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Refined SU(3) Vafa-Witten invariants and modularity
Lothar Göttsche and Martijn Kool

Abstract: We conjecture a formula for the refined SU(3) Vafa-
Witten invariants of any smooth surface S satisfying H1(S,Z) =
0 and pg(S) > 0. The unrefined formula corrects a proposal by
Labastida-Lozano and involves unexpected algebraic expressions
in modular functions. We prove that our formula satisfies a refined
S-duality modularity transformation.

We provide evidence for our formula by calculating virtual χy-
genera of moduli spaces of rank 3 stable sheaves on S in examples
using Mochizuki’s formula. Further evidence is based on the re-
cent definition of refined SU(r) Vafa-Witten invariants by Maulik-
Thomas and subsequent calculations on nested Hilbert schemes by
Thomas (rank 2) and Laarakker (rank 3).

1. Introduction

1.1. Physics background

In 1994, C. Vafa and E. Witten proposed tests for S-duality of N = 4 su-
persymmetric Yang-Mills theory on a real 4-manifold M [VW]. This theory
involves coupling constants θ, g combined as follows

τ := θ

2π + 4πi
g2 .

S-duality predicts that the transformation τ �→ −1/τ maps the partition
function for gauge group G to the partition function with Langlands dual
gauge group LG. Vafa-Witten consider M underlying a smooth projective
surface S over C and G = SU(r). Furthermore, they consider a topological
twist of the original theory. Roughly speaking, the partition function is the
generating function of topological Euler characteristics of moduli spaces of
instantons and the transformation property implies that it is a modular form.

Referring in part to the mathematics literature [Kly, Yos1, Yos2, Nak1,
Nak2], Vafa-Witten perform non-trivial modularity checks for S = P2, K3,
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blow-ups, and ALE spaces. Most of these checks are for rank r = 2. In [VW,
Sect. 5], they predict a formula for their invariants when r = 2 and S contains
a smooth curve in its canonical linear system. This formula was generalized to
arbitrary S satisfying pg(S) > 0 by R. Dijkgraaf, J.-S. Park, and B. Schroers
[DPS]. At the time, there were no purely mathematical verifications of these
“general type” formulae, due to the lack of a precise algebro-geometric defi-
nition of Vafa-Witten invariants.

1.2. Tanaka-Thomas’s definition

Recently, Y. Tanaka and R. P. Thomas proposed an algebro-geometric defi-
nition of SU(r) Vafa-Witten invariants [TT1, TT2]. Let S be a smooth pro-
jective surface over C with polarization H. For any line bundle L, consider
the moduli space of H-stable Higgs pairs

N⊥ := NH
S (r, L, c2) =

{
(E, φ) : detE ∼= L, trφ = 0, c2(E) = c2

}
.

Here E is a rank r torsion free sheaf, φ : E → E ⊗KS is a morphism, called
the Higgs field, and the pair (E, φ) satisfies a (Gieseker) stability condition
with respect to H. Assuming stability and semistability coincide, Tanaka-
Thomas show that N⊥ admits a (delicate) symmetric perfect obstruction
theory. The C∗ scaling action on the Higgs field lifts to N⊥, which is therefore
non-compact. However, the fixed locus (N⊥)C∗ is compact and the SU(r)
Vafa-Witten invariants are defined by virtual localization

(1) VWH
S (r, L, c2) :=

∫
[NH

S (r,L,c2)C∗ ]vir

1
e(Nvir) ∈ Q.

There are two types of C∗ fixed Higgs pairs (E, φ). Higgs pairs with φ = 0
form a component isomorphic to the moduli space M := MH

S (r, L, c2) of H-
stable rank r torsion free sheaves E with detE ∼= L and c2(E) = c2. We call
this the instanton branch [DPS]. The contribution of the instanton branch to
(1) is

(−1)vd(M)evir(M) ∈ Z,

i.e. the virtual Euler characteristic defined by B. Fantechi and the first-named
author in [FG] (see also [CFK]) and where

(2) vd = 2rc2 − (r − 1)c21 − (r2 − 1)χ(OS)

is the virtual dimension of M . We refer to the connected components of
(N⊥)C∗ consisting of Higgs pairs with φ �= 0 as the monopole branch [DPS].
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Since Vafa-Witten invariants are defined by localization, the contribution of
the monopole branch is in general a rational number. When degKS < 0
or KS

∼= OS , there are no contributions from the monopole branch, M is
smooth, and evir(M) equals the topological Euler characteristic e(M) of M
[TT1, Prop. 7.4].

Tanaka-Thomas’s definition has been generalized in two directions:

• adding strictly H-semistable Higgs pairs [TT2],
• y-refinement VWH

S (r, L, c2, y) defined by D. Maulik and Thomas [MT]
(see also [Tho]).

The contribution of the instanton branch to VWH
S (r, L, c2, y) equals [Tho]

(−1)vd(M)χvir
−y(M) := (−1)vd(M)y−

vd(M)
2 χvir

−y(M) ∈ Z[y±
1
2 ],

which is the (normalized) virtual χy-genus defined in [FG].

1.3. Previous calculations

When degKS < 0 or KS
∼= OS , Vafa-Witten invariants are Euler character-

istics of smooth moduli spaces (assuming “stable equals semistable”). Modu-
larity of generating functions of Euler characteristics of smooth moduli spaces
of sheaves has been verified by direct calculation in many examples; mostly
for rank 2 (see references in [GK1]). For some higher rank calculations, see
[BN, Koo, Man, Moz, Wei].

Henceforth, S is a smooth projective surface such that b1(S) = 0 and
pg(S) > 0. Except for S = K3 or an elliptic surface [GH, Yos3], until recently
very few calculations of invariants of moduli spaces MH

S (r, L, c2) were known.
The following invariants were recently calculated for some examples of general
type surfaces:

• χvir
y (MH

S (2, c1, c2)) for roughly c2 ≤ 7, and c2 ≤ 30 when y = −1
[GK1],1

• monopole contribution to VWH
S (2, L, c2) for c2 ≤ 3 in [TT1].

In fact, conjectural formulae exist in both cases following from (generaliza-
tions of) a formula from Vafa-Witten [VW, (5.38)]. See Remark 1.7. The
above-mentioned calculations all match the conjectural formulae, which pro-
vides strong evidence that Tanaka-Thomas’s definition is correct.

1See [GK2] for refinements to virtual elliptic genus/cobordism class.
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1.4. Instanton branch

Our first conjecture concerns the virtual χy-genera of MH
S (3, c1, c2) when

there are no rank 3 strictly Gieseker H-semistable sheaves on S with Chern
classes c1, c2. The rank 1 case was covered by [GS] and, as just mentioned, a
conjectural formula for the rank 2 case was proposed in [GK1].

Denote by SW(a) the Seiberg-Witten invariant of S for class a ∈ H2(S,
Z).2 We refer to a as a Seiberg-Witten basic class when SW(a) �= 0.

The A2-lattice consists of Z2 together with bilinear form 〈v, w〉 := vtAw
defined by

(3) A :=
(

2 −1
−1 2

)
.

We also need the dual lattice A∨
2 consisting of Z2 and 〈v, w〉∨ := vtA∨w where

(4) A∨ = A−1 = 1
3

(
2 1
1 2

)
.

Let ε := e
2πi
3 . The following theta functions feature in our conjectures

ΘA2,(0,0)(x, y) :=
∑
v∈Z2

(x2)
1
2 〈v,v〉e2πi〈v,(z,z)〉

=
∑

(m,n)∈Z2

x2(m2−mn+n2)ym+n,

ΘA2,(1,0)(x, y) :=
∑
v∈Z2

(x2)
1
2 〈v+( 1

3 ,−
1
3 ),v+( 1

3 ,−
1
3 )〉e2πi〈v,(z,z)〉

=
∑

(m,n)∈Z2

x2(m2−mn+n2+m−n+ 1
3 )ym+n,

ΘA∨
2 ,(0,0)(x, y) :=

∑
v∈Z2

(x6)
1
2 〈v,v〉

∨
e2πi〈v,(z,z)〉∨

=
∑

(m,n)∈Z2

x2(m2+mn+n2)ym+n,

ΘA∨
2 ,(0,1)(x, y) :=

∑
v∈Z2

(x6)
1
2 〈v,v〉

∨
e2πi〈v,(z,z)+(1,−1)〉∨

=
∑

(m,n)∈Z2

εm−nx2(m2+mn+n2)ym+n,

2We use Mochizuki’s convention: SW(a) = S̃W(2a−KS) with S̃W(b) the usual
Seiberg-Witten invariant in class b.
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where x = e
πiτ
3 , y = e2πiz, (τ, z) ∈ H×C are the modular parameters (which

feature later), and H denotes the upper half plane. We also use the normalized
Dedekind eta function η(x) =

∏
n>0(1 − xn). Furthermore, we abbreviate

χ := χ(OS), K := KS , bi(S) := bi, pg := pg(S), and e := e(S) =
∫
S c2(S).

Conjecture 1.1. Let S be a smooth projective surface satisfying b1 = 0
and pg > 0. Let H, c1, c2 be chosen such that there are no rank 3 strictly
Gieseker H-semistable sheaves on S with Chern classes c1, c2 and let M :=
MH

S (3, c1, c2). Then χvir
−y(M) equals the coefficient of xvd(M) of

9
(

1
3
∏∞

n=1(1 − x2n)10(1 − x2ny)(1 − x2ny−1)

)χ(ΘA∨
2 ,(0,1)(x, y)
3η(x6)3

)−K2

×
∑
a,b

SW(a) SW(b) ε(a−b)c1 Z+(x, y)ab Z−(x, y)(K−a)(K−b),

where the sum is over all (a, b) ∈ H2(S,Z) ×H2(S,Z) and Z±(x, y) are the
solutions to the following quadratic equation in ζ

ζ2 − (Z(x, y)2 + 3Z(x, y)Z(x, 1)) ζ + Z(x, y) + 3Z(x, 1) = 0,

where Z(x, y) :=
ΘA∨

2 ,(0,0)(x,y)
ΘA∨

2 ,(0,1)(x,y)
.

Let S,H, c1 be chosen such that there exist no rank 3 strictly Gieseker
H-semistable sheaves on S with first Chern class c1. We define

(5) Zinst
S,H,r,c1(q, y) := q−

1
2rχ+ r

24K
2 ∑

c2

χvir
−y(MH

S (r, c1, c2)) q
vd
2r ,

which we refer to as the instanton contribution to the Vafa-Witten generating
function and where vd is given by (2). The normalization becomes important
in Section 1.6 when we discuss modularity. Let φ−2,1 be the weak Jacobi form
of weight −2 and index 1 with Fourier expansion

φ−2,1(q, y) = (y
1
2 − y−

1
2 )2

∞∏
n=1

(1 − qny)2(1 − qny−1)2

(1 − qn)4 .

Denote the discriminant modular form by Δ(q) = q
∏

n>0(1 − qn)24.

Corollary 1.2. Let S be a smooth projective surface satisfying b1 = 0 and
pg > 0. Let H, c1 be such that there are no rank 3 strictly Gieseker H-
semistable sheaves on S with first Chern class c1. Assume Conjecture 1.1
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holds for S,H, c1 and all c2. Then we have

Zinst
S,H,3,c1(q, y)

(y 1
2 − y−

1
2 )χ

= 3
(

1
3φ−2,1(q

1
3 , y) 1

2 Δ(q 1
3 ) 1

2

)χ(ΘA∨
2 ,(0,1)(q

1
6 , y)

3η(q)3

)−K2

×
∑
a,b

SW(a) SW(b) ε(a−b)c1 Z+(q
1
6 , y)ab Z−(q

1
6 , y)(K−a)(K−b)

+ 3ε2c21
(

1
3φ−2,1(ε2q

1
3 , y) 1

2 Δ(ε2q 1
3 ) 1

2

)χ(ΘA∨
2 ,(0,1)(εq

1
6 , y)

3η(q)3

)−K2

×
∑
a,b

SW(a) SW(b) ε(a−b)c1 Z+(εq
1
6 , y)ab Z−(εq

1
6 , y)(K−a)(K−b)

+ 3(−1)χεc21
(

1
3φ−2,1(εq

1
3 , y) 1

2 Δ(εq 1
3 ) 1

2

)χ(ΘA∨
2 ,(0,1)(ε2q

1
6 , y)

3η(q)3

)−K2

×
∑
a,b

SW(a) SW(b) ε(a−b)c1 Z+(ε2q
1
6 , y)ab Z−(ε2q

1
6 , y)(K−a)(K−b).

