.8)

g′′k =
N−1∑
p=1

N∑
m=0

N−1∑
n=1

N−1∑
j=1

BkpCpmDmn(B−1)njgj =:
N−1∑
j=1

D(2)
kj gj .(4.9)

The differentiation matrices C(1) and D(2) can be computed once and for all
before the simulation starts.

In particular, for the functions r(τ) and θ(τ) representing the curve Γt,
we have

r′k =
N∑
j=0

C(1)
kj rj , r′′k =

N∑
j=0

C(2)
kj rj ,(4.10)

θ′k =
N−1∑
j=1

D(1)
kj

(
θj −

πτj

L

)
+ π

L
, θ′′k =

N−1∑
j=1

D(2)
kj

(
θj −

πτj

L

)
.(4.11)

Occasionally, we will need to divide two odd functions g and h by each
other, which results in an even function f = g/h. This is done pointwise for
1 � j � N − 1. At j = 0 and j = N , where the quotient is ill-defined, we
apply L’Hospital’s rule

f0 =
(
g

h

)
0

=
(
g′

h′

)
0
,(4.12)

and similarly for fN .
In order to compute integrals such as (3.11), we note that all even ex-

pansion functions in (4.1) vanish when integrated from 0 to L except for the
constant mode n = 0, which integrates to L. Thus we have∫ L

0
f(τ)dτ = Lf̃0(4.13)

for an even function f .
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The flow equation (2.23) is stepped forward in time using the Euler for-
ward method

(4.14) dx

dt
= F [x] → xn+1 = xn + Δt F [xn].

This method was chosen because of its low computational cost and because
the numerical accuracy of the solution as a function of flow time t does not
matter much to us since we are mainly interested in the asymptotic behaviour
as t → ∞.

For a parabolic equation like (2.23), numerical stability requires

Δt � c(Δτ)2

for some constant c (the Courant–Friedrichs–Lewy condition [10]), where
Δτ = L/N is the spatial grid spacing. For the simulations presented in Sec-
tion 5, we will typically set c = 0.1 and use between N = 30 and N = 75
collocation points.

As is typical for pseudo-spectral methods applied to non-linear partial
differential equations, aliasing errors introduce high-frequency errors that may
lead to numerical instabilities. We address this problem by applying the 2/3
filtering rule [6], whereby the top third of the spectral coefficients are set to
zero after evaluating the non-linear terms.

In order to construct initial data for the flow (2.23), we often specify
the coordinate location of the initial curve as a function r(θ), i.e., the curve
parameter is preliminarily taken to be s = θ. Arclength τ is then computed
according to

(4.15) τ(s) =
∫ s

0

√
g(Γ′

t(s),Γ′
t(s)) ds,

where g now denotes the Riemannian metric on the boundary surface Σ cor-
responding to the boundary curve Γt, see (2.9). In order to reparametrise the
curve by arclength, the function τ(s) now needs to be inverted numerically in
order to obtain s(τ) and thus xa(s(τ)) = (r(s(τ)), θ(s(τ))). In practice, this
is done by interpolating onto the equidistant collocation points τj . We have
found this procedure to introduce inaccuracies that cause the “embedding
term” C defined in (2.13) (which should vanish for a curve parametrised by
arclength) to be unacceptably large. In order to deal with this problem, we
apply a few (typically 1000) steps of the simplified flow equation
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(4.16) dxat
dt = Ctt

a
t

before the actual simulation starts. This smoothing procedure is designed to
drive C to zero.

The coupling parameter κ in the flow equation (2.23) is typically chosen
to be κ = 4 unless otherwise noted; see Section 3.2 for a discussion of the
numerical value of κ.

4.2. Weyl–Papapetrou equations

At each timestep of the flow equation (2.23), the Weyl–Papapetrou equations
(2.5) and (2.6) must be solved for the metric fields U and V . We follow
Weyl [26] (see also [14]) and expand the solution in spherical harmonics,
which in axisymmetry reduce to the Legendre polynomials Pn.

