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Abstract: These are notes on the theory of super Riemann sur-
faces and their moduli spaces, aiming to collect results that are
useful for a better understanding of superstring perturbation the-
ory in the RNS formalism.
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1. Introduction

What are now understood as superstrings – string theories with spacetime su-
persymmetry – can be formulated in terms of a worldsheet action with world-
sheet supersymmetry [1–3], naturally coupled to two-dimensional supergrav-
ity [4, 5]. This leads to a description of superstring scattering amplitudes in
terms of integration over a suitable class of two-dimensional supergeometries,
an early reference being [6]. The relevant supergeometries are best understood
as super Riemann surfaces, which were initially defined in [7–10]. The subse-
quent literature, which includes papers such as [11–15] developing the theory
of super Riemann surfaces and papers such as [16–30] with applications to
string theory, is too vast to be fully cited here.

The present notes aim to give a relatively understandable account of as-
pects of super Riemann surface theory that are particularly relevant for su-
perstring perturbation theory. A reconsideration of superstring perturbation
theory will appear elsewhere [31]. A companion set of notes gives an intro-
duction to supermanifolds and integration [32], including some concepts used
here. The reader will also require some familiarity with ordinary Riemann
surfaces and complex manifolds, and some general familiarity with super-
string theory. We have tried to structure these notes so that many of the
more technical parts can be omitted on first reading.

The material described here is mostly standard. One point on which we
differ from some of the literature is that in describing super Riemann sur-
faces, we assume no relation between holomorphic and antiholomorphic odd
variables, since no such relation is natural for superstrings. In particular, in
the framework assumed here, one is not allowed to take the complex conju-
gate of an odd variable. Much of the literature emphasizes the case of a super
Riemann surface with a real structure for the odd variables, as is appropriate
for the nonsupersymmetric (and tachyonic) Type 0 string theory. On some
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points, we have filled in what appear to be missing details in the literature
or have attempted to simplify previous arguments.

We introduce super Riemann surfaces from a purely holomorphic point
of view in section 2, and from a smooth point of view in section 3. Neveu-
Schwarz and Ramond punctures are introduced in section 4. Some examples
of low genus are the topic of section 5. In section 6, we describe the behavior
of supermoduli space at infinity; this is crucial input for superstring pertur-
bation theory. Up to this point, we consider only oriented super Riemann
surfaces without boundary. The generalizations appropriate for open and/or
unoriented strings can be found in section 7. In section 8, we describe the
super analog of the period matrix of a Riemann surface.

In the bulk of this paper, all super Riemann surfaces are N = 1 super
Riemann surfaces, with holomorphic odd dimension 1. This is the relevant
case for the usual supersymmetric string theories. However, in section 9, we
describe some rather pretty facts [34–37] about N = 2 super Riemann sur-
faces and generic complex supermanifolds of dimension 1|1. These facts have
perhaps not yet been fully incorporated in string theory.

We generally write Σ for a super Riemann surface, Σ0 for an ordinary
Riemann surface, and Σred for the reduced space of Σ. Also, M is generally
the moduli space of ordinary Riemann surfaces and M is the moduli space of
super Riemann surfaces. Further details like the genus, the number and types
of punctures, or (in the bosonic case) the specification of a spin structure are
indicated in an obvious way. Many statements apply either to the ordinary
moduli spaces that parametrize smooth Riemann surfaces or super Riemann
surfaces, or to the Deligne-Mumford compactifications that parametrize also
certain singular surfaces (see section 6). To refer specifically to the compacti-
fications, we write M̂ or M̂. Integration cycles for string perturbation theory
are generically called Γ for bosonic string theory and Γ for superstring theory;
their compactifications are Γ̂ and Γ̂ .

2. Super Riemann surfaces from a holomorphic point of view

2.1. Complex supermanifolds and super Riemann surfaces

We begin by describing1 a super Riemann surface Σ as a complex superman-
ifold. As such Σ has dimension 1|1, so locally it is isomorphic to C

1|1 and can
be described by bosonic and fermionic local coordinates z and θ. Its tangent

1As noted in the introduction, we consider only N = 1 super Riemann surfaces
except in section 9.
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bundle TΣ and its cotangent bundle T ∗Σ are both of rank 1|1. For example,
the cotangent bundle has a basis of 1-forms dz and dθ; the tangent bundle
has the dual basis ∂z and ∂θ.

So far, Σ could be any complex supermanifold of dimension 1|1. To make
Σ into a super Riemann surface, we need one more piece of structure, which
is a subbundle D ⊂ TΣ of rank 0|1, which is required to be “completely
nonintegrable” in the sense that if D is a nonzero section of D (in some open
set U ⊂ Σ), then D2 = 1

2{D,D} is nowhere proportional to D (we describe
this by saying that D2 is nonzero mod D). A typical example is

(2.1) Dθ = ∂

∂θ
+ θ

∂

∂z
.

For this choice, we see that D2
θ = ∂/∂z, which indeed is nowhere a multiple

of Dθ; indeed, Dθ and D2
θ are everywhere a basis of TΣ.

To see that this example is typical, consider a section of D of the general
form

(2.2) D = a
∂

∂θ
+ b

∂

∂z
.

Here a is an even function and b is an odd function. (In general, a and b depend
on z, θ, and possibly on the even and odd moduli of Σ.) In supermanifold
theory, to say that a quantity is “nonzero” means that it is nonzero after
reducing modulo the odd variables (that is, setting them to zero). The odd
function b is certainly proportional to odd variables, so for D to be nonzero
means that a is nonzero and thus invertible. The condition that D2 is not a
multiple of D is invariant under D → fD for any nonzero function f , and by
taking f = a−1 and redefining b, we can reduce to D = ∂/∂θ + b∂/∂z. We
expand b in powers of θ:

(2.3) D = ∂

∂θ
+ (b0 + b1θ)

∂

∂z
.

The condition that D2 is not a multiple of D implies that b1 is nonzero, so
we can replace θ by θ∗ = b

−1/2
1 (b0 + b1θ). After also rescaling D by b

1/2
1 ,

we reduce to D = ∂θ∗ + θ∗ ∂z, showing that locally one can always pick
holomorphic coordinates in which D has the form indicated in (2.1). We call
these superconformal coordinates. A local superconformal coordinate system
z|θ determines the section Dθ of D defined in (2.1). (To explain the notation, it
can be shown – for instance by using eqn. (2.12) below – that Dθ is completely
determined by the choice of θ.)
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In many ways, super Riemann surfaces have simpler properties than
generic 1|1 supermanifolds, but describing them explicitly can be more diffi-
cult. For example, to describe a 1|1 supermanifold, one may start with CP

2|1,
with homogeneous coordinates z1 . . . z3|θ, and impose a homogeneous equa-
tion G(z1 . . . z3|θ) = 0. But generically in this way one obtains a complex
supermanifold that is not a super Riemann surface, since its tangent bundle
does not have an appropriate subbundle D. It is actually quite tricky to de-
termine which 1|1 complex supermanifolds possess the additional structure
corresponding to a super Riemann surface. The gluing construction to which
we turn presently is one of the few general ways to construct super Riemann
surfaces.

2.1.1. Superconformal transformations and primary fields Let z|θ
be local superconformal coordinates. A vector field W = α ∂θ + β ∂z is said
to generate an infinitesimal superconformal transformation or simply to be
superconformal if it preserves the subbundle D ⊂ TΣ, which is equivalent to
saying that for Dθ = ∂θ + θ∂z, [W,Dθ} is proportional to Dθ. (The symbol
[ , } denotes a commutator or anticommutator depending on the statistics of
the objects in question.) A short computation reveals that a basis of super-
conformal vector fields is given by the odd vector fields

(2.4) νf = f(z)
(

∂

∂θ
− θ

∂

∂z

)
,

and the even ones

(2.5) Vg = g(z) ∂

∂z
+ ∂zg(z)

2 θ
∂

∂θ
.

f and g are even functions that depend on z and perhaps on moduli, but not
on θ. Explicitly,

(2.6) {νf , Dθ} = (θ∂zf)Dθ, [Vg, Dθ] = −(∂zg/2)Dθ.

Note that ν2
f = Vg with g = −f2. If we set g(z) = z, we get the superconformal

vector field z∂z + 1
2θ∂θ, which generates the scaling

(2.7) z → λz, θ → λ1/2θ, λ ∈ C
∗,

and we see that θ scales with dimensions of (length)1/2 or (mass)−1/2, while
Dθ scales with mass dimension 1/2.
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If z|θ and ẑ|θ̂ are two local superconformal coordinate systems, then Dθ =
∂θ + θ∂z and D

θ̂
= ∂

θ̂
+ θ̂∂ẑ are two local nonzero sections of D, and so are

related by Dθ = F D
θ̂

for some nonzero function F . Acting with this formula
on the function θ̂, we determine F :

(2.8) Dθ = (Dθθ̂)Dθ̂
.

On the other hand, for any two coordinate systems z|θ and ẑ|θ̂, we can use
the chain rule of calculus to compute

(2.9) Dθ = (Dθθ̂)Dθ̂
+ (Dθẑ − θ̂Dθθ̂)∂ẑ,

so if z|θ is a superconformal coordinate system, then the condition that ẑ|θ̂
is also a superconformal coordinate system can be stated [9]

(2.10) Dθẑ − θ̂Dθθ̂ = 0.

It is actually possible from this to deduce a general formula for a supercon-
formal change of coordinates. Let us try [13] a general ansatz

ẑ = u(z) + θζ(z)
θ̂ = η(z) + θv(z).(2.11)

Then (2.10) gives ζ = vη, v2 = u′ + ηη′, so the relation between the two
coordinate systems is

ẑ = u(z) + θη(z)
√
u′(z)

θ̂ = η(z) + θ
√
u′(z) + η(z)η′(z).(2.12)

In any superconformal coordinate system z|θ, the object Dθ gives a lo-
cal trivialization of the line bundle D. A global section of D assigns to each
superconformal coordinate system z|θ a function A(z|θ) such that the vector
field A(z|θ)Dθ is independent of the choice of superconformal coordinates.
Recalling (2.8), this means that the functions A(z|θ) and Â(ẑ|θ̂) in two su-
perconformal coordinate systems are related by

(2.13) A = F−1Â, F = Dθθ̂.

A field A with this property is called a superconformal primary field of di-
mension −1/2. (The normalization comes from the fact that Dθ scales with
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mass dimension 1/2.) More generally a section of Dn, for any n, corresponds
to a field that transforms under a change of superconformal coordinates as

(2.14) A = F−nÂ.

Such a field is a superconformal primary of dimension −n/2. As an example
of this definition, if φ is a globally-defined function on Σ, then since

(2.15) Dθφ = FD
θ̂
φ,

Dθφ is a section of D−1 or in other words a superconformal primary of di-
mension 1/2.

If A is a superconformal primary of some dimension h, then locally we
can expand

(2.16) A = a0 + θa1,

where a0 and a1 are conformal primaries of dimensions h and h + 1/2.

2.1.2. Gluing and split super Riemann surfaces With the help of
(2.12), one can construct all possible super Riemann surfaces by gluing to-
gether open sets Uα ⊂ C

1|1 by means of superconformal automorphisms. One
simply imitates the gluing procedure that builds an ordinary manifold by
gluing together small open sets. All super Riemann surfaces can be built in
this way. The only problem is that the formulas quickly get complicated.

An important special case of the gluing procedure arises if we glue by
superconformal automorphisms with η = 0. Then (2.12) simplifies and the
gluing of superconformal coordinates in open sets Uα and Uβ reduces to

zα =uαβ(zβ)
θα =(u′αβ(zβ))1/2θβ.(2.17)

We can consistently forget the θ’s, because (2.17) says that zα is a function
of zβ only, independent of θ. This would not be true for more general super-
conformal gluing with ζ �= 0. When we forget the θ’s, the functions uαβ(zβ)
are gluing functions that build an ordinary Riemann surface Σred (known as
the reduced space of Σ) by gluing small open sets in C. (To build the su-
per Riemann surface Σ takes a little more information, as we discuss shortly,
since the gluing relation for the θ’s depends on the signs of the square roots
(u′αβ)1/2.) Forgetting the θ’s amounts to a projection π : Σ → Σred. The fibers
of π are linear spaces of dimension 0|1, parametrized by the odd coordinates
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θα. Thus Σ is the total space of a line bundle V → Σred, where the fibers of
V are fermionic.

To identify V , we observe that the gluing law for the holomorphic dif-
ferential dzα is dzα = u′αβ(zβ) dzβ , so that (2.17) says that θα transforms as
(dzα)1/2. Now dzα is a local section of a line bundle, the canonical or cotan-
gent bundle2 K of the ordinary Riemann surface Σred. So (dzα)1/2 would be
a section of K1/2, and thus θα transforms as a (fermionic) section of K1/2.
If a linear function on the fibers of a line bundle V is a section of K1/2, we
must identify V as the dual line bundle K−1/2.

So we conclude that gluing laws of the particular form (2.17) describe a
super Riemann surface Σ that is the total space of the line bundle ΠK−1/2

over Σred. Here the symbol Π simply represents reversal of “parity” or statis-
tics; it is a reminder that the fibers of the fibration Σ → Σred are fermionic.

In this construction, K1/2 may be any line bundle over Σred whose square
is isomorphic to K. If Σred has genus g (in which case we also say that Σ has
genus g), then up to isomorphism, there are 22g choices of K1/2. The choice
of K1/2 enters in the choices of signs of the square roots (u′αβ)1/2 that appear
in the superconformal gluing relations (2.17). A choice of K1/2 is called a spin
structure.

A super Riemann surface Σ with a projection to Σred as described above
is called a split super Riemann surface. The reduced space Σred is what we
will call a spin curve – an ordinary Riemann surface together with a choice of
spin structure. Topologically, spin structures are naturally classified as being
even or odd depending on whether the space H0(Σred, K

1/2) of global holo-
morphic sections of the line bundle K1/2 has even or odd dimension; this is
the only property of a spin structure that is invariant under all diffeomor-
phisms, including those that are not continuously connected to the identity.
The moduli space Mspin of spin curves accordingly has two connected com-
ponents, which we will call Mspin,±, parametrizing respectively a Riemann
surface with a choice of even or odd spin structure. Mspin,± is an unramified
cover of M, the moduli space of Riemann surfaces without a choice of spin
structure; the degree of the cover is the number of even or odd spin structures,
namely 1

2(22g± 2g).
To get M, the moduli space of super Riemann surfaces, we must allow

more general gluing with ζ �= 0. Since the odd parameters are nilpotent, this
does not change the topology of the situation, so again M has two connected

2For any space X, we generically write T ∗X for the cotangent bundle to X. So
we would naturally write T ∗Σred for the cotangent bundle to Σred. However, the
abbreviation K is traditional and convenient.
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components M±. M± reduces to Mspin,± if we set the odd moduli (and
therefore ζ) to zero. So Mspin,± is the reduced space of M±.

2.2. Moduli of super Riemann surfaces

We will now try to understand more systematically the even and odd gluing
parameters that arise in building a super Riemann surface Σ.

Recall that Σ is built out of small open sets Uα that are glued together on
intersections Uα ∩Uβ. So a first-order deformation of the gluing data is given
by a superconformal vector field φαβ defined in each intersection Uα ∩ Uβ .
The idea is that before gluing Uβ to Uα, we transform by 1 + wφαβ , with w

an infinitesimal parameter. The φαβ are subject to a constraint

(2.18) φαβ + φβγ + φγα = 0

in each triple intersection Uα ∩ Uβ ∩ Uγ . This constraint ensures that the
gluing data remain consistent after being modified by the φαβ . The φαβ are
also subject to an equivalence relation

(2.19) φαβ
∼= φαβ + φα − φβ ,

where each φα is a superconformal vector field defined in Uα. The meaning of
this equivalence is that Σ is unchanged if we transform each Uα by a symmetry
generated by φα before gluing the Uα together. All this is precisely analogous
to the deformation theory of ordinary complex manifolds. The constraint
(2.18) means that we should interpret φαβ as a one-cocycle on Σ with values
in the sheaf3 S of superconformal vector fields on Σ. Modulo the equivalence
relation (2.19), such a cocycle determines an element of H1(Σ,S).

Let TM be the tangent bundle to M and let TM|Σ be its fiber at the point
in M corresponding to Σ. What is explained in the last paragraph implies
that TM|Σ = H1(Σ,S).

While H1(Σ,S) has this interpretation, the corresponding space of global
holomorphic sections H0(Σ,S) has a more elementary interpretation: it clas-
sifies superconformal vector fields on Σ that are holomorphic everywhere, and
so determine infinitesimal automorphisms of Σ. So H0(Σ,S) is the Lie alge-
bra of the supergroup G of superconformal automorphisms of Σ. For a super

3This sheaf assigns to any small open set U ⊂ Σ the space of superconformal
vector fields on U .
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Riemann surface Σ, the higher sheaf cohomology groups Hk(Σ,S), k > 1, are
always zero,4 so we only have to consider the cases k = 0, 1.

In superstring perturbation theory, at least for closed oriented super-
strings, one normally encounters only values of the genus g of Σ and the
number of punctures such that there are no infinitesimal automorphisms,
H0(Σ,S) = 0. For the time being, we consider Riemann surfaces without
punctures (they will be incorporated in section 4). With no punctures, just
as for ordinary Riemann surfaces, infinitesimal automorphisms are absent pre-
cisely for g ≥ 2, so the cases g = 0, 1 are exceptional. (For those exceptional
cases, the moduli spaces can be described by hand; see section 5.)

We would like to calculate the even and odd dimension of TM|Σ. For
g ≥ 2, this dimension does not depend on the odd moduli of Σ, for the
following reason. Because the odd moduli are infinitesimal, they could affect
the cohomology only by a “jumping” process in which cohomology classes of
neighboring degree pair up and disappear under an infinitesimal perturbation.
For the present problem, with g ≥ 2, since the cohomology is nonzero only
in degree 1, jumping cannot occur and the odd moduli do not affect the
dimension of the cohomology. It turns out that there is also no jumping for
g = 0 or for g = 1 with even spin structure (for the case of g = 1 with odd
spin structure, see the end of section 5.2).

So to determine the dimension of TM|Σ, we can make a convenient choice
of the odd moduli. The most convenient choice is to set them to zero, that
is, to take Σ to be a split super Riemann surface. In this case, we have a
decomposition S = S+ ⊕ S− where S+ consists of vector fields

(2.20) Vg = g(z)∂z + 1
2g

′(z)θ∂θ

with g even, and S− consists of vector fields

(2.21) νf = f(z)(∂θ − θ∂z).

with f odd. Similarly, for Σ split, there is a natural decomposition TM|Σ =
T+M|Σ ⊕ T−M|Σ in even and odd subspaces, and

(2.22) T±M|Σ = H1(Σ,S±).

To evaluate (2.22), we can express the cohomology computation as a
computation on the reduced space Σred. We can associate to Vg the ordinary

4This statement can be deduced from the analogous statement for the ordinary
Riemann surface Σred. As Σred has complex dimension 1, its cohomology with values
in any coherent sheaf vanishes above degree 1.
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vector field g(z)∂z on Σred; it is a section of TΣred, the tangent bundle to
Σred. (This is the same as K−1, where K is the canonical bundle of Σred.) So
S+ is the sheaf of sections of TΣred and

(2.23) T+M|Σ = H1(Σred, TΣred).

The right hand side is the tangent space to M, the moduli space of ordinary
Riemann surfaces, at the point corresponding to Σred. For Σred of genus g ≥ 2,
it has dimension 3g−3. One route to this result is the Riemann-Roch theorem.
For any line bundle L of degree n, this theorem asserts that

(2.24) dim H0(Σred,L) − dim H1(Σred,L) = 1 − g + n.

Also, H0(Σred,L) = 0 if n < 0. For L = TΣred, we have n = 2 − 2g, which is
negative for g ≥ 2, so the Riemann-Roch formula gives dim H1(Σred, TΣred) =
3g− 3.

Similarly, we can associate to νf the object f(z)∂θ, which we view as an
odd vector field along the fibers of Σ → Σred, or in other words as a section
of K−1/2 = TΣ1/2

red . So S− is the sheaf of sections of TΣ1/2
red and

(2.25) T−M|Σ = ΠH1(Σred, TΣ1/2
red ),

where the symbol Π is meant to remind us to view this space as being
fermionic. The line bundle TΣ1/2

red has degree 1−g, and for g ≥ 2, the Riemann-
Roch formula gives dim H1(Σred, TΣ1/2

red ) = 2g− 2.
Thus for g ≥ 2, the dimension of the moduli space of super Riemann

surfaces of genus g with no punctures is

(2.26) dim Mg = 3g− 3|2g− 2.

The general formula that holds for all g includes a contribution in the Riemann-
Roch formula from H0(Σ,S), which is the Lie algebra of the supergroup G of
automorphisms of Σ. The general formula is

(2.27) dim Mg− dim G = 3g− 3|2g− 2.

For example, for g = 0, M0 is a point, of dimension 0|0, while G is the
supergroup OSp(1|2), of dimension 3|2.
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2.2.1. Odd moduli and spin structures The fact that the odd moduli
take values in ΠH1(Σred, TΣ1/2

red ) means that once odd moduli are turned on,
it does not make sense to claim that two super Riemann surfaces are the
same except for a different choice of spin structure. The odd moduli take
values in a space whose definition depends on a choice of TΣ1/2

red and thus on a
choice of spin structure, so odd moduli with different spin structures cannot
be compared. This means that what happens in superstring perturbation
theory in genus 1 is atypical. In genus 1, with an even spin structure (and
no punctures), there are no odd moduli. It therefore makes sense to sum over
spin structures before performing any other integration, and this leads to the
classic proof of vanishing of the one-loop contribution to the cosmological
constant, via an identity whose use in this context goes back to [39]. When
odd moduli are present, the closest analog of this procedure is to first integrate
over the odd moduli, to reduce an integral over Mg to an integral over Mg.
After this, it makes sense to sum over spin structures before performing the
remaining integrals. This can be elegantly done for g = 2 at least for the
vacuum amplitude [21, 40], though as far as is known, there is no such natural
procedure in general.

2.2.2. Deformations as a complex supermanifold In this analysis, we
have used a gluing construction to interpret first-order deformations of Σ as
a super Riemann surface in terms of the sheaf cohomology group H1(Σ,S).

Alternatively, we could simply deform Σ as a complex supermanifold,
not requiring the deformations to preserve a super Riemann surface struc-
ture. This is much easier to analyze. In this case, the vector fields φαβ by
which we perturb can be any holomorphic sections of the tangent bundle TΣ,
and hence the first-order deformations of Σ as a complex supermanifold are
parametrized by H1(Σ, TΣ). The same cohomology group parametrizes the
first-order deformations of an ordinary complex manifold, for essentially the
same reasons.

2.2.3. Mg as an orbifold The moduli space Mg of ordinary Riemann
surfaces Σ0 of genus g is not a manifold but an orbifold. This is so because Σ0
may have automorphisms. Usually in perturbative string theory, one considers
a situation in which Σ0 has no continuous automorphisms (either because
g ≥ 2, or because Σ0 is endowed with a sufficient number of punctures, as
described in section 4), but it still may have a finite group of automorphisms.

Orbifold singularities of Mg arise when Σ0 has extra automorphisms com-
pared to a generic surface with the same genus. For example, a generic surface
of genus at least 3 has no nontrivial automorphisms at all, so for g ≤ 3, Mg
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has an orbifold singularity whenever Σ0 has a nontrivial automorphism group.
For g = 2, the generic automorphism group is Z2, and orbifold singularities
occur when it becomes larger.

Super moduli space Mg is similarly an orbifold. Indeed, its orbifold struc-
ture is more prominent than that of Mg, for the following simple reason.
Every super Riemann surface Σ is infinitesimally close to a surface with en-
hanced symmetry. That is so because there is always an enhanced symmetry
when we turn off the odd moduli; a split super Riemann surface Σ always
has a Z2 symmetry τ that acts trivially on Σred and acts as −1 on the fibers
of the fibration Σ → Σred. (In eqn. (2.17), this is the symmetry that acts as
τ : zα|θα → zα|−θα for all α.) The odd moduli are odd under this symmetry.
So the locus of enhanced symmetries is dense in Mg, while in Mg it has
positive (bosonic) codimension.

In the present notes, we will not go quite deeply enough for the orbifold
nature of Mg to play a major role, though the Z2 automorphism group of a
split super Riemann surface will make an occasional appearance.

The fancy way to describe the orbifold nature of Mg is to refer to it as the
moduli “stack” of super Riemann surfaces rather than the moduli “space.”

2.3. Superconformal vector fields reconsidered

In the definition of a super Riemann surface Σ, we postulated the existence
of a subbundle D ⊂ TΣ of rank 0|1. As TΣ has rank 1|1, the quotient TΣ/D
has rank 1|0.

On the other hand, we also postulated that if D is a local nonzero section
of D, then D2 is everywhere nonzero mod D. This means that D2 has an
everywhere nonzero projection to L = TΣ/D. The existence of a natural map
from a nonzero section D of D to a nonzero section D2 of L (a quadratic
map in the sense that if f is a nonzero function, then (fD)2 = f2D2 mod D)
implies that L ∼= D2.

Thus the natural exact sequence 0 → D → TΣ → TΣ/D → 0 becomes

(2.28) 0 → D → TΣ → D2 → 0.

We also sometimes need the dual sequence:

(2.29) 0 → D−2 → T ∗Σ → D−1 → 0.

Here one must recall that to dualize an exact sequence of vector bundles, one
dualizes each bundle involved and reverses the direction of the maps. To get
(2.29), we just need to know that the dual of TΣ is the cotangent bundle
T ∗Σ and the dual of Dh is D−h. Just as TΣ has a distinguished subbundle
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of rank 0|1, namely D, (2.29) says that T ∗Σ has a distinguished subbundle
of rank 1|0, isomorphic to D−2. Concretely, what singles out the subbundle
D−2 ⊂ T ∗Σ is that, under the duality between T ∗Σ and TΣ, it is normal to
D ⊂ TΣ. Explicitly, in local superconformal coordinates z|θ, the subbundle
D ⊂ TΣ is generated by the vector field Dθ = ∂θ + θ∂z, so D−2 ⊂ T ∗Σ is
generated by the 1-form

(2.30) � = dz − θdθ,

whose contraction with Dθ vanishes.
We would like to give a new description of the space of superconformal

vector fields. The formulas (2.4) and (2.5) for superconformal vector fields are
clear enough, and not difficult to verify. But they have the peculiar property
that the functions f(z) and g(z) depend on z only and not θ. Can we combine
f and g to a superfield?

In [11], it is shown how to do this. In terms of a superfield V(z|θ) =
g(z) + 2θf(z), a general superconformal vector field is

(2.31) W = V(z, θ)∂z + 1
2DθV Dθ.

In fact, upon expanding the right hand side in terms of ∂z and ∂θ, one finds

(2.32) W = Vg + νf ,

with Vg and νf as defined before.
Since (2.31) has been written in local superconformal coordinates z|θ,

the global nature of the superfield V(z|θ) is not immediately obvious. To
understand it, we observe that a superconformal vector field W is in particular
a vector field, and thus a section of TΣ. We can project W from TΣ to
TΣ/D by dropping the Dθ term. In other words, mod Dθ, W is equivalent
to V(z, θ)∂z, where we view ∂z as giving a basis for TΣ/D ∼= D2. So globally
the superfield V is a section of D2, as stated in [11].

The map from superconformal vector fields to sections of D2 is one-to-
one, as is clear from (2.32). This helps in understanding the superconformal
ghost fields of string theory. These fields start life as a superconformal vector
field with reversed statistics. So they can be combined to a superfield C that
is a section of ΠD2, where the symbol Π tells us that C has the opposite to
usual statistics (its lower component is odd). Locally, we can expand

(2.33) C = c + θγ,

where c is an odd section of TΣred, and γ is an even section of TΣ1/2
red .
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The equivalence of S with the sheaf of sections of D2 has an application
that we will explain later: it leads to a convenient description of the dual
space to H1(Σ,S). This equivalence also has one obvious drawback: super-
conformal vector fields have a natural graded Lie algebra structure, which is
not particularly visible in the description via sections of D2.

2.4. Holomorphic volume forms

Now we will discuss holomorphic volume forms on Σ. Like a holomorphic
differential a(z)dz on an ordinary Riemann surface, a holomorphic volume
form is the right object for a contour integral – an integral on a submanifold
of Σ of real codimension 1. To introduce volume forms suitable for “bulk”
integrals over Σ (analogous to a 2-form a(z, z)dz∧dz on an ordinary Riemann
surface), we will need the smooth description of super Riemann surfaces that
we introduce in section 3.1.

In general, on a complex supermanifold X of dimension p|q, one defines a
holomorphic line bundle Ber(X) (known as the Berezinian of X) of holomor-
phic densities on X. The most elementary definition of Ber(X) is as follows
(see, for example, sections 3.1 and 5.3.1 of [32], as well as appendix A be-
low). Given any local trivialization of T ∗X by basis elements dz1 . . . | . . . dθq
of T ∗X, there is a corresponding local trivialization of Ber(X) by a basis el-
ement [dz1 . . . | . . . dθq]. Under a change of basis, the symbol [dz1 . . . | . . . dθq]
transforms as one would expect a density to transform (that is, it transforms
by the Berezinian – the superanalog of the determinant – of the matrix giv-
ing the change of basis). Ber(X) is the analog for complex supermanifolds of
what for an ordinary complex manifold is called the determinant line bundle.
A holomorphic section of Ber(X) is the superanalog of a holomorphic p-form
on an ordinary complex manifold of dimension p.

We claim that in the case of a super Riemann surface Σ, Ber(Σ) is natu-
rally isomorphic to D−1. So sections of D−1, which correspond to supercon-
formal primaries of dimension 1/2, are equivalent to sections of Ber(Σ). For
example, in discussing eqn. (2.15), we showed that if φ is a function on Σ,
then there is a section of D−1 that in any local superconformal coordinate
system z|θ can be represented by Dθφ. We must therefore have a section of
Ber(Σ) given by

(2.34) σ = [dz|dθ]Dθφ,

and in particular we claim that σ does not depend on the choice of the super-
conformal coordinate system z|θ. Clearly φ plays no essential role here. The
assertion that Ber(Σ) ∼= D−1 is equivalent to the statement that the expres-
sion [dz|dθ]Dθ is independent of the choice of superconformal coordinates.
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Thus if ẑ|θ̂ is any other superconformal coordinate system, we claim that

(2.35) [dẑ|dθ̂]D
θ̂

= [dz|dθ]Dθ.

For a first orientation to this statement, suppose that the two coordinate
systems differ by scaling ẑ|θ̂ = λz|λ1/2θ. Then [dẑ|dθ̂] = λ1/2[dz|dθ] (where a
factor of λ comes from scaling of z and a factor of λ−1/2 from scaling of θ),
while D

θ̂
= λ−1/2Dθ.

The general proof follows by a direct calculation [23]. By definition of the
Berezinian,

(2.36) [dẑ|dθ̂] = [dz|dθ] Ber(M),

where

(2.37) M =
(
∂z ẑ ∂z θ̂

∂θẑ ∂θθ̂

)
.

With the help of (2.10), one may verify that

(2.38) M =
(

1 0
−θ 1

)(
∂z ẑ + θ̂∂z θ̂ ∂z θ̂

0 Dθθ̂

)(
1 0
θ̂ 1

)
,

from which it follows that

(2.39) Ber(M) = ∂z ẑ + θ̂∂z θ̂

Dθθ̂
= Dθθ̂.

In the last step, we used the relation

(2.40) ∂z ẑ + θ̂∂z θ̂ − (Dθθ̂)2 = 0,

which follows upon applying the operator Dθ to eqn. (2.10). Using this result
for Ber(M) together with (2.8), we find that (2.36) implies the desired result
(2.35).

A less computational proof that Ber(Σ) ∼= D−1 can be found in ap-
pendix A.

2.4.1. What is this good for? The most important application of the
isomorphism Ber(Σ) ∼= D−1 will be as a tool in writing Lagrangians. Another
important application will involve duality on a super Riemann surface.



76 Edward Witten

But here we will explain an application involving conserved currents and
contour integrals. In superconformal field theory, a superconformal primary
σ of dimension 1/2 is the superanalog of a conserved (holomorphic) current.
Hence for every codimension 1 cycle γ, there is a conserved charge qγ =

∫
γ σ.

The statement that qγ is “conserved” means that it depends only on the
homology class of γ. From the point of view of super Riemann surfaces, σ
corresponds to a holomorphic section of D−1 and hence of Ber(Σ). The fact
that such a σ can be integrated over a codimension 1 homology cycle γ is
a special case of a general fact about complex supermanifolds. As explained
for example in section 5.3.1 of [32], on a complex manifold X of dimension
p|q, a holomorphic section σ of Ber(X) can be naturally integrated over a
cycle γ ⊂ X of real codimension p|0, with a result that only depends on the
homology class of γ. Moreover, up to homology, a codimension p|0 cycle γ ⊂ X
is naturally determined by a corresponding ordinary codimension p homology
cycle γred ⊂ Xred. In the super Riemann surface context, that means that an
ordinary one-cycle γred ⊂ Σred determines the charge qγ =

∮
γ σ.

An example of a holomorphic section σ of Ber(X) is σ = Dθφ, where φ is
a holomorphic function. But in this case, the conserved charges vanish. It is
instructive to explain this using the interpretation of Ber(X) as the space of
holomorphic integral forms on X of top degree. (See [32] for an explanation
of the relevant concepts.) Given local superconformal coordinates z|θ, we can
define the section [dz|dθ] of Ber(X) and also the vector field Dθ. Each of
these separately depends on the choice of coordinates, but as we have seen
the product [dz|dθ]Dθ does not. The contraction operator iDθ

transforms
like Dθ, so iDθ

[dz|dθ], which we understand as a holomorphic integral form of
codimension 1, does not depend on the choice of coordinates. More generally,
given a function φ, we can define the codimension 1 holomorphic integral form
λ = φ iDθ

[dz|dθ]. Explicitly, the contraction operator is

(2.41) iDθ
= ∂

∂dθ + θ
∂

∂dz ,

and as an integral form, [dz|dθ] is naturally written δ(dz)δ(dθ), so

(2.42) λ = φ

(
∂

∂dθ + θ
∂

∂dz

)
δ(dz)δ(dθ).

The exterior derivative is

(2.43) d = dz ∂

∂z
+ dθ ∂

∂θ
.
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Using the fact that xδ′(x) = ∓δ(x) for an even or odd variable x, we find

(2.44) dλ = −Dθφ δ(dz)δ(dθ) = [dz|dθ]Dθφ.

So
∮
γ [dz|dθ]Dθφ =

∮
γ dλ = 0, by the superspace version of Stokes’s theorem.

For another explanation of this result, see eqn. (8.12).

3. Super Riemann surfaces from a smooth point of view

So far, we have considered a super Riemann surface purely as a complex super-
manifold of dimension 1|1 with some additional structure. This is not really
the right structure for a string worldsheet, as on the string worldsheet, there
are both holomorphic and antiholomorphic degrees of freedom. For string the-
ory, we have to know how to go over to a smooth description, in which one
can discuss functions on Σ that are not necessarily holomorphic. This will
enable us to discuss topics such as fields and Lagrangians on Σ, deformations
of Σ as described by fields, Riemannian geometry on Σ, etc.

3.1. String worldsheets and their parameter space

We will adopt the viewpoint of [32], section 5.5. A string worldsheet Σ is a
smooth supermanifold that is embedded in a product ΣL×ΣR of holomorphic
Riemann surfaces or super Riemann surfaces. (The notation ΣL and ΣR is
meant to evoke left- and right-moving degrees of freedom in string theory.)
For both heterotic and Type II superstrings, ΣR is a super Riemann surface.
For the heterotic string, ΣL is an ordinary Riemann surface, but for Type II,
ΣL is another super Riemann surface.

What we will do with Σ is to use it as an integration cycle: we will define
the worldsheet action of string theory by integrating a closed form – actually
a holomorphic section of Ber(ΣL × ΣR) – over Σ. For this purpose, small
deformations of the embedding of Σ in ΣL × ΣR do not matter. The basic
example is that the reduced spaces of ΣL and ΣR are complex conjugates
(the complex conjugate of a complex manifold X is the same space with
opposite complex structure) and Σred is the diagonal in ΣL,red ×ΣR,red. Then
Σ is obtained from Σred by a slight thickening in the fermionic directions, as
explained in [32], section 2.2. This last operation is not completely natural,
but it is natural up to homology, which will be good enough.5 More generally,
it suffices if ΣL is sufficiently close to the complex conjugate of ΣR and Σred
is close to the diagonal in ΣL,red × ΣR,red. For more on all this, see section 5
of [32].

5If one picks Σred to be the diagonal in ΣL,red ×ΣR,red, then one can restrict the
homologies in question to be infinitesimal ones that act trivially on Σred. We call
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The odd dimension of Σ is the same as that of ΣL × ΣR, and its even
dimension (as a smooth supermanifold) is 2. For the heterotic string, ΣL×ΣR

is a complex supermanifold of dimension 2|1, so Σ ⊂ ΣL × ΣR is a smooth
supermanifold of dimension 2|1. For Type II, ΣL and ΣR are both super
Riemann surfaces and Σ is a smooth supermanifold of dimension 2|2.

By definition, a holomorphic function on Σ is a holomorphic function on
ΣR, restricted to Σ. If z|θ are local superconformal coordinates on ΣR, then
their restrictions to Σ are local holomorphic functions on Σ and locally any
holomorphic function on Σ is f(z|θ). Similarly, an antiholomorphic function
on Σ is by definition the restriction to Σ of a holomorphic function on ΣL. For
the heterotic string, if z̃ is a local holomorphic function on ΣL, its restriction
to Σ is a local antiholomorphic function and locally any antiholomorphic
function is a function g(z̃). Given such local coordinates on ΣL and ΣR, with
z̃ sufficiently close6 to the complex conjugate of z, we call these functions –
or more precisely their restrictions to Σ – a standard coordinate system z̃;z|θ
on Σ. (Our convention will generally be to list antiholomorphic coordinates
before holomorphic ones, separating them by the semicolon.) For Type II, we
take local superconformal coordinates z̃|θ̃ and z|θ on ΣL and ΣR respectively,
with z̃ sufficiently close to the complex conjugate of z, to define a standard
local coordinate system z̃;z|θ̃;θ.

Since ΣL×ΣR is a product, its Berezinian is Ber(ΣL×ΣR) ∼= Ber(ΣL)⊗
Ber(ΣR). A holomorphic section σ of Ber(ΣL×ΣR) can be integrated over Σ,
with a result that is invariant under small deformations of Σ within ΣL×ΣR.
This is explained in [32], section 5.3.1. One way to understand the statement
is to observe that σ can be understood as a codimension 2 integral form on
ΣL × ΣR, so it can be integrated over the codimension 2|0 cycle Σ, with a
result that only depends on the homology class of Σ. Since the ability to
integrate a section of Ber(ΣL×ΣR) over Σ is important, we will explain it in
another way. We consider the heterotic string as an example. As Σ is a smooth
supermanifold, it has a Berezinian line bundle Ber(Σ) in the smooth sense,
whose sections can be integrated; a trivialization of Ber(Σ) in any standard
coordinate system is given by the symbol [dz̃;dz|dθ]. Ber(ΣL) and Ber(ΣR)
are likewise trivialized by the symbols [dz̃] and [dz|dθ], and so their tensor
product is trivialized by the tensor product [dz̃] ⊗ [dz|dθ]. The definitions

these fermionic homologies. In any event, Σ is also unique up to isomorphism as
a smooth supermanifold and its holomorphic and antiholomorphic structures are
both also unique. Only the relation between the holomorphic and antiholomorphic
structures depends on how Σ is embedded in ΣL × ΣR.

6For example, z̃ may be the complex conjugate of z if the odd variables including
odd moduli are set to zero, though one does not have to limit oneself to this case.
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ensure that the map from Ber(ΣL × ΣR) to Ber(Σ) that takes [dz̃] ⊗ [dz|dθ]
to [dz̃;dz|dθ] does not depend on the choice of coordinates. So we get a natural
isomorphism

(3.1) Ber(ΣL × ΣR)|Σ ∼= Ber(Σ),

and once again a section of Ber(ΣL × ΣR) can be integrated over Σ. When
focusing on the holomorphic structure of Σ, we sometimes write simply Ber(Σ)
for Ber(ΣR).

For the heterotic string, ΣL is an ordinary Riemann surface, so Ber(ΣL)
is simply the space of (1, 0) forms on ΣL (these are regarded as (0, 1)-forms
on Σ since a holomorphic function z̃ on ΣL is regarded as an antiholomorphic
function on Σ). So if φ is a function on Σ and we define the operator ∂̃ by

(3.2) ∂̃φ = dz̃ ∂φ

∂z̃
,

then ∂̃φ is a section of Ber(ΣL), pulled back to Σ. This is a more elementary
analog of the fact that, because of the isomorphism Ber(ΣR) ∼= D−1, the
expression

(3.3) [dz|dθ]Dθφ

makes sense as a section of Ber(ΣR). Multiplying the two constructions, we
get a section of Ber(ΣL) ⊗ Ber(ΣR) ∼= Ber(Σ):

(3.4) ∂̃φ [dz|dθ]Dθφ = [dz̃;dz|dθ] ∂z̃φDθφ.

