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Abstract: Turbulent fluid flow interacts nonlinearly with a num-
ber of processes, including reactive flow (chemistry), radiation, and
the transport of particles embedded in the flow. Subgrid scale mod-
eling of these nonlinear processes is a major challenge to compu-
tational science. To this end, turbulent mixing of dissimilar fluids
is a driver. Here we study validation issues for a class of turbulent
mixing simulations. In previous work, we have obtained agreement
between simulation and experiment. The present paper addresses
a remaining issue, the role of meniscus related boundary effects for
immiscible fluids in the validation process.

Validation and even verification has been controversial for tur-
bulent mixing flows, as commonly used numerical models are diffu-
sive and the resulting numerical diffusion modifies the parameters
of the problem and its solution. Numerical diffusion of concentra-
tion and temperature is well documented in the scientific literature
for Eulerian simulations. Lagrangian simulations, which might ap-
pear to avoid this problem, are subject to mesh tangling, ensuing
regridding and use of Arbitrary Lagrangian Eulerian codes to sub-
stitute for a pure Lagrangian algorithm. In practice, Lagrangian
methods are potentially subject to the same numerical diffusion
issues when used to study complex interface instabilities.

Keywords: Rayleigh-Taylor instability, large eddy simulation,
turbulent mixing.

1. Introduction
1.1. Problem formulation
The nonlinear coupling of turbulent flow to other processes, such as reactive

flow (chemistry), radiation and particle transport is a major challenge for
computational fluid dynamics. The turbulent mixing of dissimilar fluids is at
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the heart of the problem. Turbulent mixing, considered beyond the focus of
this article, is surveyed in the articles [57, 58]. Here we address verification
and validation (V&V) for acceleration driven turbulent mixing flows, based
on the experimental data from [49]. We emphasize regimes for which V&V is
most problematic. We consider the intermediate asymptotic regime, meaning
the transition from small initial data to sustained Rayleigh-Taylor (RT) and
Richtmyer-Meshkov (RM) growth, and in this regime, we emphasize low dif-
fusion and rapid acceleration physics. Current concerns regarding early time
cold fuel and the ablation front surface instability effects in Inertial Con-
finement Fusion (ICF) capsules suggest that there is a present value to the
resolution of this controversy. The possibility of reaching National Ignition
Facility (NIF) ignition should be determined by 2020 [25]. Hydrodynamic
mixing during implosion is one of the important issues. Correctly calculating
the ablator-fuel mixing and cold-hot fuel mixing is important for improving
future ignition capsule designs [6, 28]. Current numerical diffusion dominated
algorithms may well under estimate the RT and RM generated mix and over
estimate the capsule performance. Therefore, resolving this V&V controversy
may help to improve ignition studies.
Our main conclusion is:

The leading order time asymptotics ay ~ 0.0640.01 for Rayleigh-Taylor
mixing observed experimentally [49] is not contaminated appreciably by
long wave noise in the initial conditions.

In support of this claim, we offer three secondary conclusions:

a) Adherence to standards of V&V is a more reliable indicator of
scientific truth than is a scientific consensus.

b) Multiple independent simulations (free from artifacts of numerical
diffusion) and a quantitative theory from multiple independent
groups support standards of V&V for our central claim.

¢) The role of the meniscus in immiscible experiments is analyzed in
detail here, and found to contribute to the growth at a next to
leading order in the time asymptotics, but leaves the as leading
order asymptotics largely unchanged. Thereby, our central claim,
as analyzed in [18], is confirmed.

The next to leading order term in the late time asymptotics is an impor-
tant technical issue and may be significant within an ICF context. ICF occurs
on a highly compressed time scale, making the late time leading order asymp-
totics of the mixing dynamics an incomplete characterization of mix. In view
of the variation in definitions of the leading order asymptotics, comparison of
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next to leading order corrections between different working groups is mean-
ingless. Here we adopt a different point of view. We apply a consistent set of
definitions to both theory and experiment, for the leading order asymptotics
and for the delay. As a validation test, we compare simulation to experiment
within these consistent definitions.