The general solution to the Laplace equation (2.5) with asymptotic
boundary condition U → 0 as r → ∞ is

U = −
∞∑
n=0

anr
−(n+1)Pn(cos θ).(4.17)

From any such solution U , the solution to (2.6) for V with V → 0 as r → ∞
is obtained as in [14] by

V = −
∞∑
k=0

∞∑
l=0

akal
(k + 1)(l + 1)
(k + l + 2)

(PkPl − Pk+1Pl+1)
rk+l+2 .(4.18)

The coefficients an are determined by the inner Dirichlet boundary con-
ditions (2.15) and (2.17). Numerically, we compute them by truncating the
sum in (4.17) at n = N and evaluating the equation at the N + 1 points on
the curve (r(τi), θ(τi)), 0 � i � N , where τi are the collocation points. This
results in an (N + 1)× (N + 1) linear system of equations for the coefficients
an which we solve using a standard direct linear solver (numpy.linalg.solve
in Python2, which implements the LAPACK3 routine gesv).

From (4.17), one expects that this numerical procedure becomes unstable
when the curve contains points with radius r � 1, which is indeed what we
observe—particularly the higher an become very large. The problem can be

2https://www.python.org, http://www.numpy.org, https://scipy.org, https://
matplotlib.org.

3http://www.netlib.org/lapack/.

https://www.python.org
http://www.numpy.org
https://scipy.org
https://matplotlib.org
https://matplotlib.org
http://www.netlib.org/lapack/
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alleviated by only solving (4.17) for the lowest few an in the least squares
sense (we use the routine numpy.linalg.lstsq). Typically, only the lowest
2/5 of the coefficients are solved for. We switch from the full linear solver to
the least squares method as soon as the radius r of one point on the curve
becomes smaller than 1.7.

Once the coefficients an in (4.17) have been determined, V is approxi-
mated by again truncating the sums in (4.18) at k, l = N . With these nu-
merical approximations to U and V , we are also able to compute all their
derivatives at the collocation points on the curve, as needed for the flow
equation (2.23).

The code has been written in Python using the libraries NumPy, SciPy,
and Matplotlib. A graphical user interface allows the parameters to be spec-
ified and displays plots of various quantities during the flow (see Section 5
for snapshots). Typical CPU times on a laptop for the simulations with fixed
metric (Section 5.1) are one to two minutes, for the simulations with evolved
metric (Section 5.2) about ten minutes.

5. Numerical results

In this section, we present our numerical evolutions of the flow equation (2.23)
derived in Section 2.3.

With the exception of the perturbed data considered at the end of Sec-
tion 5.2, we will compute all (Weyl–Papapetrou) Bartnik data ([0, L], λ,H)
as well as the initial data for the flow from known asymptotically Euclidean,
static, axisymmetric, vacuum solutions in Weyl–Papapetrou form. These are
taken from the Zipoy–Voorhees family (which includes the Schwarzschild
family and Euclidean space) and the Curzon–Chazy family of solutions. We
present the form of these solutions here; for further details and the physical
interpretation, we refer the reader to [14].

In the Zipoy–Voorhees (or γ-metric) family of solutions, the metric func-
tions U and V are given in cylindrical Weyl–Papapetrou coordinates ρ =
r sin θ and z = r cos θ by

U = 1
2δ ln R+ + R− − 2M/δ

R+ + R− + 2M/δ
,

V = 1
2δ

2 ln (R+ + R−)2 − 4(M/δ)2

4R+R−
,

(5.1)

where
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(5.2) R± =
√
ρ2 + (z ±M/δ)2,

and M, δ > 0 are real parameters. This metric becomes singular at ρ = 0,
|z| < M/δ. When δ �= 1, this line segment is a naked curvature singularity
(i.e., there is no event horizon). However for δ = 1 and M > 0, (5.1) reduces to
the Schwarzschild solution representing a static spherically symmetric black
hole of mass M , and the line segment ρ = 0, |z| < M corresponds to the
event horizon (which is not a curvature singularity); see also Section 3.2.2.
Finally, if we set δ = 1 and M = 0, the Weyl–Papapetrou system described
by (5.1) reduces to the Euclidean space, U = V = 0.

A different family of Weyl–Papapetrou solutions is given by the Curzon–
Chazy family,

U = −M

r
, V = −M2 sin2 θ

2r2 .(5.3)

This solution has a naked curvature singularity at r = 0.