Proof. Define

Zinst
S,H,3,c1(x, y) :=

∑
c2

χvir
−y(MH

S (3, c1, c2))xvd.

Denote the formula of Conjecture 1.1 by ψS,c1(x, y) =
∑

n≥0 ψn(y)xn. Then

Zinst
S,H,3,c1(x, y) =

∑
n≡−2c21−8χ mod 3

ψn(y)xn =
2∑

k=0

1
3ε

k(2c21+8χ)ψS,c1(εkx, y).

The result follows by setting x = q
1
6 and multiplying by q−

1
6χ+ 1

8K
2 .

Remark 1.3. The rank 2 analog of Conjecture 1.1 was given in [GK1,
Conj. 6.7]. Assuming the absence of strictly Gieseker semistables sheaves,
conjecturally

Zinst
S,H,2,c1(q, y)

(y 1
2 − y−

1
2 )χ

= 2
(

1
2φ−2,1(q

1
2 , y) 1

2 Δ(q 1
2 ) 1

2

)χ(
θ3(q, y) + θ2(q, y)

2η(q)2

)−K2

×
∑
a

SW(a) (−1)ac1
(
θ3(q, y) + θ2(q, y)
θ3(q, y) − θ2(q, y)

)aK
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+ 2ic21
(

1
2φ−2,1(−q

1
2 , y) 1

2 Δ(−q
1
2 ) 1

2

)χ(
θ3(q, y) + iθ2(q, y)

2η(q)2

)−K2

×
∑
a

SW(a) (−1)ac1
(
θ3(q, y) + iθ2(q, y)
θ3(q, y) − iθ2(q, y)

)aK

,

where i =
√
−1 and

θ3(q, y) =
∑
n∈Z

qn
2
yn, θ2(q, y) =

∑
n∈Z+ 1

2

qn
2
yn.

We note that θ3(q, y) + θ2(q, y) is the theta function of the lattice A∨
1 . This

is a refinement of lines 2+3 of [VW, (5.38)], which inspired this formula.

Remark 1.4. Let S be any smooth projective surface satisfying b1 = 0 and
pg > 0. As mentioned earlier, for any H, r, c1, Tanaka-Thomas define SU(r)
Vafa-Witten invariants in the presence of Gieseker strictly H-semistable Higgs
pairs [TT2] (combined with [Tho] for the y-refinement). We conjecture that
the formulae of Corollary 1.2 and Remark 1.3 also holds when there are strictly
semistable sheaves. This expectation is based on the fact that Vafa-Witten’s
original formula [VW, (5.38)] should hold for any c1. However, we have done
no verifications when strictly semistable sheaves are present. See [TT2, Tho]
for refined/unrefined calculations on K3 in the semistable case.

In Section 2, we verify Conjecture 1.1, modulo xN for some N , for:

(1) K3 surfaces, and their blow-ups in one or two points,
(2) elliptic surfaces of type E(3), E(4), E(5), and blow-ups of elliptic sur-

faces of type E(3),
(3) double covers of P2 branched along a smooth octic and their blow-ups,
(4) double covers of P1 × P1 branched along a smooth curve of bidegree

(6, 6) and their blow-ups,
(5) smooth quintic surfaces in P3 and their blow-ups.

We also present a numerical version of Conjecture 1.1, which can be seen as
a statement about intersection numbers on Hilbert schemes of points (Sec-
tion 2.4). This numerical conjecture implies Conjecture 1.1 for surfaces sat-
isfying b1 = 0, pg > 0, and whose only Seiberg-Witten basic classes are 0
and K �= 0. We test our numerical conjecture in various examples, which
include some minimal general type surfaces found by V. Kanev, F. Catanese
and O. Debarre, and U. Persson (Section 2.4).
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These verifications are obtained by writing χvir
y (M) in terms of (rank 3

descendent) Donaldson invariants of S. By Mochizuki’s rank 3 formula [Moc,
Thm. 7.5.2], the latter can be expressed in terms of Seiberg-Witten invariants
and integrals over products of Hilbert schemes of points on S. We show that
these integrals are determined by their values on S = P2 and P1 × P1, which
can be calculated by localization. A similar strategy was employed in the rank
2 case in [GK1, GK2] (which in turn was inspired by [GNY1, GNY3]).

1.5. Monopole branch

For any H, r, c1, c2, we denote the generating functions of y-refined Vafa-
Witten invariants by

ZS,H,r,c1(q, y) := q−
1
2rχ+ r

24K
2 ∑

c2

(−1)vd VWH
S (r, c1, c2, y) q

vd
2r ,

where vd is given by (2). We write

ZS,H,r,c1(q, y) = Zinst
S,H,r,c1(q, y) + Zmono

S,H,r,c1(q, y),

where the first term on the RHS is the contribution from the instanton branch
(i.e. (5)) and the second term is the contribution from the monopole branch.
We view these as Fourier expansions in modular parameters

q = e2πiτ , y = e2πiz, (τ, z) ∈ H× C.

For all a, b ∈ H2(S,Z), define (suppressing r from the notation)

(6) δa,b :=
{

1 if a− b ∈ rH2(S,Z)
0 otherwise.

Conjecture 1.5. Let S be a smooth projective surface satisfying H1(S,Z) = 0
and pg > 0. For any H, c1 we have

Zmono
S,H,3,c1(q, y)

(y 1
2 − y−

1
2 )χ

=
(

1
φ−2,1(q3, y3) 1

2 Δ(q3) 1
2

)χ(
ΘA2,(1,0)(q

1
2 , y)

η(q)3

)−K2

×
∑
a,b

SW(a) SW(b) δc1+a,bW+(q
1
2 , y)abW−(q

1
2 , y)(K−a)(K−b),
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where the sum is over all (a, b) ∈ H2(S,Z) ×H2(S,Z) and W±(x, y) are the
solutions of the following quadratic equations in ω

ω2 − (W (x, y)2 + 3W (x, y)W (x, 1))ω + W (x, y) + 3W (x, 1) = 0,

where W (x, y) := ΘA2,(0,0)(x,y)
ΘA2,(1,0)(x,y)

.

Remark 1.6. Note that the formula for the instanton branch (Conjecture 1.1)
only features the lattice A∨

2 whereas the formula for the monopole branch only
involves the lattice A2. We will see later that (part of) the instanton branch
gets swapped with the monopole branch under τ �→ −1/τ (Section 4). More-
over, we have (Lemma 4.9)

W (x3, y) = Z(x, y) + 2
Z(x, y) − 1 .

Remark 1.7. We have a parallel conjecture in the rank 2 case:

Zmono
S,H,2,c1(q, y)

(y 1
2 − y−

1
2 )χ

=
(

1
φ−2,1(q2, y2) 1

2 Δ(q2) 1
2

)χ(
θ3(q, y)
η(q)2

)−K2

(−1)χ

×
∑
a

SW(a) δc1,a

(
θ3(q, y)
θ2(q, y)

)aK

,

where we note that θ3(q, y) is the theta function of the A1 lattice.

Altogether 1.3+1.7 and 1.2+1.5 provide closed conjectural formulae for
the y-refined SU(2) and SU(3) Vafa-Witten invariants of any polarized surface
(S,H) satisfying b1 = 0 and pg > 0, and any c1. We explore some consequences
of these formulae, e.g. to blow-ups, in Section 5.

Remark 1.8. For any prime rank r > 2, there exists a formula for SU(r)
Vafa-Witten invariants in the physics literature [LL, (5.13)]. This formula
supposedly applies to any smooth projective surface S such that H1(S,Z) = 0
and |K| contains a smooth connected curve. However, this formula is incorrect
as can be seen from the following example. Let S → P1 be an elliptic surface
with section, 36 rational nodal fibres, and no further singular fibres. Let F be
the class of a fibre and B the class of a section. Then |K| = |F | and taking
c1 = B, Labastida-Lozano’s formula reduces to zero. However, taking c2 = 3
and a suitable polarization H, a result of T. Bridgeland [Bri] implies that
MH

S (3, B, 3) is smooth of expected dimension and consists of a single reduced
point, so evir(M) = e(M) = 1 (consistent with Conjecture 1.1).
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We have the following evidence for Conj. 1.5 and Remark 1.7 (Section 3):

• Let (S,H) be a polarized surface satisfying b1 = 0, |K| contains a
smooth connected curve, and any line bundle L on S satisfying 0 ≤
degL ≤ 1

2 degK is trivial. Take c1 = K. Then the monopole branch of
NH

S (2, c1, c2)C
∗ is smooth if and only if c2 = 0, 1, 2, 3 [TT1]. For c2 =

0, 1, 2, Thomas calculates the monopole contribution to VWH
S (2, c1,

c2, y) [Tho]. His result matches the prediction of Remark 1.7.
• Suppose S,H, c1 are as in the previous item. The monopole branch of
NH

S (3, c1, c2)C
∗ is smooth if and only if c2 = 0, 1, 2 [Laa]. For c2 = 0, 1, 2,

T. Laarakker determines the monopole contribution to VWH
S (3, c1,

c2, y). His result matches the prediction of Conjecture 1.5.
• Let (S,H) be polarized surface satisfying H1(S,Z) = 0 and pg > 0. Let
r, c1 be chosen such that r is prime and there exist no rank r strictly
Gieseker H-semistable Higgs pairs on S with first Chern class c1. Then
A. Gholampour and Thomas [GT1, GT2] express the monopole contri-
bution to the Vafa-Witten invariants in terms of (virtual) intersection
numbers on nested Hilbert schemes of points and curves on S (see also
[GSY, Tho]). Based on this result, Laarakker expresses Zmono

S,H,r,c1(q, y)
in terms of Seiberg-Witten invariants and universal power series, which
can be written in terms of intersection numbers on S[n1] × · · · × S[nr].
The latter are entirely determined on S = P2, P1 × P1 much like in
Section 2 of this paper. Localization calculations allow him to verify
Remark 1.7 and Conjecture 1.5 up to certain orders (Section 3).

1.6. Refined modularity

Let r = 1 or r > 1 prime. Assume H1(S,Z) = 0. Motivated by S-duality,
physicists predict that ZS,H,r,c1(q) only depends on [c1] ∈ H2(S,Z)/rH2(S,Z)
and is the Fourier expansion of a meromorphic function ZS,H,r,c1(τ) on H

satisfying [VW, (5.39)], [LL, (5.22)]

ZS,H,r,c1(τ + 1) = (−1)rχ e
πir
12 K2

e−
πi(r−1)

r
c21 ZS,H,r,c1(τ),

ZS,H,r,c1(−1/τ) = (−1)(r−1)χ r1− e
2

(τ
i

)− e
2 ∑

[a]
e

2πi
r

c1aZS,H,r,a(τ),(7)

where the sum is over all [a] ∈ H2(S,Z)/rH2(S,Z). We refer to the second
transformation in (7) as the S-duality transformation.

Remark 1.9. There is a subtlety in the interpretation of these statements
(and the statement of the conjecture below). More precisely: conjecturally



Refined SU(3) Vafa-Witten invariants and modularity 477

there exists a series Z̃S,H,r,c1(q) defined for any S,H, r as above and any pos-
sibly non-algebraic c1 ∈ H2(S,Z) such that:

• Z̃S,H,r,c1(q) only depends on [c1] ∈ H2(S,Z)/rH2(S,Z),
• Z̃S,H,r,c1(q) = ZS,H,r,c1(q) for algebraic classes c1 ∈ H2(S,Z),
• Z̃S,H,r,c1(q) is the Fourier expansion of a meromorphic function

Z̃S,H,r,c1(τ) on H satisfying (7).