Most algorithms used for turbulent mix are numerically diffusive, and the
resulting concentration and thermal diffusion modify the effective parameters
governing the solution. In effect, numerical artifacts accomplish a modifi-
cation of the physics, so that the common numerical solutions are correct
solutions to a problem with modified physics parameters. With these algo-
rithms, validation is rarely attempted in a low diffusion, rapid acceleration
rate context and even verification succeeds only at a qualitative level and
can fail when assessed quantitatively, because the numerical artifacts and the
resulting numerical adjustment of the (physics) parameters in the problem ac-
tually solved vary from one code to another, making cross code comparisons
inconclusive. In contrast, the Front Tracking algorithms of the authors have
achieved excellent verification and validation results [26, 18] for low diffusion,
strong acceleration data [49].

Two objections to this verification and validation success have been raised.
The primary objection was that long wave length perturbations present in the
initial data could change the results and had not been included in the analysis.
The problem was resolved in [18], where it was shown that long wave length
perturbations were indeed present in the experiments of [49]. However, due to
the slow growth of the long wave length perturbations, their contribution to
the overall instability growth rate was limited to +5%. The second objection
was that the immiscible fluid meniscus at the container wall initial interface
gave rise to edge effects in the (face-on camera view) observed instability
growth rates which had not been analyzed. As the simulations studied in [18]
were immiscible, and thus do possess a meniscus in their initial interface, the
second objection questions the resolution of the first objection. The second
objection (and thus also the first) is addressed in the present paper.

Acceleration driven fluid mixing is characterized by an acceleration time
scale, so that the asymptotic penetration distance hy of the light fluid (bub-
bles) into the heavy fluid is characterized by the formula h; = o; Agt?, where
the Atwood number A = (p1 — p2)/(p1 + p2) is a buoyancy correction to the
accelerating force g and p; denotes the fluid densities, ¢ = 1 being the heavy
fluid and ¢ = 2 the light. The complementary penetration of the heavy fluid
into the light is called a spike. «; is a dimensionless coefficient that character-
izes the leading order large time asymptotics for the mixing process. There
may be a delay before this terminal acceleration mixing rate is achieved, and
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the formula
(1) h; = OéiAg(t — tiVa)Q, t > ti,a

allows for a delay or transition time t; , to full acceleration. The restriction ¢ >
ti o reflects the fact that the transition period has more complex dynamics and
is not modeled by (1). The idea of a delay has been introduced in a number
of studies, including ones by the authors, but its systematic numerical study
to characterize the next to leading order asymptotics at the level conducted
here covers new ground.

The main new result of this paper states that the meniscus effect in exper-
iments with immiscible fluids has a strong influence on the delay but leaves
the growth rate as unchanged. This result removes the meniscus related un-
certainties in the characterization of cry. The bubbles in the immiscible experi-
ments share a common growth rate as, whether they are bulk bubbles located
in the interior of the fluid or edge bubbles, located at the edge of the container,
with the edge bubbles directly observed. The only difference between the two
cases is in the delay. The actual delay is imperfectly observed, and for three
experiments only. It is also inferred from 2D simulation studies, validated by
experimental data. We further confirm this main assertion by displaying a one
parameter family of simulations modeling experiment 105 [49] and indexed
by the delay. All members of the family share a common acceleration growth
constant ap = 3%, In summary, the validity of the previous V&V analysis
of the RT mixing growth rate ay for experiment 105 of ref. [49] with inclusion
of experimentally determined long wave length perturbations from the initial
data is confirmed.