5.1. Fixed metric

We begin our analysis of the coupled flow (2.23) and Weyl–Papapetrou system
(2.5), (2.6) by holding the metric fixed, i.e. we do not solve for the functions U
and V during the flow. We construct examples of Bartnik data by prescribing
the coordinate location xa(τ) of the target curve Γ. Along this curve, arclength
τ is computed, 0 < τ < L, using (2.12). The function λ(τ) is computed from
(2.11) and H(τ) is obtained by evaluating (2.14) on the target curve Γ with
the given metric functions U, V . For the initial data of the flow, we specify
the coordinates of a different curve. Here we have the option to either choose
the curve parameter arbitrarily or to parametrise the curve proportionally to
its arclength in the given metric. (The range of the parameter τ is 0 < τ < L
at all times along the flow, where L is computed from the target curve as
described above.) The aim now is to check if the flow correctly “finds” the
specified target curve in the Weyl–Papapetrou coordinate half-plane and to
study how it is approached. The numerical resolution is taken to be N = 75
collocation points in this subsection.

First we take the metric to be Euclidean, U = V = 0. Note that the
Weyl–Papapetrou coordinates coincide with the standard Euclidean coordi-
nates in this case. In Figure 1, we show the evolution of an initial circle in
Weyl–Papapetrou coordinates to a target curve given by an ellipse in Weyl–
Papapetrou coordinates. As expected, the curve approaches the target curve
asymptotically as flow time t → ∞. The embedding term C defined in (2.13)
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vanishes initially (as the initial circle is parametrised by arclength), departs
from zero during the flow but returns to zero asymptotically, as it should.
The mean curvature H is constant initially and approaches its non-constant
target profile asymptotically. The total arclength L (cf. (2.24)) approaches its
target value L asymptotically.

In order to quantify the approach of the flowing curve xat (τ) to its target
xa(τ), we define a distance function

(5.4) d(t) :=
∫ L

0
‖xat (τ) − xa(τ)‖ dτ,

where ‖·‖ refers to the Euclidean 2-norm. It is observed to decrease mono-
tonically (Figure 1). We carried out a parameter search over initial and final
ellipses with various combinations of semi-major axes ranging from 0.1 to 2.0,
including perturbations of these shapes at the 10% level. In all cases that led
to stable numerical evolutions, d(t) was found to be monotonically decreas-
ing. We have not been able to prove this in general but our numerical results
suggest that the distance function (5.4) might be an interesting quantity to
study further in this setting of a fixed Euclidean background metric.

In Figure 2 we show a simulation where the initial curve (an ellipse in
Weyl–Papapetrou coordinates) is not parametrised by arclength, which causes
C to be non-zero initially. Still, the flow converges to the desired curve (a
circle in this case), and C approaches zero, indicating that the final curve is
parametrised by arclength.

Next, we take the metric to be a member of the Schwarzschild family.
In Figure 3 we start off with a circle in Schwarzschild coordinates and let it
flow to a circle, again in Schwarzschild coordinates, with a different radius. In
accordance with the analysis in Section 3.2, the curve remains a coordinate
circle in Schwarzschild coordinates during the entire flow.

The flow also correctly finds the target curve if we start off with an initial
curve that is not a Schwarzschild coordinate circle (Figure 4).

Our numerical method breaks down when the flowing curve gets too close
to the horizon, which as discussed above degenerates to a line on the ρ = 0
axis in Weyl–Papapetrou coordinates. In Figure 5 we choose as a target curve
a circle in Schwarzschild coordinates that is as close to the horizon as we can
get (rS = 2.16M). In this case we had to increase the value of κ from 4 to
4000 and decrease the time step from 0.1 to 0.01 in order to obtain a stable
numerical evolution.