Indeed, after multiplying by (y 1
2 −y−

1
2 )χ and setting y = 1, the expression for

Z̃S,H,2,c1(q) is obtained by summing the RHS of 1.3+1.7, which makes sense
for any c1 ∈ H2(S,Z) and which only depends on [c1] ∈ H2(S,Z)/2H2(S,Z).
Similarly for Z̃S,H,3,c1(q) using 1.2+1.5.

We conjecture the following y-refinement of (7):

Conjecture 1.10. Let S be a smooth projective surface satisfying H1(S,Z) =
0 and pg > 0. Let H be a polarization on S, r = 1 or r prime, and c1 ∈
H2(S,Z). Then ZS,H,r,c1(q, y) only depends on [c1] ∈ H2(S,Z)/rH2(S,Z) and
is the Fourier expansion of a meromorphic function ZS,H,r,c1(τ, z) on H × C

satisfying

ZS,H,r,c1(τ, z)
∣∣∣
(τ+1,z)

= (−1)rχe
πir
12 K2

e−
πi(r−1)

r
c21ZS,H,r,c1(τ, z),

ZS,H,r,c1(τ, z)
(y 1

2 − y−
1
2 )χ

∣∣∣
(−1/τ,z/τ)

= (−1)rχr1− e
2 i−

K2
2 τ−5χ+K2

2 e
2πiz2

τ

(
− r

2χ−
r(r2−1)

24 K2
)

×
∑
[a]

e
2πi
r

c1aZS,H,r,a(τ, z)
(y 1

2 − y−
1
2 )χ

,

(8)

where the sum is over all [a] ∈ H2(S,Z)/rH2(S,Z).

In Section 4, we provide the following evidence for this conjecture:

• Conjecture 1.10 holds for r = 1 and implies (7).
• For r prime, we conjecture a formula for ZK3,H,r,c1(τ, z), refining an

existing formula for ZK3,H,r,c1(τ), which satisfies Conjecture 1.10.
• Assume Remarks 1.3, 1.4, 1.7. Then Conjecture 1.10 holds for r = 2.
• Assume Conj. 1.1, 1.5, and Rem. 1.4. Then Conj. 1.10 holds for r = 3.
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2. Instanton branch

2.1. Descendent Donaldson invariants

Let S be a smooth projective surface satisfying b1 = 0. For a polarization
H, we denote by M := MH

S (r, c1, c2) the moduli space of rank r Gieseker
H-stable sheaves on S with Chern classes c1, c2. We assume there are no
rank r strictly Gieseker H-semistable sheaves on S with Chern classes c1, c2.
Consider the projections

M × S
πM

����
��

��
��

�
πS

�����������

M S

The moduli space M admits a perfect obstruction theory with virtual tangent
bundle [Moc]

T vir = RHomπ(E,E)0[1],

where E denotes the universal sheaf on M×S, (·)0 denotes trace-free part, and
RHomπM (·, ·) := RπM∗RHom(·, ·). Although the universal sheaf E may only
exist étale locally, the complex T vir always exists globally [HL, Sect. 10.2].
We have a corresponding virtual cycle

[M ]vir ∈ H2vd(M),

where vd = vd(M) is given by (2).
Next, we assume the universal sheaf E exists globally on M ×S.3 For any

σ ∈ H∗(S,Q) and α ≥ 0, we define the descendent insertion

τα(σ) := πM∗
(
ch2+α(E) ∩ π∗

S σ
)
.

Let P (E) be any polynomial in descendent insertions. Then we refer to∫
[M ]vir

P (E) ∈ Q

as a (descendent, algebraic) Donaldson invariant. These Donaldson invariants
were studied in depth by T. Mochizuki. In [GK1], we observe that χvir

y (M)
can be expressed in terms of Donaldson invariants. We recall the precise
statement.

3We will get rid of this assumption in Remark 2.3.
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Let X be a projective C-scheme and denote by K0(X) the K-group gen-
erated by locally free sheaves on X. For any vector bundle E on X, define

ΛyE :=
rk(E)∑
p=0

[ΛpE] yp ∈ K0(X)[[y]].

See [FG] for an extension of this definition to arbitrary elements of K0(X).
Furthermore, for any element E of K0(X) we set

Ty(E, t) := t− rkE
∑
k

{ch(ΛyE
∨) td(E)}k t

k,(9)

where {·}k ∈ Ak(X)Q denotes the degree k part in the Chow ring. We have
the following list of basic properties [GK1]:

• Ty(E1 + E2, t) = Ty(E1, t) Ty(E2, t) for all E1, E2 ∈ K0(X),
• Ty(L, t) = x(1+ye−xt)

1−e−xt for any line bundle L on X with c1(L) = x,
• Ty(E, 1 + y) ∈ Q[1 + y] for all E ∈ K0(X),
• Ty(E −O⊕r

X , 1 + y) = Ty(E, 1 + y) for all E ∈ K0(X) and r ≥ 0,
• Ty(E, 1 + y)

∣∣∣
y=−1

= c(E), i.e. the total Chern class of E ∈ K0(X).

Using virtual Hirzebruch-Riemann-Roch, Grothendieck-Riemann-Roch, and
Künneth decomposition, one can show the following [GK1, Prop. 2.1]:

Proposition 2.1. For S,H, r, c1, c2 as above, there exists a polynomial ex-
pression P (E) in certain descendent insertions τα(σ) and y such that

χvir
−y(MH

S (r, c1, c2)) =
∫

[MH
S (r,c1,c2)]vir

P (E).

2.2. Mochizuki’s rank 3 formula

In his remarkable book [Moc], Mochizuki derives a formula for (descendent, al-
gebraic) Donaldson invariants for any rank in terms of Seiberg-Witten invari-
ants and integrals over Hilbert schemes of points [Moc, Thm. 7.5.2]. For rank
r = 2, his formula has interesting applications to Witten’s conjecture [GNY3],
SU(2) Vafa-Witten invariants [GK1], and refinements thereof [GK1, GK2]. In
this paper, we apply Mochizuki’s formula for rank r = 3 to y-refined SU(3)
Vafa-Witten invariants.

Let S be a smooth projective surface satisfying b1 = 0 and pg > 0. As in
the introduction, we denote the Seiberg-Witten invariants of S by SW(a) and
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the Hilbert scheme of points n points on S by S[n]. The latter has a universal
subscheme

Z � � ��

q

����
��

��
�� p

����
��

��
��

� S × S[n]

S S[n].

We denote the universal ideal sheaf by IZ . When L is a line bundle on S, we
denote the corresponding rank n tautological vector bundle by L[n] := p∗q

∗L.
Consider a product of three Hilbert schemes

(10) S[n1] × S[n2] × S[n3].

Denote the pull-backs of the various universal ideal sheaves on S×∏3
i=1 S

[ni]

by I1, I2, I3. We endow (10) with a trivial C∗×C∗ action and we denote the
generators of the corresponding character group by s1, s2. Moreover

H∗(B(C∗ × C∗),Q) = H∗
C∗×C∗(pt,Q) ∼= Q[s1, s2],

where
s1 = cC

∗×C∗

1 (s1), s2 = cC
∗×C∗

1 (s2)

are the corresponding equivariant parameters. For later use, we introduce
“characters”4

(11) T1 = s
−1
1 T2 = s

1
2
1 s

−1
2 T3 = s

1
2
1 s2

and we define Ti := cC
∗×C∗

1 (Ti).
Some more notation. Let a ∈ A1(S) be a divisor class on S, then we denote

the corresponding line bundle (up to isomorphism) by O(a). Furthermore

χ(a) := a2 − aK

2 + χ,

where K := KS and χ := χ(OS). Furthermore, for ch = (r, c1, 1
2c

2
1 − c2) ∈⊕

iH
2i(S,Q), we write

χ(ch) :=
∫
S

ch ·td(S).

4These are elements of X(C∗×C∗)⊗ZQ, where X(C∗×C∗) denotes the character
lattice.
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When H is a polarization on S, we denote the reduced Hilbert polynomials
associated to a and ch by (provided r > 0)

pa(m) := χ(emH+a) = χ(mH + a) pch(m) := χ(emH · ch)/r.

Let P (E) be any polynomial in descendent insertions τα(σ) arising from
a polynomial in Chern numbers of T vir (e.g. like in Prop. 2.1). For any
a1, a2 ∈ A1(S) and n1, n2 ∈ Z≥0, define Ψ(a1, a2, a3, n1, n2, n3) by the fol-
lowing expression

Ress2=0Ress1=0

(
P
( 3⊕
i=1

Ii(ai) ⊗ Ti

) 2∏
i=1

Eu(O(ai)[ni])s
−1+

∑
j≥i

χ(yj)
i

×
∏

1≤i<j≤3

Eu(O(aj)[nj ] ⊗ Tj ⊗ T
−1
i )

(Tj − Ti)χ(aj)Q(Ii(ai) ⊗ Ti, Ij(aj) ⊗ Tj)

)

where yi = (1, ai,
1
2a

2
i − ni).(12)

We explain the notation. In this formula, Ii(ai) is short-hand for Ii⊗π∗
SO(ai).

Furthermore, Eu(·) denotes C∗ ×C∗ equivariant Euler class. Note that Ii(ai)
and O(ai)[ni] have trivial C∗ × C∗ equivariant structures, so the equivariant
structures come entirely from the characters Ti. Next, Ressi=0(·) is the residue
at si = 0, i.e. the coefficient of s−1

i of (·) viewed as a Laurent series in si. For
any C∗×C∗ equivariant sheaves E1, E2 on S×∏3

i=1 S
[ni], flat over

∏3
i=1 S

[ni],
define

Q(E1,E2) := Eu(−RHomπ(E1,E2) −RHomπ(E2,E1)),

where π : S × ∏3
i=1 S

[ni] → ∏3
i=1 S

[ni] denotes projection. Moreover, P (·) is
the expression obtained from P (E) by formally replacing E by ·. For later
use, we define

Ψ̃(a1, a2, a3, n1, n2, n3, s1, s2)

by expression (12) but without applying Ress2=0Ress1=0.
Fix a Chern character ch = (3, c1, 1

2c
2
1 − c2). For any decomposition c1 =

a1 + a2 + a3 ∈ A1(S), define

A(a1, a2, a3, c2) :=
∑

n1+n2+n3=c2−
∑

i<j
aiaj

∫∏3
i=1 S

[ni]
Ψ(a1, a2, a3, n1, n2, n3).

Denote the same expression, with Ψ replaced by Ψ̃, by Ã(a1, a2, a3, c2, s1, s2).
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Theorem 2.2 (Mochizuki). Let S be a smooth projective surface satisfying
b1 = 0 and pg > 0. Let H, c1, c2 be chosen such that there exist no rank 3
strictly Gieseker H-semistable sheaves on S with Chern classes c1, c2. Suppose
the following conditions hold:

(i) There exists a universal sheaf E on MH
S (3, c1, c2) × S.

(ii) χ(ch) > χ, where χ := χ(OS).
(iii) pch > pK .
(iv) For all Seiberg-Witten basic classes a1, a2, a3 satisfying a2H ≤ a3H and

a1H ≤ 1
2(a2 + a3)H, both inequalities are strict.

Let P (E) be any polynomial in descendent insertions, which arises from a
polynomial in Chern numbers of T vir (e.g. like in Prop. 2.1). Then5

∫
[MH

S (3,c1,c2)]vir
P (E) = 3

∑
c1 = a1 + a2 + a3

a1H < 1
2 (a2 + a3)H

a2H < a3H

SW(a1) SW(a2)A(a1, a2, a3, c2).

Remark 2.3. In this theorem, assumption (i) can be dropped. Since E always
exists étale locally, the complex T vir = −RHomπ(E,E)0 exists globally so the
left-hand side of Mochizuki’s formula makes sense. Furthermore, Mochizuki
[Moc] works over the Deligne-Mumford stack of oriented sheaves, which al-
ways has a universal sheaf. From this it can be seen that global existence of
the universal sheaf can be omitted from the assumptions. Another advantage,
when working on the stack, is that P can be any polynomial in descendent
insertions defined using the universal sheaf of the stack.