It is convenient to measure delay in height units, as these are more con-
sistently compared across experiments and combined from multiple sources.
Thus we also define the delay h;, = sgn(tm)aigt?’a measured in height units
and representing the negative height axis intercept of the h; vs. Agt? growth
law. This reformulation of delay leads to the equation

(2) h2 - hgﬂ = O(QX N X = Agt2 .

We have ¢; , > 0 as a delay and with this sign convention, h;, > 0 is a delay
also.

Physically, the steady increase in mixing rates (constant acceleration)
is achieved by the interactions between adjacent bubbles and the continued
increasing of the bubble widths (referred to as bubble merger) [8].

The experiments of ref. [49] feature a tank containing two fluids, with
the light fluid on top, and which is accelerated rapidly downward (effectively
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reversing the direction of gravity, so that the fluids are in an unstable config-
uration). The initial interface is nominally flat, other than its meniscus. For
computational purposes, this nominally flat portion of the initial interface
between the two fluids is modeled as a small amplitude perturbation formed
from random Fourier modes, centered in a band about the maximally unsta-
ble wave length A,,. We study vertical rig experiments 99, 103, 104, 105 and
114 of [49], namely all immiscible experiments of [49] having sufficient experi-
mental data for our analysis. There are five tilted rig experiments 95, 96, 109,
110 and 115. Experiments 95, 96 and 109 have matched index of refraction
and perhaps for this reason, edge effects are not visible. Experiment 110 has
miscible liquid and not subject to the analysis of edge effects. Experiment 115
has visible edge spikes, but no visible bulk bubbles. In principle the methods
of this paper would allow analysis of the edge spikes in experiment 115. As
the experiments analyzed included both cases of visible bulk bubbles and an
absence of visible bulk bubbles, we draw no conclusion from their absence in
Exp. 115.

1.2. Delayed growth for the miscible experiment 112

The miscible experiment 112 has no meniscus and no edge effect. It satisfies
formula (2) for the asymptotics of constant acceleration mixing to leading and
next to leading order (i.e., delay). Experiment 112 has an X = Agt? intercept
of 80 mm for its hy , vs. X linear fit, thus a delay hy = 8004%12 =80 x .052 =
4.16 mm. The value a3'? = 0.052 is a correction [26] with permission of D.
Youngs to the value from [49]. Experiment 112 has an initial diffusion layer
of 3.5 mm, so that its dominant growing wave length should be comparable
to the A\, = 4 to 4.5 mm of the immiscible experiments. This fact suggests
comparable frequencies for selection of noise levels dominant for instability
initiation and explains the comparable acceleration growth rates and spike
delays between these distinct immiscible and miscible experiments.

In spite of the comparable acceleration growth rates as between 112 and
the immiscible experiments, there is a striking difference in the delays between
the miscible 112 (4 mm) and the delay (0 mm) of the observed edge bubbles
of the immiscible experiments.

1.3. Edge effects

Our focus is on the meniscus induced edge effects and the modification to the
steady acceleration asymptotics they produce. The study of spike edge effects
leads to the dynamics of isolated 2D spikes for an initial time, until they
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become unstable to 3D perturbations. The large time asymptotic dynamics
during this period is a terminal velocity, with a penetration distance h; =
Fri\/Ag)t, with i = 1 for spikes. Here \ is the wave length of the isolated
bubble or spike and F'r; a 2D dimensionless Froude number characterizing
a spike or bubble terminal velocity, neither well characterized for ¢ = 1 and
meniscus initial conditions. Thus we employ a simpler scaling analysis. We
introduce the edge spike asymptotic scaling with the dimensionless velocity
v* and delay h;, defined by the equations

(3) hy — hy = 0"Y; Y =Agt (mm) .