We have successfully tested the flow on the Zipoy–Voorhees and Curzon–
Chazy backgrounds as well, with similar results.
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Figure 1: Flow with fixed Euclidean background metric. The initial curve is
taken to be a circle in Weyl–Papapetrou (= Euclidean cylindrical) coordi-
nates (radius r0 = 4, parametrised by arclength) and the target curve an
ellipse (semi-major axes ρ = 2.5, z = 2). Shown are the coordinate location
of the curve (top panel), the embedding term C and the mean curvature H
(middle panels) at flow times t = 0 (dashed blue), t = 3.6 (dash-dotted red)
and t = 35.8 (dotted green). The target curve is plotted in solid black (indis-
tinguishable from the dotted green curve here). In the bottom panels, we plot
the total curve length L (with the target length L shown in dashed blue) and
the Euclidean distance d to the target curve (5.4) as functions of flow time t.
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Figure 2: Flow with fixed Euclidean background metric. The initial curve is
taken to be an ellipse in Weyl–Papapetrou (=Euclidean cylindrical) coordi-
nates (semi-major axes ρ0 = 4.5, z0 = 4) which in this case is not parametrised
by arclength. The target curve is a circle (radius r = 2). The same quantities
as in Figure 1 are plotted. In the first three panels, the curves correspond
to flow times t = 0 (dashed blue), t = 2.8 (dash-dotted red) and t = 28.1
(dotted green), with the target solution plotted in solid black.
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Figure 3: Flow with fixed background Schwarzschild metric (M = 1). The
initial curve is taken to be a circle in Schwarzschild coordinates (radius rS,0 =
4, parametrised by arclength) and the target curve a smaller circle (rS = 3),
also in Schwarzschild coordinates. Here the top panels show the coordinate
location of the curve in Weyl–Papapetrou and Schwarzschild coordinates,
respectively. The remaining quantities are the same as in Figure 1. In the
first four panels, the curves correspond to flow times t = 0 (dashed blue),
t = 6.3 (dash-dotted red) and t = 63.2 (dotted green), with the target solution
plotted in solid black.
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Figure 4: Flow with fixed background Schwarzschild metric (M = 1). The
initial curve is taken to be an ellipse in Schwarzschild coordinates (semi-major
axes ρS,0 = 4.5, zS,0 = 4, parametrised by arclength) and the target curve a
circle (rS = 3), also in Schwarzschild coordinates. The same quantities as in
Figure 3 are plotted. In the first four panels, the curves correspond to flow
times t = 0 (dashed blue), t = 6.3 (dash-dotted red) and t = 63.2 (dotted
green), with the target solution plotted in solid black.
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Figure 5: Flow with fixed background Schwarzschild metric (M = 1). The
initial curve is taken to be a circle in Schwarzschild coordinates (radius rS,0 =
3, parametrised by arclength) and the target curve a circle close to the horizon
(rS = 2.16), also in Schwarzschild coordinates. The same quantities as in
Figure 3 are plotted. In the first four panels, the curves correspond to flow
times t = 0 (dashed blue), t = 0.0041 (dash-dotted red) and t = 7.4 (dotted
green), with the target solution plotted in solid black. The total curve length
L decreases rapidly to its target value on the time scale shown.



A flow approach to Bartnik’s static metric extension conjecture 651

5.2. Evolving metric

In this section, we let the metric evolve along with the flow by solving the
Weyl–Papapetrou equations (2.5), (2.6) for U and V as described in Sec-
tion 4.2. The numerical resolution is taken to be N = 30 collocation points
throughout this subsection.

In order to obtain some insight into how the static metric extensions
change during the flow, we compute three masses at each time step, namely
the (total) ADM mass mADM (1.7), the (quasi-local) Hawking mass mH (1.8),
and the pseudo-Newtonian mass mPN (1.10) of the boundary surface corre-
sponding to the flowing curve Γt = xat (τ) in the static metric extension cor-
responding to Ut and Vt. We remind the reader that the relations between
these masses were briefly discussed in Section 1.1.

As the ADM mass can easily be seen to be the leading order term in an
expansion of U in inverse powers of r,

U = −mADM

r
+ O

( 1
r2

)
,(5.5)

and can thus be computed as the first expansion coefficient in the Legendre
expansion (4.17) that we use to solve the Weyl–Papapetrou equations:

mADM = a0.(5.6)

Combining the definition of the Hawking mass (1.8) with our expression for
the mean curvature (2.14) and for the induced 2-metric (2.9), the Hawking
mass of the boundary surface corresponding to Γt = xat (τ) is obtained as

mH =

√
1
8

∫ L

0
� r sin θ e−U◦γ dτ

×
(

1 − 1
8

∫ L

0
H2 � r sin θ e−U◦γ dτ

)
.

(5.7)

Similarly, the pseudo-Newtonian mass (1.10) of the boundary surface corre-
sponding to Γt = xat (τ) can be computed to be

mPN = 1
2

∫ L

0
(r2θ′ U,r ◦ γ − r′ U,θ ◦ γ) sin θ dτ,(5.8)

where we used (2.3) and (2.9).
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In the following figures, the masses are shown as functions of flow time
t in the bottom right panel: the ADM mass (solid blue), the Hawking mass
(dashed green) and the pseudo-Newtonian mass (dash-dotted red). In many
plots the curves coincide. Recall from Section 1.1 that the ADM and the
pseudo-Newtonian mass must theoretically be identical, while the Hawking
mass will in general be smaller than the other two masses, except on round
spheres in Euclidean space and on centred round spheres in Schwarzschild,
where all three notions of mass coincide.