Remark 2.4. In [GNY3], the authors conjecture that assumptions (iii) and
(iv) can be dropped and the sum can be replaced by a sum over all Seiberg-
Witten basic classes. Assumption (ii) is necessary. We call this the strong
form of Mochizuki’s formula.

2.3. Eleven universal functions

In this section, we want to isolate the part of Mochizuki’s formula (Theorem
2.2), which involves integrals over Hilbert schemes of points. These are best
studied by combining them into a generating function.

5Our formula differs by a factor 3 from Mochizuki’s. Mochizuki works on the
moduli stack of oriented sheaves which maps to M via a degree 1

3 : 1 étale morphism.
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Let S be any smooth projective surface. We recall that the tangent bundle
to the Hilbert scheme satisfies

TS[n] ∼= RHomπ(I, I)0[1],

where π : S × S[n] → S[n] denotes projection. Furthermore, on the triple
product of Hilbert schemes we use the projections

S[n1] × S[n2] × S[n3]

S × S[n1] × S[n2] × S[n3]

π

��

π1

�����������������
π2

��

π3

		���������������

S[n1] S[n2] S[n3].

Definition 2.5. Let a1, a2, a3 ∈ A1(S). Define:

ZS(a1, a2, a3, s1, s2, y, q)
:=

∑
n1,n2,n3≥0

(q/s1)n1(q/(s1s2))n2(q/(s1s2))n3

×
∫∏3

i=1 S
[ni]

TC∗×C∗
−y (En1,n2,n3 , 1 − y)

Eu(En1,n2,n3 −
∑3

i=1 π
∗
i TS[ni])

×
2∏

i=1
Eu(O(ai)[ni])

∏
i<j

Eu(O(aj)[nj ] ⊗ Tj ⊗ T
−1
i ).

Here TC∗×C∗
−y denotes the C∗ × C∗ equivariant analog of (9), πi denote the

projections from the various factors of
∏3

i=1 S
[ni], and

En1,n2,n3 :=
3∑

i=1
π∗
i TS[ni] +

∑
i=j

(
χ(aj − ai) ⊗O −RHomπ(Ii(ai), Ij(aj))

)
⊗ Tj ⊗ T

−1
i ,

was Ti were defined in (11) in terms of s1, s2. The generating function ZS is
normalized, i.e. it satisfies

ZS(a1, a2, a3, s1, s2, y, q) ∈ 1 + qQ((s1, s2))[y][[q]].



484 Lothar Göttsche and Martijn Kool

We define the following normalization term

nS(a1, a2, a3, s1, s2) = s
−1+

∑
i≥1 χ(ai)

1 s
−1+

∑
i≥2 χ(ai)

2
∏

1≤i<j≤3

1
(Tj − Ti)χ(aj)

×
∏
i=j

1
TC∗×C∗
−y (χ(aj − ai) ⊗ Tj ⊗ T

−1
i , 1 − y)

.

Let S be a surface satisfying b1 = 0, pg > 0, and suppose the assump-
tions of Theorem 2.2 are satisfied. Then χ−y(MH

S (3, c1, c2)) is given by the
coefficient of xvd of the following series

3
∑

c1 = a1 + a2 + a3
a1H < 1

2 (a2 + a3)H
a2H < a3H

SW(a1) SW(a2) Ress2=0 Ress1=0

× x
−8χ+2

∑
i<j

aiaj−2
∑

i
a2
i nS(a1, a2, a3, s1, s2) ZS(a1, a2, a3, s1, s2, x

6).
(13)

Let us go back to an arbitrary surface S and arbitrary a1, a2, a3 ∈ A1(S).
Then ZS(a1, a2, a3, s1, s2, q) has two significant properties:

• As a power series in q, the coefficients of ZS(a1, a2, a3, s1, s2, q) are uni-
versal polynomials in

a2
1, a1a2, a

2
2, a2a3, a

2
3, a1a3, a1K, a2K, a3K,K2, χ,

where K := KS and χ := χ(OS). This essentially follows from [EGL].
• Suppose S = S′�S

′′ is a disjoint union of two surfaces and ai = a′i +a′′i
with ai ∈ A1(S′), a′′i ∈ A1(S′′). Then

ZS(a1, a2, a3, s1, s2, q) = ZS′(a′1, a′2, a′3, s1, s2, q)ZS′′(a′′1, a′′2, a′′3, s1, s2, q).

This essentially follows from the property Ty(E1 +E2, t) = Ty(E1, t)×
Ty(E2, t) discussed in Section 2.1.

These facts imply the following proposition (for the proof, see [GK1,
Prop. 3.3]).

Proposition 2.6. There exist universal functions

A1(s1, s2, y, q), . . . , A11(s1, s2, y, q) ∈ 1 + qQ[y]((s1, s2))[[q]]
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such that for any smooth projective surface S and a1, a2, a3 ∈ A1(S) we have

ZS(a1, a2, a3, s1, s2, y, q) = A
a2
1

1 Aa1a2
2 A

a2
2

3 Aa2a3
4 A

a2
3

5 Aa1a3
6 Aa1K

7 Aa2K
8 Aa3K

9 AK2

10A
χ
11.

2.4. Computer verifications

Let S be a smooth projective surface satisfying b1 = 0 and pg > 0. When the
assumptions of Theorem 2.2 are satisfied, formula (13) expresses χvir

−y(MH
S (3,

c1, c2)) in terms of SW(a) and ZS(a1, a2, a3, s1, s2, q). Seiberg-Witten invari-
ants of algebraic surfaces satisfying b1 = 0 and pg > 0 are often rather easy to
calculate. E.g. when S is minimal of general type, the Seiberg-Witten basic
classes are 0 and K and

SW(0) = 1, SW(K) = (−1)χ.

The generating function ZS(a1, a2, a3, s1, s2, q) is determined by eleven uni-
versal functions Ai (Proposition 2.6).

Since ZS(a1, a2, a3, s1, s2, q) is defined for any surface S, the universal
functions are determined by

(S, a1, a2, a3) =(P2,O,O,O),

(P1 × P1,O,O,O),

(P1 × P1,O(−1, 0),O,O),

(P1 × P1,O,O(−1, 0),O),

(P1 × P1,O,O,O(−1, 0))

(P1 × P1,O(−1, 1),O,O),

(P1 × P1,O,O(−1, 1),O),

(P1 × P1,O,O,O(−1, 1)),

(P1 × P1,O(−1, 0),O(0,−1),O),

(P1 × P1,O(−1, 0),O,O(0,−1)),

(P1 × P1,O,O(−1, 0),O(0,−1)).

Then (a2
1, a1a2, a

2
2, a2a3, a

2
3, a1a3, a1K, a2K, a3K,K2, χ) determines an 11×

11 invertible matrix. Moreover, we can use the C∗ × C∗ torus action and



486 Lothar Göttsche and Martijn Kool

Atiyah-Bott localization to express ZS(a1, a2, a3, s1, s2, q) in terms of sums
over torus fixed points of

∏3
i=1 S

[ni], which are indexed by partitions. This
turns the calculation of ZS(a1, a2, a3, s1, s2, q) into a purely combinatorial
problem, which can be implemented in Maple or Pari/GP. For details see
[GK1, Sect. 4]. This allows us to determine Ai(s1, s2, y, q) up to the following
orders in s1, s2, y, q:

• Ai(s1, s2, 1, q) up to (and including) orders (35, 40, 12) in (s1, s2, q),
• Ai(s1, s2, y, q) up to (and including) orders (19, 24, 2, 6) in (s1, s2, y, q).

Remark 2.7. If M is a proper C-scheme with perfect obstruction theory of
virtual dimension d, then χvir

−y ∈ Z[y] has degree ≤ d and satisfies χvir
−y(M) =

ydχvir
−1/y(M) [FG, Thm. 4.5, Rem. 4.13]. Therefore

χvir
−y(M) mod y3, evir(M) = χ−1(M)

determine χvir
−y(M) when d ≤ 7.

We use this data to verify Conjecture 1.1 in various examples by using
Theorem 2.2, equation (13), and Proposition 2.6. Suppose S,H, c1, c2 are
chosen such that there exist no rank 3 strictly Gieseker H-semistable sheaves
on S with Chern classes c1, c2 and suppose

c2 <
1
2c1(c1 −K) + 2χ,

which is condition (ii) of Theorem 2.2. In most examples, we also assume

(14) 1
3Hc1 > HK,

which, in these examples, implies conditions (iii) and (iv) of Theorem 2.2.
In some examples, indicated by �, we do not assume (14) in which case we
assume Remark 2.4 holds (strong form of Mochizuki’s formula).

We verified Conjecture 1.1 in the following cases:

(1) S = K3 and
• vd ≤ 8,
• y = 1 and vd ≤ 20,

(2) S is K3 blown up in a point and
• vd ≤ 8,
• y = 1, and vd ≤ 20,
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(3) S is K3 blown up in two points and

• vd ≤ 10,

• y = 1, and vd ≤ 14,

(4) S is an elliptic surface and

• S of type6 E(3) and vd ≤ 6,

• S of type E(4) and vd ≤ 4,

• S of type E(5) and vd ≤ 2,

• S of type E(3), c1 satisfies c1F ≡ 1, 2 mod 3, y = 1, and vd ≤ 18,

• S of type E(4) or E(5), y = 1, and vd ≤ 16,

(5) S is the blow up of an elliptic surface of type E(3) in a point, y = 1,
and vd ≤ 20,

(6) S is a double cover of P2 branched along a smooth octic, y = 1, and
vd ≤ 4,

�(7) S a double cover of P2 branched along a smooth octic and

• vd ≤ 4,

• y = 1 and vd ≤ 12,

(8) S is the blow up of a double cover of P2 branched along a smooth octic,
y = 1, and vd ≤ 4,

�(9) S is the blow up of a double cover of P2 branched along a smooth octic
and

• vd ≤ 4,

• y = 1 and vd ≤ 8,
�(10) S is a double cover of P1×P1 branched along a smooth curve of bidegree

(6, 6), y = 1, and vd ≤ 6,
(11) S is the blow-up of a double cover of P1 × P1 branched along a smooth

curve of bidegree (6, 6), y = 1, and vd ≤ 6,
�(12) S is the blow-up of a double cover of P1 × P1 branched along a smooth

curve of bidegree (6, 6), y = 1, and vd ≤ 8,
�(13) S is a smooth quintic surface in P3, y = 1, and vd ≤ 4,
�(14) S is the blow up of a smooth quintic surface in P3, y = 1, and vd ≤ 6.

6An elliptic surface S → P1 is of type E(n) when it has a section, 12n 1-nodal
singular fibres, and no further singular fibres. We denote the class of its fibre by F .
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For y = 1, this list contains several verifications for surfaces satisfying
K2 > 0. For general y, the only verification for surfaces satisfying K2 > 0
are (7) and (9). In order to get further evidence, we turn our attention to a
numerical version of Conjecture 1.1.

Suppose S is a surface satisfying b1 = 0, pg > 0, and its only Seiberg-
Witten basic classes are 0 and K �= 0. Then SW(0) = 1, SW(K) = (−1)χ
and the formula of Conjecture 1.1 only depends on

(β1, β2, β3, β4) := (c21, c1K,K2, χ).

So for each v := vd, the formula for χvir
−y(M) of Conjecture 1.1 gives an explicit

universal function

(15) (β1, β2, β3, β4) �→ Fv(β1, β2, β3, β4, y) ∈ Q[y±
1
2 ].

Assume the strong form of Mochizuki’s formula (Remark 2.4) and S is a sur-
face as above. Multiplying by y−

v
2 , expression (13) is also a universal function

in v and (β1, β2, β3, β4), which we denote by

(16) (β1, β2, β3, β4) �→ Gv(β1, β2, β3, β4, y) ∈ Q[y±
1
2 ].