This expression does not depend on the choice of standard local coordinates
and can be integrated over Σ. If φ is real-analytic, it can be extended to a
holomorphic function on ΣL ×ΣR, defined in a neighborhood of Σ. Then the
expression in 3.4) is a holomorphic section of Ber(ΣL) ⊗ Ber(ΣR), defined in
that neighborhood. We defer the Type II analog of this to section 3.7.

3.2. Integration cycles of superstring perturbation theory

Having explained what we mean by a superstring worldsheet, we can ask
what is the space parametrizing such worldsheets over which we should inte-
grate in superstring perturbation theory. This is more subtle than one might
think based on experience with the bosonic string. In bosonic string theory,
the parameter space over which one wants to integrate to compute perturba-
tive scattering amplitudes is a canonically defined moduli space of conformal
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structures on an ordinary Riemann surface Σ0. In superstring theory, the
worldsheet Σ is only defined up to homology, and there does not seem to be a
useful notion of the moduli space of such worldsheets. Instead, one defines the
relevant parameter space Γ up to homology by a procedure similar to the one
used to define Σ. (In each of the two cases, there are natural choices of Σred
and Γred, and if one makes those choices, then one can restrict to infinitesimal
homologies that act trivially on the reduced spaces.)

We follow the viewpoint of [41], p. 95 (see also [32], section 5.6), and
define the desired parameter space as a smooth supermanifold Γ embedded
in the moduli space ML ×MR that parametrizes independent deformations
of ΣL and ΣR. First we define a submanifold Γred of the reduced space (ML×
MR)red = ML,red ×MR,red that is characterized by saying that the reduced
spaces ΣL,red and ΣR,red are complex conjugate (with no condition on the
spin structures). Then we thicken Γ in the fermionic directions, in a way
that is unique up to homology, to make a smooth supermanifold embedded
in ML ×MR with the same odd dimension as ML ×MR. Thus the relation
of Γ to ML ×MR is very similar to the relation of Σ to ΣL × ΣR in section
3.1.

The superstring path integral constructs a section Ξ of Ber(ML × MR)
that is holomorphic in a neighborhood of Γred. This section can be integrated
over Γ by virtue of the same arguments that we used in section 3.1 to show
that a section of Ber(ΣL × ΣR) can be integrated over Σ. And by the same
arguments as before, subject to a caveat mentioned shortly, the integral of Ξ
over Γ is invariant under small deformations of Γ . Perturbative superstring
scattering amplitudes are computed via such integrals.

A caveat is needed because ML, MR, and Γ are all not compact and the
integrals required in superstring perturbation theory have a delicate behavior
at infinity. A condition is needed on just how to define Γ at infinity. This is
described in section 6.5 of [31].

We have described the construction of Γ in a way that applies uniformly
to heterotic and Type II superstrings. For the heterotic string, MR is the
moduli space of super Riemann surfaces, with reduced space Mspin, which
parametrizes an ordinary Riemann surface ΣR,red with a choice of spin struc-
ture. ML parametrizes the ordinary Riemann surface ΣL = ΣL,red, so ML

and its reduced space are both the moduli space M of Riemann surfaces.
Γred ⊂ M×Mspin is defined by the condition that ΣL is the complex conju-
gate of ΣR,red (here we place no condition on the spin structure of the latter).
This condition means that a point in Γred is determined by its projection to
the second factor of M × Mspin and Γred is actually a copy of Mspin. The
dimension of Γ is 6g − 6|2g− 2.
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For Type II, ML and MR are both copies of the moduli space of super
Riemann surfaces, and the reduced spaces are both copies of Mspin. Γred ⊂
Mspin × Mspin is defined by the condition that ΣL and ΣR, ignoring their
spin structures, are complex conjugate. The two spin structures can vary
independently. The dimension of Γ is 6g − 6|4g − 4.

Henceforth, until section 3.7, we mostly concentrate on the heterotic
string.

3.3. Lagrangians

To formulate the heterotic string on R
10, four contributions to the Lagrangian

are important. We will now see that they all make sense in the present context.
In writing Lagrangians, we make the following definition

(3.5) D(z̃, z|θ) = −i[dz̃; dz|dθ]

both as an abbreviation and to make it a little easier to compare to standard
formulas. This is a superanalog of the following. In the bosonic world, the
differential form dz ∧ dz is imaginary (since if z = x + iy, then dz ∧ dz =
2idx ∧ dy), and sometimes one defines the real form d2z = −idz ∧ dz. Our
expression D(z̃, z|θ) is analogous.

The first possible Lagrangian has essentially been described already in
eqn. (3.4). A map from the string worldsheet to R

10 is described by fields
XI(z̃;z|θ), I = 1 . . . 10. The kinetic energy for these fields is

(3.6) IX = 1
2πα′

∫
D(z̃, z|θ)

∑
IJ

ηIJ∂z̃X
IDθX

J ,

where ηIJ is the metric tensor of R10. This expression does not depend on
the choice of local coordinates since as already explained, the integrand is
a section of Ber(ΣL × ΣR). If the functions XI(z̃;z|θ) are real-analytic, the
expression IX is also invariant under small displacements of Σ in ΣL × ΣR.

To describe the current algebra degrees of freedom of the heterotic string,
we will use the description by fermions, since this is convenient for writing
an action. We first pick a square root L of the line bundle Ber(ΣL) = KΣL .
Next we introduce 32 fields Λa, a = 1 . . . 32, valued in ΠL (that is, they
are fermionic fields valued in L). These fields are often called current algebra
fermions and the choice of L is called a choice of spin structure for them.7

7For brevity we will consider the Spin(32)/Z2 heterotic string; in constructing
the E8 × E8 heterotic string, one divides the Λa in two sets of 16 with a separate
choice of L for each set.
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The expression DθΛa makes sense as a section of L ⊗ D−1, because the line
bundle L is antiholomorphic – that is, it is a pullback from ΣL, like its square
Ber(ΣL), and can be constructed using gluing functions that are functions
of z̃ only and so commute with Dθ. Accordingly,

∑
a ΛaDθΛa is a section of

L2 ⊗D−1 ∼= Ber(ΣL × ΣR), restricted to Σ. So the expression

(3.7) IΛ = 1
2π

∫
D(z̃, z|θ)

∑
a

ΛaDθΛa

does not depend on local coordinates and can be integrated.
What remain are the kinetic energies for the ghosts and antighosts. The

holomorphic ghosts are a section C of ΠS = ΠD2, as explained in section 2.3.
Here S ∼= D2 is the sheaf of superconformal vector fields on ΣR (which we pull
back to Σ). As this is a holomorphic line bundle, the expression ∂̃C makes
sense as a section of Ber(ΣL)⊗ΠD2. The holomorphic antighosts are a section
B of ΠD−3. Hence B∂̃C is a section of Ber(ΣL) ⊗D−1 ∼= Ber(ΣL × ΣR), so
it too can be integrated:

(3.8) IB,C = 1
2π

∫
D(z̃, z|θ)B∂̃C.

Finally, the antiholomorphic antighosts and ghosts are sections B̃ and C̃ of
ΠBer(ΣL)2 and ΠBer(ΣL)−1, respectively, so B̃DθC̃ is again a section of
Ber(ΣL) ⊗D−1 ∼= Ber(ΣL × ΣR), leading to one last term in the action:

(3.9) I
B̃,C̃

= 1
2π

∫
D(z̃, z|θ) B̃DθC̃.

In superstring perturbation theory, it is important to understand the
ghost and antighost zero-modes. The C zero-modes obey ∂̃C = 0, so they
are globally-defined superconformal vector fields, with parity reversed. The
C̃ zero-modes are globally-defined antiholomorphic vector fields, also with
parity reversed. For this statement, one uses the fact that DθC̃ = 0 implies
that also 0 = D2

θC̃ = ∂zC̃. Usually in superstring perturbation theory, there
are no global C or C̃ zero-modes because the genus is too large or there are
too many punctures. To understand the B and B̃ zero-modes, we will need
Serre duality (section 3.4).

The local expansions of the fields introduced above are as follows. One
has

(3.10) X = x + θψ,
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where x has antiholomorphic and holomorphic conformal dimension (0, 0) and
ψ has dimension (0, 1/2);

(3.11) Λ = λ + θF,

where λ has dimension (1/2, 0) and F has dimension (1/2, 1/2);

(3.12) B = β + θb, C = c + θγ,

where β and γ are even fields of respective dimensions (0, 3/2) and (0,−1/2),
and b and c are odd fields of respective dimensions (0, 2) and (0,−1); and
finally

(3.13) B̃ = b̃ + θf̃ , C̃ = c̃ + θg̃,

where b̃ and c̃ are odd fields of dimensions (2, 0) and (−1, 0), while f̃ and g̃ are
even fields of dimensions (2, 1/2) and (−1, 1/2). The fields F , f̃ , and g̃ are all
auxiliary fields that (after performing the integral over θ) appear quadratically
in the action, without derivatives. They can hence be “integrated out,” and
the worldsheet action of the heterotic string is often written in terms of only
the remaining fields.

3.4. Cohomology and duality

In the present section, we emphasize the holomorphic structure of Σ and we
write Ber(Σ) for what we have been calling Ber(ΣR), the Berezinian of Σ in
the holomorphic sense. And we interpret a section g(z̃;z|θ)dz̃ of Ber(ΣL) as a
(0, 1)-form on Σ. What can be integrated on Σ is therefore a (0, 1)-form with
values in Ber(Σ). What follows is formulated in terms of objects defined on
the smooth supermanifold Σ without regard to the embedding in ΣL × ΣR.

The action (3.8) for the fields B and C would make sense more generally if
C is a section of an arbitrary holomorphic line bundle R and B is a section of
R−1⊗Ber(Σ). The pair of line bundles R and R−1⊗Ber(Σ) has a particular
significance related to duality.

First let us review how duality works on an ordinary compact Riemann
surface Σ0. What can be integrated over Σ0 is a (1, 1)-form α = f(z, z)dz dz.
From a holomorphic point of view, a (1, 0)-form is best understood as a section
of K = T ∗Σ0, the canonical bundle of Σ0, and a (1, 1)-form is best understood
as a (0, 1)-form with values in K.
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Now let u be a (0, k)-form with values in some line bundle R (where k = 0
or 1), and let v be a (0, 1− k)-form valued in R−1 ⊗K. Then the product uv
is naturally a (0, 1)-form with values in K, so it can be integrated, to give

(3.14) Φ(u, v) =
∫

Σ0

uv.

Letting Ωk(Σ0, T ) denote the space of (0, k)-forms on Σ0 valued in any line
bundle T , Φ is best understood as a natural duality

(3.15) Φ : Ωk(Σ0,R) × Ω1−k(Σ0,R−1 ⊗K) → C.

Calling Φ a duality means that it is a nondegenerate pairing that establishes
the two vector spaces Ωk(Σ0,R) and Ω1−k(Σ0,R−1 ⊗K) as each other’s dual
spaces. (Because of the infinite-dimensionality of the spaces involved, there are
some technicalities in formulating this precisely, but these need not concern
us here.)

To state the implications of this for cohomology, we need to define the
Dolbeault cohomology groups Hk(Σ0,R), k = 0, 1 of Σ0 with values in a
holomorphic line bundle R. For this, one introduces the operator

(3.16) ∂ = dz ∂

∂z

mapping (0, 0)-forms valued in R to (0, 1)-forms valued in R. (We have as-
sumed a local holomorphic trivialization of R in this simple way of writing the
∂ operator.) Its kernel – the space of holomorphic sections of R – is defined
to be H0(Σ0,R). On the other hand, H1(Σ0,R) is defined to be the cokernel
of the operator ∂ or in other words the space of all R-valued (0, 1)-forms
modulo those that are ∂-exact.

Because the duality (3.15) between forms is invariant u → u + ∂u or
v → v + ∂v (assuming that Σ0 is compact8) it induces a pairing between
cohomology groups:

(3.17) Ψ : Hk(Σ0,R) ×H1−k(Σ0,R−1 ⊗K) → C.

For Σ0 a compact Riemann surface, these cohomology groups are finite-
dimensional, and Serre duality is the statement that the pairing Ψ is nonde-
generate, establishing a duality between the cohomology groups in question.

8Otherwise one should constrain u (or v) to have compact support and one arrives
at a duality between the ordinary ∂ cohomology groups and the corresponding
cohomology groups with compact support. The same statement holds later when
we discuss the super case.
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All this has an analog on a super Riemann surface Σ. The analog of a
(0, 1)-form is a 1-form proportional to dz̃, and the analog of the ∂ operator
is the operator

(3.18) ∂̃ = dz̃ ∂

∂z̃

from sections of a line bundle T to (0, 1)-forms valued in T . Again one defines
H0(Σ, T ) as the kernel of ∂̃ and H1(Σ, T ) as its cokernel. (One important
subtlety is that in general, when one varies the odd moduli of Σ, dimensions
of cohomology groups can jump. We will formulate the following only in the
absence of such jumping.)

We again define Ωk(Σ, T ), k = 0, 1, as the space of (0, k)-forms on Σ with
values in a holomorphic line bundle T . The product of a (0, k)-form valued
in R (a line bundle whose fibers we allow to be either even or odd) with a
(0, 1 − k)-form valued in R−1 ⊗ Ber(Σ) is a (0, 1)-form valued in Ber(Σ). So
rather as before we have a natural duality, defined by integration. There are
two differences from the bosonic case:

(1) Since Ber(Σ) is itself a fermionic line bundle (a typical local section
being the odd object [dz|dθ]), if one wants an integral

∫
uv to be bosonic,

where u is a section of Ωk(Σ,R) and v is a section of Ω1−k(Σ,R−1⊗Ber(Σ)),
then either u or v must be odd. Accordingly, the duality is usually formulated
as a pairing between Ωk(Σ,R) and ΠΩ1−k(Σ,R−1 ⊗ Ber(Σ)). (It does not
much matter which of the two sides of the pairing one takes Π to act on,
since one is free to replace R by ΠR.)

(2) The second point is a little more subtle. An ordinary Riemann surface
has moduli, but these moduli are bosonic and can be set equal to complex
values. That is what we have effectively done in assuming above that the inte-
gral

∫
Σ0

uv is C-valued, rather than being a function of the moduli. However,
super Riemann surfaces have odd moduli, which cannot be set to nonzero
complex values. So unless one wants to simply set the odd moduli to zero,
one should work not over C but over some ring C

′ that is generated over C

by odd elements. Then one does not quite set the even and odd moduli of Σ
to complex constants; one sets them to even and odd elements of C′. (For a
relatively elementary account of introducing a ring such as C′ in the context
of field theory, see [43].) In practice, this is somewhat like speaking in prose;
if one does what comes naturally, one never has to think about it, though a
technical description of what is involved may cause confusion.

With these points understood, the superanalog of the duality (3.15) reads

(3.19) Φ : Ωk(Σ,R) ⊗ΠΩ1−k(Σ,R−1 ⊗ Ber(Σ)) → C
′.
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Again the definition is simply

(3.20) Φ(u, v) =
∫

Σ
uv.

As in the bosonic case, the fact that Φ(u, v) is invariant under u → u+ ∂̃u
or v → v+∂̃v means that it determines a pairing between cohomology groups:

(3.21) Ψ : Hk(Σ,R) ×ΠH1−k(Σ,R−1 ⊗ Ber(Σ)) → C
′.

The superanalog of Serre duality is the statement that this is a nondegenerate
pairing. If Σ is split, this statement reduces to ordinary Serre duality (sepa-
rately for the even and odd parts of the cohomology groups). Our no-jumping
hypothesis ensures that the nondegeneracy of the pairing persists when in-
finitesimal fermionic moduli are turned on. We have formulated all this for a
holomorphic line bundle R, but all statements have immediate analogs if R
is a holomorphic vector bundle of any rank a|b and R−1 is replaced by the
dual bundle R∗.

As an example of the use of this duality, we know that the tangent space
to the moduli space M of super Riemann surfaces at the point corresponding
to Σ is H1(Σ,S) = H1(Σ,D2), where S ∼= D2 is the sheaf of superconformal
vector fields. (A derivation of this fact from the Dolbeault point of view is in
section 3.5.) So the cotangent space to M is T ∗M = H0(Σ,D−2 ⊗Ber(Σ)) =
H0(Σ,D−3), where we use the isomorphism Ber(Σ) ∼= D−1. This is relevant to
superstring perturbation theory, because the zero-modes of the antighost field
B are holomorphic sections of D−3 or in other words elements of H0(Σ,D−3).

The analogous statements for ordinary Riemann surfaces are perhaps
more familiar. The tangent space to the moduli space M of ordinary Riemann
surfaces at the point corresponding to Σ0 is H1(Σ0, T ), so the cotangent space
to M at the same point is H0(Σ0, T

−1⊗K) = H0(Σ0, K
2). Here we use Serre

duality (3.17); T ∼= K−1 is the tangent bundle of Σ0. In bosonic string theory,
the zero-modes of the antighost field b are elements of H0(Σ0, K

2).

3.5. Deformation theory

3.5.1. Deformation theory via embedding We now return to the inte-
gration cycle Γ ⊂ ML × MR of superstring perturbation theory, as defined
in section 3.2. It is a smooth cs supermanifold (a concept described in [32],
section 2.1), meaning that the odd coordinates of Γ have no real structure.
Certain general remarks here are applicable to both heterotic and Type II
superstrings.
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The most natural notion of the tangent or cotangent bundle of a cs su-
permanifold is the analog of what for an ordinary smooth manifold would be
the complexified tangent or cotangent bundle. The reason for this is that if
M is a cs manifold, there is no real structure for its odd tangent or cotangent
vectors, so it is unnatural to try to impose one for even tangent and cotangent
vectors. Instead we simply define the tangent and cotangent bundles TM and
T ∗M as (Z2-graded) complex vector bundles.

With this understood, the tangent bundle TΓ of Γ is the direct sum
TML ⊕ TMR (restricted to Γ ), and similarly T ∗Γ = T ∗ML ⊕ T ∗MR. This
is an analog of the fact that if Y is an ordinary complex manifold that is the
complexification of a middle-dimensional submanifold N , then the complexi-
fied tangent space to N is the tangent space to Y , restricted to N . This fact is
relevant because we have defined Γ so that its complexification is ML×MR.

We can regard T ∗MR as the holomorphic cotangent space to Γ and T ∗ML

as its antiholomorphic cotangent space. So far our remarks have been general;
now we return to the heterotic string. Comparing to the Lagrangian (3.8) for
holomorphic ghost and antighost fields, and also recalling the description of
T ∗M from the end of section 3.4, we see now that the space of B zero-modes
is ΠT ∗MR, the holomorphic cotangent bundle to Γ with parity reversed.
Similarly, comparing to the Lagrangian (3.9) for antiholomorphic ghost and
antighost fields, and recalling the description of T ∗ML, we see that the space
of B̃ zero-modes is ΠT ∗ML, the antiholomorphic cotangent bundle to Γ with
parity reversed.

Of course, we define the tangent and cotangent bundles of the cs su-
permanifold Σ ⊂ ΣL × ΣR in the same way, so TΣ = (TΣL ⊕ TΣR)|Σ,
T ∗Σ = (T ∗ΣL ⊕ T ∗ΣR)|Σ. We abbreviate the summands of TΣ as TLΣ and
TRΣ and call them the antiholomorphic and holomorphic tangent bundles to
Σ. We use analogous notation and terminology for the summands of T ∗Σ. The
familiar structures that are present because ΣR is a super Riemann surface
can all be restricted to Σ. For instance, TRΣ has a subbundle D of rank 0|1
with an exact sequence 0 → D → TRΣ → D2 → 0. The sheaf of sections of
TRΣ has a subsheaf S of superconformal vector fields. S is a sheaf of graded
Lie algebras; if we forget that structure, there is an isomorphism S ∼= D2.

3.5.2. Deformation theory via fields: review In section 3.3, we de-
scribed the worldsheet Lagrangian for the heterotic string on the super Rie-
mann surface Σ. This can be the starting point for heterotic string pertur-
bation theory. To develop this perturbation theory, we must understand the
deformations of Σ in terms of fields on Σ, rather than via embeddings as in
(3.5.1) or cutting and gluing as in section 2.2. This will be our next objective.
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(The analog for Type II superstring theory is similar and is briefly described
in section 3.7.2.)

First, we recall the appropriate constructions on an ordinary Riemann
surface Σ0, with notation chosen in anticipation of the superstring case (which
we study starting in section 3.5.3). The complexified tangent bundle of Σ0 is
TΣ0 = TLΣ0⊕TRΣ0, where TRΣ0 and TLΣ0 are respectively the holomorphic
and antiholomorphic subbundles of TΣ0. If z and z̃ are local holomorphic
and antiholomorphic coordinates on Σ0, then TRΣ0 and TLΣ0 are generated
respectively by ∂z and by ∂z̃. A function f on Σ0 is holomorphic if it is
annihilated by ∂z̃, and antiholomorphic if it is annihilated by ∂z. To deform
the holomorphic structure of Σ, we perturb ∂z̃ by

(3.22) ∂z̃ → ∂′
z̃

= ∂z̃ + hz
z̃
∂z.

An additional deformation ∂z̃ → ∂z̃ +uz̃
z̃
∂z̃ is not interesting, since it does not

deform the condition for a function to be holomorphic. Multiplying ∂z̃ by a
nonzero function does not affect the subbundle TLΣ0 of TΣ0 that is generated
by ∂z̃, so we allow a gauge transformation

(3.23) ∂z̃ → eϕ̃∂z̃,

for any function ϕ̃. This gauge-invariance can be used to remove the uz̃
z̃

de-
formation. Conversely, the holomorphic structure of Σ0 is deformed by

(3.24) ∂z → ∂′
z = ∂z + hz̃

z∂z̃.

Again, a shift in ∂z by a multiple of itself is uninteresting, as it does not affect
the criterion for a function to be antiholomorphic; we are interested in ∂z only
up to a gauge transformation

(3.25) ∂z → eϕ∂z.

In a diffeomorphism-invariant theory, we only want to consider the deforma-
tions hz

z̃
and hz̃

z modulo deformations generated by a vector field

(3.26) q = qz̃∂z̃ + qz∂z.

Modulo (3.23) and (3.25), the transformations generated by the commutator
of ∂z̃ or ∂z with q are

hz
z̃
→ hz

z̃
+ ∂z̃q

z
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hz̃
z → hz̃

z + ∂zq
z̃.(3.27)

The field hz
z̃
, modulo this equivalence, defines an element of the holomorphic

sheaf cohomology group H1(Σ0, TRΣ0), and the field hz̃
z, modulo this equiva-

lence, defines an element of the analogous antiholomorphic sheaf cohomology
group, which we will call H̃1(Σ0, TLΣ0).

These are the standard answers, although on an ordinary Riemann sur-
face, since it is obvious from the beginning that antiholomorphic deformations
are complex conjugates of holomorphic ones, one does not always write out
the two cases in such detail. We have presented the analysis this way as prepa-
ration for the superstring case, where it is not true that the antiholomorphic
deformations are complex conjugates of holomorphic ones.

Notice that, perhaps counterintuitively, a first-order holomorphic defor-
mation is made by deforming the embedding in TΣ0 of the antiholomorphic
tangent bundle TLΣ0, which is generated by ∂z̃, without changing TRΣ0, and
a first-order antiholomorphic deformation is made by deforming the embed-
ding in TΣ0 of the holomorphic tangent bundle TRΣ0, which is generated by
∂z, without changing TLΣ0. However, the deformation from ∂z̃ to ∂′

z̃
affects

the condition for a section of TRΣ0 to be holomorphic; and similarly an an-
tiholomorphic deformation affects the condition for a section of TLΣ to be
antiholomorphic.

Finally, the fields hz
z̃

and hz̃
z can be regarded as either deformations of the

metric of Σ0 modulo Weyl transformations, or equivalently as deformations
of its complex structure, which we call J . We will briefly describe the second
point of view. J is a linear transformation of TΣ0 that obeys J2 = −1 and acts
as i and −i on TRΣ0 and TLΣ0, respectively. One can deform Σ0 as a complex
manifold by deforming J . The condition J2 = −1 sets δJ z̃

z̃
= δJz

z = 0, so the
deformation only involves δJz

z̃
and δJ z̃

z , which can be identified with hz
z̃

and
hz̃
z in the above formulas. The derivation shows that δJz

z̃
is a deformation of

type (1, 0) on the space of complex structures on Σ (it represents a first-order
deformation of the holomorphic structure of Σ0) while δJ z̃

z is of type (0, 1)
(it represents a first-order deformation of the antiholomorphic structure). In
complex dimension greater than 1, the deformation δJ would be subject to an
integrability condition, but in complex dimension 1, this is trivial. For more
on such matters, see section 3.5.4.

3.5.3. Superstring deformation theory via fields The case of deform-
ing a heterotic string worldsheet Σ is similar, with a few inevitable differences.
First we restate in terms of objects defined on Σ some concepts that we previ-
ously described in terms of the embedding Σ ⊂ ΣL×ΣR. A function F (z̃;z|θ)
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defined in some open set U ⊂ Σ is holomorphic if it is annihilated by vector
fields valued in the antiholomorphic tangent bundle TLΣ of Σ and antiholo-
morphic if it is annihilated by those valued in the holomorphic tangent bundle
TRΣ. In a standard local coordinate system z̃; z|θ, F is holomorphic if it obeys

(3.28) ∂z̃F = 0,

Similarly the condition for antiholomorphy is

(3.29) DθF = 0.

This condition of course implies that F is also annihilated by ∂z = D2
θ , so

that it is annihilated by all vector fields valued in TRΣ.
In deforming a heterotic string worldsheet Σ, there are potentially three

types of deformation to consider: (i) deformations of the holomorphic struc-
ture of Σ, which mean deformations of the embedding of TLΣ in TΣ; (ii) de-
formations of the antiholomorphic structure of Σ, which mean deformations
of the embedding of TRΣ in TΣ; and (iii) deformations of the superconformal
structure (rather than the holomorphic or antiholomorphic structure) of Σ –
in other words deformations of the embedding of D in TRΣ.

In a diffeomorphism-invariant theory, we are only interested in first-order
deformations of Σ modulo those that are generated by a vector field. An
arbitrary vector field v on Σ can, of course, be written

(3.30) v = wz̃∂z̃ + wz∂z + wθ∂θ,

with coefficients wz̃, wz, and wθ that are functions of z̃;z|θ. However, it turns
out that a different expansion is more illuminating:

(3.31) v = qz̃∂z̃ +
(
qz∂z + 1

2Dθq
zDθ

)
+ qθDθ.

This way of making the expansion is useful largely because if qz is holomorphic
(annihilated by ∂z̃) then qz∂z + 1

2Dθq
zDθ is a superconformal vector field (see

eqn. (2.31)).
The simplest deformations to analyze are actually those of type (iii) in

which the superconformal structure is changed. These are deformations in
which a generator Dθ of D is shifted by a section of TRΣ that is not propor-
tional to Dθ (a transformation Dθ → efDθ does not affect the subbundle of
TRΣ generated by Dθ). Such a deformation has the form

(3.32) Dθ → Dθ + rzθ∂z.
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However, conjugating by a vector field qθDθ transforms Dθ by Dθ → Dθ +
[Dθ, q

θDθ]. Modulo a multiple of Dθ, this is Dθ → Dθ − 2qθ∂z. So by taking
qθ = −rzθ/2, we can in a unique way eliminate deformations of type (iii) while
also eliminating the equivalence by vector fields of the form qθDθ.

Now we turn to deformations of type (i). To deform the holomorphic
structure of Σ, we make a first-order perturbation of the condition of holo-
morphy, deforming the condition ∂z̃F = 0 to ∂′

z̃
F = 0 with

(3.33) ∂′
z̃

= ∂z̃ + hz
z̃
∂z + χθ

z̃
∂θ.

As in the bosonic case, there is no point in perturbing ∂z̃ by an additional
term uz̃

z̃∂z̃, since this would not affect the condition for a function to be
holomorphic. Thus we allow gauge transformations

(3.34) ∂z̃ → eϕ̃∂z̃.

On the fields hz
z̃

and χθ
z̃
, we want to impose the equivalence relation of ig-

noring trivial deformations [∂z̃, v] for any vector field v. It is illuminating to
do this first ignoring the condition that the deformation is supposed to pre-
serve the holomorphic superconformal structure of Σ. In this case, one would
conveniently use the generic expansion (3.30) of a vector field v to generate
gauge invariances

(3.35) hz
z̃
→ hz

z̃
+ ∂z̃w

z, χθ
z̃
→ χθ

z̃
+ ∂z̃w

θ.

(The commutator with v also shifts ∂z̃ by a term (∂z̃wz̃)∂z̃, which we remove
via (3.23).)

We can make this look more familiar if we introduce a 1-form dz̃ and
combine the fields hz

z̃
and χθ

z̃
to a 1-form with values in TRΣ:

(3.36) C = dz̃
(
hz
z̃
∂z + χθ

z̃
∂θ

)
.

Then the equivalence relation (3.35) amounts to

(3.37) C → C + ∂̃v′,

where ∂̃ = dz̃ ∂z̃ was introduced in eqn. (3.18) to define Dolbeault cohomology,
and v′ is a 0-form with values in TRΣ:

(3.38) v′ = wz∂z + wθ∂θ.
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The equivalence classes form by definition the Dolbeault cohomology group
H1(Σ, TRΣ).

We have arrived from a new vantage point at the result of section 2.2.2:
the first-order deformations of Σ as a complex supermanifold are parametrized
by H1(Σ, TRΣ). The only difference is that in this derivation, the cohomol-
ogy appears via the field C, while the previous approach was based on gluing
functions and Cech cohomology. The same arguments as on an ordinary com-
plex manifold show that the two types of cohomology are equivalent, but the
description by fields is a useful starting point for superstring perturbation
theory.

However, so far we did not impose the condition that we want deforma-
tions that preserve the fact that from a holomorphic point of view, Σ is a
super Riemann surface, rather than a more general complex supermanifold of
dimension 1|1. The super Riemann surface structure is defined by the subbun-
dle D ⊂ TRΣ ⊂ TΣ. So we want to deform Σ preserving the fact that TRΣ has
the holomorphic subbundle D. A first-order deformation of the holomorphic
structure of Σ will leave fixed TRΣ as a subbundle of TΣ (for the same reasons
as in the discussion in section 3.5.2 of deformation of an ordinary Riemann
surface Σ0). We look for deformations that also do not alter the embedding of
D in TRΣ ⊂ TΣ. (Deformations that do alter the embedding of D in TRΣ are
the type (iii) deformations that we already studied above.) However, again
as on an ordinary Riemann surface, the first-order holomorphic deformation
will modify the condition for a section of D to be holomorphic. Any section
of D is locally of the form eμDθ for some function μ; the condition for this
section to be holomorphic after the deformation is that it should commute
with the modified operator ∂′

z̃
:

(3.39) [∂′
z̃
, eμDθ] = 0.

The condition that a function μ should exist locally obeying this equation
is that the perturbation in (3.33) should take values not in TΣ but in its
subsheaf S of superconformal vector fields. Thus, recalling from eqns. (2.20)
and (2.21) the general form of a superconformal vector field, we specialize
(3.33) to perturbations of the following kind:

(3.40) ∂′
z̃

= ∂z̃ +
(
hz
z̃
(z̃;z)∂z + 1

2∂zh
z
z̃
(z̃;z)θ∂θ

)
+ χθ

z̃
(z̃;z) (∂θ − θ∂z) .

A key difference from (3.33) is that the fields h and χ defined in this new
way do not depend on θ. Precisely for such perturbations, one can locally
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find a function μ such that (3.39) holds to first-order in the perturbation.9
Of course, μ is uniquely determined only modulo the possibility of adding
a function that commutes with the unperturbed operator ∂z̃. What we are
constructing is the sheaf of holomorphic sections of D with its perturbed
complex structure, not a particular holomorphic section of this sheaf.

It is again convenient to multiply eqn. (3.40) by the (0, 1)-form dz̃. Then
the perturbation of interest is a (0, 1)-form on Σ valued in S. As before, we
need to impose an equivalence relation on this (0, 1)-form, because pertur-
bations that are generated by vector fields are uninteresting. Now it is best
to use the expansion (3.31) of a vector field that is better adapted to the
superconformal structure. Vector fields qθDθ have already been used to re-
move deformations of type (iii), and vector fields qz̃∂z̃ leave ∂z̃ fixed, modulo
a transformation (3.34). Finally, vector fields qz∂z + 1

2Dθq
zDθ generate the

expected gauge transformations of hz
z̃

and χθ
z̃
,

(3.41) hz
z̃
→ hz

z̃
+ ∂z̃a

z, χθ
z̃
→ χθ

z̃
+ ∂z̃η

θ,

where qz = az + 2θηθ.
The result is that one should classify the perturbations by hz

z̃
and χθ

z̃
up

to ∂̃-exact forms. Thus equivalence classes now give a Dolbeault description
of H1(Σ,S). We have arrived at the same description as in section 2.2 of the
space of first-order deformations of Σ as a super Riemann surface, but now
in terms of fields rather than Cech cocycles. The fields appearing in (3.40)
have a familiar interpretation: hz

z̃
is usually called a metric perturbation, and

χθ
z̃

is called a gravitino field.
Now let us perturb the antiholomorphic structure of Σ. As already noted,

prior to any perturbation, antiholomorphic functions on Σ are precisely the
functions annihilated by Dθ. So now we want to perturb the operator Dθ.
The most general perturbation that we have to consider is to replace Dθ by

(3.42) D′
θ = Dθ + cz̃θ∂z̃.

There is no point in perturbing Dθ by a multiple of itself, since this does not
affect the condition for a function to be antiholomorphic, that is, annihilated
by Dθ. For deforming the antiholomorphic structure of Σ, there is also no point
in perturbing Dθ by a multiple of ∂z = D2

θ , since any function annihilated by
Dθ is annihilated by ∂z. So (3.42) is the most general possible perturbation

9In verifying this, one uses the relations (2.6), which do not require holomorphy
of f and g, only the fact that they do not depend on θ.
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of the antiholomorphic structure. (A shift of Dθ by a multiple of ∂z is a type
(iii) deformation that we have already considered above.) Again, we are only
interested in this perturbation modulo perturbations [Dθ, v] induced by vector
fields v on Σ. In perturbing the antiholomorphic structure of Σ, the important
vector fields are of the form v = qz̃∂z̃ (since contributions of other vector fields
to [Dθ, v] are proportional to Dθ or ∂z), and in the commutator [Dθ, v], we
only care about the term Dθq

z̃ ∂z̃. So the relevant equivalence relation on the
field cz̃θ that appears in (3.42) is

(3.43) cz̃θ
∼= cz̃θ + Dθq

z̃.

Let us expand these functions in powers of θ,

cz̃θ(z̃;z|θ) =ez̃θ(z̃;z) + θhz̃
z(z̃;z),

qz̃(z̃;z|θ) =tz̃(z̃;z) + θuz̃θ(z̃;z).(3.44)

We find that the gauge-equivalence (3.43) reads

ez̃θ
∼= ez̃θ + uz̃θ

hz̃
z
∼= hz̃

z + ∂zt
z̃.(3.45)

Clearly we can set uz̃θ = −ez̃θ, eliminating ez̃θ and completely fixing the gauge-
invariance generated by uz̃θ. But the space of fields hz̃

z modulo the equivalence
relation in (3.45) is a standard description of a nontrivial sheaf cohomology
group – or more exactly it is standard except that the complex structure has
been reversed. We will call this group H̃1(Σ, TLΣ), the sheaf cohomology of
Σ with values in the sheaf of antiholomorphic sections of TLΣ. (The tilde is
meant as a reminder that this is cohomology with values in a sheaf of anti-
holomorphic sections.) The field hz̃

z is again known as a metric perturbation.
To summarize, the first-order holomorphic deformations of the smooth su-

permanifold Σ preserving its relevant structures are given by the holomorphic
sheaf cohomology H1(Σ,S), where S ∼= D2 is the sheaf of (holomorphic) su-
perconformal vector fields. And its first-order antiholomorphic deformations
are given by the antiholomorphic sheaf cohomology H̃1(Σ, TLΣ), the cohomol-
ogy with values in the sheaf of antiholomorphic vector fields. These are the
answers expected from a description by Cech cocycles and gluing, or from the
embedding in ΣL × ΣR, but here we have obtained an equivalent description
via fields on Σ. This is a useful starting point for superstring perturbation
theory.
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3.5.4. Complex structures Now we will briefly explain how to state our
results in terms of complex structures on Σ and their deformations.

In general, consider a smooth cs supermanifold M of dimension 2p|q. An
almost complex structure is an even endomorphism J of the complexified
tangent bundle TM of M that obeys J 2 = −1. Given an almost complex
structure, we define TRM and TLM to be the subbundles of TM on which
J acts as i and −i, respectively. We require that after reducing modulo the
odd variables, TLM is close to the complex conjugate of TRM . This implies
in particular that the even parts of the ranks of TLM and TRM are equal
(they have ranks p|a and p|b for some a and b with a + b = q).

J is said to be integrable if the sections of TLM form a Lie algebra and
likewise the sections of TRM form a Lie algebra. Let us first consider the case
of an ordinary complex manifold, meaning that M has dimension 2p|0 for
some p. For p = 1, integrability of J is a trivial condition, because TLM (for
example) is generated by a single vector field w (for example w = ∂z̃ +hz

z̃
∂z),

and given any one vector field w, the vector fields eϕ̃w always form a Lie
algebra. By contrast, for p > 1, integrability is a severe constraint; this is
because if TLM is generated by two vector fields w and w′, we have to ask
whether [w,w′] can be expressed as a linear combination of w and w′.

Now let us consider the case that M has dimension 2|1. Without essential
loss of generality, we can consider the case that TLM has rank 1|0 and TRM
has rank 1|1. Integrability of TLM is now trivial, because TLM is generated
by a single vector field; but integrability of TRM is non-trivial, since TRM is
generated by two vector fields, namely an odd one and an even one.

However, integrability of TRM becomes trivial again if we are given that
M has a holomorphic superconformal structure, meaning that TRM has a
rank 0|1 subbundle D and is generated by Dθ and D2

θ , for some section (and
in fact for any generic section) Dθ of D. This makes integrability of TRM
trivial, because no matter what odd vector field Dθ we choose, the vector
fields of the form eϕDθ and eϕ̂D2

θ always form a Lie algebra.
The case described in the last paragraph is of course the case that M =

Σ is the worldsheet of a heterotic string. Now let us describe deformation
theory of Σ in this language. We deform the complex structure J of Σ under
the condition that J 2 = −1 and that Σ has a holomorphic superconformal
structure, in other words TRΣ has a distinguished subbundle D of rank 0|1.
The deformation can be described, just as on an ordinary complex manifold,
by a tensor δJ that maps TΣ to itself. The condition J 2 = −1 means
that δJ z̃

z̃
= δJ z

z = δJ θ
z = δJ z

θ = δJ θ
θ = 0. The superconformal structure

determines δJ θ
z̃

in terms of δJ z
z̃
, as exhibited in eqn. (3.40). The fact that
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TRΣ is generated by Dθ and D2
θ = ∂z means that there is no need to deform

∂z independently of Dθ, so δJ z̃
z is determined in terms of δJ z̃

θ . As we have
seen in analyzing the deformations of type (iii) in section 3.5.3, nothing new
comes from varying D within TRΣ.

Though this involves jumping ahead of our story slightly, there is one
more important case in which integrability is trivial. This is the case of the
worldsheet of a Type II superstring. Here M has dimension 2|2 and TLM and
TRM each has rank 1|1, and each is endowed with a superconformal structure.
This means that TRΣ is generated by Dθ and D2

θ where Dθ is a section of a
distinguished rank 0|1 subbundle D ⊂ TRM , and similarly TLΣ is generated
by D

θ̃
and D2

θ̃
, where D

θ̃
is a section of a distinguished rank 0|1 subbundle

D̃ ⊂ TLM . Deformations of the almost complex structure of M that preserve
such a structure are automatically integrable, since vector fields eϕDθ and
eϕ̂D2

θ (and similarly vector fields eϕ̃D
θ̃

and e
̂̃ϕD2

θ̃
) always form a Lie algebra.

3.6. Relation to supergravity

Many approaches to two-dimensional supergravity can be found in the liter-
ature, for example [4, 5, 23, 42]. We will aim for a shortcut here, introducing
only the necessary definitions and minimizing the number of equations. In
contrast to much of the literature, we start by describing the conformally-
invariant structure, which after all is the main structure of importance for
string theory. Then we describe the super version of a Riemannian metric.
This has both intrinsic interest and some applications in string theory.

We focus here on describing the worldsheet of a heterotic string in the
language of supergravity. For the Type II analog, see section 3.7.3.