Our numerical analysis for the coupled flow–Weyl–Papapetrou system
now proceeds as follows. In this subsection, we construct Bartnik data by
specifying the coordinate location of the target curve in a given background
metric, as in Section 5.1. (We will consider more general Bartnik data in
Section 5.3.)

In Figure 6, we choose as target curve an ellipse in Euclidean space. The
initial curve is taken to be a circle in Euclidean space. Already at the initial
time, the flow departs from Euclidean space because the initial (vanishing) U
and V are replaced with the (non-trivial) solution to the Weyl–Papapetrou
equations with boundary data determined by the prescribed function λ(τ)
according to (2.11); see also Section 3.2.1. This also implies that the initial
curve is no longer parametrised by arclength once U and V have been updated,
hence C �= 0 initially. The flow does converge to the target curve and the
Euclidean metric as desired. This example shows clearly how the Hawking
mass can differ from the other masses; in this case it is negative, whereas
the other masses are zero. It should be noted that the expressions we use for
the masses are only physically meaningful as t → ∞ as the curve becomes
parametrised by arclength.

In Figure 7, we present a flow from a circle in Euclidean space to a
(Schwarzschild coordinate) circle in Schwarzschild space (M = 1). Figure 8
shows a similar evolution of a (Schwarzschild coordinate) circle in Schwarz-
schild space of mass M = 1 to a different Schwarzschild space of mass
M = 2. In Figure 9, we let a (Schwarzschild coordinate) circle in M = 1
Schwarzschild space flow to a circle close to the horizon (rS = 2.41) in the
same Schwarzschild system (but again notice that the coupled flow departs
from this metric at intermediate times). This is the closest we could get to the
horizon at rS = 2 due to the numerical problems associated with our method
of solving the Laplace equation for U described in Section 4.2.

A flow between different members of the Zipoy–Voorhees family is shown
in Figure 10 and between different members of the Curzon–Chazy family in
Figure 11. In this case, the Hawking mass can be seen to differ noticeably
from the other mass functions, as was to be expected.
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Figure 6: Flow with evolving metric. The initial curve is taken to be a circle
in Euclidean space (r0 = 1.5), the target curve an ellipse in Euclidean space
(semi-major axes ρ = 1, z = 2). In addition to the quantities described in
Figure 1, we also show the metric fields U and V along the flowing curve
here. The different curves correspond to flow times t = 0 (dashed blue),
t = 0.26 (dash-dotted red) and t = 52.1 (dotted green), with the target
solution plotted in solid black. In the bottom right panel we plot the three
masses described in the main text: ADM (solid blue), Hawking (dashed green)
and pseudo-Newtonian (dash-dotted red, indistinguishable from the solid blue
line).



654 Carla Cederbaum et al.

Figure 7: Flow with evolving metric. The initial curve is taken to be a circle
in Euclidean space (r0 = 4), the target curve a circle in Schwarzschild coordi-
nates (rS = 3) in Schwarzschild space of mass M = 1. The same quantities as
in Figure 6 are plotted. In the first five panels, the different curves correspond
to flow times t = 0 (dashed blue), t = 4.9 (dash-dotted red) and t = 197.4
(dotted green), with the target solution plotted in solid black.
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Figure 8: Flow with evolving metric. The initial curve is taken to be a circle
(rS,0 = 6) in M = 1 Schwarzschild space, the target curve a circle (rS = 6) in
M = 2 Schwarzschild space. The same quantities as in Figure 6 are plotted.
In the first five panels, the different curves correspond to flow times t = 0
(dashed blue), t = 19.7 (dash-dotted red) and t = 789.6 (dotted green), with
the target solution plotted in solid black.
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Figure 9: Flow with evolving metric. The initial curve is taken to be a
(Schwarzschild coordinate) circle (rS,0 = 3) in M = 1 Schwarzschild space,
the target curve a (Schwarzschild coordinate) circle close to the horizon
(rS = 2.41) in Schwarzschild space of the same mass M = 1. The same
quantities as in Figure 6 are plotted. In the first five panels, the different
curves correspond to flow times t = 0 (dashed blue), t = 3.2 (dash-dotted
red) and t = 127.8 (dotted green), with the target solution plotted in solid
black.
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Figure 10: Flow with evolving metric. The initial curve is taken to be a Weyl–
Papapetrou coordinate circle (r0 = 4) in the Zipoy–Voorhees space with pa-
rameters M = 1, δ = 0.7, the target curve a Weyl–Papapetrou coordinate
circle (r = 3) in the Zipoy–Voorhees space with parameters M = 1, δ = 0.6.
The same quantities as in Figure 6 are plotted. In the first five panels, the
different curves correspond to flow times t = 0 (dashed blue), t = 9.3 (dash-
dotted red) and t = 370.3 (dotted green), with the target solution plotted in
solid black.
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Figure 11: Flow with evolving metric. The initial curve is taken to be a Weyl–
Papapetrou coordinate circle (r0 = 4) in the Curzon–Chazy space of mass
M = 1, the target curve a Weyl–Papapetrou coordinate circle (r = 3) in the
Curzon–Chazy space of mass M = 2. The same quantities as in Figure 6 are
plotted. In the first five panels, the different curves correspond to flow times
t = 0 (dashed blue), t = 15.9 (dash-dotted red) and t = 634.9 (dotted green),
with the target solution plotted in solid black.
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5.3. Perturbed Bartnik data