This follows from Proposition 2.6. Turning away from geometric examples,
one can wonder whether (15) equals (16) for all (β1, β2, β3, β4) ∈ Z4 and
v ≥ 0. This turns out to be false. However, we conjecture the following:
Conjecture 2.8. For all (β1, β2, β3, β4) ∈ Z4 and v ≥ 0 satisfying

β1 ≡ β2 mod 2,
0 ≤ v ≤ β1 − 3β2 + 4β4,

β3 ≥ β4 − 3, β3 ≥ −1,
(17)

we have Fv(β1, β2, β3, β4, y) = Gv(β1, β2, β3, β4, y).
The first equality of (17) corresponds to c21 ≡ c1K mod 2. The second

inequality corresponds to the essential condition (ii) in Mochizuki’s theorem.
The last two inequalities were found to be necessary from computer experi-
ments.
Remark 2.9. Conjecture 2.8 and the strong form of Mochizuki’s fomula
(Remark 2.4) imply Conjecture 1.1 for surfaces S satisfying b1 = 0, pg > 0,
and whose only SW basic classes are 0, K �= 0. The rank 2 analog of this
statement was proved in [GK1, Prop. 6.3]. The same proof applies to the rank
3 case.
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We checked Conjecture 2.8 in the following cases, for many values of
β1, β2:

(1) β3 = 1, β4 = 0, and v ≤ 6,
(2) β3 = 1, β4 = 1, and v ≤ 6,
(3) β3 = 1, β4 = 2, and v ≤ 4,
(4) β3 = 1, β4 = 3, and v ≤ 4,
(5) β3 = 2, β4 = 0, and v ≤ 2,
(6) β3 = 2, β4 = 1, and v ≤ 4,
(7) β3 = 2, β4 = 2, and v ≤ 4,
(8) β3 = 2, β4 = 3, and v ≤ 4.

Cases (1) and (5) do not correspond to smooth projective surfaces (their Euler
characteristic is negative, yet K2 > 0). For cases (2) and (6), there (obviously)
are no smooth projective surfaces with b1 = 0 and pg > 0. Interestingly, there
are minimal surfaces of general type satisfying b1 = 0 and

• pg = 1, K2 = 1 (case (3)) by Kanev [Kyn],
• pg = 1, K2 = 2 (case (7)) by Catanese-Debarre [CD],
• pg = 2, K2 = 1, 2 (cases (4), (8)) by Persson [Per, Prop. 3.23].

3. Monopole branch

In [MT], Maulik-Thomas introduce y-refined SU(r) Vafa-Witten invariants

VWH
S (r, c1, c2, y).

See also [Tho]. As mentioned in the introduction, on the instanton branch
the definition reduces to virtual χy-genus. On the monopole branch the defi-
nition is more subtle. The evidence we present for Conj. 1.5 and Rem. 1.7 in
this section comes entirely from calculations by Laarakker [Laa] and Thomas
[Tho].
Remark 3.1. We initially found Conjecture 1.5 as follows. First we ob-
tained an unrefined version of Conjecture 1.1 using computer experiments
and Mochizuki’s formula as described in Section 2. The modularity transfor-
mation (7) from the physics literature [VW, LL] swaps (part of) the instanton
contribution with the monopole contribution. Together with the formula of
Conjecture 1.1, this gives a natural guess for the monopole contribution. We
learned this trick from Dijkgraaf-Park-Schroers [DPS] who used it in the rank
2 case in order to find the instanton formula from the monopole formula. Fi-
nally, we made a y-refinement of each step.
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Smooth moduli spaces

Suppose (S,H) is a polarized surface such that b1 = 0, |K| contains a smooth
connected canonical curve, and any line bundle L on S satisfying 0 ≤ degL ≤
1
2 degK is trivial.

The monopole branch of NH
S (2, c1, c2)C

∗ is smooth if and only if c2 ≤ 3
[TT1]. Similarly, the monopole branch of NH

S (3, c1, c2)C
∗ is smooth if and only

if c2 ≤ 2 [Laa]. In these cases, the monopole contribution to the Vafa-Witten
invariants can be calculated directly by intersection theory on the moduli
space.

Theorem 3.2 (Thomas). Let S be as above. For c2 = 0, 1, 2, the contribution
of the monopole branch to VWH

S (2, K, c2, y) is given by Remark 1.7.

Theorem 3.3 (Laarakker). Let S be as above. For c2 = 0, 1, 2, the contribu-
tion of the monopole branch to VWH

S (3, K, c2, y) is given by Conjecture 1.5.

For completeness we list the predictions of Remark 1.7 and Conjecture 1.5
for c1 = K for ranks 2 and 3 respectively:

q−χ− 1
6K

2 · (y 1
2 + y−

1
2 )−χ−K2

×
{

1 − 2K2q +
(
(−y + 2K2 − 2 − y−1)K2 + (y2 + 10 + y−2)χ

)
q2 + · · ·

}
,

(−1)χq−
3
2χ−

5
24K

2(y + 1 + y−1)−χ−K2

{
1 − (y + 2 + y−1)K2q

+ 1
2
(
(K2 − 1)y2 + (4K2 − 2)y + 6K2 − 6 + (4K2 − 2)y−1

+ (K2 − 1)y−2
)
K2q2 + · · ·

}
.

The terms q0, q1, q2 correspond to monopole components of the moduli space
for c2 = 0, 1, 2.

Monopole universality

Let (S,H) be a polarized surface with H1(S,Z) = 0 and pg > 0. Suppose r, c1
are chosen such that there are no rank r strictly Gieseker H-semistable Higgs
pairs on S with first Chern class c1. A Higgs pair (E, φ) on the monopole
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branch NH
S (r, c1, c2)C

∗ decomposes into eigensheaves with respect to the C∗

action
E =

⊕
i

Ei,

where finitely many Ei �= 0. Higgs pairs with different sequences of ranks
{ri}i occur in different connected components of NH

S (r, c1, c2)C
∗ . Denote the

contribution of Higgs pairs with ranks (1, . . . , 1) to Zmono
S,H,r,c1(q, y) by

Z(1r)
S,H,r,c1

(q, y).

In [GT1, GT2], Gholampour and Thomas express this contribution in terms
of virtual cycles on nested Hilbert schemes of curves and points on S (see also
[GSY]). This leads to an expression in terms of Seiberg-Witten invariants of S
and intersection numbers on S[n1]×· · ·×S[nr]. Based on this result, Laarakker
shows the following [Laa]:
Theorem 3.4 (Laarakker). For any r > 1, there exist universal Laurent
series

A(r)(q, y), q−
r
24B(r)(q, y), {C(r)

ij (q, y)}1≤i≤j≤r−1,

in Q(y 1
2 )((q 1

2r )) with the following property. Let S be any smooth projec-
tive surface with polarization H and satisfying pg > 0 and H1(S,Z) = 0.
Let H, r, c1 be chosen such that there exist no rank r strictly Gieseker H-
semistable Higgs pairs on S with first Chern class c1. Then

Z(1r)
S,H,r,c1

(q, y)

=
(
A(r)

)χ(
B(r)

)K2 ∑
a1,...,ar−1∈H2(S,Z)

δ
c1,
∑r−1

i=1 iai

r−1∏
i=1

SW(ai)
∏
i≤j

(
C

(r)
ij

)aiaj
,

where δa,b was defined in (6).
Similar to Section 2, Laarakker shows that these universal functions are

determined on P2 and P1 × P1. Using torus localization, he calculates these
universal functions up to some order. Normalizing such that the RHS is a
formal power series in q starting with constant coefficient 1, he obtains [Laa]:

−(y
1
2 + y−

1
2 )qA(2) = (y − y−1)q

φ−2,1(q2, y2) 1
2 Δ(q2) 1

2
mod q7

q−
1
12B(2) = q−

1
12 η(q)2

θ3(q, y)
mod q7
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(y
1
2 + y−

1
2 )q

1
4C

(2)
11 = (y 1

2 + y−
1
2 )q 1

4 θ3(q, y)
θ2(q, y)

mod q7

(y + 1 + y−1)q
3
2A(3) = (y 3

2 − y−
3
2 )q 3

2

φ−2,1(q3, y3) 1
2 Δ(q3) 1

2
mod q6

q−
1
8B(3) = q−

1
8 η(q)3W−(q 1

2 , y)
ΘA2,(1,0)(q

1
2 , y)

mod q6

(y + 1 + y−1)q
1
3C

(3)
11 = (y + 1 + y−1)q 1

3

W−(q 1
2 , y)

mod q6

(y + 1 + y−1)q
1
3C

(3)
22 = (y + 1 + y−1)q 1

3

W−(q 1
2 , y)

mod q6

y + 1 + y−1

y + 2 + y−1 q
1
3C

(3)
12 = y + 1 + y−1

y + 2 + y−1 q
1
3W+(q

1
2 , y)W−(q

1
2 , y) mod q6.

This precisely recovers Remark 1.7 and Conjecture 1.5 up to the given or-
ders.

Besides providing evidence for our conjectures, Laarakker’s calculations
suggest the following

(18) Z(1r)
S,H,r,c1

(q, y) ?= Zmono
S,H,r,c1(q, y).

For rank 2 this is obvious and for rank 3 it implies that Higgs pairs with ranks
(1, 2) and (2, 1) do not contribute. Indeed, for low prime rank (such as r = 3)
or S = K3 and any prime rank, Thomas establishes (18) using an interesting
cosection argument [Tho].

4. Modularity

In this section, we give evidence for Conjecture 1.10. We show, among other
things, that that our conjectural formulae for ZS,H,2,c1(q, y) and ZS,H,3,c1(q, y)
(Conjecture 1.5 and Remark 1.7) satisfy the y-refined modularity transfor-
mation of Conjecture 1.10. This involves a delicate interplay between quite
diverse mathematical objects:

• properties of Seiberg-Witten invariants,
• lattice theory of (H2(S,Z),∪),
• Gauss sums and Dedekind sums,
• transformations of theta functions.
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4.1. Seiberg-Witten invariants

Let S be a smooth projective surface satisfying pg > 0 and b1 = 0. Then any
Seiberg-Witten basic class a ∈ H2(S,Z) satisfies ([Moc, Sect. 6.3] or [Mor])

aK = a2, SW(K − a) = (−1)χ SW(a).(19)

4.2. Lattice sums and Gauss sums

Let S be a smooth projective surface satisfying H1(S,Z) = 0 and pg > 0. Then
H2(S,Z) is torsion free and we consider the unimodular lattice (H2(S,Z),∪).
For any prime p, we have

H2(S,Z)/pH2(S,Z) ∼= H2(S,Z) ⊗ Zp
∼= H2(S,Zp)

with its induced pairing. We denote the Betti numbers of S by bi and its
signature by σ. In particular, b2 = b+2 + b−2 and σ = b+2 − b−2 . Define

δ
(p)
a,b :=

{
1 if a− b ∈ pH2(S,Z)
0 otherwise.

We usually write δa,b = δ
(p)
a,b , when p is fixed. The following results are due to

Vafa-Witten and Labastida-Lozano [VW, LL].

Proposition 4.1 (Vafa-Witten).∑
[x]∈H2(S,Z2)

(−1)c1x = 2b2δc1,0,

∑
[x]∈H2(S,Z2)

(−1)c1xix2 = 2
b2
2 i

σ
2 −c21 .

Proposition 4.2 (Labastida-Lozano). For r > 2 prime and m = 1, . . . , r−1,
we have ∑

[x]∈H2(S,Zr)
e

2πi
r

(c1x) = rb2δc1,0,

∑
[x]∈H2(S,Zr)

e
2πi
r

(c1x)e
πi(r−1)

r
mx2 = ε(m)b2r

b2
2 e−

πi
8 (r−1)2σe

πi(r−1)
r

nc21 ,
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where mn ≡ −1 mod r,

ε(m) :=

⎧⎨⎩
(
m/2
r

)
if m is even(

(m+r)/2
r

)
if m is odd

and
(
a
r

)
denotes the Legendre symbol.