The meniscus is a spike of heavy fluid penetrating into the light fluid at
the rim of the container, contributing to the light-heavy fluid interface ini-
tialization. Aside from corners of the experimental tank, the meniscus and
the edge spike it generates are uniform and unperturbed by random surface
perturbations for Plates 1-4 of Exp. 105, and for Plates 1-3 for the other
experiments. As modeled by (3), i.e., while still 2D, the edge spikes are char-
acterized by an asymptotic velocity v+ and a delay. The growth rate vx of the
edge bubble is sensitive to the meniscus contact angle, and using this fact, we
set the contact angle to achieve identity of growth rates between simulation
and experiment, as is defined by the spike amplitudes at the third and fourth
plates. Determination of the contact angle from 2D simulations can be carried
out for Exp. 105, but is approximate for the other experiments.

Edge spikes for Exp. 114 are shown in Fig. 1. A 2D simulation of an edge
spike for Exp. 105 is shown in Fig. 2, left frame. The edge spike gives rise
to a complementary edge bubble, also located along the container sides. We
call these meniscus bubbles “m-bubbles”, with the m referring to meniscus,
to distinguish them from edge and bulk bubbles. See also Fig. 2, left frame.
In contrast to the edge spike, this meniscus induced 2D edge m-bubble is not
directly observable. The m-bubble amplitude is relatively insensitive to the
choice of contact angle.

The bulk bubbles are visible through the edge bubbles, as shown in Fig. 3.
The bulk of the fluid is subject to initial random surface perturbations and is
unaffected by the meniscus initial perturbation. The random surface pertur-
bations which initialize the bulk bubbles are modeled with modes in a band
near the maximum unstable mode \,, and with corrections for long wave
length perturbations [18].

The bulk bubbles are visible for isolated periods, usually including the
third plate, and more extensively for Exps. 103, 105 and 114. For these three
experiments we compare the observed bulk bubble dynamics to the accelera-
tion with delay formula (2). For experiment 114, the peak penetration of the
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Figure 1: Enlarged slices from the experimental plates of [49], experiment 114.
Plates 3 through 6 for edge spikes. The location of the edge spikes in each
plate is indicated by the arrow on the left. It is only marginally visible even
in this enlarged image. The scale on the left (units 10~* mm from container
top) was added for convenient reference. (©) British Crown Owned Copyright
2018 /AWE.

bulk bubbles can be observed through the transparent edge bubbles for the
entire experiment. See Fig. 3.

To better understand the steps which will be used to understand the
unobserved m-bubble, we introduce the schematic diagram Fig. 4.

In Fig. (4), 0 is the initial interface position. G is the location of a pure ay
growing interface at time ¢, which coincides with the edge bubble interface,
reported from [49]. N is the average location of the edge bubble tips, as
observed from the experimental plates of [49]. We apply Fourier analysis to
the bubble tips, and recognize N as the kK = 0 mode in this analysis. G — N
is the RMS sum of the nonzero Fourier modes. B is the time ¢ location of
the bulk bubble interface, which we seek to determine from our analysis,
and for which limited observations are available from [49]. According to the
combined effects analysis of Sec. 3.3, N — B (in the Plate 3 analysis) is the
m-bubble. We discuss in Sec. 3.1 a 2D simulation shown in Fig. 2 of the edge
spike and its m-bubble to determine N — B qualitatively. By subtraction, B
is also determined qualitatively. We also express the splitting of B in terms
of fractions, defining the fraction f = B/N associated with the delay and
the fraction 1 — f = (N — B)/N, associated with the broad band random
noise in the initial data. For Exp. 105, we find that f is near one, but due
to limitations of the observed data, we cannot go beyond such a qualitative
statement. The 2D simulation of the edge spike has an unknown contact angle
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(b) Top: edge spikes height vs. scaled dis-
tance Y. Simulations for various contact
angles and experimental data. From this
data we select a contact angle (about 34°).
Bottom: the m-bubble height vs. scaled
distance Y. The 3rd plate (Y = 10) height
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Figure 2: 2D simulation of meniscus effects for Exp. 105. Detailed values in
comparison to experiment are qualitative only as discussed in the text. The
resulting delay for the simulation of bulk bubbles, attributed to the m-bubble

has a large fraction f ~ 1. See Fig. 8.