In the simulations presented so far, we constructed the Bartnik data from
a given Weyl–Papapetrou system, and the flow correctly recovered the cor-
responding metric extension. To conclude this section, we now study a case
where we do not know a priori which exterior metric the Bartnik data give
rise to. To construct such data, we start with a Schwarzschild coordinate cir-
cle at the photon sphere rS◦ = 3M . (We use the photon sphere here since it
is a geometrically distinguished round sphere where the mean curvature H◦
is maximal.) We compute the corresponding Killing vector norm λ◦(τ) and
then perturb this function:

(5.9) λ(τ) = λ◦(τ)(1 + f(τ)),

where we choose a Gaussian profile

(5.10) f(τ) = A exp
(
−

(
τ − τ0

σ

))
.

We compute a new Schwarzschild coordinate radius rS from

(5.11) rS :=

√
|Σ|
4π , |Σ| := 2π

∫ L

0
λ(τ) dτ,

where L is taken from the unperturbed target curve (note that we do not know
the coordinate location of the target curve corresponding to the perturbed
Bartnik data in this case). We choose the mean curvature to have the constant
value

(5.12) H(τ) = 2√
3 rS

,

the same functional dependence as between H◦ and rS◦.
Figure 12 demonstrates that the flow converges; we have thus constructed

the static metric extension corresponding to the prescribed Bartnik data
([0, L], λ,H). The chosen amplitude A = 0.1 of the perturbation is the max-
imum value for which we were able to achieve a stable numerical evolution.
We choose M = 1 for the unperturbed target curve. The final ADM mass
is mADM = 1.0200 and the final Hawking mass is mH = 1.0162. This is in
accordance with the generalised Penrose inequality (1.9).
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Figure 12: Flow with evolving metric. The Bartnik data are constructed from
the photon sphere in M = 1 Schwarzschild perturbed by a Gaussian profile
(5.10) with A = 0.1, τ0 = L/2 and σ = L/8. The initial curve is taken to be a
circle with radius rS = 4 in M = 1 Schwarzschild. Solid black lines refer to the
unperturbed data. The final ADM mass belonging to the perturbed Bartnik
data is mADM = 1.0200 and the Hawking mass is mH = 1.0162. In the first
five panels, the different curves correspond to flow times t = 0 (dashed blue),
t = 4.9 (dash-dotted red) and t = 197.4 (dotted green). Solid black lines refer
to the unperturbed data here.
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Figure 13: Dependence of the masses on the amplitude A of the perturbation
for the Bartnik data with Gaussian perturbation as in Figure 12. Shown
are the ADM mass (solid blue), the Hawking mass (dashed green), and the
pseudo-Newtonian mass (dash-dotted red, indistinguishable from the solid
blue line).

In Figure 13, we investigate the dependence of the masses (ADM, Hawk-
ing, and pseudo-Newtonian) on the amplitude A of the perturbation. All three
masses appear to approach the unperturbed value continuously as A → 0. The
ADM mass and the pseudo-Newtonian mass are identical within numerical
error, as expected from the theoretical analysis; see Section 1.1.