3.6.1. The conformally invariant case In a standard coordinate system
z̃;z|θ, we can define the 1-forms

Ẽ0 = dz̃
E0 = dz − θdθ
F0 = dθ,(3.46)

obeying

dẼ0 = 0
dE0 + F0 ∧ F0 = 0

dF0 = 0.(3.47)
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To understand the significance of E0, recall that T ∗
RΣ, which is generated by

E0 and F0, appears in an exact sequence (2.29):

(3.48) 0 → D−2 → T ∗
RΣ → D−1 → 0,

where D−2 is generated by � = dz − θdθ, which we have taken for E0.
From a conformally invariant point of view, we are interested not in E0

and Ẽ0, but in the associated holomorphic and superconformal structures.
These are invariant under what we might call Weyl transformations. We set

(3.49) Ẽ = eϕ̃Ẽ0,

with an arbitrary function ϕ̃. So Ẽ obeys

(3.50) dẼ = 0 mod Ẽ.

This means that dẼ = α ∧ Ẽ for some 1-form α (in fact α = dϕ̃). Similarly
we set

(3.51) E = eϕE0,

again with an arbitrary function ϕ. Now there is an odd 1-form F , unique up
to sign (the sign is unique if one asks for F to vary continuously with ϕ and
to equal F0 at ϕ = 0) such that

(3.52) dE + F ∧ F = 0 mod Ẽ ∧ E.

We leave the reader as an exercise to verify that this is true and to determine
F . We remark only that F is a linear combination of E0 and F0:

(3.53) F = aF0 + bE0, a �= 0.

From the conditions stated in the last paragraph, one can reconstruct
the complex and superconformal structure of Σ, and moreover, these are
Weyl-invariant, that is, independent of ϕ̃ and ϕ. The decomposition T ∗Σ =
T ∗
LΣ ⊕ T ∗

RΣ of T ∗Σ in antiholomorphic and holomorphic summands is given
by declaring that T ∗

LΣ is generated by Ẽ, while T ∗
RΣ is generated by10 E and

F . Finally, the line bundle D−2 ⊂ T ∗
RΣ is the subbundle generated by E.

(The decomposition TΣ = TLΣ ⊕ TRΣ is the dual of the decomposition of
10Eqn. (3.53) implies that the linear span of E and F is Weyl-invariant, so that

the definition of T ∗
RΣ is Weyl-invariant.
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T ∗Σ, and in particular D ⊂ TΣ is the subbundle orthogonal to both E and
Ẽ.) Thus the conditions of the last paragraph capture the entire structure of
a heterotic string worldsheet, expressed in supergravity language.

More explicitly, given 1-forms Ẽ, E, and F obeying (3.50) and (3.52), one
can locally fix the Weyl factors ϕ̃ and ϕ so that (3.50) and (3.52) reduce to
(3.47), and then one can introduce standard coordinates z̃;z|θ so that Ẽ, E,
and F take the form given in (3.46). So again, eqn. (3.50) and (3.52) contain
the full structure of a heterotic string worldsheet.

We have achieved much greater brevity than can sometimes be found in
the literature, because we have started with the conformally invariant case.
Also, we have presented only a minimum set of necessary equations. For
example, we have written no equation for dF ; none is needed. This will remain
so when we introduce the analog of a Riemannian metric.

3.6.2. More on deformation theory It is interesting to consider defor-
mation theory from this point of view. The analysis will be equivalent to that
of section 3.5.3, but in a dual language. We will consider first-order deforma-
tions of Ẽ and E, modulo both Weyl rescaling and deformations generated
by a vector field

(3.54) v = qz̃∂z̃ +
(
qz∂z + 1

2Dθq
zDθ

)
+ qθDθ.

We parametrize the vector field as in eqn. (3.31). There is no need to consider
deformations of F , since F is uniquely determined (up to sign) in terms of E
and Ẽ by eqn. (3.52).

First we consider deformations of E. Deformations of E that are propor-
tional to itself can be removed by a Weyl transformation, and deformations
of E that are proportional to F can be removed in a unique fashion using the
qθDθ term in v. So we can forget about qθ and consider only deformations of
E that are proportional to Ẽ:

(3.55) E → E + hz
z̃
Ẽ.

The notation hz
z̃

is motivated by the way that this field transforms under a
holomorphic reparametrization of z and z̃. Geometrically, hz

z̃
Ẽ is a (0, 1)-form

with values in D2. (Up to a Weyl transformation, E is any section of D−2, and
the deformation E → E+hz

z̃
Ẽ followed by the projection to the second term,

namely hz
z̃
Ẽ, is a map from sections of D−2 to (0, 1)-forms, or equivalently a

(0, 1)-form with values in D2.) Often, one omits Ẽ and says informally that
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hz
z̃

is a (0, 1)-form with values in D2. hz
z̃

is subject to the gauge-invariance

(3.56) hz
z̃
→ hz

z̃
+ ∂z̃q

z,

which reflects the transformation of E generated by11 the vector field v of
eqn (3.54). So the deformations of the holomorphic structure of Σ, modulo
trivial ones, are given by H1(Σ,D2), a familiar answer.

In deforming Ẽ, we can again disregard deformations of Ẽ that are pro-
portional to itself, as these can be removed by a Weyl transformation. So
we consider a deformation Ẽ → Ẽ + uz̃zE + cz̃θF . However, the requirement
that dẼ = 0 mod Ẽ determines u in terms of c. In standard coordinates
z̃;z|θ (that is, with Ẽ, E, and F as in eqn. (3.46)), the relation is uz̃z = Dθc

z̃
θ.

Geometrically, cz̃θ is a section of D−1 ⊗ TLΣ. The equivalence relation on cz̃θ
that comes from deformations by the vector field v is

(3.57) cz̃θ → cz̃θ + Dθq
z̃.

This description of antiholomorphic deformations of Σ is familiar from eqn.
(3.43), and, as explained in that connection, it amounts to a description of
the space of antiholomorphic first-order deformations of Σ via the antiholo-
morphic sheaf cohomology group H̃1(Σ, TLΣ).

3.6.3. The super analog of a Riemannian metric Our remaining goal
along these lines is to describe the super analog of a Riemannian metric.
Before considering super Riemann surfaces, let us review Riemannian geom-
etry on an ordinary Riemann surface Σ0. We write T ∗

C
Σ0 for the complexified

cotangent bundle of the smooth two-manifold Σ0. (We complexify the cotan-
gent bundle of Σ0 to match the way we defined the cotangent bundle of a
smooth cs supermanifold.) To match our notation in the super case, we write
T ∗
C
Σ0 = T ∗

LΣ0 ⊕ T ∗
RΣ0, where the two summands are respectively the spaces

of (0, 1)-forms and of (1, 0)-forms on Σ0. The additional structure that leads
to Riemannian geometry can be formulated in many ways. For example, one
can introduce a hermitian metric on the line bundle T ∗

RΣ0; this is equivalent
to a Riemannian metric on Σ0. In the spirit of supergravity, it is more useful
to take for the basic data a “vierbein,” which in the present context means
locally a complex conjugate pair of nonzero sections E and E of T ∗

LΣ0 and
T ∗
RΣ0, subject to the gauge-invariance

(3.58) E → eiuE, E → e−iuE,

11 The transformation of a 1-form E generated by a vector field v is in general
given by Lv(E), where Lv = ivd + div is the Lie derivative.
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with u a real-valued function. The quantity E ⊗ E is gauge-invariant, and
we can think of it as the Riemannian metric on Σ0. Explicitly, if z is a local
complex coordinate on Σ0, then as E is supposed to be of type (1, 0) and E
is its complex conjugate, we have

(3.59) E = eϕdz, E = eϕdz,

for some complex-valued function ϕ. The Riemannian metric is

(3.60) ds2 = E ⊗ E = e2Reϕ|dz|2.

With the aid of the gauge-invariance (3.58), we can take ϕ to be real, if we
so desire. In that case, the vierbein reads

(3.61) E = eφ dz, E = eφdz,

with real-valued φ. The metric is then e2φ|dz|2; the function e2φ is often called
the Weyl factor.

The next step is to define the Levi-Civita connection on T ∗
C
Σ0; it is

uniquely characterized by being metric-compatible and torsion-free. It is a
connection ω with structure group U(1). We represent ω by a real 1-form on
Σ. Under the gauge transformation (3.58), it transforms as

(3.62) ω → ω + du.

This ensures gauge covariance of the following extension of the exterior deriva-
tive:

(3.63) DE = (d − iω)E, DE = (d + iω)E.

The Levi-Civita connection is defined by requiring

(3.64) DE = DE = 0.

Writing ω = dz ωz + dz ωz, a very short computation reveals that

(3.65) ωz = −i∂zϕ, ωz = i∂zϕ.

The sections E and E of T ∗
LΣ0 and T ∗

RΣ0 cannot be defined globally
(unless the Euler characteristic of Σ0 vanishes). Globally, a better formulation
is to think of E as an isomorphism between T ∗

RΣ and a line bundle U (on
which ω is a connection), while E is an isomorphism between the complex
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conjugate line bundles. A similar remark applies in the superstring context
that we consider next.

Now let Σ be a heterotic string worldsheet. Then T ∗Σ = T ∗
LΣ ⊕ T ∗

RΣ,
where T ∗

LΣ is of rank 1|0 and T ∗
RΣ is of rank 1|1. Since T ∗

LΣ has rank 1|0, it
is a direct analog of T ∗

LΣ0 in the bosonic case. As for T ∗
RΣ, it has rank 1|1,

but it has a subbundle D−2 of rank 1|0, and this will play the role of T ∗
RΣ0

in the bosonic case.
We now can introduce what we claim is the appropriate analog on a super

Riemann surface of a Riemannian structure on an ordinary Riemann surface.
The appropriate structure, locally, is the choice of a nonzero section Ẽ of T ∗

LΣ
and of a nonzero section E of D−2 ⊂ T ∗

RΣ, subject to a gauge invariance that
will be specified shortly. As in section 3.6.1, in standard local coordinates
z̃;z|θ, we have

(3.66) E = eϕ(dz − θdθ) = eϕ�, Ẽ = eϕ̃dz̃.

We also introduce a connection ω on the line bundle D−2. We assume the
gauge-invariance

(3.67) E → eiuE, Ẽ → e−iuẼ, ω → ω + du.

The gauge-covariant exterior derivatives of E and Ẽ are

DE = (d − iω)E
DẼ = (d + iω)Ẽ,(3.68)

where d is the ordinary exterior derivative. The strongest reality condition
that makes sense for this data is the following. If Σ has been defined so that
its reduced space is the diagonal in ΣL,red×ΣR,red, then we can ask that when
all odd variables (θ and the odd moduli) vanish, Ẽ is the complex conjugate
of E, ω is real, ϕ̃ is the complex conjugate of ϕ, and u is also real.

Locally, the gauge-invariance can be used to reduce to the case ϕ =
φ(z̃;z) + θχ(z̃;z), ϕ̃ = φ, where φ is a field quite analogous to the one that
appears in (3.61), and χ is a fermionic partner of φ. With just one even
field and one odd one, this is the smallest set of independent fields that one
can possibly hope for in a super extension of Riemannian geometry. If the
reality condition of the last paragraph is imposed, then φ is real when the
odd variables vanish.

What remains is to specify the conditions analogous to those that in
the ordinary case determine the Levi-Civita connection. These conditions are
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extremely simple:

(3.69) DẼ = 0, DE ∼= 0 mod T ∗
RΣ ⊗ T ∗

RΣ.

The condition on E means that the part of DE proportional to � ∧ dz̃ or
dθ ∧ dz̃ vanishes, but DE may have terms proportional to �dθ or (dθ)2. A
very short computation suffices to show that the conditions (3.69) do uniquely
determine ω. We start by writing the exterior derivative in a convenient fash-
ion:

(3.70) d = dz̃ ∂z̃ + dz∂z + dθ ∂θ = dz̃∂z̃ + �∂z + dθDθ.

(In verifying this, recall that the quantity dθ is even.) Similarly for the 1-form
ω, we write

(3.71) ω = dz̃ωz̃ + �ωz + dθωθ.

Now explicitly we compute

(3.72) DẼ = eϕ̃� ∧ dz̃
(
∂zϕ̃ + iωz

)
− eϕ̃dθ ∧ dz̃

(
Dθϕ̃ + iωθ

)
.

Setting this to zero, we determine part of the connection:

(3.73) ωz = i∂zϕ̃, ωθ = iDθϕ̃.

Similarly, we evaluate DE:

(3.74) DE = eϕdz̃ ∧�
(
∂z̃ϕ− iωz̃

)
+ eϕ� ∧ dθ

(
Dθϕ−Dθϕ̃

)
− eϕdθ ∧ dθ.

Setting to zero the coefficient of dz̃ ∧ � (which is the part not valued in
T ∗
RΣ ⊗ T ∗

RΣ), we complete the determination of the connection:

(3.75) ωz̃ = −i∂z̃ϕ.

In this presentation, there is no need to mention the odd 1-form F of
section 3.6.1; it is determined in terms of E by eqn. (3.52). There is a variant
of the above construction in which one does include F , thus completing Ẽ and
E to a basis Ẽ, E, F of T ∗Σ. Gauge transformations act on F by F → eiu/2F ,
and the constraint on DE is replaced by DE + F ∧ F = 0. There is no need
to state an independent condition on DF .
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3.7. Analogs for Type II

So far, we have mostly concentrated on the heterotic string. Here we will
much more briefly indicate the analogs for Type II superstrings.

The starting point was already described in sections 3.1 and 3.2. A Type
II superstring worldsheet Σ is embedded in a product ΣL ×ΣR, with ΣL and
ΣR both super Riemann surfaces. Σ has codimension 2|0 in ΣL × ΣR. We
require that the reduced space ΣL,red is the complex conjugate of ΣR,red (or
sufficiently close to this) and that the reduced space of Σ is the diagonal in
ΣL,red × ΣR,red (or, again, sufficiently close to this).

Deformations of ΣL×ΣR are parametrized by ML×MR, where now ML

and MR are both copies of the moduli space of super Riemann surfaces. The
integration cycle Γ of Type II superstring perturbation theory is a subsuper-
manifold Γ ⊂ ML × MR that satisfies the following two conditions: (1) its
reduced space is the subspace of ML,red × MR,red characterized by the con-
dition that the reduced spaces ΣL,red and ΣR,red, with their spin structures
ignored, are complex conjugate; (2) its odd dimension is the odd dimension
of ML × MR. These conditions determine Γ up to infinitesimal homology
and – together with some discussion of how Γ behaves at infinity – suffice for
superstring perturbation theory.

The tangent bundles TΣ and TΓ have decompositions familiar from sec-
tion 3.5.1. We have TΣ = TLΣ⊕TRΣ, where TLΣ and TRΣ are the restrictions
to Σ of TΣL and TΣR. TLΣ and TRΣ are both of rank 1|1, with distinguished
subbundles D̃ and D inherited from the super Riemann surface structures of
ΣL and ΣR. These are summarized by exact sequences

(3.76) 0 → D̃ → TLΣ → D̃2 → 0,

and

(3.77) 0 → D → TRΣ → D2 → 0

with the usual properties. Locally, one can choose coordinates in which D is
generated by Dθ = ∂θ + θ∂z, and D̃ is generated by D̃θ = ∂

θ̃
+ θ̃∂z̃. Given

such coordinates, with z̃ sufficiently close to the complex conjugate of z, we
call z̃; z|θ̃; θ a standard local coordinate system. The sheaves of sections of
TLΣ and TRΣ have subsheaves S̃ and S of antiholomorphic and holomorphic
superconformal vector fields. As sheaves (ignoring their graded Lie algebra
structures), S̃ is isomorphic to the sheaf of sections of D̃2 and S to the sheaf
of sections of D2.
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The first-order deformations of the holomorphic structure of Σ are in-
herited from those of ΣR and are given by the holomorphic sheaf cohomol-
ogy H1(Σ,S). The first-order deformations of the antiholomorphic structure
of Σ are inherited from those of ΣL and are given by the antiholomorphic
sheaf cohomology H̃1(Σ, S̃). The tangent space to Γ has a decomposition
TΓ = H̃1(Σ, S̃)⊕H1(Σ,S). The cotangent bundle to Γ has a corresponding
description using Serre duality.

The setup is so similar to what it is for the heterotic string that most
statements have fairly obvious analogs, so we will be brief in what follows.

3.7.1. Lagrangians The Berezinian of the product ΣL × ΣR is a tensor
product:

(3.78) Ber(ΣL × ΣR) = Ber(ΣL) ⊗ Ber(ΣR).

Because of the exact sequences (3.76) and (3.77), we have Ber(ΣL) ∼= D̃−1,
Ber(ΣR) ∼= D−1 (as in section 2.4 or appendix A), so Ber(ΣL×ΣR) ∼= D̃−1 ⊗
D−1. The Berezinian of the smooth supermanifold Σ is the restriction to Σ
of Ber(ΣL × ΣR), for the same reason as for the heterotic string, so

(3.79) Ber(Σ) ∼= D̃−1 ⊗D−1.

Just as in section 3.3, this is the information that we need in order to
construct Lagrangians. In doing this, we define

(3.80) D(z̃, z|θ̃, θ) = −i[dz̃;dz|dθ̃;dθ],

by analogy with eqn. (3.5). The usual matter fields of Type II superstrings in
R

10 are scalar superfields XI(z̃|θ̃; z|θ). Their kinetic energy is

(3.81) IX = 1
2πα′

∫
D(z̃, z|θ̃, θ)

∑
IJ

ηIJDθ̃
XIDθX

J .

This is well-defined because for a scalar field X, the expression D
θ̃
XDθX is

naturally a section of D̃−1 ⊗D−1 ∼= Ber(Σ�).
Similarly, the holomorphic superghosts are a section C of ΠD2, and the

corresponding antighosts are a section B of ΠD−3. The expression CD
θ̃
B is a

section of D̃−1 ⊗D−1, so again it can be integrated, giving the kinetic energy
for the holomorphic ghost fields:

(3.82) IB,C = 1
2π

∫
D(z̃, z|θ̃, θ)BD

θ̃
C.
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The antiholomorphic superghosts are a section C̃ of ΠD̃2, and the corre-
sponding antighosts are a section B̃ of ΠD̃−3. In this case the action is

(3.83) I
B̃,C̃

= 1
2π

∫
D(z̃, z|θ̃, θ) B̃DθC̃.

The C and C̃ zero-modes are globally-defined holomorphic and antiholo-
morphic superconformal vector fields, with parity reversed. (In most applica-
tions in superstring perturbation theory, there are no such global zero-modes.)
The B and B̃ zero-modes are holomorphic and antiholomorphic cotangent
vectors to the integration cycle Γ of superstring perturbation theory.

3.7.2. Deformations from a smooth point of view To discuss defor-
mations of Σ in terms of fields on Σ, rather than in terms of the embedding
in ΣL×ΣR, we start from the fact that holomorphic functions are those that
are annihilated by D

θ̃
(and hence also by ∂z̃ = D2

θ̃
). So to deform the holo-

morphic structure of Σ, we must, rather as in section 3.5, deform the operator
D

θ̃
by adding perturbations proportional to ∂z and Dθ. To preserve the su-

per Riemann surface structure of the holomorphic variables, the perturbation
must take values not in arbitrary sections of TΣ but in the subsheaf S. The
resulting analysis is similar to that of section 3.5. It gives the expected re-
sult that the first-order deformations of the holomorphic structure of Σ are
parametrized by H1(Σ,S).

Reciprocally, to deform the antiholomorphic structure of Σ, we deform
the Dθ operator by sections of S̃. An analysis similar to that of section 3.5
shows that first-order deformations of the antiholomorphic structure of Σ are
parametrized by H̃1(Σ, S̃).

3.7.3. Supergravity To describe a Type II worldsheet in the language of
supergravity, we proceed as in section 3.6. First we describe the conformally
invariant structure.

In standard local coordinates z̃;z|θ̃; θ, the distinguished subbundle D̃−2

of T ∗
LΣ is generated by �̃ = dz̃ − θ̃dθ̃, and the distinguished subbundle D−2

of T ∗
RΣ is generated by � = dz − θdθ. We can extend �̃ to a basis of T ∗

LΣ

Ẽ0 = �̃ = dz̃ − θ̃dθ̃
F̃0 = dθ̃,(3.84)

obeying

dẼ0 + F̃0 ∧ F̃0 = 0
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dF̃0 = 0,(3.85)

and similarly we can extend � to a basis of T ∗
RΣ,

E0 = � = dz − θdθ
F0 = dθ,(3.86)

obeying

dE0 + F0 ∧ F0 = 0
dF0 = 0.(3.87)

We are really interested in the line bundles D̃−2 and D−2 generated by
Ẽ0 and E0, not in Ẽ0 and E0 themselves. So we allow what one might call
Weyl transformations from Ẽ0 and E0 to

(3.88) Ẽ = eϕ̃Ẽ0, E = eϕE0,

with arbitrary functions ϕ̃, ϕ. The conditions obeyed by Ẽ and E are simply
that there exist odd 1-forms F̃ and F (unique up to sign) such that

dẼ + F̃ ∧ F̃ = 0 mod Ẽ

dE + F ∧ F = 0 mod E.(3.89)

Eqn. (3.89) describes a Type II superstring worldsheet in supergravity lan-
guage. The antiholomorphic cotangent bundle T ∗

LΣ is generated by Ẽ and F̃ ,
while the holomorphic cotangent bundle T ∗

RΣ is generated by E and F . Their
distinguished subbundles D̃−2 and D−2 are generated, respectively, by Ẽ and
by E.

What we have just described is the Type II analog of what was explained
for the heterotic string in section 3.6.1. We leave it to the reader to adapt the
reasoning of section 3.6.2 and describe deformation theory from this point of
view. Here we will generalize the construction of section 3.6.3 and describe
the analog of a Riemannian metric in this context.

To describe a Riemannian metric, we want to give E and Ẽ not up to
arbitrary Weyl transformations (3.88) but up to the smaller class of “gauge
transformations”

(3.90) E → eiuE, Ẽ → e−iuẼ.
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We introduce a gauge connection ω that transforms as

(3.91) ω → ω + du.

The gauge-covariant exterior derivatives are DE = (d − iω)E, DẼ = (d +
iω)Ẽ. Under appropriate conditions (z and z̃ and likewise E and Ẽ are com-
plex conjugates when odd variables are set to zero) one can require that ω
and u are real when odd variables vanish.

The conditions

DẼ = 0 mod T ∗
LΣ ⊗ T ∗

LΣ,

DE = 0 mod T ∗
RΣ ⊗ T ∗

RΣ(3.92)

play the role of eqn. (3.69) and uniquely determine ω. These are the analogs
of the conditions that in ordinary Riemannian geometry determine the Levi-
Civita connection. As in the remark at the end of section 3.6.3, there is also
a variant in which Ẽ is completed to a basis Ẽ, F̃ of T ∗

LΣ and E is completed
to a basis E, F of T ∗

RΣ, the constraint equations then being DẼ + F̃ ∧ F̃ =
0 = DE + F ∧ F .

4. Punctures

We now return to the purely holomorphic theory of super Riemann surfaces as
introduced in section 2. We aim to describe the “punctures” at which external
vertex operators can be inserted on a super Riemann surface. (Some of the
topics have been treated in [33].)

For our purposes, on an ordinary Riemann surface Σ0, a “puncture” is the
same thing as a marked (or labeled) point; we sometimes use the two terms
interchangeably.12 On a super Riemann surface, there are two kinds of punc-
ture. Bosonic vertex operators are inserted at Neveu-Schwarz (NS) punctures,
while fermionic vertex operators are inserted at Ramond (R) punctures.

NS punctures are a fairly obvious idea, quite analogous to punctures on an
ordinary Riemann surface. But Ramond punctures are a sufficiently unusual
idea that one may ask how one knows that this concept is necessary. One
answer is that, pragmatically, fermion vertex operators of superstring theory
are spin fields [44] that are naturally inserted at Ramond punctures. Another
answer will become clear in section 6. If we do not know about Ramond

12We do not think of removing the “puncture” from Σ0, except when this is
stated. The reason that we use the term “puncture” in this fashion is that in the
superstring case, we want a term to apply uniformly for both NS and Ramond
insertions. As will become clear, “marked point” would not be a sensible term for
what we will call a Ramond puncture.
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punctures already, then this notion is forced upon us when we contemplate
the compactification of supermoduli space or equivalently the infrared region
of superstring theory. One way that a super Riemann surface can degenerate
involves the appearance of Ramond punctures, and this makes it inevitable
to consider them.

We always consider punctures to be distinguishable, since in string per-
turbation theory, one will generically insert a different type of vertex operator
at each puncture. So for example Mg,n will be the moduli space of genus g

surfaces with n labeled punctures.

4.1. Basics

4.1.1. Definitions If a super Riemann surface Σ is parametrized locally
by coordinates z|θ, then an NS vertex operator can be inserted at any point

z = z0

θ = θ0.(4.1)

The choice of such a point is what we mean by an NS puncture. The param-
eters z0|θ0 are the moduli of the NS puncture. So adding an NS puncture
increases the dimension of supermoduli space by 1|1, and the moduli space
of super Riemann surfaces of genus g with nNS NS punctures has dimension
3g−3+nNS|2g−2+nNS. It makes sense to integrate over the insertion point
of an NS vertex operator, keeping fixed13 the moduli of Σ.

In studying an NS puncture, it is sometimes useful to know that a point
in a super Riemann surface, as opposed to a more general 1|1 supermanifold,
determines a divisor through that point. In a complex supermanifold in gen-
eral, a divisor is a submanifold of codimension 1|0, so in a super Riemann
surface, it has dimension 0|1 and is isomorphic to C

0|1. The divisor associated
to the point z|θ = z0|θ0 is simply the orbit through that point generated by
the odd vector field Dθ. (Replacing Dθ with another nonzero section of D
would not change this orbit.) Concretely, Dθ generates the coordinate trans-
formation θ → θ+α, z → z +αθ, so the orbit through z|θ = z0|θ0 is given in
parametric form by

z =z0 + αθ

θ =θ0 + α(4.2)
13This statement holds in the heterotic string for NS vertex operators, and in

Type II superstrings for NS-NS vertex operators, that is vertex operators that are
of NS type both holomorphically and antiholomorphically.
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or equivalently by the equation

(4.3) z = z0 − θ0θ.

The fact that we can associate to an NS puncture a divisor improves the
analogy between NS punctures and Ramond punctures, which are definitely
associated to divisors as we will see momentarily.

A Ramond puncture is a much more subtle concept than an NS punc-
ture; it is a singularity in the super Riemann surface structure of Σ. In the
presence of a Ramond puncture, Σ is still a smooth complex supermanifold
of dimension 1|1, and the tangent bundle TΣ still has a distinguished sub-
bundle D of rank 0|1. But it is no longer true that D2 is everywhere linearly
independent of D. Rather, this condition fails along a divisor in Σ, that is, a
submanifold of dimension 0|1. The local behavior near a Ramond puncture
is that, in suitable local coordinates z|θ, D has a section

(4.4) D∗
θ = ∂

∂θ
+ zθ

∂

∂z
.

(We reserve the name Dθ for a section of D of the form ∂θ + θ∂z in some
coordinate system, and write D∗

θ for a section of a more general form ∂θ +
w(z)θ∂z as in (4.4).) Thus

(4.5) D∗
θ
2 = z

∂

∂z
.

We see that D∗
θ
2 vanishes on the divisor z = 0. We call this kind of divisor a

Ramond divisor and generically denote it as F.

4.1.2. Conformal mapping to a tube Before going farther, let us explain
the relation of we have called NS and R punctures with NS and R string states.

On an ordinary Riemann surface, the connection between a local operator
that may be inserted at, say, the point z = 0 and a string state arises from
the coordinate transformation z = e	. This transformation maps the z-plane
with the point z = 0 omitted to the cylinder parametrized by � with the
equivalence relation

(4.6) � ∼= � + 2π
√
−1.

Conformal field theory on this cylinder describes a string of circumference
2π propagating in the Re � direction. In a sense, the two descriptions differ
by whether one thinks of z = 0 as a marked point (at which an operator is
inserted) or a puncture (around which a string propagates).
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What is the analog for super Riemann surfaces? First we consider an NS
puncture at z = θ = 0 on C

1|1. According to eqn. (4.3), the divisor in C
1|1

determined by this point is just z = 0. Omitting this divisor, we map its
complement to a supertube by z = e	, θ = e	/2ζ. � and ζ are superconformal
coordinates, since Dθ = e−	/2(∂ζ + ζ∂	). They are subject to the equivalence
relation

(4.7) � ∼= � + 2π
√
−1, ζ → −ζ.

The minus sign in the transformation of ζ means that in superstring theory
on this supertube, the strings that propagate in the Re � direction will be in
the Neveu-Schwarz sector.

Next we consider the model (4.4) with a Ramond puncture at z = 0. In
this case, we omit the Ramond divisor and map to the tube simply by z = e	,
leaving θ alone; � and θ are superconformal coordinates, since D∗

θ = ∂θ + θ∂	.
The equivalence relation is now

(4.8) � ∼= � + 2π
√
−1, θ → +θ,

where now because of the + sign for θ, the strings propagating in the Re �
direction will be in the Ramond sector.

What we have encountered in the last two paragraphs are the two possible
spin structures on the purely bosonic cylinder defined in eqn. (4.6).

4.1.3. More on Ramond punctures Generalizing (4.4), an example of a
(noncompact) super Riemann surface with any number nR of Ramond punc-
tures is given by C

1|1, parametrized by z|θ, with superconformal structure
defined by

(4.9) D∗
θ = ∂

∂θ
+ w(z)θ ∂

∂z

and

(4.10) w(z) =
nR∏
i=1

(z − zi).

So D∗
θ
2 = w(z)∂z, and the usual claim that the tangent bundle is generated

by D and D2 fails precisely at the divisors Fi given by z = zi. We write
F =

∑
i Fi for the divisor on which D2 vanishes mod D and we say that the

superconformal structure of Σ degenerates along F.
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In the presence of Ramond punctures, though the subbundle D ⊂ TΣ
is still part of an exact sequence 0 → D → TΣ → TΣ/D → 0, it is no
longer true that TΣ/D is isomorphic to D2. TΣ/D is generated by ∂z, but
D2 is generated, in the above example, by w(z)∂z, which vanishes on F. The
relation between D2 and TΣ/D is D2 ∼= TΣ/D⊗O(−F) (this is a fancy way
to say that a section of D2 is a section of TΣ/D that vanishes along F), or
equivalently TΣ/D ∼= D2 ⊗ O(F). So in the presence of Ramond punctures,
the familiar exact sequence becomes

(4.11) 0 → D → TΣ → D2 ⊗O(F) → 0.

It is also convenient to describe this in a dual language. Dualizing (4.11), we
get an exact sequence

(4.12) 0 → D−2 ⊗O(−F) → T ∗Σ → D−1 → 0.

So T ∗Σ has a distinguished subbundle L ∼= D−2⊗O(−F). Concretely, L is the
subbundle of T ∗Σ that is orthogonal to D. So if D is generated by ∂θ + θz∂z,
then L is generated by dz− zθdθ. More generally, for the example (4.9) with
several Ramond punctures, L is generated by

(4.13) � = dz − w(z)θdθ.

It turns out that on a compact super Riemann surface, the number nR
of Ramond punctures is always even. One might anticipate this from the
fact that Ramond punctures are the locations at which vertex operators for
spacetime fermions are inserted. Including nR Ramond punctures increases
the bosonic dimension of supermoduli space by nR, and the fermionic dimen-
sion by nR/2. The statement about the bosonic dimension is not surprising;
in the simple example of eqn. (4.9), we see that the positions of Ramond
punctures can be varied independently. More interesting is the statement
that the contribution of nR Ramond punctures to the fermionic dimension
of supermoduli space is nR/2. It means that the fermionic moduli are global
in nature, not associated to any particular Ramond puncture. There is no
notion of moving a Ramond puncture in the fermionic directions.

The claim that the Ramond punctures contribute nR|nR/2 to the dimen-
sion of supermoduli space will be justified in section 4.2. Given this claim,
the dimension of the moduli space of super Riemann surfaces of genus g with
nNS Neveu-Schwarz punctures and nR Ramond punctures is

(4.14) dimMg,nNS,nR = (3g− 3 + nNS + nR)|(2g− 2 + nNS + nR/2).
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In superconformal field theory, it is very useful to describe Ramond vertex
operators as spin operators that are inserted at branch points of the world-
sheet fermions. To get to this description, we should replace what we have
called θ by a new variable θ′ that has square root branch points on the divisor
F. In the simple example (4.9), we take θ′ =

√
w(z)θ. At zeroes of w(z), θ′ is

not well-defined, but away from those zeroes the coordinates z|θ′ (with either
choice of sign for the square root in the definition of θ′) are local superconfor-
mal coordinates in which the line bundle D is generated by Dθ′ = ∂θ′ + θ′∂z.
So away from zeroes of w, the ordinary formulas of superconformal field the-
ory are valid. At those zeroes, θ′ and all fields that carry odd worldsheet
fermion number (that is, all fields that are odd under the GSO projection)
have square root branch points. This description is very useful for understand-
ing local properties such as the operator product expansion of fields. But the
global geometry tends to be obscured by the use of a double-valued coor-
dinate. In superstring perturbation theory, it is useful to also have a global
description via a smooth supermanifold Σ, albeit one whose superconformal
structure degenerates along the divisor F. Just as one application, this will
greatly facilitate the analysis of pictures in section 4.3.

4.1.4. Implications The peculiar nature of Ramond punctures has impor-
tant implications for superstring perturbation theory. In contrast to the NS
case, it does not make sense to integrate over the insertion point of a Ramond
vertex operator while keeping fixed the other moduli of Σ. The odd moduli of
Σ are properties of the superconformal structure of Σ and cannot be defined
independently of the singularities of that structure, which are the divisors on
which the Ramond vertex operators are inserted. So it does not make sense to
change the position of a Ramond vertex operator while keeping fixed the odd
moduli. To integrate over the insertion location of a Ramond vertex operator,
we have to integrate over all the odd moduli. And since there is no known nat-
ural way in general to integrate over odd moduli without also integrating over
even moduli, the only known manageable way to integrate over the position of
a Ramond vertex operator is to integrate over the whole supermoduli space.

This fact was one of the essential sources of complication in the super-
string literature of the 1980s. To prove spacetime supersymmetry of pertur-
bative scattering amplitudes, one would like [44, 45] to integrate over the
position of a certain Ramond vertex operator, the spacetime supersymmetry
generator. More generally, the proof of gauge invariance for fermion vertex
operators involves integrating over the position at which a Ramond vertex
operator is inserted. In these integrals one needs to be able to integrate by
parts. But the integral over the location of a Ramond vertex operator really
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only makes sense when extended to an integral over the whole supermoduli
space. So one really needs to integrate by parts on a rather subtle supermani-
fold. The most relevant version of “integration by parts” is the supermanifold
version of Stokes’s theorem (for example see [30, 32, 41]). When one inte-
grates by parts, one needs to analyze possible surface terms at infinity, so one
needs an understanding of the behavior of supermoduli space at infinity as
described in section 6 below. The supermanifold version of Stokes’s theorem
and an analysis of what happens at infinity will be the main ingredients in a
reconsideration of superstring perturbation theory [31].

4.2. Superconformal vector fields and moduli

Here we will repeat some of the considerations of section 2 in the presence of
Ramond punctures.

4.2.1. The sheaf of superconformal vector fields We first consider the
simple example (4.9) of a superconformal structure on C

1|1 with nR Ramond
punctures. A calculation similar to the one that led previously to (2.4) and
(2.5) shows that a general odd superconformal vector field preserving this
superconformal structure is

(4.15) νf = f(z) (∂θ − w(z)θ∂z) ,

and a general even one is

(4.16) Vg = w(z)
(
g(z)∂z + g′(z)

2 θ∂θ

)
.

As before, the functions f and g are holomorphic functions of z only and not
θ. A check on these formulas is the following. Since the divisor F along which
w = 0 is intrinsically defined by the condition that D2 is proportional to D
along this divisor, any vector field that preserves D must, when restricted to
F, be tangent to F, so as to leave F fixed (not pointwise, but as a divisor).
The vector fields νf and Vg have this property. Vg vanishes along F, and νf
when restricted to F is proportional to ∂θ, so it is tangent to F. We define a
sheaf S of superconformal vector fields whose sections are vector fields of the
form Vg + νf .

4.2.2. Reduced structure We can count the moduli of Σ in the presence
of Ramond punctures by the same reasoning as in section 2.2. For variety, we
will present the arguments somewhat differently. It suffices to consider the
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case that Σ is split, meaning that Σ is fibered over its reduced space, which
is an ordinary Riemann surface Σred. The fibers of this fibration are vector
spaces of rank 0|1; thus Σ is the total space of a line bundle V → Σred with
fermionic fibers. We can think of V as the normal bundle to Σred in Σ. As
described in section 2.2.3, a split super Riemann surface has a Z2 symmetry
τ : θ → −θ that leaves fixed the reduced space Σred and acts as −1 on the
normal bundle V . So when restricted to Σred, the tangent bundle TΣ can be
decomposed in subspaces that are even and odd under τ . The even subspace14

of TΣ|Σred is the tangent bundle TΣred to Σred, and the odd subspace is V :

(4.17) TΣ|Σred = TΣred ⊕ V.

Similarly, we can restrict the exact sequence (4.11) to Σred and decompose it
in even and odd parts. This decomposition is very simple. When restricted
to Σred, D is odd under τ and D2 ⊗O(F) is even. The exact sequence simply
identifies D and D2 ⊗O(F) with the odd and even parts of TΣred:

(4.18) D ∼= V, D2 ⊗O(F) ∼= TΣred.

Moreover, when restricted to Σred, F is just an ordinary divisor
∑

i pi, where
pi are points in Σred (in the example (4.9), the pi are the zeroes of the function
w), so we can write O(

∑
i pi) for O(F). The isomorphisms in (4.18) combine

to give an isomorphism

(4.19) V 2 ∼= TΣred ⊗O
(
−

nR∑
i=1

pi

)
.

For a line bundle V with such an isomorphism to exist, the line bundle TΣred⊗
O(−∑nR

i=1 pi) must have even degree. Since this degree is actually 2−2g−nR,
we learn that nR must be even. The degree of V is

(4.20) deg V = 1 − g− nR

2 .

14We are not simply expanding TΣ as the sum of bosonic and fermionic sub-
spaces. A super vector space W in general has no such canonical decomposition; if
W has rank a|b, then the group GL(a|b) of automorphisms of W does not preserve
any decomposition in even and odd subspaces. Rather, we make the decomposition
in eqn (4.17) using the symmetry τ . If Σ is not split, it does not have the symmetry
τ ; one would have to define τ to reverse the odd moduli of Σ.
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4.2.3. Counting moduli We can now easily count the odd and even mod-
uli of Σ. In the split case, we decompose the sheaf S of superconformal vector
fields as S+ ⊕ S−, where the summands are respectively even and odd under
τ . S− is spanned by the vector fields νf in (4.15), and S+ is spanned by
the vector fields Vg in (4.16). The even part of the tangent bundle to super-
moduli space M (at a point in M corresponding to the split surface Σ) is
H1(Σred,S+). And the odd part is H1(Σred,S−).

To νf , we associate the vector field f∂θ along the fibers of the fibration
V → Σred. So we can regard f as a section of V , and therefore S− is the sheaf
of sections of the line bundle V . Given the formula (4.20) for the degree of
V , and the Riemann-Roch formula (2.24), the dimension of H1(Σred,S−) is
g−1−degS− = 2g−2+nR/2. This is the number of odd moduli if there are
no NS punctures. Adding nNS such punctures simply increases the number of
odd moduli by nNS, one for each puncture. So in general the number of odd
moduli is 2g− 2 + nNS + nR/2, as claimed in eqn. (4.14).

The counting of even moduli is more obvious because it does not depend
on the identification of V . From eqn. (4.16), we see that when restricted to
Σred, an even superconformal vector field Vg is simply a vector field along Σred
that vanishes at the points pi. So we identify S+ as TΣ|red ⊗ O(−∑

i pi), of
degree 2−2g−nR. Hence the dimension of H1(Σred,S+) is 3g−3+nR. After
including the contributions of nNS NS punctures, we arrive at the formula for
the number of even moduli claimed in eqn. (4.14).

Instead of including the NS punctures as an afterthought, a more princi-
pled way to proceed is as follows. In the presence of NS punctures, we restrict
the sheaf S of superconformal vector fields to its subsheaf S ′ that leaves fixed
the NS punctures.15 S ′ is the sheaf of automorphisms of Σ with its speci-
fied NS punctures. So the deformation space of Σ with those punctures is
H1(Σred,S ′). The restriction from S to S ′ has the effect of increasing the
dimension of the cohomology group by nNS|nNS. (This can be proved by an
argument similar to the analysis of eqn. (4.25) below.)

The reason that it is up to us whether to add the contribution of the
NS punctures as an afterthought or incorporate them in the definition of the
sheaf of superconformal vector fields is that an NS puncture is something that
is added to a pre-existing super Riemann surface. By constrast, a Ramond
puncture is part of the structure of the super Riemann surface so there is
no way to add it as an afterthought. This statement is closely related to the
point made in section 4.1.4.