Since (H2(S,Z),∪) is unimodular of rank b2, the first equation in both
propositions is clear. As described by Vafa-Witten and Labastida-Lozano,
the other two identities can proved using basic facts from lattice theory and
Gauss sums. For the sake of completeness, we include the argument.

For any r ≥ 2 prime, m = 1, . . . , r − 1, and unimodular lattice L, define

φ(L) := r− rk(L)/2 ∑
[x]∈L/rL

e
πi(r−1)

r
mx2

.

Then

φ(L1 ⊕ L2) = φ(L1)φ(L2),(20)

for all unimodular lattices L1, L2. Let I± denote the rank 1 lattice Z with
quadratic form ±x2. Any odd indefinite unimodular lattice is of the form
mI+ ⊕ nI− for some m,n ≥ 1 [Ser, Ch. V.2.2]. We can make H2(S,Z) odd
and indefinite after adding I+ or I−, so (20) implies

(21) φ(H2(S,Z)) = φ(I+)b
+
2 φ(I−)b

−
2 = φ(I+)b

+
2 φ(I+)b

−
2 .

This argument requires φ(I±) �= 0, which we now show by calculation.
For r = 2, we have

φ(I+) = 1 + i√
2

and the second equation of Proposition 4.1, for c1 = 0, follows from (21). The
formula for c1 �= 0 follows by replacing the sum over x by a sum over x + c1.

For r ≥ 3 prime and m = 1, . . . , r − 1, we want to calculate

√
rφ(I+) =

{
G(m/2, r) if m even

G((m + r)/2, r) if m odd,

where

G(m, r) :=
r−1∑
x=0

e
2πi
r

mx2
.
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This is a familiar object from number theory known as a Gauss sum. The
second equation of Proposition 4.2 for c1 = 0 follows from [Lan, Ch. 4.3],
which states (after some rewriting)

G(m, r) =
(m
r

)√
re

πi
8 (r−1)2 ,

for any odd number r > 0 and m ∈ Z such that gcd(r,m) = 1. The formula
for c1 �= 0 follows by replacing the sum over x by a sum over x + nc1, where
mn ≡ −1 mod r.

4.3. Dedekind sums

We often encounter the expression

φ−2,1(q, y)
1
2 Δ(q)

1
2 := (y

1
2 − y−

1
2 ) q

1
2

∞∏
n=1

(1 − qn)10(1 − qny)(1 − qny−1),

where φ−2,1(q, y)Δ(q) is the unique Jacobi cusp form of weight 10 and index
1 [EZ]. It transforms as follows

φ−2,1
(aτ + b

cτ + d
,

z

cτ + d

) 1
2 Δ

(aτ + b

cτ + d

) 1
2

= ε(a, b, c, d)(cτ + d)5e
πicz2
cτ+d φ−2,1(τ, z)

1
2 Δ(τ)

1
2(22)

for all ( a b
c d

)
∈ SL(2,Z),

where ε(a, b, c, d)2 = 1. Clearly ε(a, b, c, d) = eπib when c = 0 and a = d = 1.
The following lemma determines the signs ε(a, b, c, d) for c > 0.

Lemma 4.3. For c > 0 we have

ε(a, b, c, d) = −e
πi

(
a+d
c

+12s(−d,c)
)
,

where s(h, k) denotes the Dedekind sum

s(h, k) =
k−1∑
r=1

r

k

(hr
k

−
⌊hr
k

⌋
− 1

2
)
.
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Proof. Using
eπiz − e−πiz

e
πiz
cτ+d − e−

πiz
cτ+d

= cτ + d + O(z),

and setting z = 0, (22) becomes

η
(aτ + b

cτ + d

)12
= ε(a, b, c, d)(cτ + d)6η(τ)12

= −e
πi

(
a+d
c

+12s(−d,c)
)
η(τ)12,

where the second equality follows from the transformation laws of the Dede-
kind eta function [Apo, Thm. 3.4].

4.4. Theta functions

In this section, we review some facts about theta functions (e.g. see [GZ,
Sect. 3.3]). Let Γ be a positive definite lattice of rank r. We write V = Γ⊗C

and VQ = Γ⊗Q. For vectors v, w ∈ V , let 〈v, w〉 be the bilinear form. Denote
by MΓ the set of meromorphic functions f : H× V → C. For (λ, μ) ∈ V × V ,
let

f |(λ, μ)(τ, x) = q
1
2 〈λ,λ〉 exp(2πi〈λ, x + μ/2〉) f(τ, x + λτ + μ).

We also write

f |r/2S(τ, x) :=
(τ
i

)− r
2
e−πi〈x,x〉/τf(−1/τ, x/τ).

It is easy to see that

f |(λ, μ)|r/2S(τ, x) = f |r/2S|(μ,−λ)(τ, x).(23)

The theta function for Γ is

ΘΓ(τ, x) :=
∑
v∈Γ

q
1
2 〈v,v〉e2πi〈v,x〉 ∈ MΓ.

If Γ has rank r it is well-known that
√
N ΘΓ|r/2S(τ, x) = ΘΓ∨(τ, x) =

∑
v∈P

ΘΓ|(v, 0)(τ, x).(24)
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Here is N the determinant of the matrix of the bilinear form on Γ and

Γ∨ :=
{
v ∈ Γ ⊗Q

∣∣ 〈v, w〉 ∈ Z,∀w ∈ Γ
}

is the dual lattice to Γ. For the second equality of (24), we assume that Γ is
integral and P is a system of representatives of Γ∨/Γ.

The A1 lattice consists of Z with bilinear form with “matrix” (2). Then
the theta functions appearing in the rank 2 conjectures of Section 1 can be
expressed in terms of ΘA1(τ, x) and ΘA∨

1
(τ, x) as follows

θ3(q, y) = ΘA1(τ, z/2), θ3(q, y) + θ2(q, y) = ΘA∨
1
(τ, z/2).

Next, consider the A2 lattice and let A denote the matrix corresponding
to its bilinear form (see (3)). We also consider the dual lattice A∨

2 . Taking

(25) (2/3, 1/3), (1/3, 2/3)

as its basis, the matrix corresponding to its bilinear form is A−1 (see (4)).
Then the theta functions appearing in the rank 3 conjectures of Section 1 can
be expressed in terms of ΘA2(τ, x) and ΘA∨

2
(τ, x) as follows

ΘA2,(0,0)(q
1
2 , y) = ΘA2(τ, (z, z)),

ΘA2,(1,0)(q
1
2 , y) = ΘA2 |(1/3,−1/3), 0)(τ, (z, z)),

ΘA∨
2 ,(0,0)(q

1
6 , y) = ΘA∨

2
(τ, (z, z)),

ΘA∨
2 ,(0,1)(q

1
6 , y) = ΘA∨

2
|(0, (1,−1))(τ, (z, z)).

4.5. Rank 1 and specialization

Proposition 4.4. Conjecture 1.10 holds for r = 1.

Proof. Let S be a smooth projective surface satisfying b1 = 0 (pg > 0,
H1(S,Z) = 0 are not needed in this proof). When r = 1, we have

ZS,H,1,c1(q, y) = q−
1
2χ+ 1

24K
2

∞∑
n=0

χ−y(Hilbn(S)) qn

=
(

y
1
2 − y−

1
2

φ−2,1(q, y)
1
2 Δ(q) 1

2

)χ(
1

η(q)

)−K2

by a result of the first named author and W. Soergel [GS].
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Step 1: For τ �→ τ + 1, z �→ z, the result follows from the following transfor-
mations

η(q) �→ e
πi
12 η(q),

φ−2,1(q, y)
1
2 Δ(q

1
2 )

1
2 �→ −φ−2,1(q, y)

1
2 Δ(q

1
2 )

1
2 .

Step 2: For τ �→ −1/τ , z �→ z/τ , the result follows from the following
transformations

η(q) �→
(τ
i

) 1
2
η(q),

φ−2,1(q, y)
1
2 Δ(q

1
2 )

1
2 �→ −τ 5e

πiz2
τ φ−2,1(q, y)

1
2 Δ(q

1
2 )

1
2 ,

where the minus sign in the second equation comes from Lemma 4.3.

Proposition 4.5. Conjecture 1.10 implies transformations (7).
Proof. Taking the limit z → 0, (8) implies (7). This follows from(

y
1
2 − y−

1
2

)∣∣∣
z
τ

y
1
2 − y−

1
2

= 1
τ

+ O(z)

and a simple calculation involving Noether’s formula

χ = 1
12(K2 + e).

4.6. K3 surfaces

In [LL] (and [VW] when c1 = 0), the authors conjecture a formula for
ZK3,H,r,c1(q) for r prime. When c1 = 0, this formula was proved by Tanaka-
Thomas [TT2] (and extended to all integers r > 0). When r does not divide
Hc1, MH

S (r, c1, c2) is deformation equivalent to S[vd/2] [Yos4] and the formula
essentially follows from [GS]. We conjecture a natural y-refinement:
Conjecture 4.6. For any K3 surface with polarization H, first Chern class
c1, and r prime, we have

Zinst
K3,H,r,c1(q, y) = 1

r

r−1∑
m=0

e
iπ(r−1)

r
mc21

(y 1
2 − y−

1
2 )2

φ−2,1
(
τ+m
r , z

)
Δ
(
τ+m
r

) ,
Zmono
K3,H,r,c1(q, y) = (y 1

2 − y−
1
2 )2

φ−2,1(rτ, rz)Δ(rτ)δc1,0.



Refined SU(3) Vafa-Witten invariants and modularity 499

The following can be seen as evidence for Conjecture 1.10. The proof uses
the well-known transformation properties of φ−2,1 and Δ [EZ].
Proposition 4.7. Conjecture 4.6 implies Conjecture 1.10 for K3 surfaces.
Proof. Step 1: For τ �→ τ + 1, z �→ z, we claim

ZK3,H,r,c1(q, y) �→ e−
iπ(r−1)

r
c21ZK3,H,r,c1(q, y).

The monopole branch contribution does not transform. For the transforma-
tion of the instanton contribution we use

Δ
(τ + m

r

)
�→ Δ

(τ + m + 1
r

)
,

φ−2,1
(τ + m

r
, z

)
�→ φ−2,1

(τ + m + 1
r

, z
)
.

This transformation maps term m to term m + 1 (modulo r) up to a factor
e

πi(r−1)
r

c21 . In particular, term r − 1 gets mapped to term 0, for which we use

eπi(r−1)c21 = 1.

This equality follows at once from the fact that c21 is even on a K3 surface.

Step 2: For τ �→ −1/τ , z �→ z/τ , we claim

ZK3,H,r,c1(q, y)
(y 1

2 − y−
1
2 )2

�→ r−11 τ−10 e−
2πiz2

τ
r
∑
[a]

e
2πi
r

c1a
ZK3,H,r,a(q, y)
(y 1

2 − y−
1
2 )2

.

For any m = 1, . . . , r−1, we define n ∈ {1, . . . , r−1} by the equation mn ≡ −1
mod r. In order to prove the claim, we use the following transformations

Δ(rτ) �→
(τ
r

)12
Δ
(τ
r

)
,

Δ
(τ + m

r

)
�→ τ 12Δ

(τ + n

r

)
,

φ−2,1(rτ, rz) �→
(τ
r

)−2
e

2πiz2
τ

rφ−2,1
(τ
r
, z

)
,

φ−2,1
(τ + m

r
, z

)
�→ τ−2 e

2πiz2
τ

rφ−2,1
(τ + n

r
, z

)
.

We also use the following lattice identities (Propositions 4.1, 4.2)∑
[x]∈H2(K3,Zr)

e
2πi
r

(c1x) = r22δc1,0,
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∑
[x]∈H2(K3,Zr)

e
2πi
r

(c1x)e
πi(r−1)

r
mx2 = r11e

πi(r−1)
r

nc21 ,

where we used (−1)c21 = 1. The result now follows from a direct calcula-
tion.