6. Conclusion

In this paper, we developed a new approach to construct static metric ex-
tensions as they arise in Bartnik’s conjecture. We restricted ourselves to ax-
isymmetry and worked with the Weyl–Papapetrou formulation of the static
axisymmetric vacuum (SAV) Einstein equations. The metric extension prob-
lem becomes an elliptic free boundary value problem in this setting, which
we solved numerically using a geometric flow (2.23) coupled to the Weyl–
Papapetrou system of equations (2.5), (2.6). As far as we know, this is the
first time static metric extensions have been constructed explicitly in general
situations using numerical methods.

It should be noted that we only considered axisymmetric Bartnik data,
and we only sought axisymmetric static metric extensions. Even for axisym-
metric data, non-axisymmetric static metric extensions might exist. Further-
more, we restricted our attention to reflection-symmetric Bartnik data and
static metric extensions. Of course, even for reflection symmetric data, non-
reflection symmetric static metric extensions may exist.
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In a first step, we simplified the situation by fixing the metric to some
known background SAV solution to the Einstein equations and prescribing
Bartnik data corresponding to a given surface within that spacetime, or rather
to a given curve after performing the symmetry reduction. We showed analyt-
ically that coordinate circles in Euclidean space and in a fixed Schwarzschild
background remain coordinate circles during our geometric flow and approach
the desired target circles in a globally stable manner. Moreover, coordinate
circles in Euclidean space are linearly stable against arbitrary perturbations.
We also presented arguments in favour of short-time existence of solutions to
(2.23). It would be very interesting to study short-time existence of the flow
more rigorously.

Numerically, our geometric flow behaved as expected in this situation.
Interestingly, in Euclidean space, the Euclidean distance (5.4) between the
flowing and the target curve appeared to decrease monotonically in all cases
we studied numerically. Investigating this claim analytically would be an in-
teresting topic for future work.

Next, we studied the full elliptic free boundary value problem, which in-
volved solving the Weyl–Papapetrou form (2.5), (2.6) of the SAV Einstein
equations at each “time” step of the flow. We specified Bartnik data corre-
sponding to given surfaces in various known SAV spacetimes, and in all cases
where we obtained stable numerical evolutions, the surface and static metric
extension were found correctly. We also perturbed Bartnik data correspond-
ing to (centred) round spheres in Schwarzschild so that we did not know the
corresponding metric extensions a priori, and we were able to construct static
metric extensions with ADM masses up to 2% larger than in the unperturbed
case. The ADM mass appeared to approach the unperturbed mass continu-
ously in the limit of vanishing amplitude of the perturbation. The Hawking
mass was always observed to be smaller than or equal to the ADM mass (or,
identically, the pseudo-Newtonian mass), in agreement with the generalised
Penrose inequality (1.9). These results should be interesting in the light of on-
going analytical work on the case of near-round spheres in Schwarzschild in [8].

Our analysis revealed that theoretically, the flow has more stationary
states than just the desired position of a curve inducing the correct Bartnik
data (even in a fixed Euclidean background), although in all the simulations
shown in this paper, the flow did approach the desired stationary state. In-
vestigating if there really can be evolutions approaching one of the spurious
stationary states and developing suitable work-around strategies would be an
interesting topic for future research.

In all situations where we investigated this, different initial data to the
coupled flow gave rise to the same asymptotic solution (U, V ) as t → ∞. If
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we had found an example where this is not the case then this would disprove
the uniqueness of static metric extensions for given Bartnik data. It should be
interesting to investigate this uniqueness question in more extreme situations.

We encountered numerical instabilities e.g. when we specified Bartnik
data corresponding to a surface too close to the horizon in Schwarzschild or
when the flowing curves became too strongly deformed (e.g. ellipses with large
eccentricity). Sometimes, it was possible to cure these instabilities by adapt-
ing the parameter κ in (2.23) or by making the time steps sufficiently small.
Another source of numerical instability was associated with our method of
solving the Poisson equation (2.5) for the metric field U described in Sec-
tion 4.2 and arose when the radius of the flowing curve became too small,
r � 1 in Weyl–Papapetrou coordinates. It was possible to somewhat allevi-
ate this problem by the least squares method (also described in Section 4.2).
More work is needed to obtain stable simulations in more extreme situa-
tions.

From an analytical perspective, it would be very interesting indeed to
rigorously analyse the full coupled elliptic system with flowing boundary,
equations (2.5), (2.6) and (2.23), and to thereby obtain theoretical results
about existence of solutions to Bartnik’s static metric extension conjecture in
Weyl–Papapetrou form.
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