15Concretely, the condition that a general superconformal vector field g(z)∂z +
1
2g

′(z)θ∂θ + f(z)(∂θ − θ∂z) should leave fixed the point z|θ = z0|θ0 is g(z0) −
θ0f(z0) = 0 = 1

2g
′(z0)θ0 + f(z0). These conditions define the sheaf S ′ of supercon-

formal vector fields that leave fixed an NS puncture at z0|θ0.
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4.2.4. Generalized spin structures Eqn. (4.19) generalizes the fact that
in the absence of Ramond punctures, a spin structure is part of the structure
of a super Riemann surface. If nR = 0, eqn. (4.19) says that V ∼= TΣ1/2

red and
in other words V is a choice of spin structure. For nR > 0, a super Riemann
surface is not endowed with a spin structure, but rather with a square root of
TΣred⊗O(−∑nR

i=1 pi). It is convenient to call such a square root a generalized
spin structure.

Regardless of the value of nR, for a fixed choice of the pi, there are 22g

choices of V . The case nR > 0 has one conspicuous difference from the case
nR = 0. For nR > 0, the 22g equivalence classes of line bundle V that admit an
isomorphism (4.19) are permuted transitively as the points pi move around.
By contrast, spin structures are of two types – even and odd – that do not
mix as one varies the moduli of Σred.

4.2.5. Another look at superconformal vector fields As in section 2.3,
we can try to combine the functions f and g that generate superconformal
vector fields to a superfield. Differently put, we can look for an equivalence
between the sheaf S of superconformal vector fields and the sheaf of sections
of a line bundle over Σ. Given our previous experience, we can try to do this
by projecting the sections Vg and νf of S to TΣ/D. Again the projection of a
vector field W to TΣ/D can be made by expressing W as a linear combination
of D∗

θ (which generates D) and ∂z (which generates TΣ mod D) and keeping
the coefficient of ∂z. In this process, νf projects to −2w(z)f(z)θ∂z, and Vg

projects to w(z)g(z)∂z. So a general section Vg+νf of the sheaf S (with g even
and f odd) projects to the section w(z)(g(z)+2θf(z))∂z of TΣ/D. Since g(z)+
2θf(z) can be any function of z and θ, what we get this way is any section
of TΣ/D that is divisible by w or in other words vanishes along F. So we can
identify S as (TΣ/D) ⊗ O(−F). However, the exact sequence (4.11) tells us
that TΣ/D is isomorphic to D2 ⊗ O(F), so (TΣ/D) ⊗ O(−F) is isomorphic
to D2. Thus the sheaf S of superconformal vector fields is isomorphic to D2

just as in the absence of Ramond punctures:

(4.21) S ∼= D2.

The superconformal ghosts are a section of S with parity reversed, so
we can express them as a field C valued in ΠD2. To understand where the
antighost fields B should live, we have to ask how to make sense of the
Lagrangian

(4.22) IBC = 1
2πi

∫
[dz̃; dz|dθ]B∂z̃C.
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(For brevity, we consider the ghost Lagrangian of the heterotic string, as in
eqn. (3.8).) For this to make sense, the product BC must take values in the
holomorphic Berezinian Ber(Σ), so B must take values in Ber(Σ) ⊗ D−2.
Ber(Σ) can be computed by the method of section 2.4 or (with the help of
the exact sequence (4.12)) by the reasoning of appendix A, with the result

(4.23) Ber(Σ) ∼= D−1 ⊗O(−F).

So B is valued in D−3 ⊗O(−F).

4.3. Pictures

By now, we understand that a Ramond “puncture” is really a divisor on a
super Riemann surface Σ. This divisor is a copy of C0|1. It is one of the con-
nected components of the divisor F =

∑nR
i=1 Fi on which the superconformal

structure of Σ degenerates.
The understanding that Ramond “punctures” are really divisors and not

points raises the following question. Is the insertion of a Ramond vertex op-
erator at one of the Fi associated to the whole divisor Fi, or should the vertex
operator be inserted at a point on Fi?

In the presence of Ramond punctures, there are two different things one
might mean by the moduli space of super Riemann surfaces. One moduli
space M parametrizes 1|1 supermanifolds Σ with a superconformal structure
that becomes degenerate along nR minimal divisors Fi. Another moduli space
M1 parametrizes the same data as before but now with a choice of a point
on each Fi. Clearly the relation between the two moduli spaces is that M1 is
a fiber bundle over M, the fiber being a copy of

∏nR
i=1 Fi:

(4.24)

∏nR
i=1 Fi → M1

↓
M.

(Presently we will generalize the story, and then we will rename M1 as
M1,...,1.)

Since there are two plausible moduli spaces, one question that comes
to mind is whether the dimension formula (4.14) applies to M or M1. The
answer to this question is that this dimension formula applies to M. This is
so because when we described the sheaf of superconformal vector fields in the
presence of Ramond punctures, we did not require the function f in equation
(4.15) to vanish at the zeroes of w. That being so, we allowed as symmetries
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superconformal vector fields that generate nontrivial shifts θ → θ+ η (with η
an odd constant) along the divisors Fi. Since we allowed these as symmetries,
the moduli space that we constructed is the space M in which the divisors Fi

are not endowed with distinguished points.
Although we included superconformal vector fields that generate shift

symmetries θ → θ + η of Fi, there are no superconformal vector fields that
rescale the divisor Fi by θ → λθ. This can be seen from the detailed form of
(4.15) and (4.16), where the coefficient of θ∂θ always vanishes at w = 0. It
is also clear from the fact that a superconformal transformation must map
the object � defined in eqn. (4.13) to a multiple of itself; a transformation
that rescales θ at w = 0 (except by a factor ±1) would lack this property. We
write SFi for the sheaf of vector fields ∂θ that can arise at Fi by restricting
a superconformal vector field. So the space of global section of SFi is of
dimension 0|1, generated by ∂θ. And we define SF = ⊕iSFi.

To construct M1, we should replace S by its subsheaf S1 consisting of
superconformal vector fields that vanish when restricted to F. S1 sits in an
exact sequence

(4.25) 0 → S1
i−→ S r−→ SF → 0.

The map i is the natural inclusion of S1 in S, and r is the restriction of a
superconformal vector field to F. The exact sequence is just a fancy way to
say that sections of S1 are sections of S whose restrictions to F vanish. From
(4.25), one deduces an exact sequence of cohomology groups16

(4.26) 0 → H0(Σ,SF) → H1(Σ,S1) → H1(Σ,S) → 0.

The group H0(Σ,SF) has dimension 0|nR (with one basis vector ∂θ for each
of the Fi), and the sequence (4.26) implies that the dimension of H1(Σ,S1)
exceeds that of H1(Σ,S) by 0|nR. Of course, we could have anticipated this
result given the fibration (4.24). Since H1(Σ,S1) is the tangent space to M1
at the point corresponding to Σ, while H1(Σ,S) is the tangent space to M,
we deduce with the help of (4.14) that the dimension of M1 is

(4.27) dimM1;g,nNS,nR = (3g− 3 + nNS + nR)|(2g− 2 + nNS + 3
2nR).

Now let us return to the question: should superstring perturbation theory
be understood as an integral over M or over M1? A little thought shows that

16We have shortened the long exact cohomology sequence that one derives from
(4.25) using the vanishing of some of the groups involved. For instance, H1(Σ,SF) =
0 because the support of SF is on F, which has bosonic dimension 0.
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if either one of these answers is correct, then it must be possible to construct
perturbative superstring amplitudes as an integral over M. Indeed, since M1
admits a natural map to M, if there is some way to compute superstring
scattering amplitudes by integrating over M1, then by first integrating over
the fibers of the projection M1 → M, we would get a recipe to compute the
scattering amplitudes by integration over M.

In fact, it is up to us whether we want to use M or M1. In constructing
superstring vertex operators [44], one runs into a peculiar phenomenon of
“picture number.” (We will assume here a familiarity with the main ideas of
that reference. The following remarks are presented in a somewhat heuristic
way. Some technical details can be found in appendix B.) The picture number
of an NS vertex operator takes values in Z, while that of a Ramond vertex op-
erator takes values in Z+1/2. Although all integer or half-integer values of the
picture number are possible, the vertex operators have the most simple super-
conformal properties – which usually is a welcome simplification – only in the
case of vertex operators of “canonical” picture number. The canonical num-
bers are −1 for NS vertex operators and −1/2 for Ramond vertex operators.

Not coincidentally, the negatives of these numbers, namely 1 and 1/2, ap-
pear in the dimension formula (4.14): the contribution of nNS NS punctures
and nR Ramond punctures to the odd dimension of M is 1·nNS+ 1

2 ·nR. In fact,
the natural interpretation of the picture number of a vertex operator is that
it is minus the number of odd moduli associated to the presence of that oper-
ator. The essential clue to this statement goes back to [25]: picture-changing,
which is the operation introduced in [44] that increases the picture number
of a vertex operator by 1, amounts to integration over an odd modulus. To
integrate naturally over supermoduli space, each vertex operator should have
a picture number that is minus its contribution to the odd dimension of su-
permoduli space.

If we want to compute superstring scattering amplitudes using vertex op-
erators in the canonical pictures, we should use the moduli space M where
the number of odd moduli is 1 for each NS puncture and 1/2 for each Ramond
puncture. However, the moduli space M1 is a perfectly good supermanifold
with 1 odd modulus for each NS vertex operator and 3/2 for each Ramond
vertex operator. If we want to compute scattering amplitudes by integrat-
ing over M1, we should use NS vertex operators of picture number −1 and
Ramond vertex operators of picture number −3/2.

More generally, we can make a separate choice for each fermion vertex op-
erator of whether we want its picture number to be −1/2 or −3/2. We simply
modify the definition of the sheaf S1 to say that it consists of superconformal
vector fields that vanish on some chosen subset of the divisors Fi.



120 Edward Witten

Can we define moduli spaces that are suitable for use with vertex oper-
ators with other values of the picture number? This is no sooner said than
done. Suppose that we want the ith fermion vertex operator to have picture
number −1/2 − ki, where the ki are nonnegative integers. We introduce a
more general sheaf Sk1,...,knR

by requiring the odd vector field νf to have a
zero of order ki along each Fi. (A crucial fact is that Sk1,...,knR

is a sheaf of su-
per Lie algebras. In constructing a moduli space with H1(Σ,Sk1,...,knR

) as its
tangent space, one uses this fact. Roughly one wants to interpret Sk1,...,knR

as
generating the infinitesimal symmetries of the objects classified by the mod-
uli space one is trying to define, so Sk1,...,knR

has to be a sheaf of graded
Lie algebras.) The moduli spaces Mk1,...,knR

defined by this procedure have
“integration over the fiber” maps that reduce the ki. These maps correspond
to the picture-raising operations for the vertex operators.

We can do something similar for NS vertex operators. As already ex-
plained in section 4.2.3, the most natural way to incorporate an NS puncture
in the supermoduli problem is to replace the sheaf S by its subsheaf consist-
ing of superconformal vector fields νf and Vg such that f and g vanish at the
puncture. This leads to the canonical moduli space Mg,nNS,nR , suitable for NS
vertex operators of picture number −1. If we want the ith NS vertex operator
to have picture number −ki, we use the sheaf of superconformal vector fields
such that g has a simple zero at the ith NS puncture but f has a zero of order
ki. (We must take ki > 0, since superconformal vector fields with g having a
prescribed zero and no constraint on f do not form a graded Lie algebra.)

What we have described so far is a framework to compute perturbative
superstring amplitudes using vertex operators of arbitrary negative picture
numbers. Is there a similar framework to use vertex operators of non-negative
picture number? The answer to this question in general appears to be “no.”
One would need a moduli space with odd dimension less than the canonical
value given in eqn. (4.14). There does not seem to be a natural version of
supermoduli space with a smaller odd dimension than is given in this formula.
The question of existence of such a space is somewhat like the question of
whether, starting with the canonical supermoduli space M, one can integrate
over some or all of the odd moduli in a natural way, without integrating over
even moduli.

Alternatively, we could increase the bosonic dimension of supermoduli
space by requiring higher order zeros of g, as well as f (subject to the con-
dition that the class of superconformal vector fields considered must form a
graded Lie algebra). But nothing is known in superconformal field theory that
would suggest how to construct natural objects that can be integrated over
supermoduli spaces with enhanced bosonic dimension.
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4.4. Punctures in superstring theory

4.4.1. Reduced spaces Before describing superstring worldsheets and in-
tegration cycles in the presence of spin structures, we need to understand
the reduced spaces of a super Riemann surface with punctures and of the
corresponding moduli space Mg,nNS,nR .

If Σ is a super Riemann surface with punctures of either NS or R type,
then its reduced space Σred is an ordinary Riemann surface with punctures.
Both NS and R punctures on Σ become ordinary punctures on Σred (but they
are still labeled as NS or R). Σred is endowed with a generalized spin structure
in the sense of section 4.2.4.

The reduced space of Mg,nNS,nR is the moduli space Mg,nNS+nR,spin of
Riemann surfaces with a generalized spin structure and a total of nNS + nR
punctures. Equivalently, Mg,nNS,nR,red = Mg,nNS+nR,spin parametrizes split
super Riemann surfaces with the indicated number of punctures. Here, a super
Riemann surface Σ with punctures is said to be split if it has the structure
described in section 4.2.2 and the NS punctures are contained in Σred ⊂ Σ.

4.4.2. Worldsheets and integration cycles With this input, we can es-
sentially repeat the description of superstring worldsheets and integration
cycles that we gave in the unpunctured case. A superstring worldsheet in the
presence of punctures is a smooth supermanifold Σ that is embedded in a
product ΣL ×ΣR of Riemann surfaces or super Riemann surfaces with punc-
tures. For the heterotic string, ΣR is a super Riemann surface with punctures,
and ΣL is an ordinary Riemann surface with punctures; for Type II super-
strings, ΣL and ΣR are both super Riemann surfaces with punctures. The
punctures in ΣL and ΣR will be the same in number, but there is no relation
between their types.

As usual, the basic example is the case that ΣL,red and ΣR,red are complex
conjugate spaces, Σred is the diagonal in ΣL,red × ΣR,red, and Σ is obtained
by thickening Σred in the odd directions. For ΣL,red and ΣR,red to be complex
conjugate means now that they are complex conjugate spaces with punctures
at the same points (not necessarily of the same types). For Type II, a puncture
may be independently of NS or R type on ΣL and ΣR, so there are four types
of puncture, which one can label as NS-NS, NS-R, R-NS, and R-R.

The moduli space of deformations of ΣL×ΣR, with ΣL and ΣR allowed to
deform independently, is the obvious product ML ×MR. As usual, we define
an integration cycle Γ ⊂ ML×MR whose odd dimension is that of ML×MR

and whose reduced space is the diagonal in ML,red × MR,red. As usual, the
even dimension of Γ is twice the complex dimension of ML or equivalently of



122 Edward Witten

MR. From these facts, one can work out the dimension of Γ . The most useful
way to record the result seems to be to state the contribution of a puncture
of a given type to the dimension of Γ . For Type II, these contributions are

NS − NS : 2|2
NS − R : 2|3/2
R − NS : 2|3/2
R − R : 2|1.(4.28)

For the heterotic string, the contributions of an NS or R puncture to the
dimension of Γ are 2|1 and 2|1/2, respectively.

As usual, we can deform Σ ⊂ ΣL × ΣR or Γ ⊂ ML ×MR slightly away
from the above-stated conditions without changing the integrals that define
the worldsheet action or the superstring scattering amplitudes.

The presence of punctures does not affect the definition of the worldsheet
action. At an NS puncture, superconformal primary fields are inserted in the
standard way. The R case is more subtle; see [31], section 5.

5. Super Riemann surfaces of low genus

Our goal in this section is to describe explicitly the moduli space of super
Riemann surfaces of genus 0 and 1. These are important special cases and it
helps to be familiar with them.

Genus 0 and 1 are the cases in which the automorphism group G of a
super Riemann surface may have positive dimension. The dimension formula
for the moduli space includes a contribution from G:

(5.1) dim Mg− dim G = (3g− 3 + nNS + nR)|(2g− 2 + nNS + 1
2nR).

Increasing the number of punctures makes G smaller, and even for g = 0 or
1, dim G = 0|0 unless the number of punctures is very small.

5.1. Genus zero

5.1.1. CP
1|1 as a super Riemann surface Let Σ be a super Riemann

surface of genus 0, initially without punctures. We will prove that Σ is split,
but at first let us just assume that this is the case. The reduced space Σred of
Σ is an ordinary Riemann surface of genus 0. Since Σred is simply-connected
and its tangent bundle TΣred is of even degree (namely degree 2), there is
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up to isomorphism a unique square root of TΣred, which we call TΣ1/2
red ; it

has degree 1. The normal bundle to Σred in Σ is isomorphic to ΠTΣ1/2
red . Odd

deformations of Σred are classified by H1(Σred, ΠTΣ1/2
red ), but this vanishes as

TΣred has positive degree. So Σ cannot be deformed away from the split case,
and actually is split.

It is convenient to describe Σred by homogeneous complex coordinates
u, v. We write O(n) for the line bundle over Σred whose sections are functions
of u, v homogeneous of degree n. Since TΣ1/2

red has degree 1, the total space of
the line bundle ΠTΣ1/2

red can be described by introducing an odd homogeneous
coordinate θ that scales just like u and v. So a super Riemann surface Σ of
genus 0 (without Ramond punctures) is just a complex projective superman-
ifold CP

1|1 with even and odd homogeneous coordinates u,v|θ, all of degree
1.

As a super Riemann surface, Σ has additional structure that we have not
yet described. We usually describe this additional structure as a subbundle
D ⊂ TΣ of rank 0|1. However, it will here be more convenient to describe
the dual picture, which is a line bundle D−2 ⊂ T ∗Σ that appears in the dual
exact sequence (2.29).

For a split super Riemann surface, D is isomorphic to the pullback to Σ
of the line bundle TΣ1/2

red → Σred. For Σ of genus 0, this pullback is isomorphic
to the line bundle O(1) over Σ = CP

1|1. So D−2 ∼= O(−2). Hence to turn
the complex supermanifold Σ = CP

1|1 into a super Riemann surface, we need
to give a subbundle of T ∗Σ isomorphic to O(−2), or equivalently we need to
specify a global section � of T ∗Σ ⊗O(2).

Such a global section is a holomorphic 1-form on Σ that is homogeneous
of degree 2 in u,v|θ. Explicitly we take

(5.2) � = udv − vdu− θdθ.

If we use the scaling symmetry of CP1|1 to set u = 1, and write z for v, then
we get

(5.3) � = dz − θdθ.

� is orthogonal to the vector field Dθ = ∂θ + θ∂z, so z|θ are a system of
superconformal coordinates, away from the divisor u = 0.

Purely as a complex supermanifold, Σ would have the automorphism
group PGL(2|1) of linear transformations of u,v|θ modulo overall scaling.
As a super Riemann surface, the automorphism group of Σ is the subgroup
of PGL(2|1) that leaves fixed �. To identify this subgroup, an alternative
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description of � is useful. We introduce the space Y ∼= C
2|1 with coordinates

u,v|θ (so Σ is the quotient by C
∗ of Y minus the locus u = v = 0). We endow

Y with a nondegenerate bilinear form 〈 , 〉, skew-symmetric in the Z2 graded
sense, as follows. Writing y = u,v|θ and y′ = u′,v′|θ′ for two points y,y′ ∈ Y ,
we set

(5.4) 〈y, y′〉 = uv′ − vu′ − θθ′.

Every nondegenerate skew-symmetric form on Y is equivalent to this one up
to the action of PGL(2|1). Any choice of such a form – such as the one we
have given – breaks PGL(2|1) to a subgroup17 OSp(1|2). The dimension of
OSp(1|2) is 3|2.

The section � of T ∗Σ ⊗O(2) can be defined as

(5.5) � = 〈y, dy〉,

so in particular its supergroup of automorphisms is OSp(1|2). Actually, the
supergroup of symmetries that acts faithfully on Σ ∼= CP

1|1 is the connected
subgroup of OSp(1|2), which is the quotient of OSp(1|2) by its center; the
center is generated by the transformation (u, v|θ) → (−u,−v| − θ), which
acts trivially on CP

1|1. A maximal bosonic automorphism group of the super
Riemann surface Σ is SL2 (or Sp(2)), a double cover of the automorphism
group PGL(2) of the ordinary super Riemann surface Σred. In terms of the
superconformal coordinates z|θ, the odd generators of OSp(1|2) are explicitly
f(z)(∂θ − θ∂z), where f(z) = α + βz. They act by

θ → θ + α + βz

z → z − (α + βz)θ.(5.6)

In terms of the same superconformal coordinates, the expression 〈y, y′〉 be-
comes

(5.7) 〈y, y′〉 = z − z′ − θθ′.

The central element of the bosonic automorphism group SL2 acts by τ ′ :
(u, v|θ) → (−u,−v|θ). Modulo the center of OSp(1|2), this is equivalent to

(5.8) τ : (u, v|θ) → (u, v| − θ),
17OSp(m|n) is the orthosymplectic group whose maximal bosonic subgroup

is O(m) × Sp(n); n must be even. PGL(n|m) is isomorphic to PGL(m|n), but
OSp(m|n) has no such symmetry.
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which is the universal symmetry of a split super Riemann surface (section
2.2.3).

5.1.2. Adding NS punctures Now we will add NS punctures. Each punc-
ture that is added can reduce the dimension of the automorphism group by
at most 1|1. As the dimension of OSp(1|2) is 3|2, it will take at least 3 NS
punctures to remove all automorphisms and this number is indeed sufficient.
Superstring perturbation theory is constructed primarily18 by integrating over
supermoduli spaces that do not have continuous automorphisms. So in genus
0, if all punctures are of NS type, one is primarily interested in the case that
the number of punctures is at least 3.

For a genus 0 super Riemann surface Σ with 3 NS punctures, the dimen-
sion formula says that the dimension of supermoduli space is 0|1. So a set of
3 NS punctures should have 1 odd modulus. Explicitly, one can use OSp(1|2)
and scaling of the homogeneous coordinates of CP1|1 to map one puncture
to u,v|θ = 1,0|0, a second to 0,1|0, and the third to 1,1|η, where η is the
modulus. From this, one might think that the moduli space M0,3,0 would be
a copy of C0|1, parametrized by η. But one has to remember the universal
automorphism τ (eqn. (5.8)) that changes the sign of all odd variables. In the
present context, it acts by τ : η → −η. So the moduli space is actually the
orbifold (or stack) C

0|1/Z2. Since τ is an element of OSp(1|2) and is equiv-
alent as a symmetry of Σ to the element τ ′ of the connected component of
OSp(1|2), we see that although η cannot be removed by an OSp(1|2) trans-
formation, it also cannot be defined by a formula invariant under OSp(1|2) or
even its connected component. Roughly speaking, η2 is OSp(1|2)-invariant;
but η2 = 0.

More generally, for any number k of NS punctures, we can use OSp(1|2)
and scaling of the homogeneous coordinates to map the first three to 1,0|0,
0,1|0, and 1,1|η, and the others to 1,zi|θi, i = 4, . . . , k. The supermoduli
space M0,k,0 (genus 0, k NS punctures and no Ramond punctures) can thus
be parametrized by the k− 3 even parameters zi, i = 4, . . . , k, along with the
k−2 odd parameters θi, i = 4, . . . , k and η. This parametrization of the moduli
space is used in practice in computing superstring scattering amplitudes in
genus 0. For most computations of tree level scattering amplitudes (of NS
fields) in superstring theory, one does not need to know more about M0,k,0
than we have just explained. The reason is that, as long as the external
momenta are generic, the subtleties of compactification of supermoduli space
are not very important at tree level.

18There are a few exceptions to this statement in the context of open strings and
orientifolds. See section 7.4.
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Figure 1: The moduli space M0,4 that parametrizes a genus 0 Riemann surface
Σ0 with four punctures z1, . . . , z4 is compactified by adding “points at infinity”
in which Σ0 splits into a union of two components, each of which contains
two of the punctures. There are three such points at infinity, depending on
how z1, . . . , z4 are divided pairwise between the two components.

5.1.3. Cross ratios However, it ultimately is helpful to understand a little
more, so we will carry on. To illustrate the main issues, it suffices to consider
the case k = 4, where the dimension of the supermoduli space is 1|2. The
reduced space of M0,4,0 is the moduli space M0,4 of an ordinary Riemann
surface of genus 0 with four punctures z1, . . . , z4. In the present section, there
will be no Ramond punctures, so we will write just M0,4 for M0,4,0.

First of all, we should properly distinguish two related moduli spaces.
There is the moduli space M0,4 of four distinct points in a genus zero surface
Σ0, and also its Deligne-Mumford compactification M̂0,4 in which two points
are allowed to coincide, or more properly (fig. 1), in which Σred may split
into two components.19 The following reasoning will be more succinct if we
concentrate on the compactification M̂0,4. Similarly, we write M0,4 for the
moduli space that parametrizes 4 distinct NS punctures in a genus 0 super
Riemann surface, and M̂0,4 for its compactification.

The compactified moduli space M̂0,4 can be parametrized by the PGL(2)-
invariant cross ratio

(5.9) Ψ = (z1 − z2)(z3 − z4)
(z1 − z3)(z4 − z2)

.

We include the value Ψ = ∞, which corresponds to one of the points at infinity
in M̂0,4, where either z1 → z3 or z2 → z4. The two possibilities are equivalent
modulo the action of PGL(2) and can be described more symmetrically by
the degeneration shown in fig. 1 with z1 and z3 on one side and z2 and z4
on the other. (The other points at infinity are Ψ = 0, which corresponds to
z1 → z2 or z3 → z4, and Ψ = −1, which corresponds to z2 → z3 or z1 → z4.)

19All this is more systematically explained in section 6, which the reader may
wish to consult first. But hopefully the details are not needed for the moment.
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A point worthy of note is that to define the parameter Ψ, we broke the
permutation symmetry among z1, . . . , z4. We could alternatively have mapped
M̂0,4 to CP

1 via the PGL(2)-invariant

(5.10) Ψ′ = (z1 − z3)(z4 − z2)
(z1 − z4)(z2 − z3)

.

This would not make much difference. Because of the identity

(5.11) (z1 − z2)(z3 − z4) + (z1 − z3)(z4 − z2) + (z1 − z4)(z2 − z3) = 0,

we have

(5.12) Ψ + 1
Ψ′ + 1 = 0.

Thus the two maps from M̂0,4 to CP
1 given by Ψ or Ψ′ differ by a fractional

linear transformation of CP1.
Now let us consider the supersymmetric case. The supermanifold M̂0,4

has dimension 1|2. Is this supermanifold split? (See section 2.3.1 of [32] for
an explanation of this concept.) To get a “yes,” answer, we just need to find
a holomorphic map from M̂0,4 to CP

1 that when the odd variables vanish
coincides with one of the above formulas. To get such a map, it suffices to
have an OSp(1|2)-invariant extension of the cross ratio that reduces to the
cross ratio if the odd variables vanish. There is no problem to find one. For
example, a super extension of the cross ratio Ψ is given by the OSp(1|2)
invariant Ψ̂ = 〈w1, w2〉〈w3, w4〉/〈w1, w3〉〈w4, w2〉. In view of (5.7), in the usual
superconformal coordinates, this becomes

(5.13) Ψ̂ = (z1 − z2 − θ1θ2)(z3 − z4 − θ3θ4)
(z1 − z3 − θ1θ3)(z4 − z2 − θ4θ2)

.

Obviously, Ψ̂ reduces to Ψ if we set the θ’s to 0. The map from M̂0,4 to
M̂0,4 = CP

1 is a splitting of M̂0,4.
There is a small catch. Obviously we could define another splitting by

(5.14) Ψ̂′ = (z1 − z3 − θ1θ3)(z4 − z2 − θ4θ2)
(z1 − z4 − θ1θ4)(z2 − z3 − θ2θ3)

.

In contrast to the bosonic case, the splittings given by Ψ̂ and Ψ̂′ (and a third
obtained from Ψ̂ by exchanging z2|θ2 with z4|θ4) are not equivalent. That is
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because the supersymmetric extension of the identity (5.11) does not hold:

(z1 − z2 − θ1θ2)(z3 − z4 − θ3θ4) + (z1 − z3 − θ1θ3)(z4 − z2 − θ4θ2)
+ (z1 − z4 − θ1θ4)(z2 − z3 − θ2θ3) �= 0.(5.15)

The left hand side of (5.15) is nilpotent, but that just implies that the split-
tings defined using Ψ̂ and Ψ̂′ are equivalent modulo nilpotent terms, which is
a trivial statement, in the sense that it holds by definition for all splittings.

So M̂0,4 can be split in several fairly natural ways, but none of these
is entirely natural. What property of a splitting do we actually most care
about? The answer to this question involves concepts explained in section 6,
but we summarize a few facts here. A splitting is a holomorphic projection
π : M̂0,4 → M̂0,4. For p a point in M̂0,4, π−1(p) is a divisor in M̂0,4. The
subtleties of superstring perturbation theory come from the behavior at in-
finity, which means that in the present context, we should focus attention
on the distinguished points in M̂0,4 at which two of the zi coincide. Over
the point pij ∈ M̂0,4 given by zi − zj = 0, there is a distinguished divisor
Dij ⊂ M̂0,4 given by zi − zj − θiθj = 0. A good splitting is one such that for
each i and j, π−1(pij) = Dij . By this criterion, none of the splittings that we
have described is satisfactory at each of the divisors at infinity. The splitting
given by Ψ̂ behaves well for z1 → z2, since Ψ̂ is explicitly proportional to
(z1 − z2 − θ1θ2). It is equally good for z1 → z3, in this case because Ψ̂−1

is proportional to a similar factor. But what happens when z1 → z4? The
behavior we would like is

(5.16) Ψ̂ = a + b(z1 − z4 − θ1θ4) + O((z1 − z4)2, (z1 − z4)θ1θ4), b �= 0,

so that the equation Ψ̂−a = 0 will define the divisor Dij . But this is actually
not the case. So the splitting given by Ψ̂ does not have the behavior one would
wish at z1 − z4 = 0, and similarly each of the other splittings fails to show
the desired behavior at one of the divisors at infinity.

What we have said about M̂0,4 extends to M̂0,k for all k ≥ 4. By making
use of the supersymmetric extension of the cross ratio, one can always define
holomorphic splittings π : M̂0,k → M̂0,k. But there are many ways to do this
and none is fully satisfactory.

The splittings of M̂0,4 and their properties were first described in [46],
with more detail in [33]. The relevance to superstring perturbation theory is
as follows [47]. Although tree level scattering amplitudes at generic values
of the external momenta do not have the subtleties that occur in higher
genus, some of these subtleties do occur in tree level scattering amplitudes at
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special values of the momenta (such as momentum zero). And moreover, as
essentially also explained there, as well as in [46], in general a procedure to
compute these amplitudes by first integrating over the fibers of a projection
π : M̂0,4 → M̂0,4 will only give the right answer if π−1(pij) = Dij . Otherwise
a correction has to be made at infinity.

In section 6, we will describe the genus g generalization of the divisor Dij .
This information will be important input in a reconsideration of superstring
perturbation theory [31], not so much because one aims to find a good splitting
– supermoduli space is actually not holomorphically split in general [48] –
but as part of an explanation of how to handle the infrared region in the
integration over supermoduli space.

To understand M̂0,4 more deeply, one has to describe its orbifold struc-
ture. Let us discuss what happens along the reduced space M̂0,4,red, which
roughly speaking (ignoring the orbifold structure) is the same as M̂0,4. Gener-
ically, along M̂0,4,red, the automorphism group of Σ is the universal Z2 sym-
metry of split super Riemann surfaces generated by τ : θ → −θ. However,
at the three points in M̂0,4.red at which Σ splits into two components, the
automorphism group is enhanced to Z2 × Z2, since one has a separate Z2
symmetry group on each component. (This will be clearer in section 6; the
NS degeneration described in eqn. (6.9) has separate Z2 symmetries θ → −θ
and ψ → −ψ if ε = 0, though for ε �= 0, it has only a single Z2 symmetry.)
Thus, although roughly speaking M̂0,4,red is the same as M̂0,4 and is a copy
of CP1 parametrized by the cross ratio, it is more accurate to think of it as
an orbifold version of CP1, with an automorphism group that is generically
Z2 and jumps to Z2 × Z2 at the three points at infinity. The normal bundle
to M̂0,4,red in M̂0,4 is, roughly speaking, a vector bundle over M̂0,4,red of rank
0|2, but actually this vector bundle must be defined in the orbifold sense [49].

5.1.4. Ramond punctures We now will describe a super Riemann surface
Σ of genus 0 with nR Ramond punctures. We have already given such a
description in affine coordinates in eqns. (4.9) and (4.13). We want to rewrite
these formula projectively, to better see the behavior at infinity. We actually
can do so by hand. In eqn. (5.2), we endowed CP

1|1 with a superconformal
structure by picking a section � of T ∗Σ tensored with a suitable line bundle.
We simply need to modify this formula so that in affine coordinates it will
match with (4.13):

(5.17) � = udv − vdu− w(u, v)θdθ.

We take w(u, v) to be homogeneous of degree nR and to coincide with the
function w(z) in (4.13) if we set u = 1, v = z. The zeroes of this function
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are the Ramond divisors. In order for � to transform homogeneously under
the scaling of the homogeneous coordinates u, v, we have to assume that
θ scales with degree 1 − nR/2. So Σ is a weighted projective superspace
WCP

1|1(1, 1|1 − nR/2) with homogeneous coordinates u, v|θ whose weights
are as indicated.

An important special case of this is that nR = 2. It is convenient then to
put the Ramond punctures at 0 and ∞, which we do by taking w(u, v) = uv.
Then in affine coordinates, we have

(5.18) � = dz − zθdθ

with the Ramond punctures at 0,∞. To verify that the structure at z = ∞
is equivalent to that at z = 0, one may use the automorphism z → −1/z,
θ → ±

√
−1 θ, which exchanges them, mapping � to a multiple of itself. (Of

course, the equivalence between z = 0 and ∞ is obvious in the projective
description.) This super Riemann surface has no supermoduli, and has an
automorphism group G of dimension 1|1, generated by the superconformal
vector fields z∂z and ∂θ − θz∂z, which are regular both at 0 and ∞. This is
in keeping with the dimension formula (5.1). A noteworthy fact is that the
vector field ∂θ − θz∂z is nonzero when restricted to z = 0 (or z = ∞),

(5.19) (∂θ − θz∂z)|z=0 = ∂θ.

It generates a shift symmetry of the Ramond divisors.
If we add a single NS puncture at z|θ = z0|θ0, then by the action of G, we

can uniquely map it to z|θ = 1|0. In this way, we describe a Riemann surface of
genus 0 with 1 NS puncture and 2 Ramond punctures. It has no supermoduli
and in particular is split, and its automorphism group is of dimension 0|0,
the only non-trivial element being the symmetry τ : θ → −θ that is common
to all split super Riemann surfaces. Of course, for nNS = 1, nR = 2, the
dimension formula is consistent with dimM = dimG = 0|0.

5.2. Genus one

Here we will much more briefly consider the case that Σ is a super Riemann
surface of genus 1. There are two cases; the spin structure of Σ may be even
or odd. We only consider unpunctured surfaces.

Suppose first that the spin structure is even. The reduced space of Σ is an
ordinary genus 1 Riemann surface, endowed with a line bundle TΣ1/2

red whose
square is isomorphic to TΣred. If Σ is split, then it is isomorphic to the total
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space of the line bundle ΠTΣ1/2
red over Σred. The odd moduli that measure

the departure of Σ from splitness take values in H1(Σred, TΣ1/2
red ), but this

cohomology group vanishes. So Σ has no odd moduli and cannot be deformed
away from the split case. So similarly to what we found for genus 0, a genus
1 super Riemann surface with an even spin structure is automatically split.

Such a surface can be explicitly described as the quotient of C1|1 with its
standard superconformal structure by the group Z× Z acting by

(5.20) z → z + 1, θ → θ

and

(5.21) z → z + τ, θ → −θ.

The moduli space M has dimension 1|0, with τ as the only parameter. The
automorphism group G is also of dimension 1|0, generated by ∂z. Clearly these
statements are consistent with the dimension formula (5.1).

Now we consider the case of an odd spin structure (for much more, see
[50]). In this case, H1(Σred, TΣ1/2

red ) is of dimension 1, so there is 1 odd pa-
rameter by which to deform away from a split situation. Explicitly, one can
describe the family of super Riemann surfaces as the quotient of C1|1 by

(5.22) z → z + 1, θ → θ

and

(5.23) z → z + τ − αθ, θ → θ + α,

where α is the odd parameter. At α = 0, the dimension formula is satisfied
with dim M = dim G = 1|1. G is generated by z → z + b, θ → θ, along with
θ → θ + ε, z → z − εθ, with constants b and ε. But actually jumping of the
cohomology occurs when α is turned on and this makes the proper formulation
of the dimension formula subtle. Explicitly, when α �= 0, a superconformal
transformation θ → θ + ε, z → z − εθ is not a symmetry of (5.23), but shifts
τ to τ −αε, so for α �= 0, the odd automorphism of Σ is lost and the sense in
which τ is a modulus is subtle.

A related jumping occurs as a function of α in the space of holomorphic
differentials. We explain this briefly because of its relevance to section 8.1. At
α = 0, the space of closed holomorphic 1-forms on Σ has dimension 1|1, gener-
ated by dz and dθ. For α �= 0, dθ is still well-defined, but dz is not, since it is
not invariant under (5.23). Moreover, there is no way to add an α-dependent
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Figure 2: (a) A Riemann surface Σ0 with a long tube. (b) A conformally
equivalent picture in which Σ0 has a narrow neck. The example sketched here
represents a separating degeneration. (c) A similar picture with a nonsepa-
rating degeneration, indicated by the arrow.

correction to dz to get an α-dependent closed holomorphic 1-form that equals
dz at α = 0. So the dimension of the space of closed holomorphic differentials
jumps downward for α �= 0. As explained in section 8.2, the space of closed
holomorphic 1-forms on Σ is naturally isomorphic to H0(Σ,Ber(Σ)), so the
same jumping occurs in that cohomology group. In view of the Riemann-Roch
theorem, the same jumping occurs in H1(Σ,Ber(Σ)), as well.

6. Behavior at infinity

6.1. Compactification of the bosonic moduli space

6.1.1. Introduction The moduli space M of smooth Riemann surfaces is
not compact, because a Riemann surface Σ0 can develop a long tube, as in fig.
2(a). A long tube is conformally equivalent (see the discussion of eqn. (6.2))
to a narrow neck, which collapses when the length of the long tube becomes
infinite. When this happens, Σ0 may either divide into two topological com-
ponents, as in fig. 2(b), or remain connected, as in fig. 2(c). The two cases
are called separating and nonseparating degenerations, respectively.

In either case, when a narrow neck collapses, Σ0 separates at least locally
into two branches that meet at a point. Let x and y be local parameters
on the two branches. Let us focus on the “neck” region N ⊂ Σ0 defined by
|x|, |y| < 1. A local description of Σ0 near its degeneration is given by the
algebraic equation

(6.1) xy = q,

where q is a complex parameter that we consider small. For q = 0, the equation
reduces to xy = 0, and describes two branches – with x = 0 and y = 0,
respectively – that meet at the point x = y = 0. This is a singular point, in
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some sense the simplest and most generic possible singularity of a Riemann
surface. It is known as a node or ordinary double point. For small but nonzero
q, this picture is modified in the region |x|, |y| � q and the two branches are
glued together through a narrow neck.

To develop more intuition, let us transform to variables that are adapted
to the “long tube” picture of fig. 2(a). We do this by setting

(6.2) x = e	, y = qe−	,

where

(6.3) � = s + iϑ, s, ϑ ∈ R.

This change of variables actually make the conformal equivalence of a narrow
neck and a long tube obvious; it is a holomorphic change of variables, so the
metric |dx|2 + |dy|2, which develops a narrow neck for q → 0, is conformally
equivalent to the metric |d�|2, which develops a long tube. The conditions
|x|, |y| < 1 give 0 > s > − ln |q|−1. So in terms of �, the neck region N is a
tube of length

(6.4) τ = ln |q|−1

(the distance along the tube is parametrized by s) and of circumference 2π
(the angular variable being ϑ). In bosonic string theory, to compute a scat-
tering amplitude, we have to integrate over q (as well as the other moduli
of Σ0), which means integrating over the proper length τ of the tube as well
as over the angle Arg q (the latter parametrizes a relative twist that can be
introduced in gluing the two sides of Σ0).

We interpret τ as the elapsed proper time for a closed string that is
propagating down the tube. The meaning of the degeneration as q → 0 is
that the elapsed proper time diverges. The analog of τ in field theory is the
proper time parameter in the Schwinger representation of the propagator of
a particle. For example, the propagator of a scalar of mass m is

(6.5) 1
p2 + m2 =

∫ ∞

0
dτ exp

(
−τ(p2 + m2)

)
.