4.7. Rank 2 modularity

Proposition 4.8. The formula for ZS,H,2,c1(q, y) from Remarks 1.3 and 1.7
satisfies Conjecture 1.10.

Proof. Step 1: For τ �→ τ + 1, z �→ z, we use the following transformations

η(q) �→ e
πi
12 η(q),

φ−2,1(q
1
2 , y)

1
2 Δ(q

1
2 )

1
2 �→ φ−2,1(−q

1
2 , y)

1
2 Δ(−q

1
2 )

1
2 ,

φ−2,1(−q
1
2 , y)

1
2 Δ(q

1
2 )

1
2 �→ −φ−2,1(q

1
2 , y)

1
2 Δ(−q

1
2 )

1
2

θ3(q, y) �→ θ3(q, y),
θ2(q, y) �→ iθ2(q, y).

The rest of the calculation is straight-forward. On the instanton branch, it
involves changing the summation variable a in∑

a∈H2(S,Z)
SW(a)(−1)c1a(· · · )aK

to K − a, which gives∑
a∈H2(S,Z)

SW(K − a)(−1)c1(K−a)(· · · )(K−a)K .

In addition, one requires the following equations

aK = a2, SW(K − a) = (−1)χ SW(a), (−1)c1K = (−1)c21 ,(26)

where the first two equations hold for any Seiberg-Witten basic class a by
(19). The third is Wu’s formula, which holds for any c1 ∈ H2(S,Z). On the
monopole branch, one only requires

i−aKδc1,a = i−a2
δc1,a = i−c21δc1,a,

where again a is a Seiberg-Witten basic class.
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Step 2: For τ �→ −1/τ , z �→ z/τ , we use the following transformations

η(q) �→
(τ
i

) 1
2
η(q),

φ−2,1(q2, y2)
1
2 Δ(q2)

1
2 �→ −

(τ
2
)5
e

2πiz2
τ φ−2,1(q

1
2 , y)

1
2 Δ(q

1
2 )

1
2 ,

φ−2,1(−q
1
2 , y)

1
2 Δ(q

1
2 )

1
2 �→ −τ 5e

2πiz2
τ φ−2,1(−q

1
2 , y)

1
2 Δ(q

1
2 )

1
2 ,

θ3(q, y) �→
1√
2

(τ
i

) 1
2
e

πiz2
2τ (θ3(q, y) + θ2(q, y)),

θ2(q, y) �→
1√
2

(τ
i

) 1
2
e

πiz2
2τ (θ3(q, y) − θ2(q, y)).

For the third transformation, we use coordinates τ̃ = τ+1
2 , z̃ = z, which allows

us to apply (22) and Lemma 4.3. The transformations for the theta functions
are standard (see (24) or [VW, Sect. 5]).

Using Proposition 4.1, changing the summation variable a as in Step 1
and using equations (26), the result follows.

4.8. Rank 3 modularity

Lemma 4.9. Under the transformation τ �→ −1/τ , z �→ z/τ we have

(27) ΘA2,(0,0)(q
1
2 , y) �→ 1√

3

(τ
i

)
e

2πiz2
τ ΘA∨

2 ,(0,0)(q
1
6 , y).

Furthermore, we have the following identities

ΘA2,(1,0)(q
1
2 , y) = −1

2ΘA2,(0,0)(q
1
2 , y) + 1

2ΘA∨
2 ,(0,0)(q

1
6 , y),

ΘA∨
2 ,(0,1)(q

1
6 , y) = 3

2ΘA2,(0,0)(q
1
2 , y) − 1

2ΘA∨
2 ,(0,0)(q

1
6 , y),

ΘA∨
2 ,(0,0)(εq

1
6 , y) = (2 + ε)ΘA2,(0,0)(q

1
2 , y) − (1 + ε)ΘA∨

2 ,(0,0)(q
1
6 , y),

ΘA∨
2 ,(0,0)(ε2q

1
6 , y) = (1 − ε)ΘA2,(0,0)(q

1
2 , y) + εΘA∨

2 ,(0,0)(q
1
6 , y),

ΘA∨
2 ,(0,1)(εq

1
6 , y) = 1 − ε

2 ΘA2,(0,0)(q
1
2 , y) + 1 + ε

2 ΘA∨
2 ,(0,0)(q

1
6 , y),

ΘA∨
2 ,(0,1)(ε2q

1
6 , y) =

(
1 + ε

2
)
ΘA2,(0,0)(q

1
2 , y) − ε

2ΘA∨
2 ,(0,0)(q

1
6 , y),

(28)
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where ε := e
2πi
3 . In particular, under τ �→ −1/τ , z �→ z/τ we have

Z(q
1
6 , y) �→ Z(q 1

6 , y) + 2
Z(q 1

6 , y) − 1
= W (q

1
2 , y),

Z±(q
1
6 , y) �→ W±(q

1
2 , y),

Z±(εq
1
6 , y) �→ εZ±(ε2q

1
6 , y),

Z±(ε2q
1
6 , y) �→ ε2Z∓(εq

1
6 , y).

Proof. The first equality of (24) gives

√
3
(τ
i

)−1
e−

2πiz2
τ ΘA2,(0,0)(q

1
2 , y)|(τ,z)=(−1/τ,z/τ) = ΘA∨

2 ,(0,0)(q
1
6 , y),

1√
3

(τ
i

)−1
e−

2πiz2
τ ΘA∨

2 ,(0,0)(q
1
6 , y)|(τ,z)=(−1/τ,z/τ) = ΘA2,(0,0)(q

1
2 , y).

(29)

Here we note that (z, z) with respect to the basis (25) is also (z, z). Using the
first equality of (24) combined with (23) gives

(τ
i

)−1
e−

2πiz2
τ ΘA2,(1,0)(q

1
2 , y)|(τ,z)=(−1/τ,z/τ)

= ΘA2 |((1/3,−1/3), 0)|1S(τ, (z, z))
= ΘA2(τ, x)|1S|(0, (−1/3, 1/3))(τ, (z, z)),

= 1√
3
ΘA∨

2
|(0, (−1, 1))(τ, (z, z)),

= 1√
3
ΘA∨

2 ,(0,1)(q
1
6 , y).

Here the third equality uses that (−1
3 ,

1
3) with respect to the basis (25) equals

(−1, 1). This shows

(30)
√

3
(τ
i

)−1
e−

2πiz2
τ ΘA2,(1,0)(q

1
2 , y)|(τ,z)=(−1/τ,z/τ) = ΘA∨

2 ,(0,1)(q
1
6 , y).

Since (0, 0), (1/3,−1/3), (−1/3, 1/3) is a system of representatives for
A∨

2 /A2, the second equality of (24) gives

ΘA∨
2 ,(0,0)(q

1
6 , z)

= ΘA∨
2
(τ, (z, z))

= ΘA2(τ, (z, z)) + ΘA2 |((1/3,−1/3), 0)(τ, (z, z))
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+ ΘA2 |((−1/3, 1/3), 0)(τ, (z, z))

= ΘA2,(0,0)(q
1
2 , y) + 2ΘA2,(1,0)(q

1
2 , y).

Therefore, we obtain

(31) ΘA2,(1,0)(q
1
2 , y) = −1

2ΘA2,(0,0)(q
1
2 , y) + 1

2ΘA∨
2 ,(0,0)(q

1
6 , y).

Applying τ �→ −1/τ , z → z/τ to this equation and using (29), (30) gives

(32) ΘA∨
2 ,(0,1)(q

1
6 , y) = 3

2ΘA2,(0,0)(q
1
2 , y) − 1

2ΘA∨
2 ,(0,0)(q

1
6 , y).

Applying τ �→ τ + 1 to (31) and then using (31) again gives

ΘA∨
2 ,(0,0)(ε2q

1
6 , y) = 2εΘA2,(1,0)(q

1
2 , y) + ΘA2,(0,0)(q

1
2 , z)

= (1 − ε)ΘA2,(0,0)(q
1
2 , y) + εΘA∨

2 ,(0,0)(q
1
6 , y).

(33)

Similarly applying τ �→ τ + 1 to (32) and then using (33) gives

ΘA∨
2 ,(0,1)(ε2q

1
6 , y) = 3

2ΘA2,(0,0)(q
1
2 , y) − 1

2ΘA∨
2 ,(0,0)(ε2q

1
6 , y)

=
(
1 + ε

2
)
ΘA2,(0,0)(q

1
2 , y) − ε

2ΘA∨
2 ,(0,0)(q

1
6 , y).

The other two formulae of (28) follow by applying τ �→ τ + 1 again.
The rest of the lemma follows from (27) and (28). E.g. the first two

equations of (28) imply (Z(q 1
6 , y) − 1)W (q 1

2 , y) = Z(q 1
6 , y) + 2.

Proposition 4.10. The formula for ZS,H,3,c1(q, y) from Corollary 1.2 and
Conjecture 1.5 satisfies Conjecture 1.10.

Proof. Step 1: For τ �→ τ + 1, z �→ z, we use the following transformations

η(q) �→ e
πi
12 η(q),

φ−2,1(q3, y3)
1
2 Δ(q3)

1
2 �→ −φ−2,1(q3, y3)

1
2 Δ(q3)

1
2 ,

φ−2,1(q
1
3 , y)

1
2 Δ(q

1
3 )

1
2 �→ φ−2,1(εq

1
3 , y)

1
2 Δ(εq

1
3 )

1
2 ,

φ−2,1(εq
1
3 , y)

1
2 Δ(εq

1
3 )

1
2 �→ φ−2,1(ε2q

1
3 , y)

1
2 Δ(ε2q

1
3 )

1
2 ,

φ−2,1(ε2q
1
3 , y)

1
2 Δ(ε2q

1
3 )

1
2 �→ −φ−2,1(q

1
3 , y)

1
2 Δ(q

1
3 )

1
2 ,

ΘA2,(0,0)(q
1
2 , y) �→ ΘA2,(0,0)(q

1
2 , y),
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ΘA2,(1,0)(q
1
2 , y) �→ εΘA2,(1,0)(q

1
2 , y),

ΘA∨
2 ,v

(q
1
6 , y) �→ ΘA∨

2 ,v
(ε2q

1
6 , y),

ΘA∨
2 ,v

(ε2q
1
6 , y) �→ ΘA∨

2 ,v
(εq

1
6 , y),

ΘA∨
2 ,v

(εq
1
6 , y) �→ ΘA∨

2 ,v
(q

1
6 , y),

for both v = (0, 0), (0, 1).
We deduce that the contribution of the instanton branch gets mapped to

itself up to a factor (−1)χeπi
4 K2

ε−c21 . The same holds for the contribution of
the monopole branch, where we use the following identity

ε−K2
εabε(K−a)(K−b)δc1+a,b = ε2ab−a2−b2δc1+a,b = ε2(b−a)2δc1+a,b = ε−c21δc1+a,b,

which holds for all Seiberg-Witten basic classes a, b by (19).

Step 2: For τ �→ −1/τ , z �→ z/τ , we use the following transformations
(Lemma’s 4.3 and 4.9)

η(q) �→
(τ
i

) 1
2
η(q),

φ−2,1(q3, y3)
1
2 Δ(q3)

1
2 �→ −

(τ
3
)5
e

3πiz2
τ φ−2,1(q

1
3 , y)

1
2 Δ(q

1
3 )

1
2 ,

φ−2,1(εq
1
3 , y)

1
2 Δ(εq

1
3 )

1
2 �→ τ 5e

3πiz2
τ φ−2,1(ε2q

1
3 , y)

1
2 Δ(ε2q

1
3 )

1
2 ,

φ−2,1(ε2q
1
3 , y)

1
2 Δ(ε2q

1
3 )

1
2 �→ τ 5e

3πiz2
τ φ−2,1(εq

1
3 , y)

1
2 Δ(εq

1
3 )

1
2 ,

ΘA2,(0,0)(q
1
2 , y) �→ 1√

3

(τ
i

)
e

2πiz2
τ ΘA∨

2 ,(0,0)(q
1
6 , y).