Here p is the particle momentum and we write the formula in Euclidean
signature so that the mass shell condition is p2 + m2 = 0. The pole of the
propagator at p2 + m2 = 0 comes from a divergence of the integral at τ →
∞. In perturbative quantum field theory, infrared singularities of Feynman
amplitudes occur because of these poles.
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In field theory, there is also an ultraviolet region, with τ → 0. (In any
Feynman diagram, one may use the proper time representation (6.5) for all of
the propagators, with a proper time parameter τi for each internal line. Then
to evaluate the diagram, one must integrate over the loop momenta and the
τi. The momentum integrals are always convergent as long as the τi are all
positive, but divergences may occur as some or all of the τi vanish. These
are the ultraviolet divergences of Feynman diagrams.) There is no analog in
string theory of taking τ → 0. This would mean taking q → ∞, but the local
description (6.1) that we used in introducing q is only valid if q is sufficiently
small. When q ceases to be small, one must use a different description of Σ0.

In the end, there is no ultraviolet region in the integral over M. The
precise statement of this is based on the fact that M has a natural Deligne-
Mumford compactification M̂ that parametrizes, apart from smooth Riemann
surfaces, only one additional type of object – Riemann surfaces with the node
or ordinary double point singularity modeled by the equation xy = q. M̂ is
built by adjoining to M certain “divisors at infinity” Dλ – described more
fully in section 6.1.2 – that parametrize Riemann surfaces with nodes. The
phrase “the region at infinity in M” refers to any small neighborhood of the
union of the Dλ.

M̂ is a smooth compact manifold (or more precisely a smooth compact
orbifold). In general, there is no problem with integration of a smooth mea-
sure on a compact manifold (or orbifold). The integrals required to compute
perturbative bosonic string scattering are smooth except along the divisors
Dλ. In view of what has been just explained, the singularities that occur along
those divisors are infrared effects. The fact that the bosonic string measures
are smooth along M and that the Dλ are the only divisors that have to be
added to M to achieve compactification is a very precise statement of the fact
that in bosonic string perturbation theory, the only possible problems are in-
frared problems. However, those infrared problems are serious: bosonic string
theory has tachyon poles and dilaton tadpoles that do not have a sensible
physical interpretation, at least in the context of perturbation theory.

What about superstring theory? The moduli space M of super Riemann
surfaces has an analogous Deligne-Mumford compactification M̂ that is ob-
tained by adjoining to M certain divisors Dλ that parametrize super Riemann
surfaces with nodes. We again call these the divisors at infinity, and any small
neighborhood of the union of these divisors is called “the region at infinity
in supermoduli space.” M̂ is a smooth compact supermanifold (or more pre-
cisely superorbifold). To compute superstring scattering amplitudes, one must
evaluate integrals over M̂ (or more precisely over certain integration cycles
derived from M̂) of measures whose only singularities are along the divisors
at infinity. As in the bosonic string, the subtleties associated to the behavior
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at infinity are infrared effects – in which strings propagate for a long proper
time near their mass shell. There is no potentially dangerous ultraviolet re-
gion. The difference between superstring theory and bosonic string theory is
that in the superstring case, the infrared effects are harmless; there are no
tachyon poles, and the massless particle tadpoles are tamed by spacetime su-
persymmetry. The infrared behavior is the same as one would expect in a field
theory with the same low energy content. These matters will be reconsidered
in [31].

6.1.2. More details on the divisors at infinity Now we will describe in
more detail the divisors at infinity in the Deligne-Mumford compactification
of Mg,n, the moduli space that parametrizes a genus g surface Σ0 with n

punctures. As we will see, the Deligne-Mumford compactification is defined in
such a way that the punctures always remain distinct as the moduli are varied.
When superficially it appears that two punctures would collide, something else
will happen instead.

In what follows, we will exclude a few exceptional cases with small values
of g and n. The case g = 1, n = 0 is omitted because including it would
create inconvenient exceptions to many statements. The case g = 0, n < 3
can then be omitted for a reason explained below. The discussion below will
show that we can impose these restrictions not just on Σ0 itself but on each
of the components to which it may degenerate. The restrictions on g and n

can be summarized by saying neither Σ0 nor any of its components (if Σ0
degenerates) has continuous symmetries.20 Accordingly, for the values of g

and n that we will discuss, the dimension of M̂g,n is always precisely

(6.6) dim M̂g,n = 3g− 3 + n.

There is no correction for the dimension of the automorphism group G, since
this always vanishes.

Now that these preliminaries are out of the way, let us consider a nonsep-
arating degeneration (fig. 3(a)). When Σ0 develops a node or double point,
it is of course singular. If, however, we simply unglue the two branches of Σ0
that meet at the node, we get a smooth Riemann surface Σ1 of genus g − 1
with n+2 punctures, where the 2 extra punctures are the 2 points in Σ1 that
have to be glued together to get Σ0. (Σ1 is sometimes called the normalization

20In the Deligne-Mumford compactification of the moduli space of unoriented
Riemann surfaces or Riemann surfaces with boundary, one does have to include
components with continuous symmetries, as we will see in section 7.4. This turns
out to be important in the study of anomalies in superstring theory [52], [31].
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Figure 3: (a) Along the divisor Dnonsep ⊂ M̂g,n that parametrizes nonsep-
arating degenerations of a Riemann surface Σ0, the genus of Σ0 is reduced
by 1, but the two points that are glued together at the node (marked by the
arrow) count as additional punctures, one on each branch. So this divisor is a
copy of M̂g−1,n+2. This is sketched here for g = n = 2. (b) Divisors in M̂g,n

that correspond to separating degenerations correspond to decompositions
g = g1 + g2, n = n1 +n2. The divisor corresponding to such a decomposition
is a copy of M̂g1,n1+1 × M̂g2,n2+1, where the points glued together count as
one extra puncture on each side. This is sketched here for g1 = 2, g2 = 1,
n1 = n2 = 2.

of Σ0.) So the nonseparating divisor Dnonsep in M̂g,n is a copy of M̂g−1,n+2.
As a check on this, we count dimensions. A quick computation using (6.6)
shows that dim M̂g−1,n+2 = dim M̂g,n − 1, consistent with the claim that
M̂g−1,n+2 is a divisor at infinity in M̂g,n.

A separating degeneration occurs when Σ0 decomposes into two compo-
nents of genera g1 and g2 with g1 + g2 = g. In general, of the n punctures
on Σ0, we will have n1 on one side and n2 on the other side, with any n1,n2
such that n1 + n2 = n. The node must be counted as an extra puncture on
each side, so the divisor Dsep corresponding to this degeneration (fig. 3(b))
is a copy of M̂g1,n1+1 × M̂g2,n2+1. A quick calculation shows that again
dim(M̂g1,n1+1 × M̂g2,n2+1) = dim M̂g,n− 1, so that the former can appear
as a divisor at infinity in the latter.

The case that g2 (or g1) is 0 deserves special attention. In compactifying
the ordinary moduli space Mg,n, why is it necessary to include a divisor in
which Σ0 splits into two components, one of which has genus 0? The answer
to this question (fig. 4(a)) is that in compactifying Mg,n one needs to give
a limit to a sequence in which the surface Σ0 is kept fixed but 2 or more
punctures in Σ0 approach each other. Let s ≥ 2 be the number of punctures
that are approaching each other. In the Deligne-Mumford compactification,
the limit of this sequence is represented, as in fig. 4(c), by letting a genus 0
component split off from Σ0. This component has s+1 punctures, including an
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Figure 4: In the Deligne-Mumford compactification, a process in which two
or more punctures on a Riemann surface Σ0 approach each other as in (a), or
equivalently are connected to the rest of the surface through a long tube, as in
(b), leads to a separating divisor in which Σ0 splits into two components, one
of which has genus 0, as shown in (c). The number of punctures on the genus
0 component, counting the extra puncture at the node, is always at least
3. In fact, we started in (a) with at least 2 punctures coming together, and
there is 1 more where the two components of Σ0 are glued together. So the
Deligne-Mumford compactification can be constructed while never allowing
Σ0 to have a genus 0 component with fewer than three punctures.

extra one from the node, so it has at least 3 punctures. Thus, in constructing
the Deligne-Mumford compactification, there is no need to allow genus 0
components with fewer than 3 punctures.

Another consequence is that M̂g,n parametrizes Riemann surfaces that
may have singularities (nodes) but in which the n punctures are always dis-
tinct. The limit of a sequence in which 2 or more points approach each other
is described by letting Σ0 branch off a new component, not by actually taking
the points in question to be equal.

Now let us focus on the case s > 2. Consider a Riemann surface with
nearby punctures z1, . . . , zs. Naively, to set z1 = · · · = zs is s − 1 complex
conditions and would appear to define a submanifold of moduli space of com-
plex codimension s− 1. However, in the Deligne-Mumford compactification,
in the limit that naively corresponds to z1 = · · · = zs, we let Σ0 split off a
genus 0 component that contains the points z1, . . . , zs, which remain distinct
(fig. 5). This gives one of the separating divisors at infinity, here with g1 = g,
g2 = 0, so the complex codimension is actually 1, not s − 1. What has hap-
pened is that the naive codimension s− 1 locus with z1 = · · · = zs has been
“blown up” and replaced by a divisor.

The description we have given of the divisors at infinity in M̂g,n has
the following implication. Since those divisors are themselves compactified
moduli spaces M̂g′,n′ or products thereof, further degenerations are typically
possible. Some examples are shown in figure 6. As long as Σ0 has a component
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Figure 5: If z1, . . . , zs (with s ≥ 2) is any number of punctures in Σ0, there is
a divisor at infinity in M̂g,n along which z1, . . . , zs are contained in a separate
genus 0 component of Σ0. This locus is of complex codimension 1, and not of
codimension s−1 as one might guess from the fact that naively it corresponds
to the condition z1 = · · · = zs.

Figure 6: The divisors at infinity in the Deligne-Mumford compactification
can intersect each other, leading to a Riemann surface Σ0 that has more than 2
components glued together at nodes. Two examples are sketched here. These
examples were chosen to illustrate another point: in the Deligne-Mumford
compactification, a genus 0 component of Σ0 will always have at least 3
punctures, but there is no restriction on how many of those punctures may
originate from nodes. In both (a) and (b), there is a genus 0 component with
3 punctures; in (a), 2 of these arise from nodes and in (b) all 3 do.

of genus g′ with n′ punctures such that dim M̂g′,n′ > 0, further degeneration
is always possible. Given the restrictions that we have placed on small values
of g′ and n′, the only case with dim M̂g′,n′ = 0 is g′ = 0, n′ = 3. Accordingly,
3-punctured spheres play a special role. A Riemann surface Σ0 can degenerate
until it is built by gluing together 3-punctured spheres. Completely degenerate
Riemann surfaces of this kind are dual to trivalent graphs. They will be
discussed in section 6.4.
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Figure 7: The divisors D12 and D123 described in the text intersect on a
locus in M̂g,n that parametrizes singular Riemann surfaces depicted in (a).
Surfaces of this type do correspond to intersection points of D12 and D123,
since they can be obtained by further degeneration from configurations of (b),
which represent D12 (since a genus zero component containing z1 and z2 has
split off), and from configurations of (c), which represent D123 (since a genus
zero component containing all of z1, z2, and z3 has split off). By contrast, for
example, D12 does not intersect D13, since there is no picture that is a further
degeneration both of (b), which represents D12, and of an equivalent picture
with z2 and z3 exchanged, representing D13.

We conclude this discussion with an example that may help one develop
intuition about the Deligne-Mumford compactification. In this example, we
consider a Riemann surface Σ0 with three nearby punctures z1, z2, z3. We
will keep Σ0 fixed and vary only the points zi. For each i < j, the Deligne-
Mumford compactification has a divisor Dij that naively corresponds to zi =
zj (but which actually is represented by the splitting off from Σ0 of a genus
0 component that contains zi and zj). As we know from fig. 5, M̂g,n also has
another divisor at infinity that we will call D123, corresponding to the case
that Σ0 splits off a genus 0 component that contains all of z1, z2, z3. We want
to understand the intersections of these divisors. Naively, one may expect
that the divisors D12 and D23, which naively correspond to z1 = z2 and to
z2 = z3, would intersect on a codimension 2 locus corresponding z1 = z2 = z3.
But this cannot be right because the locus in M̂g,n corresponding naively to
z1 = z2 = z3 is not of complex codimension 2; it is the divisor D123. In fact,
in M̂g,n, D12 and D23 do not intersect each other, but they both intersect
D123. This is indicated in fig. 7.

6.1.3. Normal bundle to the compactification divisor A natural line
bundle over a Riemann surface Σ0 is its canonical bundle KΣ0 . We can use
this line bundle to define line bundles over the moduli space M̂g,n, which
parametrizes a Riemann surface Σ0 with n punctures. Taking the fiber of
KΣ0 at the σth puncture, for σ = 1, . . . ,n, we define a complex line bundle
Lσ → Mg,n. These line bundles are quite nontrivial. Their first Chern classes
are the basic observables of two-dimensional topological gravity [53]. For our
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purposes, these line bundles are essential ingredients in describing the normal
bundles to the compactification divisors D ⊂ M̂g,n. A basic understanding
of these normal bundles is important for superstring perturbation theory.

For brevity in the notation, we will consider a divisor D that describes the
splitting of Σ0 into two components Σ′ and Σ′′ joined at a pair of punctures.
The divisor D is itself a product D = M̂g1,n1+1 × M̂g2,n2+1, as explained
before. What we will say has an obvious analog for the nonseparating degen-
eration.

We pick local coordinates x and y on Σ′ and Σ′′, respectively. The gluing
of Σ′ and Σ′′ at general points x = a and y = b, and the smoothing to make
a smooth surface Σ0, is described by a slight generalization of eqn. (6.1):

(6.7) (x− a)(y − b) = q.

We interpret the parameters a, b, and q as all representing moduli of Σ0. We
will work to first order in x− a, y − b, and q.

Describing the gluing by the explicit equation (6.7) has required a choice
of local holomorphic coordinates x− a and y − b near the points a ∈ Σ1 and
b ∈ Σ2. The factors x − a and y − b in eqn. (6.7) are certainly not invariant
under local reparametrization of Σ1 and Σ2. However, since we work to first
order in x − a and in y − b, the factors x − a and y − b transform linearly
under changes of coordinates and in fact they transform like21 the 1-forms da
and db. So we see that q must transform as the product da⊗ db.

A useful formulation of this is as follows. As in our discussion above, we
define a line bundle L′ → M̂g1,n1+1 whose fiber is the fiber of the cotangent
bundle KΣ′ at x = a, and a line bundle L′′ → M̂g1,n1+1 whose fiber is the
fiber of the cotangent bundle KΣ′′ at y = b. So da⊗db is naturally understood
as a section of L′ ⊗ L′′. Hence the statement that q transforms as da ⊗ db
means that we should interpret q as a section of L′ ⊗ L′′.

Locally, we can view q as a function on M̂g,n that vanishes on the com-
pactification divisor D. However, this formulation is not adequate globally.
The best way to formulate the statement that q transforms as da⊗db is that
q should be viewed as a section of the line bundle L′ ⊗ L′′ → D. This is a
satisfactory global description of what q means to linear order in q. Beyond
linear order, the geometrical meaning of q is more complicated (but usually
not needed in practice).

21For example, under x → λx, a → λa, we have (x − a) → λ(x − a), which
agrees with the transformation law da → λda. In algebraic geometry, the cotangent
bundle to a variety at a point is defined as the space of functions vanishing at that
point modulo those that vanish to second order. This motivates our assertion that
x− a tranforms like da.



Notes on super Riemann surfaces and their moduli 141

Equivalently, let ND be the normal bundle to D in M̂g,n; it is a complex
line bundle over D. q can be viewed as a linear function on ND, so the fact
that q is a section of L′ ⊗ L′′ means that there is a natural isomorphism

(6.8) ND
∼= (L′ ⊗ L′′)−1

.

Later we will describe the super analog of this relation.

6.2. Compactification of supermoduli space

6.2.1. Neveu-Schwarz and Ramond degenerations The moduli space
M of super Riemann surfaces has a Deligne-Mumford compactification that
is quite analogous to the corresponding compactification of the moduli space
M of ordinary Riemann surfaces.22 Again compactification is achieved by
adding divisors Dλ at infinity that parametrize super Riemann surfaces with
very simple singularities. The singularities in question describe the collapse of
a narrow neck (or the growth of a long tube) and are quite analogous to the
familiar singularity (6.1) of an ordinary Riemann surface. Perhaps the main
difference from the bosonic case is that there are two types of tube that may
collapse. They were described in section 4.1.2 and govern propagation of a
closed string in the NS or Ramond sector. Accordingly, in constructing the
Deligne-Mumford compactification M̂ of M, we need to allow two different
types of degeneration, which we will call Neveu-Schwarz (NS) and Ramond
(R) degenerations.

For an NS degeneration, we glue together two copies of C1|1, with local
superconformal coordinates x|θ and y|ψ, respectively, by the gluing formulas

xy = −ε2

yθ = εψ

xψ = −εθ

θψ = 0.(6.9)

It is convenient to define

(6.10) qNS = −ε2.

The formulas (6.9) obviously reduce to the bosonic gluing relation xy = q
if we set the odd coordinates θ, ψ to zero and identify q = qNS. Eqn. (6.9)

22From the standpoint of algebraic geometry, the most detailed reference on this
topic is the letter [54], which unfortunately is unpublished. A number of details
have been clarified in subsequent letters [55]. See [8] for another perspective via
uniformization.
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defines a super Riemann surface, since the transformation from x|θ to y|ψ is
superconformal. One may verify this by showing that Dθ = (y/ε)Dψ, where
as usual Dθ = ∂θ + θ∂x, Dψ = ∂ψ + ψ∂y. Alternatively, one may verify the
superconformal nature of the mapping from x|θ to y|ψ in a dual fashion by
showing that dx − θdθ (whose kernel is generated by Dθ) is a multiple of
dy − ψdψ (whose kernel is generated by Dψ):

(6.11) dx− θdθ = ε2

y2 (dy − ψdψ) .

The super Riemann surface Σ described by eqn. (6.9) is smooth as long
as ε �= 0, but it is singular when ε vanishes. The Deligne-Mumford compacti-
fication of M is achieved precisely by allowing this kind of singularity, as well
as an analogous Ramond degeneration that we describe shortly. As long as
ε �= 0, Σ can be identified with the NS supertube (4.7) via x = e	, θ = e	/2ζ,
y = −ε2e−	, ψ = −εe−	/2ζ. Just as in the bosonic case, we regard Σ as a local
description of part of a compact super Riemann surface, valid for example for
|x|, |y| < 1. The length of the supertube is then τ = − ln |qNS|−1, as in the
bosonic case. In the coordinates used in (6.9), what happens at ε = 0 is that
Σ splits up into two components, one parametrized by x|θ and one by y|ψ,
and glued at x = y = 0. In the coordinate system �|ζ, one says instead that
as ε → 0, the length of the supertube diverges.

To describe a Ramond degeneration, we again introduce two copies of
C

1|1 with local coordinates x|θ and y|ψ. But now we provide each copy of
C

1|1 with a superconformal structure that degenerates at the divisor x = 0
or y = 0, representing the Ramond punctures. These singular superconformal
structures are defined, as in (4.4), by the odd vector fields

(6.12) D∗
θ = ∂

∂θ
+ θx

∂

∂x
, D∗

ψ = ∂

∂ψ
+ ψy

∂

∂y
.

The gluing formulas are now simply

xy = qR

θ = ±
√
−1ψ.(6.13)

Obviously, these formulas reduce to the bosonic gluing formula xy = q if we
set the odd variables to zero and set q = qR.

This gluing defines a super Riemann surface Σ, since D∗
θ = ∓

√
−1D∗

ψ.
Alternatively, in a dual language,

(6.14) dx− xθdθ = −qR
y2 (dy − yψdψ) .
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For qR �= 0, we can map Σ to the Ramond supertube (4.8) by setting x = e	,
y = qRe

−	, leaving θ unchanged. So the behavior of Σ for qR → 0 can be
described either as the collapse of a narrow neck or as the divergence of the
length of a Ramond supertube.

6.2.2. The divisors at infinity The purely bosonic analysis of sections
6.1.2 extends to the super Riemann surface case, with just one or two sur-
prises.

In general we compactify the moduli space Mg,nNS,nR that parametrizes
genus g super Riemann surfaces Σ with nNS Neveu-Schwarz punctures and nR
Ramond punctures, by allowing singularities of the types described in section
6.2.1. It is a rather fundamental fact that compactification can be achieved
by allowing singularities of only these types. We call the compactification
M̂g,nNS,nR .

Compactification does not affect the dimension of the moduli space, which
is

(6.15) dim M̂g,nNS,nR = 3g− 3 + nNS + nR|2g− 2 + nNS + 1
2nR.

The divisors at infinity in M̂g,nNS,nR describe the possible degenerations of
Σ. For similar reasons to the bosonic case, to develop a simple theory, we
exclude the values g = 0, nNS +nR < 3 and g = 1, nNS = nR = 0, at which Σ
would have continuous automorphisms.23 And similarly to the bosonic case,
in constructing M̂, all punctures remain distinct; sequences of super Riemann
surfaces in which two or more punctures (of either type) approach each other
are assigned limits in which Σ splits off a genus zero component.

As in the bosonic case, Σ can have separating or nonseparating degen-
erations, and of course its degenerations are of NS and R type. By obvious
analogy with what we said in section 6.1.2, the divisor in M̂g,nNS,nR that
parametrizes nonseparating degenerations of NS type is a copy of
M̂g−1,nNS+2,nR . This is compatible with the dimension formula (6.15), which
shows that

(6.16) dim M̂g,nNS,nR = dim M̂g−1,nNS+2,nR + 1|0,

so that M̂g−1,nNS+2,nR can be a divisor in M̂g,nNS,nR .
23The exceptional cases can of course be treated by hand, but they are essentially

not needed in superstring perturbation theory. In any genus, to compute scattering
amplitudes, one needs n-point functions with n > 0. The starting point of pertur-
bation theory is a superconformal field theory, which means that at the outset one
knows what happens for g = 0, nNS + nR ≤ 2.
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Similarly, one might think at first that the divisor D ⊂ M̂g,nNS,nR cor-
responding to a nonseparating degeneration of R type would be a copy of
M̂g−1,nNS,nR+2. However, the dimension formula shows that this cannot be
correct. It gives

(6.17) dim M̂g,nNS,nR = dim M̂g−1,nNS,nR+2 + 1|1,

so that the two dimensions differ by 1|1 and not by 1|0 as would be the case
if M̂g−1,nNS,nR+2 were a divisor in M̂g,nNS,nR . It turns out that the divisor D,
rather than being isomorphic to M̂g−1,nNS,nR+2, is a fiber bundle over that
space with fibers of dimension 0|1:

(6.18)
C

0|1 → D

↓
M̂g−1,nNS,nR+2.

The structure group of this fibration acts on the fiber by θ → ±θ+α, with α an
odd parameter. (It is apparently not known if the fibration has a holomorphic
section.)

The origin of this fibration is as follows. The divisor D parametrizes sin-
gular super Riemann surfaces in which two Ramond divisors F and F′ are
glued together. Locally we can describe a neighborhood of F by coordinates
x|θ and superconformal structure D∗

θ = ∂θ + θx∂x, where F is defined by
x = 0; similarly, in suitable coordinates y|ψ with superconformal structure
D∗

ψ = ∂ψ + ψy∂y, F′ is defined by y = 0. Naively speaking, the gluing of F

to F′ is made by setting θ = ±
√
−1ψ. (This is what eqn. (6.13) amounts

to at qR = 0, that is, along D.) However, a fact that was already important
in section 4.3 was that when restricted to F, a superconformal vector field
may not vanish but may restrict to a multiple of ∂θ, generating the symmetry
θ → θ + α of F. So once we have selected the two Ramond divisors F,F′ in a
genus g− 1 super Riemann surface Σ′ that we want to glue together to make
a singular genus g super Riemann surface Σ, the gluing that makes Σ is not
uniquely determined. The general possible gluing is

(6.19) θ = −α±
√
−1ψ,

where the fermionic parameter α parametrizes the fiber of the fibration (6.18).
(The meaning of the sign in ±

√
−1ψ will be explained in section 6.2.3.)

An important point is that the distinguished fermionic parameter α that
enters the fibration (6.18) only exists when we restrict from the full moduli
space to the divisor D. Away from q = 0, this parameter cannot be separated
from the rest of the odd and even moduli.
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This fermionic gluing parameter has the following significance for string
theory. We will describe this a little informally, as if it is only necessary to
consider holomorphic degrees of freedom. (In fact, the following comments
apply to open superstrings, and with minor and standard modifications to
closed superstrings.) In bosonic string theory, near a compactification divisor,
there is a gluing parameter q. The integral over q gives the bosonic string
propagator

(6.20) 1
L0

.

With L0 = p2/2+N , where p is the momentum and N has integer eigenvalues,
the poles of 1/L0 lead to the singularities of superstring scattering amplitudes.
Almost the same thing happens for the NS sector of superstrings. Here the
gluing parameter is ε = ±√−qNS. The significance of the sign will be discused
in section 6.2.3. Leaving this aside for the moment, the integration over qNS
again produces the propagator 1/L0, leading again to singularities of the
scattering amplitudes due to bosonic intermediate states.

Now consider a Ramond degeneration. The integral over qR still gives a
factor of 1/L0. But now in integrating over D, we can integrate first over
the fibers of the fibration (6.18), which means that we integrate first over
the fermionic gluing parameter α. The integral over α gives a factor of G0,
the global worldsheet supercharge that obeys G2

0 = L0. The propagator for
Ramond states is therefore

(6.21) G0

L0
= 1

G0
.

G0, which is sometimes called the Dirac-Ramond operator, was originally
introduced in [56] as a stringy analog of the Dirac operator, and so 1/G0 is
the analog for string theory of the Dirac propagator of field theory.

We still must consider separating degenerations, but there are no further
surprises. A divisor in M̂g,nNS,nR representing a separating NS degeneration
is isomorphic to a product M̂g1,n1,m1 × M̂g2,n2,m2 , with

(6.22) g1 + g2 = g, n1 + n2 = nNS + 2, m1 + m2 = nR, m1,m2 ∈ 2Z.

This is as one would expect by analogy with the bosonic case: a surface
of genus g splits into two components of genera g1 and g2 that add to g;
the punctures originally present are distributed between the two sides; and 1
extra NS puncture appears on each component, where they are glued together
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to make Σ. By contrast, a divisor in M̂g,nNS,nR that represents a separating
Ramond degeneration is a fiber bundle, with fibers of dimension 0|1, over a
product M̂g1,n1,m1 × M̂g2,n2,m2 , now with

(6.23) g1 + g2 = g, n1 + n2 = nNS, m1 + m2 = nR + 2, m1,m2 ∈ 2Z.

The fiber of dimension 0|1 enters the choice of gluing.
One moral of this story is that we must be careful in counting gluing pa-

rameters. At an NS degeneration, there is from any point of view just one even
bosonic gluing parameter ε and no odd ones. So the space of gluing param-
eters is of dimension 1|0. At a Ramond degeneration, there are two slightly
different but natural questions. The locus in M̂g,nNS,nR that parametrizes
super Riemann surfaces with a Ramond degeneration is a divisor, of codi-
mension 1|0, with a single even gluing parameter qR. But if one is interested
in constructing this divisor from similar moduli spaces that parametrize sur-
faces with smaller genus or more components, one must take account also of
the fermionic gluing parameter α. So for some purposes, it is better to think
of the gluing parameters at a Ramond degeneration as being of dimension
1|1.

6.2.3. Gluing and the GSO projection We have encountered an impor-
tant minus sign for both NS and R degenerations. Gluing of ordinary Riemann
surfaces is described by a gluing parameter q that enters a formula xy = q. In
the super Riemann surface version of this gluing, we need in the NS case to
take a square root, since the gluing parameter in eqn. (6.9) is ε = ±√−qNS.
Alternatively, in the Ramond case, the fermionic gluing law (6.13) directly
involves a sign, θ = ±

√
−1ψ. In each case, this minus sign appears in the

gluing law between the fermionic coordinates θ and ψ on the two branches,
via either θ = ±√−qNSψ/y or θ = ±

√
−1ψ.

This two-valuedness involves spin structures and the GSO projection.
Consider a nonseparating degeneration, at which Σ can be constructed by
gluing together two points or divisors in a super Riemann surface Σ′ of genus
g − 1. The topological picture is the same as in the purely bosonic case
(fig. 3(a)). Prior to degenerating, Σ has 22g spin structures, while Σ′ has only
22(g−1) spin structures.24 We want to understand explicitly why Σ has 4 times
as many spin structures as Σ′. This can conveniently be described in terms of

24In the presence of Ramond punctures on either Σ or Σ′, the relevant objects
are not spin structures but generalized spin structures as described in section 4.2.4.
This does not materially affect the following counting, so we will use the more
familiar language of spin structures.
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Figure 8: Here we depict the local behavior of a super Riemann surface Σ of
genus g at a nonseparating degeneration. We can pick an A-cycle of Σ that
surrounds the node and a B-cycle that passes through the node, as shown
here. (The other g− 1 A-cycles and B-cycles of Σ can be chosen not to pass
near the node. They play no role in the analysis.)

a 1-cycle A on Σ that encloses the node or narrow neck and another 1-cycle
B that passes through it, as depicted in fig. 8. In comparing spin structures
on Σ to those on Σ′, there are 2 factors of 2 that arise as follows:

(1) Spin structures on Σ can be partially classified by whether they are of
bounding or unbounding type when restricted to the cycle A – in other words
whether the string propagating through the node is in the NS or Ramond
sector. The two cases correspond to NS and R degenerations of Σ, respectively.
On Σ′, this distinction makes sense but is not part of the choice of spin
structure.

(2) In addition, Σ has pairs of spin structure that differ in their “type”
(NS or R) when restricted to B, but coincide in their restriction to A or to any
1-cycle that does not pass through the neck. These pairs of spin structures
are exchanged by including a minus sign in the gluing between fermionic
variables on the two sides of the neck. In other words, they are exchanged
if one reverses the sign in the formulas θ = ±√−qNSψ/y or θ = ±

√
−1ψ.

Locally (and in general even globally25) there is no way to say which of these
gluings is which, since one is free to reverse the sign of either θ or ψ. But
there is a canonical operation on spin structures of exchanging this sign. On
Σ′, one does not make this gluing so this factor of 2 in the number of spin
structures is absent.

In general, as explained in section 2.2.1, it does not make sense to say that
two super Riemann surfaces are the same except for the choice of spin struc-

25In the case of a Ramond degeneration, in the absence of Ramond punctures,
one can make a distinguished choice of sign by asking that the spin structure on
Σ should be even (or odd). Our discussion in the text uses only what can be seen
locally without this sort of global information.
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ture. A very limited but crucial exception26 comes from the two-valuedness we
have just described: when qNS or qR vanishes, there are pairs of spin structure
that differ only by their “type” along a cycle B that passes through the node.
Singularities of superstring scattering amplitudes come from the contribution
of an on-shell state passing through the node. So in evaluating such singulari-
ties, one can sum over pairs of spin structures that differ only by their “type”
along B or in other words by the sign in the gluing between θ and ψ. (More-
over, this partial sum over spin structures can be performed before the rest
of the integral that determines a given singular contribution to a scattering
amplitude.) To understand the implications of this for string theory, consider
a string state propagating through the narrow neck. If we act on this string
state with the operator (−1)F that counts world sheet fermions mod 2, this
will have the same effect as changing the sign of the fermionic coordinate in
the gluing. So averaging over the two possible signs of the gluing amounts to
the action of the GSO projection operator (1 + (−1)F )/2. What we have just
explained is the reason that only states that are invariant under the GSO
projection contribute singularities in superstring scattering amplitudes.

6.2.4. Application to Type II superstrings All of this has been stated
purely holomorphically. A Type II worldsheet is defined by, in a sense, com-
bining holomorphic and antiholomorphic super Riemann surfaces. Its degen-
erations are described by applying what we have learned separately to the
holomorphic and antiholomorphic variables. In particular, the degeneration
of either the holomorphic or antiholomorphic variables can be of either NS
or R type, so there are four types of degeneration, which we can call NS-NS,
NS-R, R-NS, and R-R. This matches the four types of punctures in Type II
superstring theory. If Σ develops a degeneration of, say, NS-R type, then after
separating the two branches to make a smooth surface (of lower genus or with
more components) a puncture of NS-R type will appear on each branch.

An important fact carries over from the analysis of gluing parameters in
section 6.2.2. An NS-NS degeneration has only its holomorphic and antiholo-
morphic gluing parameters qNS and q̃NS (which are complex conjugates mod-
ulo the odd variables). But an NS-R or R-NS puncture has, in the same sense
described in section 6.2.2, a single fermionic gluing parameter. Integration
over this gluing parameter causes the propagator of an R-NS or NS-R string
state to be Dirac-like. And an R-R degeneration has a pair of fermionic glu-
ing parameters, one holomorphic and one antiholomorphic. Integrating over
these parameters has an effect that for massless R-R fields can be described

26Another exception, though not relevant here, is that if Σ is split, then it makes
sense to change its spin structure without changing anything else.
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as follows (see, for example, [31], section 6.2.2). These fields are p-form fields
in spacetime and the integration over the fermionic gluing parameters en-
sures that in superstring perturbation theory, they couple only via their field
strength.

The sign choice analyzed in section 6.2.3 occurs separately for holomor-
phic and antiholomorphic variables, and leads to separate GSO projections
for holomorphic and antiholomorphic modes of the string.

6.3. The canonical parameters

6.3.1. Overview The most delicate issues in superstring perturbation the-
ory concern the behavior in the infrared region, near infinity in moduli space.
A key fact in resolving them is that moduli space M can be compactified by
adding suitable divisors with a natural physical interpretation.

By definition a divisor is defined locally by vanishing of a single even
parameter. For an NS degeneration, this is the parameter ε in eqn. (6.9), and
for a Ramond degeneration, it is the parameter qR in eqn. (6.13).

We call ε and qR the canonical parameters, but they actually are properly
understood not as complex-valued parameters but as sections of certain line
bundles, the duals of the normal bundles to the relevant compactification
divisors in the compactified moduli space M̂. This was analyzed in the bosonic
case in section 6.1.3, and we describe the superanalog in section 6.3.4.

Picking local superconformal coordinates trivializes the relevant line bun-
dles and then, as in eqn. (6.9) or (6.13), ε or qR is a natural complex-valued
parameter. Under a change of trivialization, one would have ε → eφε for some
function φ (and similarly for qR), but not, for example, ε → ε + η1η2 with
odd moduli η1 and η2.

The existence in this sense of a canonical parameter at infinity is key
to resolving some questions that arose in the literature of the 1980’s on su-
perstring perturbation theory. It makes well-defined some integrals that are
invariant under a change of variables ε → eφε, but would shift by a surface
term if one were allowed to make a change of variables ε → ε+ η1η2. See [31].

6.3.2. Example in genus zero To gain experience, we will compute ex-
plicitly the canonical parameter in a simple special case. Let Σ be a super
Riemann surface and consider the degeneration in which two NS punctures
approach each other. In local superconformal coordinates z|θ on Σ, we take
the punctures to be at z|θ = z1|θ1 and z|θ = z2|θ2.

We want to determine the canonical parameter for z1|θ1 → z2|θ2. Even
without any computation, one may suspect that ε will be a function of the
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Figure 9: (a) A super Riemann surface Σ with 2 nearby NS punctures labeled
p1 and p2. (b) At infinity, Σ splits as the union of a super Riemann surface
Σ′ that is a copy of Σ with one less puncture, and a genus 0 component Σ′′

that has three NS punctures, namely p1, p2, and a third one at which Σ′′ is
glued to Σ′.

combination z1−z2−θ1θ2, which is invariant under the superconformal trans-
formation z|θ → z − αθ|θ + α.

Σ has 2 even moduli and 2 odd moduli that will be relevant in this discus-
sion, namely z1, z2 and θ1, θ2. At infinity, Σ splits into a union of 2 components
Σ′ and Σ′′, where Σ′ is simply Σ with just one NS puncture that is relevant to
our discussion (namely the one at which it is glued to Σ′′; there may be some
irrelevant ones far away), and Σ′′ is a copy of CP1|1 with three NS punctures
(counting the node at which it is glued to Σ′). This is depicted in fig. 9. In
terms of the gluing of Σ′ and Σ′′, we count parameters as follows: the one
NS puncture of Σ′ depends on 1 odd and 1 even parameter; there will be 1
even gluing parameter ε; and CP

1|1 with 3 NS punctures has 1 odd modulus.
Altogether the number of parameters is again 2|2.

We describe Σ′′ = CP
1|1 by superconformal coordinates y|ψ (this descrip-

tion omits a divisor at y = ∞) and locate the two punctures as follows:

z|θ = z1|θ1 ↔ y|ψ = 1|0
z|θ = z2|θ2 ↔ y|ψ = −1|0.(6.24)

We glue Σ′ to Σ′′ by identifying the points z|θ = z0|θ0 with y|ψ = 0|β, where
z0|ψ0 are the moduli of the node in Σ′ and β is the odd modulus of Σ′′. The
gluing formulas are obtained from (6.9) upon replacing x|θ with superconfor-
mal coordinates z − z0 + θ0θ|θ − θ0 and replacing y|ψ with superconformal
coordinates y + βψ|ψ − β:

(z − z0 + θ0θ)(y + βψ) = −ε2

(y + βψ)(θ − θ0) = ε(ψ − β)
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(z − z0 + θ0θ)(ψ − β) = −ε(θ − θ0)
(θ − θ0)(ψ − β) = 0.(6.25)

In view of (6.24), we determine z1|θ1 by setting y|ψ = 1|0 in (6.25):

z1 = z0 − ε2 + θ0εβ

θ1 = θ0 − εβ.(6.26)

Similarly, setting y|ψ = −1|0, we get

z2 = z0 + ε2 − θ0εβ

θ2 = θ0 + εβ.(6.27)

Eliminating z0|θ0 and solving for ε in terms of z1|θ1 and z2|θ2, we get the
expected result, up to a constant factor:

(6.28) ε2 = −1
2 (z1 − z2 − θ1θ2) .

This shows that z1 − z2 − θ1θ2 (or rather its square root, to account for the
two ways of gluing the spin structures) is the good parameter at infinity. For
example, this accounts for why in section 5.1.3 the divisors Dij at infinity
were defined by zi − zj − θiθj = 0.

The factor −1/2 in (6.28) has no particular significance, since it can
certainly be removed by ε → eφε; what is significant is the combination
z1 − z2 − θ1θ2.

6.3.3. Comparing the different types of degeneration Before pro-
ceeding to a technical analysis of normal bundles, we will explain what sort
of information is actually most useful for superstring perturbation theory.

Let us compare the different types of oriented closed string degeneration.
For ordinary Riemann surfaces, we have the familiar

(6.29) xy = q.

For Ramond degenerations of super Riemann surfaces, we have a minimal
superextension of this

xy = qR

θ = ±
√
−1ψ.(6.30)
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And the NS degeneration is more elaborate:

xy = −ε2 ≡ qNS

yθ = εψ

xψ = −εθ

θψ = 0.(6.31)

These formulas have an obvious similarity, and in a certain sense, modulo
the odd variables, the supersymmetric degenerations (6.30) and (6.31) reduce
to the bosonic degeneration (6.29) with q = qR or q = qNS. The simplest
explanation of what this means is just the following. If Σ is a super Riemann
surface with a degeneration that in local coordinates is described by (6.30) or
(6.31), and we use the reduced set of local coordinates on the reduced space
Σred, then Σred has a degeneration described by (6.29) with q = qR or q = qNS.

It is better to give a formulation that does not depend on local coordi-
nates. For this, we should focus not on the parameters q, qR, and ε but on
the line bundles in which they take values. These line bundles are dual to the
normal bundles to the appropriate compactification divisors; the relevant line
bundle was analyzed in the bosonic case in section 6.1.3. Let us write D for a
compactification divisor in the bosonic case and DR and DNS for its two types
of supersymmetric cousin. To be able to sensibly compare q, qR, and ε, we
need a relation between the normal bundles ND, NDR , and NDNS . Since these
are line bundles over different spaces, how can we compare them? The answer
is that the reduced spaces DR,red and DNS,red are locally isomorphic to D. D
parametrizes a pair of Riemann surfaces joined at a point (or a Riemann sur-
face with two points joined together) with some additional punctures, while
DR,red and DNS,red describe the same data together with some discrete infor-
mation (the labeling of the punctures and a generalized spin structure) that
does not affect the analysis of the normal bundle. If we simplify the notation
by ignoring the extra discrete information, then the relation between the nor-
mal bundles is that NDR when restricted to DR,red is naturally isomorphic to
ND

(6.32) NDR |DR,red
∼= ND,

and similarly in the NS case

(6.33) N2
DNS

|DNS,red
∼= ND.

These isomorphisms identify qR or qNS with q.
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6.3.4. Normal bundle at infinity: NS case Now we turn to the anal-
ysis of the normal bundles to the compactification divisors in M̂g,nNS,nR , or
equivalently, the global meaning of the gluing parameters. For brevity in the
notation, we consider divisors that parametrize separating degenerations. All
statements have immediate analogs for the nonseparating case. A super Rie-
mann surface Σ can degenerate to a pair of components Σ′ and Σ′′ joined at a
pair of either NS or R punctures. To distinguish the two cases, we will denote
the divisors in question as DNS and DR. In the NS case, which we consider
first, DNS is the product of the moduli spaces that parametrize Σ′ and Σ′′ with
their punctures. To minimize notation, we write just DNS = M̂(Σ′)×M̂(Σ′′).

We will need the super analog of a definition explained at the beginning
of section 6.1.3. A fundamental line bundle on a super Riemann surface Σ
is its Berezinian Ber(Σ). It has rank 0|1; that is, its fibers are fermionic.
Consider the moduli space M̂g,nNS,nR that parametrizes a super Riemann
surface Σ with the given number of NS and R punctures. The NS punctures
are simply points in Σ. Taking the fiber of Ber(Σ) at the σth NS puncture, for
σ = 1, . . . ,nNS, we get a line bundle Lσ → M̂g,nNS,nR , again with fermionic
fibers. (The Lσ do not quite have a close analog for Ramond punctures.)

The relation between Lσ and the corresponding line bundle Lσ that we
defined in the bosonic case in section 6.1.3 is that if we restrict to the reduced
space of Mg,nNS,nR and pull Lσ back from Mg,n to Mg,n,spin, then

(6.34) L2
σ|Mg,nNS,nR,red

∼= Lσ.

This just reflects the fact that if Σ is split, then Ber(Σ), when restricted
to Σred, is K

1/2
Σred

, while Lσ is defined using KΣ. Eqn. (6.34) will imply the
desired result (6.33), once we express the normal bundle NDNS in terms of the
L’s (eqn. (6.36)).

Now let x|θ and y|ψ be local superconformal coordinates on Σ′ and Σ′′.
The gluing of Σ′ and Σ′′ at general points x|θ = a|α and y|ψ = b|β, and
smoothing to make Σ, is described by a slight generalization of eqn. (6.9):

(x− a + αθ)(y − b + βψ) = −ε2

(y − b + βψ)(θ − α) = ε(ψ − β)
(x− a + αθ)(ψ − β) = −ε(θ − α)

(θ − α)(ψ − β) = 0.(6.35)

We have simply written (6.9) in superconformal coordinates x− a+αθ|θ−α
and y − b + βψ|ψ − β. We view the even parameters a, b, ε and the odd
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parameters α, β as moduli of Σ. As in the the introductory remarks above,
we write L′ → M̂(Σ′) for the line bundle whose fiber at the point in M̂(Σ′)
corresponding to Σ′ is the fiber of Ber(Σ′) at x|θ = a|α. Similarly, we write
L′′ → M̂(Σ′′) for the line bundle defined by the fiber of Ber(Σ′′) at y|ψ = b|β.

Describing the gluing by the explicit equation (6.35) has required picking
explicit superconformal coordinates x − a + αθ|θ − α and y − b + βψ|ψ − β
near, respectively, x|θ = a|α and y|ψ = b|β. The normalization of ε depends
on this choice, and therefore, just as in section 6.1.3, ε is best understood
as a section of a line bundle over DNS. We claim that this line bundle is
L′ ⊗L′′. Equivalently, since ε is a linear function on the normal bundle NDNS

to DNS ⊂ M̂g,nNS,nR , we claim

(6.36) NDNS
∼= (L′ ⊗ L′′)−1.

To justify these claims, we observe that under a change of superconformal
coordinates near x|θ = a|α, x−a+αθ transforms like da−αdα. (The basic case
to consider is that a|α = 0|0 and the superconformal change of coordinates is
x|θ → λx|λ1/2θ, with λ ∈ C. Under this transformation, x− a+αθ and da−
αdα are both multiplied by λ.) In view of the relation of the line bundle (L′)2
on M̂(Σ′) to the line bundle D−2 ∼= Ber(Σ′)2 on Σ′, and the interpretation
(2.30) of da − αdα as a section of D−2, this means that x − a + αθ can
be interpreted near DNS as a section of (L′)2. Similarly y − b − βθ should
be interpreted as a section of (L′′)2. So from the first equation in (6.35), ε2

should be interpreted as a section of (L′ ⊗ L′′)2. The fact that ε is a section
of L′⊗L′′ (rather than a more general square root of (L′⊗L′′)2) follows from
a similar consideration of the second and third equations in (6.35).

6.3.5. The Ramond case Now let us consider the case of a Ramond de-
generation, where Ramond punctures in Σ′ and Σ′′ are glued and smoothed
to make Σ. The Ramond punctures really correspond to divisors F′ ⊂ Σ′ and
F′′ ⊂ Σ′′. We pick local coordinates x|θ on Σ′ and y|ψ on Σ′′ such that the
superconformal structures are defined by the vector fields D∗

θ and D∗
ψ of eqn.

(6.12). The divisors F′ and F′′ are defined respectively by x = 0 and by y = 0,
and the gluing is as in (6.13):

xy = qR

θ = ±
√
−1ψ.(6.37)

The gluing of F′ and F′′ by the second formula here gives a supermanifold of
dimension 0|1 that we will call F�; it is isomorphic to either F′ or F′′. The
first equation makes it clear that in some sense qR transforms as dx⊗ dy.
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In general, dx and dy take values in T ∗Σ, which has rank 1|1. Also, the
gluing in (6.37) happens at a divisor, not a point. So we need more information
if we want to identify a vector space of dimension 1|0 in which qR takes values.
A splitting of Σ gives one simple answer; if Σ is split, we can choose local
parameters x and y that are even under the Z2 symmetry defined by the split-
ting, and interpret dx and dy as cotangent vectors to Σred. This is the same
interpretation of qR that we had in the bosonic case, so we arrive at (6.32).

If Σ is not split, we have to work harder to describe a 1|0-dimensional
vector space in which qR takes values. T ∗Σ′, when restricted to F′, has a rank
1 subbundle U ′ consisting of 1-forms whose contraction with D∗

θ vanishes;
similarly, T ∗Σ′′, when restricted to F′′, has a rank 1 subbundle U ′′ consisting of
1-forms whose contraction with D∗

ψ vanishes. Since dx and dy have vanishing
contraction with D∗

θ and D∗
ψ at x = y = 0, they are naturally understood as

sections of U ′ and U ′′, respectively. So dx⊗ dy is a section of U ′ ⊗ U ′′.
In general, a section of a line bundle over a supermanifold of dimension

0|1, parametrized by an odd variable η, can be written a+bη, so such sections
form a vector space of dimension 1|1. Taking the supermanifold to be F� and
the line bundle to be U ′⊗U ′′, we would say based on this that qR takes values
in a vector space of dimension 1|1. To reduce to a vector space of dimension
1|0, we define the vector field W = D∗

θ ∓
√
−1D∗

ψ. The object dx⊗ dy lies in
a 1|0-dimensional space U∗ of sections of U ′ ⊗ U ′′ → F� whose Lie derivative
with respect to W vanishes at x = y = 0. (Recall that the Lie derivative of a
form ω with respect to a vector field W is LWω = (iWd + diW )ω, where iW
is contraction with respect to W . The Lie derivative of the symmetric tensor
product dx⊗dy is (LWdx)⊗dy+dx⊗(LWdy). After setting ψ = ∓

√
−1θ, we

get W = 2∂θ+θ(x∂x−y∂y), and because of the minus sign, LW (dx⊗dy) = 0,
while LW (θdx⊗ dy) �= 0.)

U∗ is the fiber of a line bundle over the divisor DR that parametrizes a
Ramond degeneration. We just call this line bundle U∗. We can interpret qR
as taking values in U∗; the normal bundle to DR in M̂ is NR = (U∗)−1.

6.4. Application to the dimension of supermoduli space

Now that we understand how gluing works, we can give a new computation of
the dimension of supermoduli space. We will build a super Riemann surface Σ
of genus g by gluing some minimal building blocks – spheres with 3 punctures.
Since the number of Ramond punctures in a compact super Riemann surface
is always even, there are two possibilities: a sphere with 3 NS punctures and a
moduli space of dimension 0|1, as described in section 5.1.2, and a sphere with
1 NS puncture, 2 Ramond punctures, and a moduli space of dimension 0|0,
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Figure 10: In (a), we sketch the g = 2 case of a construction described in
the text: the gluing of two 3-punctured spheres (with NS punctures only)
along 3 double points where they meet. Smoothing the double points into
thin tubes that join at 3-holed (rather than 3-punctured) spheres makes a
super Riemann surface of genus 2. Sketched in (b) is a dual description of
the same gluing. We make a trivalent graph by collapsing each 3-holed sphere
in (a) to a vertex and expanding each double point where gluing takes place
in (a) to a line between 2 vertices. To get from the trivalent graph in (b)
to a Riemann surface, one thickens each line to a thin tube and each vertex
to a 3-holed sphere where the tubes join smoothly. (c) shows in the same
dual language another way to make a super Riemann surface of genus 2, this
time with 2 NS3 vertices replaced by NS · R2 vertices. In (a) or (b), we get 2
odd moduli from the vertices, while in (c), 2 odd moduli come from the lines
labeled R.

as described in section 5.1.4. We will refer to the first case as a 3-punctured
sphere of type NS3, and the second case as a 3-punctured sphere of type
NS · R2. These objects are special because they have no bosonic moduli; a
super Riemann surface built by gluing together such objects has no bosonic
moduli and hence cannot degenerate further.

First we build a genus g super Riemann surface Σ without punctures. One
way to do so is to start with 2g− 2 thrice-punctured spheres Σ1, . . . ,Σ2g−2,
each of type NS3. To build Σ, one glues together the Σi along their punctures
to make a degenerate genus g curve with a total of 3g − 3 double points, as
shown in fig. 10. (Each of the Σi has 3 punctures, so altogether there are
3(2g− 2) punctures that one glues together pairwise at 3g− 3 double points
to build Σ. For what we are about to say, it does not matter how one pairs up
the 3(2g−2) punctures.) Each of the Σi has 1 odd modulus and no even ones,
prior to gluing, making 2g− 2 odd moduli in all. Gluing and then smoothing
the double points adds 1 even gluing parameter and no odd ones at each
double point, making 3g− 3 even parameters. So altogether the dimension of
the moduli space is 3g− 3|2g− 2.
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Figure 11: A trivalent graph with 5 loops. Each line is labeled NS or R. There
are two kinds of vertex: an NS3 vertex that is the junction of three NS lines,
or an NS · R2 vertex that is the junction of an NS line and 2 R lines. From
such a graph, one makes a super Riemann surface Σ of genus 5 by thickening
the lines to tubes and the vertices to 3-holed spheres. In this example, there
are 2 NS3 vertices, each contributing 0|1 to the dimension of the supermoduli
space, 6 NS lines, each contributing 1|0, and 6 R lines, each contributing 1|1.
So the dimension of the moduli space of super Riemann surfaces of genus 5
is 12|8 = 3g− 3|2g− 2.

More generally, one can build a super Riemann surface of the same genus
by taking 2g− 2− k of the Σi to be of type NS3 and k to be of type NS ·R2.
In the starting point, one has now only 2g− 2 − k odd moduli, one for each
3-punctured sphere of type NS3. But now one will have to glue k pairs of
Ramond punctures, and this will give back k odd moduli from the gluing
parameters. So one ends up with the same dimension for the moduli space.
For an example, compare figs. 10(b) and (c).

As explained in figs. 10 and 11, these gluing operations can be represented
by trivalent graphs in which a vertex represents a 3-punctured sphere, while
an edge or line between 2 vertices represents the gluing of 2 punctures. (A line
connecting a vertex to itself is also allowed.) Each line is labeled NS or R and
represents the gluing of NS or R punctures, respectively. There are 2 types
of vertex: NS3 vertices, at which 3 NS lines meet, and NS · R2 vertices, at
which 1 NS line and 2 R lines meet. They represent the two kinds of 3-
punctured sphere. Given such a graph, one makes a topological type of super
Riemann surface Σ by thickening the lines into tubes and the vertices into
3-holed spheres at which the tubes join. (The spin structure of Σ depends on
choices made in the gluing.) The counting of moduli of Σ is as follows: the
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contribution of an NS3 vertex is 0|1; the contribution from an NS ·R2 vertex
is 0|0; the contribution from an NS line is 1|0; and the contribution from an
R line is 1|1. A super Riemann surface of genus g can be represented by any
trivalent vertex constructed from these ingredients; irrrespective of the choice
of the graph or its labeling, one always arrives at the same result 3g−3|2g−2
for the dimension of the moduli space.

To include punctures in this description, we simply consider trivalent
graphs with external lines. (An external line is a line that has only one end
attached to a vertex; the other end represents the puncture. See fig. 12 for
simple examples of graphs with external lines.) A puncture of NS or R type is
represented by an external line labeled NS or R. In the presence of punctures,
the dimension of the moduli space is computed by summing the contributions
of vertices and internal lines only. The sum gives back the usual dimension
formula (4.14).

Graphs such as those we have drawn have an obvious analogy with Feyn-
man diagrams in a field theory with cubic interactions (in fact, (NS)3 and
NS · R2 interactions). This analogy is no coincidence; it is part of the mech-
anism by which string theory turns out to reproduce field theory at long
distances. In field theory, the “leading singularity” of a perturbative scatter-
ing amplitude (see [57] for a modern explanation and application) is found by
putting a maximal possible number of internal propagators on-shell. In super-
string theory, this corresponds to the contribution of a maximally degenerate
super Riemann surface, built by gluing 3-punctured spheres. After picking a
configuration of 3-punctured spheres, to compute the leading singularity, one
still has to adjust loop momenta so that all momenta passing through nodes
are on-shell. In string theory, this will lead to an infinite sum over all the
massive string states that can flow through the various nodes.

7. Open and/or unoriented superstring theories

So far, we have considered only oriented superstring worldsheets without
boundary. These are appropriate for constructing perturbation theory for ori-
ented closed superstrings – that is, for the heterotic and Type II superstring
theories (without D-branes or orientifold planes in the case of Type II).

Type I superstring theory and more general orientifolds of Type II su-
perstring theory are theories of unoriented strings. In a theory of unoriented
strings, the string worldsheet is an unoriented and not necessarily orientable
super Riemann surface.

Open as well as closed strings appear in Type I superstring theory and
more generally in Type II superstring theory in the presence of D-branes.
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Figure 12: (a) A thickening of this graph gives a super Riemann surface of
genus 2 with 1 NS puncture, corresponding to the external line in the graph.
The dimension of the moduli space is 4|3, where we count 1|0 for each internal
NS line and 0|1 for each NS3 vertex. (b) A thickening of this graph gives a
super Riemann surface of genus 2 with 2 R punctures, corresponding to the
external lines. The dimension of the moduli space is 5|3, with no contribution
from the NS · R2 vertex.

When open strings are present, the string worldsheet is a super Riemann
surface with boundary. Thus, in Type I superstring theory and in more general
Type II backgrounds with both orientifolds and D-branes, we must consider
super Riemann surfaces that may be simultaneously unorientable and with
boundary.

In this section, we explain what is required for these generalizations. For
brevity, we refer to a Riemann surface with boundary as an open Riemann
surface. A superstring worldsheet is open or unoriented or unorientable if its
reduced space is open or unoriented or unorientable. A Riemann surface or
superstring worldsheet without boundary is said to be closed.

7.1. The classical picture

7.1.1. The closed oriented double cover By an unoriented Riemann
surface, we mean simply a two-manifold with a conformal structure but no
choice of orientation.

Suppose that Σ0 is an unoriented closed Riemann surface. Then Σ0 has
a double cover Σ′

0 that is a closed oriented Riemann surface. A point in Σ′
0 is

a point in Σ0 together with a choice of orientation at that point.
If Σ0 is orientable (but unoriented), this definition makes sense but is not

terribly interesting. In that case, Σ′
0 is just the disjoint union of two oppositely

oriented copies of Σ0. The interesting case is the case that Σ0 is unorientable.
Then Σ′

0 is an ordinary connected and oriented Riemann surface. A basic
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example is Σ0 = RP
2. The oriented double cover is Σ′

0 = S2 = CP
1. The fact

that, for a certain action of Z2 on S2, the quotient S2/Z2 is RP
2 is more or

less the definition of RP2.
We can do something similar for the case that Σ0 is an oriented Riemann

surface with boundary. Taking two copies of Σ0 with opposite orientation
and gluing them together along their boundary, we produce a double cover
of Σ0 (branched over its boundary) which is an oriented Riemann surface
Σ′

0 without boundary. A basic example is that Σ0 is the disc |z| ≤ 1 in the
complex plane. Gluing two copies of Σ0 along their boundary, we build the
double cover Σ′

0 = CP
1.

Finally, we can combine the two cases. Suppose that Σ0 is an unoriented
Riemann surface with boundary. As before Σ0 has an oriented double cover
which we now call Σ′′

0; a point in Σ′′
0 is a point in Σ0 with a choice of local

orientation. The boundary of Σ0 is a union of circles, each of which lifts in
Σ′′

0 to a pair of circles. Gluing together these pairs of circles by identifying
corresponding points, we build a closed oriented Riemann surface that we call
Σ′

0. For an example, let Σ0 be RP
2 with an open disc removed, so that its

boundary is a circle. Then Σ′′
0 is a copy of S2 with two open balls removed;

its boundary is a disjoint union of two circles. Gluing these circles together,
we build the closed oriented genus 1 Riemann surface Σ′

0.
Let χ(X) denote the Euler characteristic of a space X. In all instances of

this construction,

(7.1) χ(Σ′
0) = 2χ(Σ0).

For example, if Σ0 = RP
2, Σ′

0 = S2, we have χ(Σ0) = 1, χ(Σ′
0) = 2. Alter-

natively, if Σ0 is closed disc and Σ′
0 = S2, then again χ(Σ0) = 1, χ(Σ′

0) = 2.
As one last example, if Σ0 is RP

2 minus an open disc, and Σ′
0 is a closed

Riemann surface of genus 1, then χ(Σ0) = χ(Σ′
0) = 0.

Eqn. (7.1) gives a convenient way to compute the genus g′ of Σ′
0: it obeys

1 − g′ = χ(Σ0) or

(7.2) g′ = 1 − χ(Σ0).

The topological type of the oriented surface Σ′
0 is completely determined by

g′. So all distinct types of Σ0 with the same Euler characteristic have closed
oriented double covers that are topologically equivalent.

In all examples of this construction, Σ′
0 has has an orientation-reversing

(or equivalently, a complex structure reversing) symmetry ρ of order 2 that
exchanges pairs of points in Σ′

0 that correspond to the same point in Σ0 with
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different local orientations. The fixed point set of ρ consists of the circles
in Σ′

0 that lie over the boundary of Σ0. ρ generates a Z2 action on Σ′
0 and

Σ0 = Σ′
0/Z2. A symmetry of order 2 is called an involution, so we call ρ an

antiholomorphic involution of Σ′
0. Since ρ : Σ′

0 → Σ′
0 reverses the complex

structure, we can think of it as an isomorphism between Σ′
0 and its complex

conjugate Σ′
0:

(7.3) ρ : Σ′
0
∼= Σ′

0.

7.1.2. The moduli space The moduli space of an open and/or unori-
entable Riemann surface Σ0 can be described as follows.

Suppose that the oriented double cover Σ′
0 has genus g′. If we ignore the

relationship to Σ0, then the deformations of Σ′
0 are parametrized by the usual

moduli space Mg′ of Riemann surfaces of genus g.
Mg′ has an antiholomorphic involution ϕ that maps the point in Mg′

corresponding to a surface Σ′
0 to the point that corresponds to the complex

conjugate Σ′
0 of Σ′

0. We usually describe this more briefly (but less precisely)
by saying that ϕ maps Σ′

0 to Σ′
0. A fixed point of ϕ corresponds to a Riemann

surface Σ′
0 such that Σ′

0 is isomorphic to Σ′
0. So Σ′

0 corresponds to a fixed
point if and only if there is an antiholomorphic involution:

(7.4) ρ : Σ′
0
∼= Σ′

0.

If ρ exists, we define Σ0 = Σ′
0/Z2, where Z2 is generated by ρ. Then Σ0

is an open and/or unorientable Riemann surface, and Σ′
0 is its close oriented

double cover, as described in section 7.1.1. So the fixed point set Mϕ
g′ of ϕ

parametrizes surfaces Σ′
0 that are orientable double covers of some Σ0.

The only constraint on Σ0 is that its Euler characteristic must obey
(7.2). All topological types of open and/or unorientable Riemann surface
Σ0 that obey this condition can arise. There are finitely many possibilities,
parametrized by a set that we will call S. So actually Mϕ

g′ is a union of finitely
many components, one for each s ∈ S:

(7.5) Mϕ
g′ = ∪s∈SΓs.

Here Γs is the moduli space of conformal structures on an open and/or un-
oriented Riemann surface Σ0 of topological type s.

The union in (7.5) is not a disjoint union; the Γs can intersect each other
at points corresponding to surfaces Σ′

0 that admit more than one antiholomor-
phic involution. These intersections are not important in superstring pertur-
bation theory; one simply integrates over one or more of the Γs (depending on
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which string theory one considers), ignoring the fact that they may intersect
each other.

More important is the following. Mg′ is of course a noncompact manifold
(or rather orbifold) of complex dimension 3g′−3. As a component of the fixed
point set of a real or antiholomorphic involution, Γs has real dimension 3g′−3.
It is noncompact, just llike Mg′ . The closure of Γs in M̂g′ gives a compacti-
fication Γ̂s of Γs. In general, Γ̂s is a manifold with boundary; typically, these
manifolds with boundary join together pairwise on their common boundaries.
This is relevant for string perturbation theory and will be described in more
detail in section 7.4.

7.2. Open and/or unoriented superstring worldsheets

We now want to describe the analogous construction for open and/or unori-
ented superstring worldsheets. It turns out that all the cases can be treated
together.

The local structure of an open and/or unoriented superstring worldsheet
will be the same as the local structure of a Type II superstring worldsheet, as
described in section 3.7. However, it seems to be convenient to first describe
the integration cycle Γs that in superstring perturbation theory parametrizes
open and/or unoriented superstring worldsheets of topological type s. Here
s is once again a topological type of open and/or unoriented Riemann sur-
face of Euler characteristic 1 − g′. Then we will describe the objects that Γs

parametrizes.

7.2.1. The integration cycle We start with Mg′ , the moduli space of
closed oriented super Riemann surfaces of genus g′. Its reduced space is
Mg′,spin, which parametrizes ordinary Riemann surfaces of genus g′ with
a spin structure. By forgetting the spin structure, we get a projection π :
Mg′,spin → Mg′ . We define Γs,red = π−1(Γs), where as in section 7.1.2, Γs

is the moduli space of conformal structures on an open and/or unoriented
surface of topological type s.

Γs,red parametrizes pairs27 consisting of an open and/or unoriented sur-
face Σ0 of topological type s and a spin structure on the closed oriented double
cover Σ′

0 of Σ0. (The spin structure is not necessarily invariant under the anti-
holomorphic involution of Σ′

0.) It is middle-dimensional in Mg′,red = Mg′,spin,
and in particular it has real dimension 3g′ − 3. As usual in constructing in-
tegration cycles for superstring perturbation theory, we thicken Γs,red in the

27Such pairs have been considered recently in the context of superconformal field
theory on open and/or unoriented surfaces [38].
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fermionic directions to a smooth supermanifold Γs ⊂ Mg′ whose odd di-
mension is the same as that of Mg′ . So Γs is of dimension 3g′ − 3|2g′ − 2.
Γs is the cycle over which we integrate to compute scattering amplitudes of
open and/or unoriented supersymmetric strings (or more precisely, the con-
tribution to this scattering amplitude of surfaces of topological type s). As in
section 3.1, Γs is not defined uniquely but only up to homology – that is, up
to infinitesimal wiggling of the fermionic directions.

7.2.2. The string worldsheet Now we want to explain what sort of open
and/or unoriented superstring worldsheets are parametrized by Γs. In a sense,
we will construct an open and/or unoriented superstring worldsheet Σ as
an orientifold (the quotient by an orientation-reversing orientation) of an
ordinary Type II superstring worldsheet Σ∗. As in section 3.7, we begin with
a product of super Riemann surfaces, but now we take these to be identical,28

so our starting point is Y = Σ′×Σ′, where Σ′ is a holomorphic super Riemann
surface of genus g′. Thus Y is a complex supermanifold of dimension 2|2. We
define a holomorphic involution τ that exchanges the two factors in Y .

Suppose that Σ′
red is invariant under an antiholomorphic involution ρ.

The automorphisms ρ and τ of Σ′
red × Σ′

red generate two Z2 groups that we
will call Z

ρ
2 and Z

τ
2 , respectively. Let Σ∗

red be a copy of Σ′
red embedded in

Yred = Σ′
red × Σ′

red by

(7.6) x → (x, ρ(x)).

τ acts on Σ∗
red, mapping (x, ρ(x)) to (ρ(x), x) = (x′, ρ(x′)) where x′ = ρ(x).

So the action of τ on Y induces the action of ρ on Σ∗
red

∼= Σ′
red:

(7.7) Σ∗
red/Z

τ
2
∼= Σ′

red/Z
ρ
2.

As usual, Σ∗
red can be thickened in the fermionic directions to give a

smooth supermanifold Σ∗ ⊂ Y of dimension 2|2, in a way that is unique up
to small wiggling in the fermionic directions. Moreover, this can be done in a
τ -invariant fashion. The supermanifold or rather superorbifold that we want
as the worldsheet of an open and/or unoriented string is Σ = Σ∗/Zτ

2 . The
reduced space of Σ is Σ′

red/Z
ρ
2, in view of (7.7).

The input to this construction was a super Riemann surface Σ′ whose
reduced space is ρ-invariant. A family of such objects is parametrized by Γs.

28To follow the presentation in sections 3.1 and 3.7 more strictly, we should
take the two factors in Y to be complex conjugate and then in the next paragraph
embed Σ∗

red in Yred by x → (x, ρ(x)) rather than x → (x, ρ(x)). The author finds
the description given in the text to be less confusing.
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Given such an object, we have constructed a smooth supermanifold (or, if
ρ has fixed points, a superorbifold) Σ of dimension 2|2 parametrized by Γs.
These are the superstring worldsheets parametrized by Γs.

The local structure of Σ, away from fixed points of the action of ρ on
Σ′

red, is the same as the local structure of an oriented closed Type II string
worldsheet, as described in section 3.7. Locally, we can say that functions on
the first factor in Y = Σ′ × Σ′ restrict to antiholomorphic functions on Σ,
and functions on the second factor restrict to holomorphic functions. Glob-
ally, the action of τ (or ρ) exchanges what we mean by “holomorphic” and
“antiholomorphic,” as one expects for an open and/or unoriented worldsheet.
Similarly, locally Σ has antiholomorphic and holomorphic tangent bundles
TLΣ and TRΣ, with odd subbundles D̃ and D that define its superconformal
structure; globally these are exchanged by τ or ρ.

As in sections 3.1 and 3.7, we can deform away from the choices that
were made in this construction. For example, we can move Σ′ slightly way
from the locus where Σ′

red admits an antiholomorphic involution. ρ can then
be deformed (not uniquely) so that it still acts as an orientation-reversing
involution, but it is no longer antiholomorphic. The above construction still
goes through, but holomorphic functions on Σred are no longer the complex
conjugates of antiholomorphic ones. This is analogous to what happens in
sections 3.1 and 3.7 if ΣR,red is not the complex conjugate of ΣL,red.

What happens at the fixed points of ρ? There is a general notion of a
smooth supermanifold with boundary (for example, see section 3.5 of [32]).
But even if Σred has a boundary, Σ is not a smooth supermanifold with
boundary by that definition; it is a more general orbifold, a quotient by Z2
of an ordinary smooth supermanifold Σ∗ without boundary. One can pick
local coordinates t1, t2|θ1, θ2 on Σ∗ so that the Z2 action is t1, t2|θ1, θ2 →
t1,−t2|θ1,−θ2. For Σ∗/Z2 to satisfy the usual definition of a supermanifold
with boundary, the local model should be t1, t2|θ1, θ2 → t1,−t2|θ1, θ2, with a
sign change only for one even coordinate and no odd ones. We will presently
meet supermanifolds with boundary in the conventional sense, namely the
compactifications Γ̂s of the integration cycles Γs.

7.3. Punctures

Now let us discuss how this analysis generalizes in the presence of punctures.

7.3.1. The bosonic case We first incorporate punctures in the analysis
of the classical moduli space in section 7.1.2. The moduli space Mg′,n that
parametrizes a Riemann surface Σ′

0 of genus g′ with n punctures still admits
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the antiholomorphic involution ϕ that maps Σ′
0 to the complex conjugate

space with the same punctures. A fixed point of ϕ now corresponds to a surface
Σ′

0 with an antiholomorphic involution ρ that maps the set of punctures to
itself. This means that the punctures consist of pairs of points exchanged by
ρ, or else fixed points of ρ. If there are n0 pairs and n1 fixed points, then
obviously

(7.8) n = 2n0 + n1.

In the quotient Σ0 = Σ′
0/Z2, pairs of punctures descend to interior points of

Σ0; we call these bulk punctures. ρ-invariant punctures descend to boundary
points of Σ0; we call these boundary punctures. In string theory, external
closed strings couple to bulk punctures and external open strings couple to
boundary punctures.

The components of the fixed point set Mϕ
g′,n are now labeled by the

topological type of Σ0, the choice of nonnegative integers n0, n1 obeying
(7.8), and the arrangement of the open-string punctures on the boundary
components of Σ0 (one must specify which open-string puncture is on which
boundary component and how they are cyclically ordered). Let us write S for
the set of possible choices of all this data. Then Mϕ

g,n has a component Γs

for every s ∈ S and

(7.9) Mϕ
g′,n = ∪s∈SΓs.

Γs parametrizes conformal structures on an open and/or unoriented surface
Σ0 with the indicated topology and set of punctures.

7.3.2. Extension to superstrings For the superstring analog, it is again
easiest to first describe the integration cycle that parametrizes open and/or
unoriented worldsheets with punctures, and then to describe the worldsheets
themselves. We start with Mg′,nNS,nR , the moduli space of super Riemann
surfaces of genus g with the indicated numbers of NS and R punctures. We
set n = nNS + nR. The reduced space Mg′,nNS,nR,red parametrizes a Riemann
surface Σ′

red endowed with a spin structure and n punctures, each labeled as
an NS or R puncture.

We want to focus on the case that Σ′
red, forgetting its spin structures and

the types of the punctures, admits an antiholomorphic involution ρ. Topo-
logically, there are many choices. We must specify all the discrete data that
were relevant in the bosonic case. In addition, a ρ-invariant puncture may be
of NS or R type, so that there will be two types of open-string puncture, and
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a pair of punctures exchanged by ρ may be of types NS-NS, NS-R, or R-R,
so that there will be three types of closed-string puncture. (For open and/or
unoriented superstrings, there is no globally-defined distinction between NS-
R and R-NS punctures.) Let S∗ be the whole collection of discrete choices of
the topology of Σ′

red/Z
ρ
2 and the types and arrangements of punctures.

For every s ∈ S∗, let Γs,red be the subspace of Mg′,nNS,nR,red defined by the
condition that Σ′

red (ignoring its spin structure) has an antiholomorphic invo-
lution of topological type s. In the usual fashion, we thicken Γs,red to a smooth
supermanifold Γs ⊂ Mg′,nNS,nR with the same odd dimension as Mg′,nNS,nR .
Γs is the parameter space of open and/or unoriented super Riemann surfaces
of type s.

Moreover, the construction ensures, as usual, that the even dimension of
Γs is the complex dimension of Mg′,nNS,nR . So one can write a dimension
formula for Γs. It seems that the most useful way to record the information
is to state the contributions that different kinds of puncture make to the
dimension of Γs. The contribution of an open-string puncture of NS or R
type is

NS : 1|1.

R : 1|12 .(7.10)

And the contribution of a closed-string puncture of one of the three types is

NS − NS : 2|2
NS − R : 2|3/2
R − R : 2|1.(7.11)

7.3.3. The worldsheet To construct the string worldsheets that are pa-
rametrized by Γs, we basically repeat what has been said in section 7.2.2 in
the presence of punctures. We start with the complex supermanifold Y =
Σ′ × Σ′, where Σ′ is now a super Riemann surface of genus g′ with nNS
Neveu-Schwarz and nR Ramond punctures; we write τ for the involution
of Y that exchanges the two factors. We ask that Σ′

red should admit the
action of an antiholomorphic involution ρ of topological type s, mapping
the set of punctures to itself (but perhaps permuting them). We let Σ∗

red
be a copy of Σ′

red, embedded in Yred by x → (x, ρ(x)). We thicken Σ∗
red to

a smooth and τ -invariant supermanifold Σ∗ ⊂ Y of dimension 2|2, and we
define Σ = Σ∗

red/Z
τ
2 . Σ is an open and/or unorientable string worldsheet with

punctures. Its reduced space is Σ′
red/Z

ρ
2.
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Figure 13: A closed oriented surface Σ′
0 that consists of two identical but

oppositely oriented components joined at a narrow neck. Σ′
0 has an antiholo-

morphic involution that exchanges the two components.

7.4. Compactification of moduli spaces of open and/or unoriented
surfaces

7.4.1. The classical case In section 7.1.2, we defined the moduli space Γs

that parametrizes conformal structures on an open and/or unoriented surface
Σ0 of topological type s. Γs is a component of the fixed point set of the
natural antiholomorphic involution ϕ of Mg′ , the moduli space of Riemann
surfaces of genus g′. We also remarked that Γs can be compactified by taking
its closure in M̂g′ . We write Γ̂s for this compactification.

Some of the important differences between the theory of open and/or
unoriented strings and the theory of closed oriented strings come from the
fact that the compactification Γ̂s is a manifold (or orbifold) with boundary.
In superstring theory, this leads to anomaly cancellation conditions that have
no close analog for closed oriented strings; the compactified moduli space of
closed oriented Riemann surfaces has no boundary.

Here and in section 7.4.2, we will describe the degenerations that are
responsible for the boundary of Γ̂s. In fig. 13, we sketch a closed oriented
surface Σ′

0 that is obtained by gluing at a narrow neck two identical but
oppositely oriented components. Σ′

0 has an antiholomorphic involution ρ that
exchanges the two components.

The behavior in the narrow neck is described by the usual gluing relation

(7.12) xy = q.

x is a local parameter on one side of the narrow neck in Σ′
0 and y is a local

parameter on the other side. Now let us discuss how ρ acts. ρ exchanges the
two branches, so it exchanges x and y. It is antiholomorphic, so it must map
x to a multiple of y, and vice-versa. We can define x and y so that

(7.13) ρ(x) = y, ρ(y) = x.
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Figure 14: (a) For q > 0, Σ′
0/Z2 has a long tube that ends on a boundary. (b)

For q < 0, Σ′
0/Z2 has a long tube that ends on a crosscap.

With these choices of x and y, the parameter q in (7.12) must be real so that
the gluing relation is ρ-invariant.

Now let us examine the quotient Σ0 = Σ′
0/Z

ρ
2. The boundary of Σ0 con-

sists of the fixed points of ρ. A fixed point of ρ obeys y = x, so the gluing
relation gives xx = q. So the fixed point set of ρ consists of a circle if q > 0,
and is empty if q < 0.

The quotient Σ′
0/Z2 is depicted for the two cases in fig. 14. It is convenient

to use the conformal frame in which the gluing is described by a long tube
of length log |q|−1/2 (we divide the formula (6.4) for the length of the tube
by 2 because the tube is cut in half to make Σ′

0/Z2). For q > 0, Σ′
0/Z2 is a

Riemann surface with boundary; the boundary, which is the end of the tube,
is the circle xx = q. For q < 0, there is no boundary, since ρ has no fixed
points. The tube still ends at xx = |q|, since a point with xx < |q| can be
mapped to xx > |q| by ρ : x → y = q/x. For q < 0 and xx = |q|, the
transformation x → q/x is equivalent to x → −x. So opposite points of the
circle xx = |q| are identified and Σ′

0/Z2 has no boundary. One says in this
case that the long tube ends on a crosscap, a copy of RP2 with an open disc
omitted.

The topology of the surface Σ′
0/Z2 clearly depends on the sign of q. We

will call this quotient Σ0 if q > 0 and Σ1 if q < 0. And we write Γ0 and Γ1 for
the moduli spaces of conformal structures on Σ0 or Σ1. The parameter q is a
real modulus of Σ0 and Σ1 and compactification of either Γ0 or Γ1 requires us
to allow the limiting value q = 0. The locus q = 0 is a boundary component
of the compactifications Γ̂0 and Γ̂1.

Since these moduli spaces have a common boundary, one can glue them
together to make a manifold without boundary, different parts of which
parametrize open and/or unoriented surfaces with different topology. Some-
times this is even useful in superstring theory [51]. However, in general in
superstring theory, it is not helpful to try to fit Γ̂0 and Γ̂1 together. For ex-
ample, there are Type II orientifolds without D-branes in which the string
worldsheet has no boundary but need not be oriented; and there are Type II
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Figure 15: (a) For q approaching zero from above, the long tube of fig. 14(a) is
conformally equivalent to a collapsing neck and Σ0 splits off a component con-
sisting of a disc with one puncture (the node). (b) Similarly, for q approaching
zero from below, Σ1 splits off a component that is conformally equivalent to
RP

2 with one puncture (again the node).

theories with D-branes but no orientifold planes in which the string worldsheet
is oriented but may not have a boundary. In these examples, Γ̂0 is relevant
but not Γ̂1, or vice-versa, so in general one has to consider them separately.

The limits of Σ0 and Σ1 as q → 0 cannot be deduced in a simple way from
the way the double cover Σ′

0 degenerates for q → 0. Σ′
0 has only one limit for

q → 0 regardless of the direction from which one approaches q = 0, but the
objects which one wants to identify as limits of Σ0 and Σ1 as q approaches 0
from above or below are different.

It is not hard to understand what those objects should be. In fig. 14(a) or
(b), we see a long tube whose length diverges as q approaches 0 from above
or below. We simply follow the general rule that the limit of a long tube is
conformally equivalent to a collapsing neck. So the limiting configurations
corresponding to fig. 14 for q → 0 are as shown in fig. 15. For q → 0, Σ0 or Σ1
splits off a component that consists of a disc with one puncture (where it meets
the node) or RP

2 with one puncture (again where it meets the node). These
are the natural limiting configurations at q = 0 because the singularities they
contain are the usual closed-string degenerations, which are needed anyway
in the Deligne-Mumford compactification so it is unavoidable to allow them.
Moreover, they have a natural physical interpretation.

There are at least two lessons from all this for superstring theory:
(1) The compactified moduli space of open and/or unoriented Riemann

surfaces is a manifold with boundary. Similarly, the compactified moduli space
of open and/or unoriented super Riemann surfaces will be a supermanifold
with boundary. Integration on a supermanifold with boundary makes sense
provided the right structure is in place, but this is one of the issues that one
has to consider.

(2) In compactifying the moduli space, we had to allow an open and/or
unoriented Riemann surface to split off a component with continuous symme-
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tries. In fact, a disc or RP2 with one closed-string puncture has a U(1) group
of symmetries – the group of rotations around the puncture. The components
with symmetries turn out to be important in the study of anomalies [52], [31].
By contrast, in compactifying the moduli space of oriented Riemann surfaces,
only components without continuous symmetries are required.

7.4.2. Open-string degenerations There is one more important example
somewhat like the one studied in section 7.4.1. We return to the basic setting
of fig. 13 with a closed oriented surface Σ′

0 that consists of two components
joined at a narrow neck. But now we assume that Σ′

0 has an antiholomorphic
involution ρ that maps each component to itself, instead of exchanging them.

In terms of the gluing law

(7.14) xy = q,

this means that the local parameters x and y are mapped to their own complex
conjugates (up to constant multiples that we can absorb in the definitions of
x and y):

(7.15) ρ(x) = x, ρ(y) = y.

Again, ρ-invariance of the gluing relation implies that q must be real.
Let us determine the fixed point set of ρ, which is the same as the bound-

ary of the quotient Σ′
0/Z

ρ
2. Clearly the fixed point set is given by the hyperbola

xy = q in the real x-y plane. The hyperbola consists topologically of a pair
of lines. To describe Σ0 explicitly, we go back to complex variables and write
x = e	, y = qe−	, with � ∼= �+ 2π

√
−1. ρ acts on � by � → �. Imposing both

relations � ∼= � + 2π
√
−1 and � ∼= �, we can parametrize Σ′

0/Z2 by

(7.16) � = s + iϑ, 0 ≤ ϑ ≤ π,

and the endpoints ϑ = 0, π are the boundaries of Σ0. With these restrictions
on ϑ, � parametrizes a long strip (fig. 16(a)). This long strip is simply the
quotient by Z2 of the long tube that is described by the equation xy = q if
we do not divide by Z2 (fig. 16(b)). Physically, the long strip describes the
propagation of an open string for a long proper time.