The other required transformations can be derived from these using the identi-
ties of Lemma 4.9. The terms involving ΘA∨

2 ,(0,1)(εq
1
6 , y) and ΘA∨

2 ,(0,1)(ε2q
1
6 , y)

in LHS of (8) map to the terms involving ΘA∨
2 ,(0,1)(ε2q

1
6 , y), ΘA∨

2 ,(0,1)(εq
1
6 , y)

in RHS of (8). Here we use (besides the transformations listed above):

• Proposition 4.2 and ε(2) =
(1

3
)

= 1, ε(1) =
(2

3
)

= −1,
• ε3 = 1, where ε = e

2πi
3 , χ = 1

12(K2 + e), and σ = −8χ + K2,
• replacing summation variables in

∑
a,b SW(a)SW(b) · · · by K−a,K−b,

• aK = a2 and SW(K−a) = (−1)χSW(a) for all SW basic classes a (19).

The term involving ΘA∨
2 ,(0,1)(q

1
6 , y) in LHS of (8) map to the term involving

ΘA2,(1,0)(q
1
2 , y) in RHS of (8) (and vice versa).
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5. Consequences

In this section, we discuss some consequences of our conjectures. In particular,
we specialize to the following settings:

• S satisfies H1(S,Z) = 0, pg > 0 and only has SW basic classes 0, K �= 0,
• |K| contains a reduced curve with irreducible connected components,
• S̃ is the blow-up of S in one point.

5.1. Minimal surfaces of general type

Let S be a smooth projective surface such that H1(S,Z) = 0, pg > 0,
and its only SW basic classes are 0 and K �= 0. Then SW(0) = 0 and
SW(K) = (−1)χ. Prominent examples are minimal surfaces of general type
satisfying H1(S,Z) = 0 and pg > 0. In this case, the conjectural formulae
for ZS,H,2,c1(q, y) and ZS,H,3,c1(q, y) from the introduction simplify as follows
(recall that i =

√
−1 and ε = e

2πi
3 ):

Zinst
S,H,2,c1(q, y)

(y 1
2 − y−

1
2 )χ

= 2
(

1
2φ−2,1(q

1
2 , y) 1

2 Δ(q 1
2 ) 1

2

)χ{(
θ3(q, y) + θ2(q, y)

2η(q)2

)−K2

+ (−1)c21−χ

(
θ3(q, y) − θ2(q, y)

2η(q)2

)−K2}

+ 2(−1)χi−c21

(
1

2φ−2,1(−q
1
2 , y) 1

2 Δ(−q
1
2 ) 1

2

)χ

×
{(

θ3(q, y) − iθ2(q, y)
2η(q)2

)−K2

+ (−1)c21−χ

(
θ3(q, y) + iθ2(q, y)

2η(q)2

)−K2}
,

Zmono
S,H,2,c1(q, y)

(y 1
2 − y−

1
2 )χ

=
(

1
φ−2,1(q2, y2) 1

2 Δ(q2) 1
2

)χ{
(−1)χδc1,0

(
θ3(q, y)
η(q)2

)−K2

+ δc1,K

(
θ2(q, y)
η(q)2

)−K2}
,

Zinst
S,H,3,c1(q, y)

(y 1
2 − y−

1
2 )χ

= 3
(

1
3φ−2,1(q

1
3 , y) 1

2 Δ(q 1
3 ) 1

2

)χ(ΘA∨
2 ,(0,1)(q

1
6 , y)

3η(q)3

)−K2
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×
{
Z+(q

1
6 , y)K2 + Z−(q

1
6 , y)K2 + (−1)χ(εc1K + ε−c1K)

}

+ 3ε2c21
(

1
3φ−2,1(ε2q

1
3 , y) 1

2 Δ(ε2q 1
3 ) 1

2

)χ

×
(

ΘA∨
2 ,(0,1)(εq

1
6 , y)

3η(q)3

)−K2

×
{
Z+(εq

1
6 , y)K2 + Z−(εq

1
6 , y)K2 + (−1)χ(εc1K + ε−c1K)

}

+ 3(−1)χεc21
(

1
3φ−2,1(εq

1
3 , y) 1

2 Δ(εq 1
3 ) 1

2

)χ

×
(

ΘA∨
2 ,(0,1)(ε2q

1
6 , y)

3η(q)3

)−K2

×
{
Z+(ε2q

1
6 , y)K2 + Z−(ε2q

1
6 , y)K2 + (−1)χ(εc1K + ε−c1K)

}
,

Zmono
S,H,3,c1(q, y)

(y 1
2 − y−

1
2 )χ

=
(

1
φ−2,1(q3, y3) 1

2 Δ(q3) 1
2

)χ(
ΘA2,(1,0)(q

1
2 , y)

η(q)3

)−K2

×
{
δc1,0

(
W+(q

1
2 , y)K2 + W−(q

1
2 , y)K2)

+ (−1)χ
(
δc1,K + δc1,−K

)}
.

5.2. Disconnected canonical divisor

Let S be a smooth projective surface such that b1 = 0, pg > 0, and |K|
contains a reduced curve with irreducible connected components C1, . . . , Cm.
E.g. elliptic surfaces over P1 of type E(n) with n ≥ 3, which have 12n rational
1-nodal fibres, a section, and no further singular fibres. Then |K| = |(n−2)F |,
where F is the fibre class.

For any I ⊂ M := {1, . . . ,m}, define CI :=
∑

i∈I Ci and write I ∼ J
whenever CI and CJ are linearly equivalent. In [GK1, Lem. 6.14] we prove
that the Seiberg-Witten basic classes are {CI}I⊂M and

(34) SW(CI) = |[I]|
∏
i∈I

(−1)h0(NCi/S
),
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where |[I]| denotes the number of elements of equivalence class [I] and NCi/S

denotes the normal bundle of Ci ⊂ S.
Suppose H, c1 are chosen such that there are no rank 3 strictly Gieseker

H-semistable sheaves on S with first Chern class c1. Let

Zinst
S,H,3,c1(x, y) :=

∑
c2

χvir
−y(MH

S (3, c1, c2))xvd,

where vd is given by (2). Then Conjecture 1.1 applied to S gives

Zinst
S,H,3,c1(x, y)

= 3
(

1
3
∏∞

n=1(1 − x2n)10(1 − x2ny)(1 − x2ny−1)

)χ(ΘA∨
2 ,(0,1)(x, y)
3η(x6)3

)−K2

×
m∏
j=1

(
Z+(x, y)C2

j + Z−(x, y)C2
j + (−1)h

0(NCj/S
)(εc1Cj + ε−c1Cj )

)

+ 3ε2c21+2χ
(

1
3
∏∞

n=1(1 − ε2nx2n)10(1 − ε2nx2ny)(1 − ε2nx2ny−1)

)χ

×
(

ΘA∨
2 ,(0,1)(εx, y)
3η(x6)3

)−K2

×
m∏
j=1

(
Z+(εx, y)C2

j + Z−(εx, y)C2
j + (−1)h

0(NCj/S
)(εc1Cj + ε−c1Cj )

)

+ 3εc21+χ

(
1

3
∏∞

n=1(1 − εnx2n)10(1 − εnx2ny)(1 − εnx2ny−1)

)χ

×
(

ΘA∨
2 ,(0,1)(ε2x, y)
3η(x6)3

)−K2

×
m∏
j=1

(
Z+(ε2x, y)C2

j + Z−(ε2x, y)C2
j + (−1)h

0(NCj/S
)(εc1Cj + ε−c1Cj )

)
.

The rank 2 analog of this formula is given in [GK1, Prop. 6.11].

Proof of formula. As in the proof of Corollary 1.2, we denote the formula of
Conjecture 1.1 by ψS,c1(x, y) =

∑
n≥0 ψn(y)xn. Then

Zinst
S,H,3,c1(x, y) =

∑
n≡−2c21−8χ mod 3

ψn(y)xn =
2∑

k=0

1
3ε

k(2c21+8χ)ψS,c1(εkx, y).
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Therefore, it suffices to calculate ψS,c1(x, y), which equals

9
(

1
3
∏∞

n=1(1 − x2n)10(1 − x2ny)(1 − x2ny−1)

)χ(ΘA∨
2 ,(0,1)(x, y)
3η(x6)3

)−K2

×
∑
a,b

SW(a)SW(b)ε(a−b)c1Z+(x, y)abZ−(x, y)(K−a)(K−b).

Using (34), the second line becomes∑
I,J

(−1)h0(NCI/S
)+h0(NCJ/S)ε(CI−CJ )c1Z+(x, y)CICJZ−(x, y)(K−CI)(K−CJ ),

where the sum runs over all pairs I, J ⊂ M . Writing I1 := I ∩ J , I2 = I \ J ,
I3 = J \ I, I4 = M \ (I ∪ J) and using K = CM , this can be rewritten as∑

I1�I2�I3�I4=M

(−1)h
0(NCI2/S)+h0(NCI3/S)

ε(CI2−CI3 )c1Z+(x, y)C
2
I1Z−(x, y)C

2
I4 ,

where � stands for disjoint union, from which the result follows.

5.3. Blow-ups

Let π : S̃ → S be the blow-up in a point of a smooth projective surface S
satisfying b1 = 0 and pg > 0. Let H, c1 be chosen such that there are no
rank 3 strictly Gieseker H-semistable sheaves on S with first Chern class c1.
Furthermore, let

c̃1 = π∗c1 − �E,

where E denotes the exceptional divisor and � = 0, 1, 2. Suppose H̃ is a
polarization on S̃ such that there are no rank 3 strictly Gieseker H̃-semistable
sheaves on S̃ with first Chern class c̃1. As in the previous section, we consider
Zinst
S,H,3,c1(x, y), Zinst

S̃,H̃,3,̃c1
(x, y). Conjecture 1.1 applied to S, S̃ gives

(35) Zinst
S̃,H̃,3,̃c1

(x, y) =

⎧⎪⎨⎪⎩
ΘA2,(0,0)(x

3,y)
η(x6)3 Zinst

S,H,3,c1(x, y) if � = 0
ΘA2,(1,0)(x

3,y)
η(x6)3 Zinst

S,H,3,c1(x, y) if � = 1, 2.

Specializing to y = 1 gives a blow-up formula for virtual Euler characteristics.
Surprisingly, the latter coincides with the blow-up formula for topological
Euler characteristics [Got, Prop. 3.1]. The rank 2 analog of (35) is [GK1,
Prop. 6.9].
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Proof of formula. Using the same notation as in the previous section, we have

Zinst
S̃,H̃,3,̃c1

(x, y) =
2∑

k=0

1
3ε

k(2c̃21+8χ(O
S̃
))
ψ
S̃,̃c1

(εkx, y),

where c̃21 = c21−�2 and χ(O
S̃
) = χ(OS). We calculate ψ

S̃,̃c1
(x, y). The Seiberg-

Witten basic classes of S̃ are π∗a, π∗a + E, where a runs over all Seiberg-
Witten basic classes of S, and [Mor, Thm. 7.4.6]

(36) SW(π∗a) = SW(π∗a + E) = SW(a).

Conjecture 1.1, χ(O
S̃
) = χ(OS), K

S̃
= KS + E, and (36) together imply

ψ
S̃,̃c1

(x, y) =
(

ΘA∨
2 ,(0,1)(x, y)
3η(x6)3

)[
Z+(x, y)−1 + Z−(x, y)−1 + εk + ε−k

]
ψS,c1(x, y)

=
(

ΘA∨
2 ,(0,0)(x, y) + (εk + ε−k)ΘA∨

2 ,(0,1)(x, y)
3η(x6)3

)
ψS,c1(x, y),

where the second equality uses

Z+(x, y)−1 + Z−(x, y)−1 = Z(x, y) =
ΘA∨

2 ,(0,0)(x, y)
ΘA∨

2 ,(0,1)(x, y)
,

which follows from the definition of Z,Z±. The rest of the proof follows by
splitting up the cases � = 0, 1, 2 and some rewriting using Lemma 4.9.
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