To compactify the moduli space Γ that parametrizes Σ′
0/Z2 for positive

(or negative) q, we need to introduce a limit of the long strip at q = 0.
It is not difficult to see what this must be. We use the fact that a long
strip is conformally equivalent to a strip with a narrow neck. In the limit
q → 0, Σ′

0/Z2 decomposes into a union of two components glued together at
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Figure 16: (a) A long strip connecting two components of a Riemann surface
Σ0 with boundary. (b) The long strip of (a) is simply the quotient by Z2 of a
long tube in the associated closed oriented double cover Σ′

0. The quotient is
taken by flattening the closed oriented surface seen here onto the page. (c) The
limit in which the strip in (a) becomes infinitely long is conformally equivalent
to a degeneration in which Σ0 splits into a pair of components, joined at a
pair of open-string punctures. We call this an open-string degeneration.

Figure 17: A nonseparating open-string degeneration (a) and its twisted ver-
sion (b), both marked with arrows. (a) and (b) can be exchanged by cutting
the indicated narrow neck, twisting it, and regluing. This corresponds to
changing the sign of q.

a pair of open-string punctures (fig. 16(c)). This is what we will call an open-
string degeneration. In string theory, infrared singularities due to on-shell
open strings arise from such open-string degenerations. In this language, the
degenerations studied in section 6 might be called closed-string degenerations.

The two cases of positive and negative q differ by a “twist” of the strip, as
sketched in fig. 17. This happens as follows. The two boundary components
of the strip can be distinguished by the sign of x, and also by the sign of
y. For q → 0, x parametrizes the boundary of one component of Σ0, and y
parametrizes the boundary of the other. The relation between positivity of x
and positivity of y is reversed if we change the sign of q, and this introduces
the twist.

Just like closed-string degenerations, open-string degenerations can be
either separating (fig. 16) or nonseparating (fig. 17). In general Σ′

0/Z2 has
different topology for positive or negative q. For example, in fig. 17, Σ′

0/Z2
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is unorientable for one sign of q though it is orientable for the other sign. In
this case, the compactified moduli space Γ̂s clearly must be understood as a
manifold with boundary, with q = 0 defining one of the boundary components.

Even when the topology of Σ′
0/Z2 is not affected by the twist, its con-

formal structure generically jumps discontinuously in crossing q = 0. So one
should think of q = 0 as a boundary of the moduli space Γ̂s, even if the limits
as q approaches 0 from above and below represent two different parts of the
boundary of the same Γ̂s.

7.4.3. Superanalogs Compactifying the parameter space Γs of a super
Riemann surface Σ does not involve many new ingredients. The reduced space
Γs,red ⊂ Mg′,red has a natural compactification Γ̂s,red obtained by taking its
closure in M̂g′,red. It can then be thickened in the fermionic directions to give
the compactified integration cycle Γ̂s.

This compactification parametrizes superanalogs of the usual closed string
degenerations, but this involves no particular novelties relative to what we
analyzed in section 6. More interestingly, the compactification of Γs also
describes superanalogs of the special degenerations that we considered in
sections 7.4.1 and 7.4.2, namely the ones responsible for the fact that the
compactified classical parameter space Γ̂s of an open and/or unoriented Rie-
mann surface Σ0 is a manifold with boundary. It turns out that, because of
the existence of these special degenerations, Γ̂s is a (smooth) supermanifold
with boundary. This requires some discussion, since the proper definition of
a supermanifold with boundary, such that integration makes sense, is rather
subtle (see for example [32], sections 3.4 and 3.5). We want to make sure that
the appropriate structure is present in the case of Γs.

To describe the special degenerations explicitly in the superstring context,
one replaces the classical gluing law xy = q by its familiar Neveu-Schwarz and
Ramond analogs, namely

xy = −ε2

yθ = εψ

xψ = −εθ

θψ = 0.(7.17)

and

xy = qR

θ = ±
√
−1ψ.(7.18)
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The degenerations that we want to focus on here are the ones for which, clas-
sically, the gluing parameter q is real. We will call them real degenerations. In
the superstring context, at a real degeneration, qR and qNS = −ε2 are real (and
ε is real or a real multiple of

√
−1) modulo the odd variables. We say that a

real degeneration is of NS type or R type depending on whether it is described
by the NS gluing formulas (7.17) or their Ramond counterparts (7.18).

Real degenerations describe the propagation through a long tube or strip
of either (1) a closed string whose worldsheet ends on a boundary or crosscap,
as in section 7.4.1; or (2) an open string, as in section 7.4.2. A real degen-
eration is of NS (R) type if the closed-string state in (1) is of NS-NS (R-R)
type, or the open-string state in (2) is of NS (R) type. In a real degeneration,
the sum over the sign of the fermionic gluing (the sign of ε or the sign in
θ = ±

√
−1ψ) enforces the GSO projection. In case (1), the sum over the

sign of the fermionic gluing ensures that the closed-string state created by a
boundary or crosscap is GSO even; in case (2), it ensures that open-string
states that create infrared singularities by propagating for a long proper time
through a long strip are GSO even.

Now let us discuss the boundary of Γ̂s. The case of a real Ramond degen-
eration is more obvious so we consider it first. An open-string degeneration
of R type leads to a boundary component of Γ̂s; as in the bosonic case,
the two cases qR ≥ 0 and qR ≤ 0 represent different moduli spaces, typically
parametrizing superstring worldsheets with different topology. Either of these
two moduli spaces has a boundary at qR = 0.

In general, to define a supermanifold M with boundary in such a way
that integration is possible, one needs some additional structure. Locally, one
requires an even function f that defines the boundary, in the sense that it
is positive definite or negative definite (when reduced modulo odd variables)
in the interior of M and has a first-order zero on the boundary of M . To be
a little more precise, we need only an equivalence class of such functions f
modulo

(7.19) f → eφf,

where φ is a function on M that is real modulo the odd variables. Note that
an allowed transformation of f does not include, for example, f → f + η1η2,
where η1 and η2 are odd functions. The role of the function f in integration
theory is explained, for example, in [32], sections 3.4 and 3.5.

The structure just described is precisely what we have near the boundary
of Γ̂s associated to a Ramond degeneration. For the function f we can take
qR. Actually, qR is really only well-defined to first order near the boundary
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of Γ̂s; and even to first order, it is not a function but a section of a certain
real29 line bundle, the dual of the normal bundle to the locus of real Ramond
degenerations in Γ̂s. Rather as in section 6.1.3, a line bundle appears because
of the dependence of qR on the choice of the local parameters x and y in
eqn. (7.18). If we change the local parameters, qR charges by qR → eφqR, for
some function φ (which in general may depend on all the other moduli of Σ).
Hence the indeterminacy of the function qR is precisely of the form of eqn.
(7.19), with qR understood as the distinguished function that vanishes on the
boundary. Therefore the structure of Γ̂s near its boundary is precisely such
that integration of a smooth measure (a smooth section of the Berezinian)
over Γ̂s makes sense. There is more to say because the measures that one has
to integrate in superstring theory have singularities at the boundary; those
issues are discussed in [31]. But the fact that one would be able to integrate
a smooth measure over Γ̂s is certainly part of the input to the fact that
perturbation theory makes sense for open and/or unoriented superstrings.

A real NS degeneration does not actually contribute a boundary compo-
nent to Γ̂s, because the two choices of sign of ε match smoothly at ε = 0.
Nonetheless, to make sense of the integrals that appear in superstring pertur-
bation theory, one needs the existence of a distinguished parameter ε (subject
to ε → eφε) associated to a real NS degeneration. That is because of the
tachyon singularity at ε = 0. The sum over the two signs of ε is needed to
implement the GSO projection and eliminate the tachyon. Roughly speak-
ing, after eliminating the tachyon, the locus ε = 0 is effectively a boundary,
and again the integral over a supermanifold with boundary only makes sense
because of the existence of a distinguished parameter that vanishes at the
boundary, namely ε.

We conclude by explaining the analog of section 6.2.2 for open-string de-
generations, or in other words by describing in the case of an open-string
degeneration the locus in Γ̂s with qR = 0 or ε = 0. (Real closed-string de-
generations are treated in section 7.4.4.) When a worldsheet Σ undergoes an
open-string degeneration, it can be compared to the smooth surface Σ∗ (its
“normalization”) that results from detaching the two branches at the node.
(Σ∗ may or may not be connected, depending on whether the degeneration is
separating.) The locus in Γ̂s that parametrizes the open-string degeneration
can be compared, just as we did in section 6.2.2 for closed strings, to the
parameter space Γ̂ ∗

s of Σ∗. For an open-string degeneration of NS type, the
degeneration locus in Γ̂s is a copy of Γ̂ ∗

s , but for one of R type, it is a fiber
29A line bundle over a smooth supermanifold is real if its transition functions

are real modulo the odd variables.
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bundle over Γ̂ ∗
s with fibers of dimension 0|1. As in section 6.2.2, the fibers

parametrize the different ways to glue together Ramond divisors on the two
sides. One can summarize this by saying that while at an open-string NS node
there is only the even gluing parameter ε, an open-string Ramond node has
a fermionic gluing parameter as well as the even parameter qR. (After inte-
grating over this parameter, the open-string Ramond propagator is G0/L0, in
contrast to the open-string NS propagator, which is 1/L0.) All this is closely
analogous to what happens for closed strings.

7.4.4. Components with continuous symmetries The compactified
parameter space Γ̂s describes many possible ways that Σ can degenerate by
reducing its genus (understood as the genus of the closed oriented double
cover Σ′) or splitting into multiple components. For the same reasons as in
the bosonic discussion of section 7.4.1, an example of what can happen is
that Σ can split off a component that has a symmetry group G of positive
even dimension. This will be a component whose reduced space is a disc with
a single closed-string puncture, or RP

2 with a single puncture. Even though
these sound like special cases, they are important in understanding super-
string anomalies, so we will look more closely.

For either the once-punctured disc or once-punctured RP
2, the single

puncture is of NS-NS type or of R-R type (it cannot be of type NS-R for
then on the closed oriented double cover, there would be a single R puncture,
which is impossible). It is instructive to work out the dimension formula for
the dimension of moduli space for a punctured Riemann surface of one of
these types. The disc and RP

2 can be considered together. First we assume
that the puncture is of NS-NS type. The dimension formula with only NS-NS
punctures reads

(7.20) dim Γ − dim G = −3χ(Σ) + 2nNS−NS| − 2χ(Σ) + 2nNS−NS.

In evaluating this formula, it helps to bear in mind that, for either a disc or
RP

2 with one NS-NS puncture, the associated closed oriented super Riemann
surface Σ′ is CP1|1 with two NS punctures. This surface has no moduli, so Γ is
a point and dim Γ = 0|0. Both the disc and RP

2 have χ = 1. So the dimension
formula with nNS−NS = 1 implies that dim G = 1|0. Indeed, the bosonic part
of the automorphism group is U(1), consisting of rotations of the disc or RP2

around the puncture. And the odd dimension of the automorphism group is
0, because Σ′ has no odd automorphisms.

Now suppose that the puncture is of R-R type. The dimension formula
with only R-R punctures reads

(7.21) dim Γ − dim G = −3χ(Σ) + 2nR−R| − 2χ(Σ) + nR−R.
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Γ is still a point, with dim Γ = 0|0, just as before. The dimension formula
with nR−R = 1 now gives dim G = 1|1. The bosonic part of the automorphism
group is U(1), as before. To understand why G has odd dimension 1, observe
that the associated closed oriented super Riemann surface Σ′ is now of genus
0 with 2 Ramond punctures. This surface has a one-dimensional space of odd
superconformal vector fields, as we explained in discussing eqn. (5.18).

We conclude by discussing the consequences of the automorphism group
G for gluing. We start with bosonic strings. Let us return to fig. 15 of section
7.4.1. The degeneration depicted in this figure is a closed-string degeneration,
which normally is controlled by a complex gluing parameter q. Yet in the
particular case that one of the components meeting at the double point is a
disc or RP

2 (with no punctures except the double point), one may restrict
to real nonnegative30 values of q. We have already given one explanation of
this in section 7.4.1. Another follows from the existence of the automorphism
group. Ordinarily, when two Riemann surfaces Σ1 and Σ2 are joined by the
narrow neck xy = q, the parameter Arg q has the following interpretation: a
shift in Arg q by an angle φ has the same effect as cutting the narrow neck,
rotating one side relative to the other by the angle φ, and gluing the two sides
back together again. When Σ1 or Σ2 has a symmetry of rotating around the
neck, the parameter Arg q can be absorbed in rotating Σ1 or Σ2 and becomes
irrelevant. This is the case precisely when Σ1 or Σ2 is a disc or RP2 with just
one puncture.

What we have said so far relies on the bosonic part of the automorphism
group, and is equally valid for bosonic strings or for NS-NS and R-R degenera-
tions of superstrings. Now we consider the fermionic part of the automorphism
group, which is present only in the R-R superstring case. Usually, at an R-
R closed-string degeneration, there are two fermionic gluing parameters, one
for holomorphic degrees of freedom and one for antiholomorphic degrees of
freedom. However, if one of the two branches, say Σ2, is a disc or RP

2 with
one puncture, then it has a fermionic symmetry that can be used to trans-
form away one of the fermionic gluing parameters. This happens because the
fermionic symmetry of the closed oriented double cover of Σ2 acts nontrivially
on the Ramond divisors (this is shown in eqn. (5.19)) and hence shifts the
fermionic gluing data. This is quite analogous to what happened to Arg q.
The disappearance of one of the two fermionic gluing parameters is part of
the mechanism by which an R-R degeneration of the particular types shown
in fig. 15 can lead to anomalies. This is described in [31].

30In fig. 13, a real degeneration corresponds to real q, which may be positive
or negative. The two signs correspond to cases (a) and (b) in fig. 15, so in those
pictures, there is no longer a choice of sign.
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8. Contour integrals and super period matrix

Our goal in this section is to describe the analog on a super Riemann surface
of the periods of a holomorphic differential on an ordinary Riemann surface.
We will also describe the super period matrix constructed from the periods,
and demonstrate its basic properties. Finally, we describe an application [21]
to superstring perturbation theory.

8.1. Basics

We will need to consider a super Riemann surface Σ as a smooth supermani-
fold, as described in section 3. However, antiholomorphic odd variables would
add nothing. So as in most of section 3, we take Σ to be a heterotic string
worldsheet. This means that Σ is a smooth supermanifold of dimension 2|1
embedded in ΣL × ΣR, where ΣL is an ordinary Riemann surface and ΣR is
a super Riemann surface (as usual, we can assume that ΣL is the complex
conjugate of ΣR,red and Σred is diagonally embedded in ΣL×ΣR,red). We will
write Ber(Σ) for the Berezinian of the holomorphic cotangent bundle to Σ
(that is, for the restriction to Σ of Ber(ΣR)).

Suppose that Σ is split from a holomorphic point of view (in the sense
that ΣR is a split super Riemann surface). Then its reduced space Σred is
naturally embedded in Σ, with a projection π : Σ → Σred. Even if Σ is
not holomorphically split, the structure theorem of smooth supermanifolds
(reviewed for instance in section 2.2 of [32]) says that Σred can be embedded
in Σ, again with a projection π : Σ → Σred. The embedding and projection
are not completely natural, but they are natural up to homology (in fact, up
to infinitesimal homologies involving the fermionic directions), and this will
be good enough for us.31

We begin by describing the cycles on which we will compute periods.
Let γred be an ordinary oriented closed 1-cycle in Σred, with Σred embedded
in Σ as above. (We take γred to be closed as we do not want to consider
contours with boundary.) Then after embedding Σred in Σ, we can view γred
as a submanifold of Σ of dimension 1|0. If μ is a 1-form on Σ, then we can
integrate it over γred in the usual way. For this, we parametrize γred by an

31Actually, on a super Riemann surface, as opposed to a more general 1|1 complex
supermanifold, once an embedding of Σred in Σ is given, there is a natural projection
π : Σ → Σred. The subbundle D ⊂ TΣ, when restricted to Σred, is a fiber bundle
over Σred with fibers of rank 0|1. This bundle is naturally embedded in Σ and its
total space is Σ. So Σ is a fiber bundle over Σred and this gives the projection π.
We do not often need this fact, but it will be relevant at the end of appendix C.
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angular variable s; when restricted to γred, μ is an ordinary 1-form f(s) ds,
and we define

(8.1)
∮
γred

μ =
∮
γred

f(s) ds.

If μ is closed, then
∮
γred

μ depends only on the homology class of γred in
Σ, not on the embedding of γred in Σred or of Σred in Σ. A difference from
ordinary compact Riemann surfaces (and from compact Kahler manifolds of
any dimension) is that even if μ is holomorphic, it need not be closed. Indeed
if Σ is split and a(z) dz is a holomorphic 1-form on Σred, then a(z)� is a
globally-defined and holomorphic but not closed 1-form on Σ; here

(8.2) � = dz − θdθ

was introduced in the discussion of eqn. (2.29).
There is another type of object that is appropriate for contour-like inte-

grals. Let σ be a holomorphic section of Ber(Σ). Then σ can be regarded as
an integral form on Σ of codimension 1, so it can be naturally integrated over
a submanifold γ ⊂ Σ of real codimension 1|0 and hence of dimension 1|1.
This is explained, for example, in [32], section 3.3.4. The integral, which we
denote as

∮
γ σ, only depends on the homology class of γ. As an example of a

codimension 1|0 cycle in Σ, we can take γ = π−1(γred) with γred as before.
Up to homology, all of the relevant 1|0 and 1|1 cycles γred or γ in Σ arise

in this way from ordinary 1-cycles in Σred. So all periods of a 1-form on Σ are
associated with A-cycles or B-cycles on the ordinary Riemann surface Σred.
There are thus 2g periods in all.

A difference from ordinary Riemann surface theory is that in general there
are more independent objects that one might want to integrate than there
are independent cycles to integrate them over. Suppose for example that Σ
is split; it is then constructed from its reduced space Σred and a square root
K1/2 of the canonical bundle K of Σred. In this case, a holomorphic section σ

of Ber(Σ) takes the form σ = (α(z) + θb(z))[dz|dθ], with α ∈ H0(Σred, K
1/2)

and b ∈ H0(Σred, K). If σ is even (as we will generally assume), then, since
the measure [dz|dθ] is odd, α is odd and b is even. We can reduce an integral
over γ to an integral over γred by first integrating over θ. Using the properties
of the Berezin integral, this gives

(8.3)
∮
γ
α(z)[dz|dθ] = 0,
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and

(8.4)
∮
γ
θb(z)[dz|dθ] =

∮
γred

b(z)dz.

Thus, in the split case, if there is a holomorphic section α(z) of H0(Σred,
K1/2), there is a holomorphic section σ = α(z)[dz|dθ] of Ber(Σ) whose periods
all vanish (and similarly, there is a holomorphic 1-form μ = d(θα) whose
periods all vanish). The theory of periods and contour integration on Σ is more
simple if this does not occur, since for example then σ is uniquely determined
by its A-periods, just as on an ordinary Riemann surface. In practice, if K1/2

defines an odd spin structure, the dimension of H0(Σred, K
1/2) is always odd

and never zero. If K1/2 defines an even spin structure, then the dimension
of H0(Σred, K

1/2) is always even and this cohomology group vanishes for a
generic choice of the complex structure of Σred. That is the situation in which
we will discuss the super period matrix. (At the end of section 8.3, we will see
that the super period matrix develops a pole when H0(Σred, K

1/2) becomes
nonzero.)

An important technical point is that the hypothesis that H0(Σred, K
1/2) =

0 ensures that no jumping occurs in the cohomology groups Hk(Σ,Ber(Σ)),
k = 0, 1, as a function of the odd moduli.32 In general, just as on an ordi-
nary Riemann surface, for any line bundle (or vector bundle) V , the differ-
ence in graded dimension between H0(Σ,V) and H1(Σ,V) is a topological
invariant (determined by the Riemann-Roch theorem), not subject to jump-
ing. So absence of jumping of H1(Σ,Ber(Σ)) will imply absence of jumping of
H0(Σ,Ber(Σ)). By Serre duality, H1(Σ,Ber(Σ)) is dual to ΠH0(Σ,O), where
O is a trivial line bundle. So it suffices to show that there is no jumping in
H0(Σ,O), which is the space of global holomorphic functions on Σ. For Σ
split, a global holomorphic function w has an expansion w = w0 +θw1, where
w0 is a global holomorphic function on Σred and therefore a constant, while
w1 is an element of H0(Σred, K

1/2). The assumption that H0(Σred, K
1/2) = 0

thus implies that w1 = 0. So we have learned that H0(Σ,O) is generated in
the split case by the constant function 1. Certainly, this constant function
makes sense as an element of H0(Σ,O) even when we turn on odd moduli, so
there is no jumping of H0(Σ,O) as a function of odd moduli, and hence also
none in H1(Σ,Ber(Σ)) or H0(Σ,Ber(Σ)). Jumping of H0(Σ,Ber(Σ)) occurs
only when we vary the even moduli of Σred so that H0(Σred, K

1/2) becomes
nonzero.

32See the end of section 5.2 for a simple example showing that such jumping can
occur for H0(Σred,K

1/2) �= 0.
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We have already seen that in the split case, with H0(Σred, K
1/2) = 0,

H0(Σ,Ber(Σ)) is naturally isomorphic to H0(Σred, K), and in particular has
dimension g|0, where g is the genus of Σ. Absence of jumping means that the
dimension remains g|0 when we turn on the odd moduli.

Periods of holomorphic sections of Ber(Σ) are best described by a super
period matrix [11, 18]. On the reduced space Σred, pick a basis of A-cycles
and B-cycles Ai

red, Bj,red, i, j = 1, . . . , g with

(8.5) Ai
red ∩ Aj

red = 0 = Bi,red ∩Bj,red, Ai
red ∩Bj,red = δij .

We thicken these in the usual way to cycles Ai, Bj ⊂ Σ of codimension
1|0 or dimension 1|1. Assuming that H0(Σred, K

1/2) = 0, define a basis σj ,
j = 1 . . . g of holomorphic sections of Ber(Σ) by requiring that the integrals
over A-cycles are

(8.6)
∮
Ai

σj = δij .

(The no-jumping result and the existence and uniqueness of the σj in the
split case ensures that the σj exist and are unique even after we turn on the
odd moduli.) Then define

(8.7) Ω̂ij =
∮
Bj

σi.

This definition does not make it immediately clear that Ω̂ij is symmetric.
Proving that it is will be a goal of section 8.2.

When Σ, is split, Ω̂ij coincides with the classical period matrix Ωij . In-
deed, from (8.4), we see that in the split case, the periods of a holomorphic
section σ = b(z)θ[dz|dθ] of Ber(Σ) are the same as the periods of the ordi-
nary differential b(z) dz on the reduced space Σred. When Σ is not split, Ω̂ij

no longer coincides with Ωij . Computing the difference between them when
Σ is not split [18] will be the goal of section 8.3.

8.2. Symmetry of the super period matrix

To show that the super period matrix is symmetric, we will follow [11] and
first show an equivalence between the two types of contour integration on
a super Riemann surface. By an elementary though at first sight somewhat
mysterious formula, one can map a holomorphic section σ = φ(z|θ)[dz|dθ] of
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Ber(Σ) to a closed holomorphic 1-form μ in such a way that

(8.8)
∮
γred

μ =
∮
γ
σ.

The formula is as follows. If σ = φ(z|θ)[dz|dθ], then

(8.9) μ = dθφ(z|θ) + �Dθφ(z|θ).

It is not difficult to verify that dμ = 0 (the formula (3.70) for the exte-
rior derivative is helpful). Actually, from the formula (8.9), one can verify
directly33 that the map from σ to μ is a 1-1 map from holomorphic volume
forms (that is holomorphic sections of Ber(Σ)) to closed holomorphic 1-forms.
The somewhat mysterious formula (8.9) has a more conceptual explanation
[30], as will be described in appendix C. This explanation shows that the
passage from σ ∈ H0(Σ,Ber(Σ)) to μ ∈ H0(Σ, T ∗Σ) does not depend on the
choice of local superconformal coordinates z|θ.

Explicitly, if φ(z|θ) = α(z) + θb(z), we compute μ from eqn. (8.9):

(8.10) μ = b(z)dz + d(θα).

In computing
∮
γred

μ, the exact form d(θα) can be dropped because actually,
one can always pick a superconformal coordinate system valid everywhere
on the circle34 γred so that the computation leading to eqn. (8.10) is valid
throughout γred. We also have the Berezin integral over θ, giving

∮
γ σ =∮

γred
b(z)dz. So

(8.11)
∮
γ
σ =

∮
γred

μ.

For a more conceptual explanation of this result, see appendix C.
Eqn. (8.11) has the following interesting corollary. The formula (8.9) im-

plies that μ is exact – it is of the form ds for a globally-defined holomorphic
33 A general holomorphic 1-form μ = s(z|θ)dz+ t(z|θ)dθ (where we will consider

s even and t odd), with s(z|θ) = s0(z) + θs1(z), t(z|θ) = t0(z) + θt1(z), is closed if
and only if t1 = 0, s1 = ∂zt0, so μ = (s0 + θ∂zt0)dz + t0dθ. This has the form of
eqn. (8.9) if and only if φ(z|θ) = t0 + s0θ.

34The sheaf cohomology class that obstructs splitting of Σ is trivial when re-
stricted to a small neighborhood of a circle. So such a neighborhood is isomorphic
to ΠT 1/2Σ0 (with one of the two possible choices of T 1/2Σ0, corresponding to NS
and R spin structures) where Σ0 is an ordinary annulus in the complex z-plane.
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function s – if and only if σ = Dθs. So

(8.12)
∮
γ
[dz|dθ]Dθs =

∮
γred

ds = 0,

giving an alternative proof of an assertion of section 2.4.1.
Since our first step in analyzing the periods of σ ∈ H0(Σ,Ber(Σ)) has

been to equate them to periods of μ ∈ H0(Σ, T ∗Σ), one may ask why we
do not merely start with the latter. One answer is that as Ber(Σ) is a line
bundle, while T ∗Σ has rank 1|1, the description by sections of Ber(Σ) is often
more straightforward. For an example of this, see section 8.3, which would be
more complicated if expressed in terms of μ.

If p and q are any closed 1-forms on the ordinary Riemann surface Σred,
one has the fact of classical topology (essentially Riemann’s bilinear relation)

(8.13)
∫

Σred

p ∧ q =
∑
i

(∮
Ai

red

p

∮
Bi,red

q −
∮
Bi,red

p

∮
Ai

red

q

)
.

If p and q are holomorphic 1-forms – and thus of type (1, 0) – then p∧ q = 0,
as a result of which eqn. (8.13) simplifies to

(8.14)
∮
Ai

red

p

∮
Bi,red

q −
∮
Bi,red

p

∮
Ai

red

q = 0.

The classical period matrix is defined by introducing holomorphic 1-forms
λi such that

∮
Ai

red
λj = δij and then setting Ωij =

∮
Bi red

λj . Its symmetry
Ωij = Ωji follows immediately from (8.14) with p = λi, q = λj .

We want to imitate this proof on a super Riemann surface. We have
already taken the first step – defining a basis of sections σj ∈ H0(Σ,Ber(Σ))
with canonical A-periods (8.6). The above procedure maps them to a basis
of closed holomorphic 1-forms μj also with canonical A-periods:

(8.15)
∮
Ai

red

μj = δij .

However, in imitating the classical proof, we run into a snag. On a super
Riemann surface, two holomorphic 1-forms μi and μj may have a non-zero
wedge product μi∧μj ; for example, dz∧dθ is nonzero, and dθ, being even, can
be raised to any power. So it is not immediately obvious that

∫
Σred

μi∧μj = 0.
It is true that μi ∧ μj is of type (2, 0) on Σ, and it is also true that on the
ordinary Riemann surface Σred, a (2, 0)-form would vanish. But if Σ is not
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holomorpically split, the embedding of Σred in Σ cannot be chosen to be
holomorphic, so the restriction to Σred of a (2, 0)-form on Σ is not necessarily
a form of type (2, 0) on Σred.

A cure for this difficulty was explained in [11]. Though a holomorphic
2-form on Σ need not vanish, such a form, if closed, is always exact. This
statement is not true on a general complex supermanifold of dimension 1|1;
the proof uses the superconformal structure of Σ. A general holomorphic 2-
form on Σ is Ψ = (dθ)2p(z|θ)+dθ�ρ(z|θ), for holomorphic functions p and ρ.
The condition that dΨ = 0 gives ρ = Dθp (again it helps here to use (3.70)),
from which it follows that Ψ = df with f = −p�. f does not depend on the
local superconformal coordinates that were used for this computation,35 so it
is globally-defined.

So now if μi are closed holomorphic 1-forms normalized as in (8.15), then
μi ∧ μj is exact and thus

∫
Σred

μi ∧ μj = 0. Hence if in (8.13) we take p = μi,
q = μj , we get finally

(8.16) Ω̂ij = Ω̂ji,

with Ω̂ij =
∮
Bj σi.

8.3. Formula for the super period matrix

Essentially following [18], we will now compute the dependence on odd moduli
of the super period matrix of a super Riemann surface. We begin with a split
super Riemann surface Σ, with an even spin structure and H0(Σred, K

1/2) =
0. We will perturb the complex structure of Σ in the framework of section
3.5 and compute how the period matrix varies. We make the perturbation in
the framework of eqn. (3.40), except that we are only interested in varying
with respect to odd moduli, since we consider the classical period matrix as a
function of even moduli to be a familiar quantity. Of course, the calculation
we will perform has a close analog to study the dependence of the classical
period matrix on bosonic moduli.

We use the description of a variation of complex structure of Σ given in
eqn. (3.40), except that we drop the metric perturbation hz

z̃
and keep only the

gravitino perturbation χθ
z̃
. We define the perturbation by saying that after

the perturbation, a holomorphic function is annihilated by

(8.17) ∂′
z̃

= ∂z̃ + χθ
z̃
(∂θ − θ∂z) .

35To prove this, recall from eqn. (2.29) that there is a natural projection κ :
T ∗Σ → D−1. So there is a natural projection κ⊗2 : T ∗Σ⊗ T ∗Σ → D−2. The object
p
 is a section of D−2 ⊂ T ∗Σ that can be globally defined as κ⊗2(Ψ).
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We take the gravitino field χθ
z̃

to be

(8.18) χθ
z̃

=
n∑

a=1
ηaf

θ
a z̃
,

where the ηa are odd moduli and the fa are even (0, 1)-forms valued in TΣ1/2
red .

It is natural to take n to be the odd dimension of H1(Σred, TΣ1/2
red ) – which

coincides with the odd dimension of the supermoduli space M – and the fa,
a = 1, . . . , n, to represent a basis of this space.

What we have described in eqn. (8.17) is a 0|n-dimensional family of super
Riemann surfaces that is transverse to the split locus in M. We have not given
any instructions on how to pick a natural family; in general, we do not know
any nice way to do so. The family of super Riemann surfaces determined by
the fa depends not only on their cohomology classes but on the actual (0, 1)-
forms fa; if we make a gauge transformation on one of the fa, this will in
general transform some of the others into the metric perturbations by hz

z̃
that

were present in the more general deformation of eqn. (3.40). After performing
the calculation, we will explain how to include the metric deformations and
get a more natural formalism.

We start with a holomorphic section σ of Ber(Σ). In local superconformal
coordinates z|θ, σ = φ(z|θ)[dz|dθ], with φ a holomorphic function. When we
perturb the complex structure of Σ, σ will have to be modified so as to be
still a holomorphic section of Ber(Σ). It will not suffice to modify the function
φ(z|θ); we also have to change the symbol [dz|dθ]. The reason is that Ber(Σ)
is defined so that a typical element at a given point in Σ is a symbol [u|ζ]
where u|ζ is a basis of forms of type (1, 0) at the given point. When we perturb
the complex structure of Σ as in (8.17), the 1-forms dz and dθ cease to be of
type (1, 0) and need corrections.

The condition for a 1-form to be of type (1, 0) is that its contraction with
the vector fields ∂′

z̃
defined in eqn. (8.17) should vanish. This condition is

satisfied by dz+χθ
z̃
θdz̃ and by dθ+χθ

z̃
dz̃. So a general section of Ber(Σ) after

the perturbation takes the form

(8.19) σ̂ = φ̂(z̃;z|θ)
[
dz + χθ

z̃
θdz̃

∣∣∣ dθ + χθ
z̃
dz̃

]
.

We have to determine the condition on φ̂ that will make σ̂ holomorphic. We
assume that σ̂ is even and φ̂ is odd.

For this, it is convenient to view a section of Ber(Σ) as an integral form
on Σ of codimension 1. In turn, such a form is a function on ΠTΣ, meaning
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locally that it is a function of the coordinates z̃, z, and θ of Σ and of a new
set of fiber coordinates dz̃, dz, dθ of reversed parity. (See for example [32],
section 3.2, for an explanation of this formalism.) As a function on ΠTM , σ̂
is

σ̂ =φ̂(z̃;z|θ)(dz + χθ
z̃
θdz̃)δ(dθ + χθ

z̃
dz̃)

=φ̂(z̃;z|θ)
(
dz + χθ

z̃
θdz̃

) (
δ(dθ) + δ′(dθ)χθ

z̃
dz̃

)
.(8.20)

What we have written in eqn. (8.20), as a function on ΠTΣ, is the most
general section of Ber(Σ) for the family of super Riemann surfaces defined by
the operator ∂′

z̃
of eqn. (8.17). Now we have to find the condition for such a

section to be holomorphic. A small short cut is available here. On an ordinary
complex manifold X of complex dimension m, the condition for an (m, 0)-
form to be holomorphic is simply that it should be closed. Similarly on a
complex supermanifold, a section of Ber(Σ) understood as an integral form
is holomorphic if and only if it is closed. In the present context, this means
that σ̂ should be annihilated by

(8.21) d = dz̃∂z̃ + dz∂z + dθ∂θ.

A small computation reveals that

(8.22) dσ̂ = −dz̃ dz δ(dθ)
(
∂z̃φ̂− ∂z(φ̂χθ

z̃
θ) + ∂θ(φ̂χθ

z̃
)
)
.

Let φ̂(z̃;z|θ) = α̂(z̃;z) + θb̂(z̃;z). From (8.22), the condition that dσ̂ = 0
becomes a pair of equations

∂z̃α̂ + b̂χθ
z̃

= 0

∂z̃ b̂− ∂z
(
α̂χθ

z̃

)
= 0.(8.23)

These equations have been obtained in [18].
To understand these formulas better, let γred be a 1-cycle in Σred and γ its

pullback to Σ. Let us compute
∮
γ σ̂. We integrate first over θ and dθ. Among

functions of the form θaδ(b)(dθ) (where δ(b) is the bth derivative of a delta
function), the only nonzero integral is

∫
D(θ, dθ) θδ(dθ) = 1. Integrating over

θ and dθ with the help of this fact, we reduce to an ordinary integral over
γred:

(8.24)
∫
γ
σ̂ =

∫
γred

ρ̂,
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where ρ̂ is a 1-form on Σred:

(8.25) ρ̂ = b̂ dz + α̂χθ
z̃
dz̃.

The second equation in (8.23) says that dρ̂ = 0, and therefore
∫
γred

ρ̂ and
∫
γ σ̂

only depend on the homology class of γred.
Because of our assumption that H0(Σred, K

1/2) = 0, the first equation
in (8.23) has a unique solution for α̂ in terms of b̂. We let S(z, z′) be the
propagator of the Dirac operator. This is a holomorphic section of the line
bundle36 K1/2 � K1/2 over what we will call Σred × Σ′

red (the product of two
copies of Σred) with a delta function source on the diagonal:

(8.26) ∂z̃S(z, z′) = 2πδ2(z, z′).

(We define δ2(z, z′) by
∫

d2z δ2(z, z′) = 1 where d2z = −i dz̃ dz. Thus if
z = (u + iv)/

√
2, z̃ = (u − iv)/

√
2, then d2z = du dv. The normalization

ensures that S(z, z′) ∼ 1/(z− z′) and has been chosen to agree with [18, 19].)
S(z, z′) exists because the kernel of the Dirac operator is trivial, in other
words because H0(Σred, K

1/2) = 0. With the aid of S(z, z′), we have37

(8.27) α̂(z̃;z) = − 1
2π

∫
Σ′

red

S(z, z′)χθ
z̃′
(z̃′;z′) b̂(z̃′;z′)d2z′.

And hence we can write an equation for b̂ only:

(8.28) ∂z̃ b̂(z̃;z) = − 1
2π∂z

∫
Σ′

red

χθ
z̃
(z̃;z)S(z, z′)χθ

z̃′
(z̃′;z′)b̂(z̃′;z′)d2z′

Now let us compute the super period matrix. For this, we start at ηa = 0
with the holomorphic sections σi = θbi(z)[dz|dθ] of Ber(Σ) that are nor-
malized so that

∮
Ai σj = δij . Equivalently, the ordinary holomorphic 1-form

μj = bjdz on Σred obeys

(8.29)
∮
Ai

red

μj = δij .

36K1/2 � K1/2 is defined as the tensor product K
1/2
Σred

⊗ K
1/2
Σ′

red
of the square

roots of the canonical bundles of Σred and Σ′
red. In writing formulas, we use a local

complex coordinate z and trivialize K and K1/2 by dz and (dz)1/2.
37The integral over Σ′

red makes sense because the quantity being integrated is
naturally a (1, 1)-form. In their dependence on z′, χθ

z̃′(z̃′;z′)dz̃′ is a (0, 1)-form
valued in TΣ1/2

red = K−1/2, S(z, z′) is a section of K1/2, and b̂(z̃′; z′) dz′ is (1, 0)-
form.
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The deformation of σi as a function of the ηa is not uniquely determined,
since when we expand σ̂i as a polynomial in the ηa, at each stage of the
expansion we could add a monomial in the η’s times one of the σj ’s. We fix
this ambiguity by requiring that

(8.30)
∮
Ai

σ̂j = δij ,

independent of the η’s. Equivalently, setting ρ̂i = b̂idz + α̂iχ
θ
z̃
dz̃, we require

(8.31)
∮
Ai

red

ρ̂j = δij .

Alternatively, we define ρ̂′i = ρ̂i − μi, so that ρ̂′i = 0 at η = 0. In terms of ρ̂′i,
the condition is

(8.32)
∮
Ai

red

ρ̂′j = 0.

We want to compute

(8.33) Ω̂ij =
∮
Bi

σ̂j =
∮
Bi,red

ρ̂j .

Equivalently, we want to compute

(8.34) Ω̂ij − Ωij =
∮
Bj,red

(ρ̂i − μi) =
∮
Bj,red

ρ̂′i.

Applying the topological relation (8.13) with p = μj , q = ρ̂′i, and remembering
that μj is of type (1, 0) on the ordinary Riemann surface Σred, so that the
(1, 0) part of ρ̂′i does not contribute to μj ∧ ρ̂′i, we learn that

(8.35) Ω̂ij − Ωij =
∫

Σred

μj ∧ ρ̂′i =
∫

Σred

μj ∧ α̂iχ
θ
z̃
dz̃.

In turn, we can use (8.27) to eliminate α̂i:
(8.36)

Ω̂ij − Ωij = − 1
2π

∫
Σred×Σ′

red

μj(z)χθ
z̃
(z̃; z)dz̃ S(z, z′)χθ

z̃
(z̃′;z′) b̂i(z̃′;z′)d2z′.

When Ω̂ij − Ωij is expanded in powers of the ηa’s, the lowest order term,
which we call Ω̂(2)

ij , is quadratic. It can found by just replacing b̂i(z̃′;z′)dz′ in
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the last formula by bi. To exhibit the symmetry of Ω̂(2)
ij , we use d2z = −idz̃dz

so that bid2z = −idz̃μi with μi = bidz:

(8.37) Ω̂(2)
ij = i

2π

∫
Σred×Σ′red

μj(z)χθ
z̃
(z̃; z)dz̃ S(z, z′)χθ

z̃′
(z′)dz̃′ μi(z′).

This formula was obtained in [18] (where our χ is called χ/2). Higher order
terms can be evaluated by using (8.28) to express b̂i as a polynomial in the η’s.

To make the expression of Ω̂(2)
ij even more explicit, we write χθ

z̃
=

∑
a ηaf

θ
a z̃

as in (8.18), and we find
(8.38)

Ω̂(2)
ij = i

2π

n∑
a,b=1

ηaηb

∫
Σred×Σ′red

μi(z)f θ
a z̃

(z̃; z)dz̃ S(z, z′)f θ
b z̃′

(z̃′; z′)dz̃′ μj(z′).

It is interesting now to make a gauge transformation on one of the (0, 1)-forms
f θ
a z̃

,

(8.39) f θ
a z̃

→ f θ
a z̃

+ ∂z̃c
θ
a,

where cθa is a section of TΣ1/2
red . Upon integrating by parts, one finds that Ω̂(2)

ij

is invariant under this gauge transformation of f θ
a z̃

if and generically only if
the support of cθa is disjoint from the support of all the (0, 1)-forms f θ

b z̃
, b �= a.

The meaning of this is that a gauge transformation of f θ
a z̃

will, if the support
of the gauge parameter is not restricted, rotate the perturbation by f θ

b z̃
into a

metric perturbation, namely the perturbation by hz
z̃

in (3.40). Differently put,
as was explained before we began the computation, the particular family of
super Riemann surfaces for which we have evaluated the super period matrix
depends on the one-forms f θ

a z̃
and not only on their cohomology classes.

To get a somewhat more intrinsic formula, we should include metric per-
turbations as well as fluctuations in the gravitino field. We will just briefly
sketch how to do this. In doing so, we will specialize to the case that there
are only two odd parameters ηa, a = 1, 2. The natural thing to do is to con-
sider a general deformation of the super Riemann surface Σ over the ring
C[η1, η2] that is generated over the base field C by the two odd parame-
ters η1, η2. Such a deformation is characterized by the gravitino deformation
χθ
z̃

=
∑

a ηaf
θ
a z̃

, but also by a metric perturbation, that is a deformation of
the complex structure of Σred by a (0, 1)-form η1η2h

z
z̃

that is valued in TΣred.
The relevant formalism here has actually been described in detail in section
3.5.1 of [58], which the reader should consult for a fuller explanation. The
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three fields (f1, f2, h) (which are called χ1, χ2, h12 in [58]) are subject to the
gauge invariance

f θ
a z̃

→ f θ
a z̃

+ ∂z̃c
θ
a

hz
z̃
→ hz

z̃
+ ∂z̃w

z + cθ1f
θ
2 z̃ − cθ2f

θ
1 z̃,(8.40)

where wz is a section of TΣred. This collection of fields and gauge invariance
describes the most general deformation of a split super Riemann surface over
the ring C[η1, η2]. The super period matrix as a function of the parameters
η1, η2 is given by the formula

Ω̂(2)
ij = i

2πη1η2

∫
Σred×Σ′red

(
μi(z)f θ

1 z̃(z̃; z)dz̃

×S(z, z′)f θ
2 z̃′(z̃

′; z′)dz̃′ μj(z′) + i ↔ j
)

+ 2η1η2

∫
Σred

dz̃ hz
z̃
bibjdz.(8.41)

The term proportional to hz
z̃

is the classical expression for the response of the
ordinary period matrix to a metric perturbation by η1η2h

z
z̃
. (To describe this

term more intrinsically, the TΣred-valued (0, 1)-form dz̃hz
z̃
∂z is multiplied by

the quadratic differential μiμj to make a (1, 1)-form that is then integrated.)
The reader can verify that gauge invariance is now satisfied.

Going back to eqn. (8.38), we can now inquire about what happens to
the super period matrix as Σred approaches the locus in its moduli space at
which H0(Σred, K

1/2) becomes nonzero. At that point, the Dirac propagator
S becomes divergent because of a zero-mode contribution; it varies as 1/ε
where ε is the small eigenvalue of the Dirac equation. The formula (8.38)
shows that the super period matrix develops a pole along this locus. The
residue of the pole is bilinear in odd moduli.

8.4. Super period matrix in superstring perturbation theory

The super period matrix has played a striking role in the computation of the
superstring vacuum amplitude at two-loop order [21]. This receives a potential
contribution only from a genus 2 surface with even spin structure. Here we
will describe this application.

If Σ0 is a Riemann surface of genus 2 with an even spin structure, then
H0(Σ0, K

1/2) vanishes always, not just generically. This is not true for any
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higher genus. For example, if Σ0 has genus 3, again with an even spin struc-
ture, then H0(Σ0, K

1/2) can be nonzero if (and only if) Σ0 is hyperelliptic.38

Now let Σ be a super Riemann surface of genus 2 with an even spin
structure. Because of the fact mentioned in the last paragraph, the super
period matrix Ω̂ij of Σ is always defined.

Another important fact is that every 2 × 2 symmetric complex matrix
Ωij with positive definite imaginary part is the period matrix of a genus 2
Riemann surface that is unique up to isomorphism. (The moduli space of
genus 2 surfaces has complex dimension 3g− 3 = 3, which coincides with the
dimension of the space of symmetric 2 × 2 matrices.) This actually remains
true for genus 3, but for g ≥ 4, a generic Ωij is not a period matrix.

From what has been said in the last paragraph, if Σ is a super Riemann
surface of genus 2 with an even spin structure, then there is an ordinary
Riemann surface Σ0 of genus 2 whose period matrix Ωij coincides with the
super period matrix Ω̂ij of Σ. Σ is a slightly thickened and deformed version
of Σ0 (thickened by its fermionic dimension and deformed by its odd moduli),
so up to homology there is a natural map from Σ to Σ0. This means that it
makes sense to endow Σ0 with the same spin structure as Σ.

The map from Σ to Σ0 is a holomorphic map π from M2,+, the mod-
uli space of super Riemann surfaces of genus 2 with even spin structure, to
M2,Spin+, the moduli space of ordinary Riemann surfaces of genus 2 with
an even spin structure. But M2,Spin+ is the reduced space of M2,+, and so
is naturally embedded in M2,+ as its subspace that parametrizes split super
Riemann surfaces. The map π : M2,+ → M2,Spin+ is the identity when re-
stricted to split super Riemann surfaces (since Ω̂ij = Ωij if the odd moduli
are zero), so it is a holomorphic splitting of M2,+. Given such a holomorphic

38These assertions are proved as follows. As K1/2 is an even spin structure,
H0(Σ0,K

1/2) has even dimension. If Σ0 has genus 2, then K1/2 has degree g −
1 = 1. In general, a line bundle of degree 1 on a compact Riemann surface Σ0 of
positive genus can have at most a one-dimensional space of holomorphic sections.
A nonnegative even integer that is at most 1 must be 0, so so H0(Σ0,K

1/2) = 0.
If Σ0 has genus 3, then K1/2 has degree g− 1 = 2. In general, a compact Riemann
surface Σ0 of positive genus has a line bundle of degree 2 with a two-dimensional
space of holomorphic sections if and only if Σ0 is hyperelliptic. (One uses the ratio
of the two sections to define a map of Σ0 to CP

1, and the fact that the degree of
the line bundle is 2 means that the map is a double cover.) If Σ0 is a hyperelliptic
curve of genus 3, it can be written as a double cover y2 =

∏8
i=1(x − ei) of CP1.

Consider the holomorphic differential ω = dx/y, whose zeroes are a pair of double
zeroes at x = ∞, y = ±x4. Σ0 has an even spin structure defined by a square root
K1/2 of the canonical bundle K that has a two-dimensional space of holomorphic
sections, spanned by ω1/2 and xω1/2.
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splitting, we can attempt to calculate superstring scattering amplitudes by
integrating first over the odd moduli – that is over the fibers of π – to reduce
to an integral over the purely bosonic moduli space M2,Spin+. This approach
has turned out to be very powerful, as reviewed in [21].

As one can learn from that reference and from additional papers cited
there, it has also been possible to compute certain scattering amplitudes
– as well as the vacuum amplitude – in genus 2. At the present level of
understanding, this was a rather difficult calculation that has not yet been
fully elucidated in terms of supergeometry.

9. N = 2 super Riemann surfaces and duality

So far our super Riemann surfaces have all been N = 1 super Riemann
surfaces, which provide a natural framework for perturbative Type I, Type
II, and heterotic superstrings. Here we will describe some rather pretty facts
[34–37] about N = 2 super Riemann surfaces, complex supermanifolds of
dimension 1|1, and duality. The reader will hopefully help explain what these
facts mean for string theory.39

9.1. Definition of an N = 2 super Riemann surface

First we explain the definition of an N = 2 super Riemann surface [28]. An
N = 2 super Riemann surface is a complex supermanifold W of dimension
1|2 with some additional structure. Its tangent bundle TW is endowed with
2 subbundles D+ and D−, each of rank 0|1, with the following properties.
D+ is integrable in the sense that if D+ is a nonzero section of D+, then
{D+, D+} = 2D2

+ is a multiple of D+,

(9.1) D2
+ = uD+,

for some function u. Thus, “integrability” means that the sections of D+ form
a graded Lie algebra, without needing to introduce D2

+ as an independent
generator. Similarly D− is integrable, in the sense that if D− is a nonzero
section of D−, then

(9.2) D2
− = vD−,

again for some function v. However, the direct sum D = D+ ⊕ D− is non-
integrable, the obstruction being that, for any nonzero sections D+ and D−

39The papers [59, 60] may provide a clue.
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of D+ and D−, the anticommutator {D+, D−} is linearly independent of D+
and D−. Thus, D+, D−, and {D+, D−} form a basis of TW . From this it fol-
lows that the quotient TW/(D+ ⊕D−) is naturally isomorphic to D+ ⊗D−,
so that there is an exact sequence

(9.3) 0 → D+ ⊕D− → TW → D+ ⊗D− → 0.

Reasoning as in appendix A, one can deduce that Ber(W ) is canonically
trivial. This is relevant among other things for writing Lagrangians.

By arguments similar to those in section 2.1, one can show that locally,
there exist superconformal coordinates z|θ+, θ− in which D+ and D− are
generated by

D+ = ∂

∂θ+ + θ−
∂

∂z

D− = ∂

∂θ−
+ θ+ ∂

∂z
.(9.4)

These obey

(9.5) D2
+ = D2

− = 0, {D+, D−} = 2∂z.

Most of what we have described in section 2 has an analog for N = 2. For
instance, one can define a sheaf S of vector fields that preserve the N = 2
structure (its sections are explicitly described in eqns. (9.12) and (9.13)), and
a general N = 2 super Riemann surface can be constructed by gluing together
open sets in which the N = 2 structure takes the standard form described in
eqn. (9.4).

Since D2
− = 0 = D2

+, one can look for a holomorphic function that is
annihilated by D− or by D+. Since we can write

D− = exp(−θ−θ+∂z)
∂

∂θ−
exp(θ−θ+∂z)

D+ = exp(θ−θ+∂z)
∂

∂θ+ exp(−θ−θ+∂z),(9.6)

a function annihilated by D− is concretely of the form

(9.7) exp(−θ−θ+∂z)f(z|θ+) = f(z − θ−θ+|θ+)

and a function annihilated by D+ is concretely of the form

(9.8) exp(θ−θ+∂z)g(z|θ−) = g(z + θ−θ+|θ−).
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Functions annihilated by D− or by D+ are called chiral or antichiral, respec-
tively.

Geometrically, one can think of a chiral function as a function on a space
X of dimension 1|1 parametrized by z − θ−θ+|θ+, and an antichiral function
as a function on another space X ′ of dimension 1|1 parametrized by z +
θ−θ+|θ−. Here is a slightly different way to define X and X ′ that does not
depend on a choice of coordinates. Integrability of D− means that W is fibered
by the orbits generated by any nonzero section D− of D−; those orbits are
independent of the choice of D−. X is the space of these orbits,40 which we
call simply the orbits of D−. X ′ is similarly the space of orbits of D+.

Thus an N = 2 super Riemann surface W has maps to two different 1|1-
dimensional supermanifolds X, X ′ with the properties that functions on X
or X ′ correspond to chiral or antichiral functions on W :

(9.9)
W

↙ ↘
X X ′.

It turns out that individually X and X ′ have no special structure at all,
beyond being complex supermanifolds of dimension 1|1. But there is a very
special relationship between them, which is the subject of section 9.2.

A quick way (see [61] and [35]) to show that X (or X ′) has no structure
beyond being a complex supermanifold of dimension 1|1 is to consider the
action on X of the Lie algebra of N = 2 superconformal vector fields. A
superconformal vector field on the N = 2 super Riemann surface W is a
holomorphic vector field that preserves the two subbundles D+ and D− of
TW . Eqn. (9.7) implies that in the coordinate system w|θ+, θ− where w =
z − θ−θ+, the subbundle D− is generated by

(9.10) D− = ∂

∂θ−
.

Similarly, in these coordinates, D+ is generated by

(9.11) D+ = ∂

∂θ+ + 2θ−∂w.

40Roughly, integrability is important here because if D2
− is not a multiple of

D−, then to make a Lie supergroup with D− in its Lie algebra, we would have to
include also D2

− as a generator of the Lie algebra, and then the orbits would not
have dimension 0|1. One could still define curves in W generated by D−, but these
curves would not be fibers of a fibration. See section 9.3.
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The even superconformal vector fields on W take the form

Vg = g(w)∂w + ∂wg

2
(
θ+∂θ+ + θ−∂θ−

)
vk = k(w)

(
θ−∂θ− − θ+∂θ+

)
.(9.12)

The odd ones are

να+ = α+(w)∂θ+

να− =
(
α−(w) + 2∂wα−(w)θ−θ+) ∂θ− − 2α−(w)θ+∂w.(9.13)

Here g, k, and α± are functions of w only. The vector fields in (9.12) and (9.13),
which are sections of the sheaf S of superconformal vector fields, generate
what is usually called the N = 2 superconformal algebra. To find the action
of this algebra on X, we simply drop all terms proportional to ∂θ− , since
X = W/D− is the space of orbits of ∂θ− , which generates D−. So as vector
fields on X, the N = 2 generators are

Vg = g(w)∂w + ∂wg

2 θ+∂θ+

vk = −k(w)θ+∂θ+

να+ = α+(w)∂θ+

να− = −2α−(w)θ+∂w.(9.14)

An arbitrary holomorphic vector field f(w|θ+)∂w+ρ(w|θ+)∂θ+ can be written
as a linear combination of these N = 2 generators in a unique fashion, so the
N = 2 superconformal symmetries are simply the automorphisms of X as a
1|1 supermanifold.

A priori, the sheaf S of superconformal vector fields on W is a sheaf of
Lie algebras over W , but not a sheaf of OW modules (a superconformal vector
field cannot be multiplied by a holomorphic function on W to give another
superconformal vector field). However, we can proceed rather as we did for
N = 1 super Riemann surfaces in section 2.3. Viewing S as a subsheaf of
the sheaf TW of all holomorphic vector fields on W , we can use the exact
sequence (9.3) and project S to D+⊗D−. A short computation using the above
formulas reveals that this projection is an isomorphism, so S is isomorphic as
a sheaf to the sheaf of sections of the line bundle D+ ⊗D− → W .

9.2. 1|1 supermanifolds and duality

Let X be any complex supermanifold of dimension 1|1. Locally, we can
parametrize X by holomorphic coordinates z|ψ.
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Now we want to consider minimal divisors in X. By a minimal divisor we
mean a subvariety of X of dimension 0|1 whose intersection with the reduced
space Xred is a single point. Such a divisor is defined by an equation of the form

(9.15) z = y + ηψ,

where y and η parametrize the divisor. So the space of such minimal divisors
is a 1|1-dimensional supermanifold X ′, locally parametrized by y|η.

Actually, the relation between X and X ′ is symmetrical. With y and
η viewed as parameters, eqn. (9.15) defines a minimal divisor in X, but if
instead we view z and ψ as parameters, then eqn. (9.15) defines a minimal
divisor in X ′. So X parametrizes minimal divisors in X ′, and vice-versa.

Another way to explain the symmetric nature of the relationship between
X and X ′ is as follows. Suppose that X ′ is the space of minimal divisors in
X. To a point z|ψ in X, we associate the space of all minimal divisors that
pass through this point. This is a 0|1-dimensional family of divisors, so it
represents a divisor in X ′. (To show this explicitly, we would go back to the
equation (9.15) which in local coordinates describes the family of minimal
divisors that pass through z|ψ.) So again, just as a point in X ′ determines a
minimal divisor in X, so a point in X determines a minimal divisor in X ′.

Now we will define a supermanifold W of dimension 1|2. One way to
define W is that a point in W is a pair consisting of a point in X and
a minimal divisor through that point. Because points in X correspond to
minimal divisors in X ′ and vice-versa, we can equally well say that a point in
W is a point in X ′ together with a divisor through that point. If we use local
coordinates z|ψ on X and local coordinates y|η on X ′ as described above so
that the divisor in X corresponding to y|η is described by the equation (9.15),
then a point in W is simply described by the whole collection of coordinates
y, z|η, ψ, subject to the condition (9.15). In other words, locally W is defined
as the submanifold of C2|2 defined by G = 0 where G = z − y − ηψ.

So now we have a complex supermanifold W of dimension 1|2 with maps
to two different supermanifolds X and X ′, each of dimension 1|1. In fact, W
has the natural structure of an N = 2 super Riemann surface. Abstractly, the
subbundles D+ and D− of TW are the tangents to the fibers of the fibrations
W → X and W → X ′. More concretely, we define D− to be spanned by vector
fields on W that commute with z|ψ (the local coordinates of X). A section
of D− can be represented by a vector field on C

2|2 that commutes with z, ψ,
and G. Such a vector field is a multiple of

(9.16) D− = ∂

∂η
− ψ

∂

∂y
.
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Similarly, a section of D+ can be represented by a vector field on C
2|2 that

commutes with y, η, and G. Such a vector field is a multiple of

(9.17) D+ = ∂

∂ψ
− η

∂

∂z
.

This exhibits the structure of an N = 2 super Riemann surface: we have
D2

− = D2
+ = 0, while {D−, D+} = −∂y−∂z is everywhere linearly independent

of D− and D+.
So every 1|1 supermanifold X canonically determines an N = 2 super

Riemann surface W . And conversely, we can reconstruct X from W as roughly
W/D−, as described in section 9.1.

This construction has an amusing variant that we will describe briefly.
Starting with X, we introduce ΠTX, the tangent bundle with statistics re-
versed on the fiber. This object was studied, for example, in [32], section 3.2.
If we describe X by local coordinates z|ψ, then to describe ΠTX, we intro-
duce additional coordinates dψ and dz, where dψ is even and dz is odd. On
ΠTX there is a natural odd vector field

(9.18) d = dz ∂

∂z
+ dθ ∂

∂θ
.

It is usually called the exterior derivative on X. It obeys d2 = 0.
There is a scaling symmetry of ΠTX that rescales the fiber coordinates,

dθ|dz → λdθ|λdz, where λ is even and nonzero. We define W = P(ΠTX)
to be the projectivization of ΠTX. This projectivization is obtained by con-
straining the even fiber coordinates (in our present problem, only dθ) to be
not all zero and then dividing by C

∗. Locally, we can use the C
∗ action to

map dθ to 1, after which W is a fiber bundle over X with fibers of rank 0|1
parametrized by dz. We define D− to be the subbundle of TW generated by

(9.19) D− = ∂

∂dz .

Clearly D2
− = 0, so D− is integrable. The quotient W/D− is just X.

The vector field d on ΠTX is not invariant under scaling, so it does not
descend to a vector field on W in a natural way. However, scaling of d does
not affect the subbundle of ΠTX generated by d, so that subbundle does
descend in a natural way to a subbundle D+ of TW of rank 0|1. Locally, D+
is generated by what we get from d upon using the scaling to set dθ = 1.
Thus, D+ is generated by

(9.20) D+ = dz ∂

∂z
+ ∂

∂θ
.
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Again we see the structure of an N = 2 super Riemann surface, with D2
− =

D2
+ = 0, {D−, D+} = ∂z.

The relation of this description of W to the description in terms of minimal
divisors in X is simply the following. At a point in p ∈ W , a nonzero vector
μ ∈ ΠTX|p (where ΠTX|p is the fiber of ΠTX at p) determines a minimal
divisor through p, namely the one obtained by displacing p in the μ direction.
This divisor only depends on μ up to scaling, so the space of minimal divisors
through p is the fiber of P(ΠTX).

9.3. Self-duality of N = 1 super Riemann surfaces

Since we have found a natural duality for every 1|1-dimensional complex
supermanifold X, the question now arises of what happens if X is actually a
super Riemann surface.

Given any odd vector field ν on X, we regard ν as generating a superdif-
feomorphism of X. Starting at any point and acting with exp(αν) = 1 + αν,
where α is an odd parameter, we generate a 0|1-dimensional submanifold of
X that passes through the given point. This much holds for any odd vector
field, but in going farther there are two fundamentally different cases: ν may
be integrable or non-integrable. Integrability means that (after possibly mul-
tiplying ν by a nonzero function, an operation that does not affect the curves
it generates) ν2 = 0. If so, we can find local coordinates z|θ on X with ν = ∂θ.
Then ν has a family of orbits of dimension 1|0, parametrized by z, and X is
fibered over this orbit space.

A super Riemann surface X is at the opposite extreme. Locally, the super-
conformal structure determines, up to multiplication by a nonzero function
(which does not affect the following) a natural odd vector field on X, namely

(9.21) Dθ = ∂

∂θ
+ θ

∂

∂z
.

But Dθ is everywhere non-integrable, that is, D2
θ is everywhere nonzero and

linearly independent from Dθ. Given any point z|θ = z0|θ0 in X, the curve
generated by Dθ passing through this point is given in parametric form as

θ = θ0 + α

z = z0 + αθ(9.22)

with odd parameter α. Equivalently, it is given by an equation

(9.23) z = z0 − θ0θ.
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These formulas were already introduced in section 4.1.1.
What has happened as a result of the non-integrability of D is that these

0|1-dimensional varieties do not fit together into a fibration of X. There are
too many of them; the family of divisors in (9.23) has dimension 1|1, with
parameters z0 and θ0, and not 1|0, as in the integrable case.

We see in (9.23) that a point z0|θ0 ∈ X naturally determines a minimal
divisor in X, and every such divisor occurs for a unique z0|θ0. This means that
X is self-dual under the duality of 1|1 supermanifolds: X parametrizes its own
minimal divisors. More specifically, the holomorphic isomorphism ϕ : X ∼= X ′

is such that for z0|θ0 ∈ X, the divisor in X corresponding to ϕ(z0|θ0), namely
the divisor defined in (9.23), passes through z0|θ0.

Conversely, suppose that X is a 1|1-dimensional complex manifold and
that we are given an isomorphism ϕ : X ∼= X ′, where X ′ parametrizes minimal
divisors in X and for z0|θ0 ∈ X, the divisor ϕ(z0|θ0) passes through z0|θ0.
Then we can define a subbundle D ⊂ TX of rank 0|1 by saying that the fiber
of D at z0|θ0 is the tangent space to ϕ(z0|θ0). D is everywhere nonintegrable
or ϕ would not be an isomorphism. (We have just seen that if D is integrable,
it does not have enough orbits for ϕ to be an isomorphism.) So X has a
natural super Riemann surface structure.

Appendix A. More on Berezinians

In section 2.4, we established an isomorphism between Ber(Σ) and D−1. Here
we explain an alternative proof of this isomorphism that requires less compu-
tation and more knowledge about Berezinians.

First, recall that for every vector space V of dimension a|b, one defines a
one-dimensional vector space Ber(V ), the Berezinian of V , of statistics (−1)b.
As explained for instance in section 3.1 of [32], to every basis e1 . . . | . . . ρb of
V , there is a corresponding basis element [e1 . . . | . . . ρb] of Ber(V ). If a new
basis e′1 . . . | . . . ρ′b is obtained from e1 . . . | . . . ρb by a linear transformation W ,
then [e′1 . . . | . . . ρ′q] = Ber(W )[e1 . . . | . . . ρb]. (Here Ber(W ) is the Berezinian
of the linear transformation W , the superanalog of the determinant.) If V
varies as the fibers of a vector bundle R → X for some supermanifold X,
then by applying this construction fiberwise, we make a line bundle over X
that we call Ber(R), the Berezinian of R. If R is a holomorphic vector bundle
over a complex supermanifold, then Ber(R) is a holomorphic line bundle, and
in that case we denote it as Ber(R).

We will phrase the argument that follows using a slightly different def-
inition of the Berezinian of a vector bundle. (This alternative definition is
presented here for variety, but will actually be slightly less precise than what
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was said in the last paragraph, since – in the form described here – we will
define the Berezinian line bundle only up to isomorphism.) We leave it to
the reader to relate the two definitions. Picking an open cover Uα of X, sup-
pose that the vector bundle R can be defined by transition functions rαβ on
intersections Uα ∩ Uβ , obeying the usual conditions such as the requirement
that

(A.1) rαβrβγrγα = 1

on triple intersections Uα ∩ Uβ ∩ Uγ . Then we define the line bundle Ber(R)
via the transition functions r∗αβ = Ber(rαβ). The multiplicative property of
the Berezinian of a matrix together with (A.1) ensures that r∗αβr

∗
βγr

∗
γα = 1

in Uα ∩ Uβ ∩ Uγ , so the objects r∗αβ really are transition functions of a line
bundle, which we will call Ber(R). If R has purely bosonic fibers, Ber(R)
reduces to what is usually called the determinant line bundle of R. If R is
a holomorphic vector bundle over a complex supermanifold, then Ber(R) is
obviously a holomorphic line bundle.

Now suppose that we are given an exact sequence of vector bundles over
X,

(A.2) 0 → Q → R → S → 0.

This means that transition functions of R can be put in the triangular form

(A.3) rαβ =
(
qαβ cαβ
0 sαβ

)
,

where qαβ and sαβ are, respectively, transition functions for Q and for S. (q,
r, and s all act in general on both odd and even variables; we have not tried
to display this in (A.3).) From this triangular form, it follows that

(A.4) Ber(rαβ) = Ber(qαβ)Ber(sαβ).

Ber(qαβ) and Ber(sαβ) are transition functions for the line bundles Ber(Q)
and Ber(S), so their products Ber(qαβ)Ber(sαβ) are transition functions for
the tensor product Ber(Q)⊗Ber(S). Thus (A.4) gives a natural isomorphism
Ber(R) ∼= Ber(Q) ⊗ Ber(S) for every exact sequence (A.2). This generalizes
the analogous isomorphism for determinant line bundles in the purely bosonic
case. The isomorphism Ber(R) ∼= Ber(Q) ⊗ Ber(S) is clearly holomorphic in
the case of an exact sequence of holomorphic vector bundles.
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The cotangent bundle of a super Riemann surface appears in the exact
sequence (2.29):

(A.5) 0 → D−2 → T ∗Σ → D−1 → 0.

This implies a natural isomorphism

(A.6) Ber(T ∗Σ) ∼= Ber(D−2) ⊗ Ber(D−1).

Now if λ is a nonzero complex number which we regard as a 1 × 1 matrix
acting on a vector space E of dimension 1|0, then Berλ = λ, but if E has
dimension 0|1, then Berλ = λ−1. This follows directly from the definition of
the Berezinian of a matrix. For a line bundle L → X, considering that the
passage from L to Ber(L) involves taking the Berezinians of 1 × 1 matrices
(namely the transition functions of L), we see that Ber(L) ∼= L if L has bosonic
fibers, but Ber(L) ∼= L−1 if L has fermionic fibers. In (A.6), D−2 has bosonic
fibers, while D−1 is fermionic, so finally we get Ber(T ∗Σ) ∼= D−2 ⊗D ∼= D−1.
But Ber(T ∗Σ) is what we usually call Ber(Σ).

Appendix B. More on pictures

Here we will make a few remarks on physical states or vertex operators in
superstring theory for different values of the picture number. The goal is to
make contact with observations of section 4.3 about how the moduli space
of super Riemann surfaces can be modified to accommodate different picture
numbers.

The commuting ghosts of superstring theory are a pair of free fields β
and γ of conformal dimension 3/2 and −1/2, respectively. (They appear in
eqn. (3.12) along with their anticommuting partners.) Their mode expansions
read

(B.1) β(z) =
∑
n

z−n−3/2βn, γ(z) =
∑
n

z−n+1/2γn.

n takes values in Z + ε, where ε = 1/2 in the NS sector, and 0 in the Ra-
mond sector. The ghost vacuum |q〉 with picture number q is defined by the
conditions

βn|q〉 = 0, n > −q − 3/2
γn|q〉 = 0, n ≥ q + 3/2.(B.2)
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Superstring theory also has anticommuting ghosts b and c of conformal di-
mensions 2 and −1, respectively, and expansions

(B.3) b(z) =
∑
n

z−n−2bn, c(z) =
∑
n

z−n+1cn.

We want to consider a physical state |Ψ〉 of the combined system for which
the commuting ghosts are in the state |q〉. We also assume that

cn|Ψ〉 =0, n ≥ 1
bn|Ψ〉 =0, n ≥ 0.(B.4)

(For free fermions as opposed to free bosons, there is no close analog of picture
number, so we do not introduce a free parameter here.) Thus the dependence
of |Ψ〉 on the superghosts is completely fixed, but so far we have said nothing
about the matter part of the state.

A physical state must be annihilated by the BRST operator

(B.5) Q =
∑

n∈Z+ε

γnG−n +
∑
m∈Z

cmL−m + . . .

where Gn and Lm are respectively the odd and even generators of the su-
per Virasoro algebra. These operators can be realized by the superconformal
vector fields

(B.6) Gn = zn+1/2(∂θ − θ∂z), Lm = −
(
zm+1∂z + m + 1

2 zmθ∂θ

)
,

from which one can read off their commutation relations. The conditions for
a state of the form described above to be annihilated by Q are

Gn|Ψ〉 =0, n ≥ −q − 1/2
Ln|Ψ〉 =0, n ≥ 0.(B.7)

So, setting r = n + 1/2, the state |Ψ〉 is annihilated by the operators that
represent the vector fields

(B.8) zr(∂θ − θ∂z), r ≥ −q,

as well as

(B.9) zm+1∂z + m + 1
2 zmθ∂θ, m ≥ 0.



202 Edward Witten

We see that this construction will not work unless q < 0. If q = 0, the
constraints (B.7) include G−1/2|Ψ〉 = 0, which implies that |Ψ〉 is annihilated
by L−1 = G2

−1/2; when added to the constraints (B.7), this becomes too
strong and forces the matter part of the state |Ψ〉 to be trivial. Things are
even worse if q > 0. Then we would get the constraint generated by G−3/2
and by the time we close the constraints on a Lie algebra, we would find that
|Ψ〉 is annihilated by the entire super Virasoro algebra.

However, the above construction makes perfectly good sense if q < 0.
In fact, in section 4.3, we made a proposal for what should be the sheaf S ′

of superconformal vector fields in the presence of a puncture associated to
a vertex operator of picture number q < 0. The proposal was precisely that
sections of S ′ should have the behavior given in eqns. (B.8) and (B.9) near
z = θ = 0.

Since the constraints obeyed by the vertex operators that we have just
introduced are those in eqn. (B.7), the vector fields that we should regard as
symmetry generators when we construct a moduli space of super Riemann
surfaces in which those vertex operators are inserted are those in eqns. (B.8)
and (B.9). The corresponding supermoduli spaces make perfect sense and
were described in section 4.3. These supermoduli spaces coincide with the
standard ones if and only if q has the canonical value −1 for the NS sector,
or −1/2 for the R sector. Precisely in these cases, the appropriate vertex
operators of the matter sector are the usual superconformal primaries.

For q less than the canonical values −1 and −1/2, the conditions obeyed
by the vertex operators are different. We lose some constraints on |Ψ〉, but we
gain some gauge-invariances |Ψ〉 → |Ψ〉 + Gn|χ〉, 0 ≤ n ≤ −q − 3/2. The net
effect is that the space of physical states is the same. For example, see [63, 64]
for proofs of this assertion. For q < −1 or q < −1/2, the extra states Gn|χ〉
that should decouple from superstring scattering amplitudes are projected
out when one integrates over the extra odd moduli that exist for the given
value of q.

What about vertex operators with picture number q ≥ 0? They certainly
exist as well; inevitably, in view of what we have explained, they take a
more complicated form than the operators described above. In fact, in [44], a
natural picture-changing operation was described that increases q by 1. This
operation is very useful in computing perturbative superstring amplitudes of
low orders. In [25], it was interpreted as expressing the result of integrating
over one of the odd moduli. (The odd modulus in question is represented by a
gravitino with delta function support at the position of the vertex operator.)
In genus zero, one can certainly calculate with vertex operators of any picture
number. It seems unlikely – at least to the author – that in general there
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is a natural recipe to calculate genus g scattering amplitudes using vertex
operators of q ≥ 0, because there is no good way in general to remove an
odd modulus from the supermoduli space M defined at a canonical picture
number.

Appendix C. Picture-changing on a super Riemann surface

In section 8.2, we made use of a map described in [11] from a holomorphic
section σ of Ber(Σ) to a closed holomorphic 1-form μ. In local superconformal
coordinates z|θ, this map takes σ = φ(z|θ)[dz|dθ] to the closed holomorphic
1-form

(C.1) μ = φ(z|θ)dθ + (dz − θdθ)Dθφ.

(We take σ to be even and φ(z|θ) to be odd.)
It is not immediately obvious why this map does not depend on the choice

of local superconformal coordinates, or why μ is closed. However, a natural
explanation has been given in [30]. First of all, since σ is an integral form
while μ is a differential form, the map from σ to μ involves “picture-changing.”
Thus, we can represent σ as a function on ΠTΣ (this formalism is reviewed
in section 3.2 of [32]):

(C.2) σ = φ(z|θ)dzδ(dθ).

Similarly, μ as already written in eqn. (C.1) is naturally understood as a
function on ΠTΣ. But these are different kinds of function; μ has a polyno-
mial dependence on dθ while σ in its dependence on dθ is a delta function
supported at the origin. A transformation from one type of function to the
other is analogous to picture-changing in superstring perturbation theory.

A general picture-changing operation on a supermanifold M has been
defined in [30] and was reviewed in [32], section 4.2. The operation can be
defined whenever one is given a rank 0|1 subbundle L of TM . So a natural
example is the case that M is a super Riemann surface Σ, with L being
the rank 0|1 subbundle D ⊂ TΣ that defines the superconformal structure.
Roughly, picture-changing is defined by integration over the orbits generated
by sections of L. Any nonzero local section of L can be used to generate
the orbits and evaluate the picture-changing transformation. In the super
Riemann surface case, we can work in superconformal coordinates z|θ and
pick the usual section Dθ = ∂θ + θ∂z of D. The coordinate transformation
generated by Dθ is

z → z + ηθ
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θ → θ + η(C.3)

with a fermionic parameter η. This change of coordinates maps σ to

σ∗ =φ(z + ηθ|θ + η)d(z + ηθ)δ(dθ + dη)
=(φ + ηDθφ)(dz − ηdθ + dη · θ)δ(dθ + dη).(C.4)

To complete the picture-changing operation, we now define μ by integrating
over the new odd and even variables η and dη:

(C.5) μ =
∫

D(η, dη)σ∗.

Since μ is obtained by integrating over a single odd variable and its differen-
tial, in general its picture number differs by 1 from that of σ. In the present
example, the integral over the even variable dη is performed using using the
delta function δ(dθ + dη) in eqn. (C.4), and the integral over η is a Berezin
integral that picks out the coefficient of the term linear in η. Upon carrying
out these steps, one arrives at the formula (C.1) for μ. General arguments
show that this picture-changing operation maps a closed form (such as σ) to
a closed form of picture number greater by 1 (such as μ).

Thus, as explained in [30], the possibly mysterious-looking transforma-
tion from σ to μ is a special case of a general notion of picture-changing on
supermanifolds.

The important result (8.11) of section 8.2

(C.6)
∫
γ
σ =

∫
γred

μ,

is an immediate corollary of this explanation of the relation between σ and μ.
Given the 1-cycle γred ⊂ Σ, we can thicken it to a 1|1-cycle γ ⊂ Σ by simply
moving γred in the direction of a nonzero section of D. Thus, we can assume
that γ fibers over γred with fibers generated by D. The result (C.6) comes
by evaluating the integral on the left hand side by first integrating over the
fibers of γ → γred to reduce to an integral over γred. Almost by definition,
this operation transforms σ into μ and

∫
γ σ into

∫
γred

μ.

C.1. Picture-changing in the presence of a Ramond divisor

It is useful to extend this analysis slightly to the case that the superconformal
structure of Σ has singularities along Ramond divisors. As usual, the local
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model near a Ramond divisor F at z = 0 is that the superconformal structure
is generated in local coordinates z|θ by

(C.7) D∗
θ = ∂θ + zθ∂z.

Equivalently, it is defined by the 1-form

(C.8) �∗ = dz − zθdθ.

The picture-changing procedure can still be used to map a holomorphic
section σ = φ(z|θ)[dz|dθ] of Ber(Σ) to a closed holomorphic 1-form μ. One
way to do this is to work away from z = 0 with superconformal coordinates
z|ψ, where ψ =

√
zθ. In these coordinates, we can simply use eqn. (C.1),

which can then be transformed back to the coordinates z|θ, which are regular
at z = 0. However, it is just as easy and more instructive to repeat the above
derivation. Eqn. (C.4) becomes

σ∗ =φ(z + zηθ|θ + η)d(z + zηθ)δ(dθ + dη)
=(φ + ηD∗

θφ)(dz(1 + ηθ) − zηdθ + zdη · θ)δ(dθ + dη).(C.9)

The Berezin integral over η and dη now gives

(C.10) μ = D∗
θφ(dz − zθdθ) + φ(dz θ + z dθ).

This formula has the important property that the coefficient of dθ vanishes
at z = 0. In other words, if σ is an arbitrary holomorphic section of Ber(Σ),
then μ vanishes when restricted to the Ramond divisor F at z = 0, though
it is otherwise an arbitrary closed holomorphic 1-form. (The restriction of a
1-form to the divisor z = 0 is defined by setting z = dz = 0.) Thus in the
presence of a Ramond divisor, the picture-changing map from a holomorphic
section of Ber(Σ) to a closed holomorphic 1-form may fail to be a 1− 1 map.

To understand why this happens, let us consider the special case that
Σ is split, with reduced space Σred. In the absence of Ramond divisors, Σ
is the total space of the fibration ΠT 1/2 → Σred, where T 1/2 is a square
root of the tangent bundle of Σred. In the presence of Ramond punctures at
points p1, . . . , pnR ∈ Σred, corresponding to divisors F1, . . . ,FnR ∈ Σ, T 1/2 is
replaced by a line bundle R with an isomorphism

(C.11) R2 ∼= T ⊗O(−p1 − · · · − pnR).

An odd section of Ber(Σ) has the form α(z)[dz|dθ], where now α is a section
of K ⊗R → Σred (as usual, K = T ∗Σred). Adding Ramond punctures makes
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R more negative, making it more difficult to find an odd holomorphic section
of Ber(Σ). On the other hand, a closed holomorphic 1-form which is odd takes
the form d(θf(z)), where now f(z) is a section of R−1. Adding Ramond punc-
tures makes R−1 more positive, increasing the supply of closed holomorphic
1-forms which are odd. So as soon as R is more negative than T 1/2, there
is no correspondence between closed holomorphic 1-forms and holomorphic
sections of Ber(Σ).

In the presence of Ramond punctures, to establish an isomorphism be-
tween holomorphic volume-forms σ and closed holomorphic 1-forms μ, we
need to modify the definitions. There are two ways to do this: (i) we can
require μ to vanish when restricted to a Ramond divisor F; (ii) we can allow
σ to have a pole along F. The first possibility is clear; let us examine the
second one, in the context of the local model (C.7). A short calculation shows
that if σ = (1/z)[dz|dθ], then μ = dθ. On the other hand, if σ = (θ/z)[dz|dθ],
then μ = dz/z has a pole at z = 0. So we will generate, locally, an arbitrary
closed holomorphic 1-form that is regular at z = 0 if we allow σ to have a
pole whose residue is independent of θ or in other words is constant along the
Ramond divisor.

The condition that the residue of the pole is independent of θ has a natural
interpretation. On a complex manifold or supermanifold Σ of any dimension,
a section of Ber(Σ) that has a simple pole along a divisor F has a residue
that is a section of Ber(F); the residue does not depend on a choice of local
coordinates. In dimension 1|1, with F defined by the condition z = 0, the
residue of

(C.12) σ = a(z|θ)
z

[dz|dθ],

where a(z|θ) is a local holomorphic function, is the section

(C.13) λ = a(0|θ)[dθ]

of Ber(F). The condition that a(0|θ) is independent of θ is equivalent to saying
that λ is exact. In one direction, this follows from the fact that if a(0|θ) is a
constant c, then λ = c[dθ] = d(−cθδ′(dθ)). In the opposite direction, if a(0|θ)
has a non-trivial dependence on θ, then

∫
F
λ �= 0 (for example,

∫
F
θ[dθ] = 1),

so λ is not exact.
In short, in the presence of a Ramond divisor F, we can restore the 1− 1

correspondence between a section σ of Ber(Σ) and a closed holomorphic 1-
form μ by either requiring μ to vanish along F or allowing σ to have a simple
pole along F with exact residue. More generally, we can make a mixture of
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these two choices. Suppose that F = ∪nR
i=1Fi, where the Fi are minimal Ra-

mond divisors modeled by eqn. (C.7). If Σ is split, the Fi correspond to points
pi ∈ Σred. Along each of the Fi, we can separately decide to allow σ to have
a pole or to require μ to vanish. So in general, we make any decomposition
F = F′ ∪ F′′, where F′ is the union of some of the Fi and F′′ is the union of
the others. Then we define Ber ′(Σ) to be the sheaf of sections of Ber(Σ) that
may have simple poles along F′ with exact residues. Picture-changing gives
a 1 − 1 map from sections of Ber ′(Σ) to closed holomorphic 1-forms with
vanishing restriction to F′′.
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