as input, so we use the edge spike data and the model (3) to adjust the contact
angle and fit the observed slope v* of the linear in ¢ growth rate. This analysis

is valid for experiment 105, and is approximate for the high Atwood number

experiments, due to the presence of 3D perturbations in the edge spikes at

Plate 4 in these cases.
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Figure 3: Enlarged slices from the experimental plates of [49], experiment
114. Plates 2 through 5 for bulk bubbles. The arrows on the right indicate
the location of the bulk bubble interface. In the final frame, the dashed line
is the 95% contour for the edge bubbles, as drawn in [49]. (© British Crown
Owned Copyright 2018/ AWE.

_IN
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Figure 4: Schematic diagram of the principal variables discussed in this chap-
ter. Item 0 is the initial interface position. G is the location of pure oy growth
and also the location of the edge bubble interface as observed from [49]. B is
the location of the bulk bubble interface and N is the mean bubble location
for the edge bubbles. G and N are directly observed, while our analysis seeks
to locate the imperfectly observed B.

Two classes of simulations are reported here. The 3D simulations use the
compressible Front Tracking code, as is described in [18]. The 2D simulations
of meniscus bubbles and spikes use an incompressible code based on a marker
and cell (MAC) grid and the Immersed Boundary Method, as described in
[59]. The solution algorithm uses portable, extensible toolkit for scientific
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Table 1: Meniscus heights (mm) for selected contact angles, for 5 experiments
90° 60° 45° 30°

Exp. 99 | 0.0 | 0.88417 | 1.53143 | 2.65251
Exp. 103 | 0.0 | 0.86667 | 1.5011 2.6000
Exp. 104 | 0.0 | 0.88676 | 1.53591 | 2.66027
Exp. 105 | 0.0 | 0.91824 | 1.59044 | 2.75472
Exp. 114 | 0.0 | 0.87754 | 1.51944 | 2.63262

computation (PETSc), a library of high performance preconditioners (hypre),
and an algebraic multigrid preconditioner. These solutions use a 3D code, but
operate in a 2D mode, with a narrow mesh in the wall parallel direction. The
2D character of the solution is imposed by an averaging step after every
dynamic time step. Further solution details may be found in [52].

2. Meniscus theory

We review the standard theory of surface tension related boundary effects.
The static meniscus height h, as a function of the distance = to the wall, is
governed by the ordinary differential equation [30]

(4) %:\l<l+(%>2>3pa—gh,

where p = p1 — p2, g is the static acceleration and o is the surface tension.
This equation requires two boundary conditions. At the outer reaches of the
meniscus, the fluid interface is asymptotically horizontal, giving one boundary
condition. The second boundary condition occurs at the wall-fluid triple point,
where the fluid-fluid interface meets the container wall. The angle of the fluid-
fluid interface to the container wall defines the contact angle, which is the
second boundary condition for (4). Through solution of (4), the meniscus
height can be expressed as a function of the contact angle. Conversely, upon
inverting this relation, the meniscus height determines the contact angle. See
Table 1. Equation (4) is solved with omission of the nonlinear term [52]. See
Fig. 5.

The weak dependence of the meniscus height on the strongly varying
Atwood number suggests that the Atwood number is not the primary driver
in the unusual nature of Exp. 114 relative to the others in this series. Rather,
we suggest that the difference is a consequence of the significantly reduced
pressure in Exp. 114. According to Young’s formula [32], the contact angle is
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Figure 5: The meniscus profile for contact angles 30°, 45°, 60° and 90°, based
on the Atwood number A = 0.79 of Exp. 105.

proportional to the difference between the fluid-wall surface tensions on the
two sides of the interface. The reduced pressure reduces the wall-gas surface
tension and results in a smaller contact angle. The smaller contact angle
gives rise to a more rapidly growing edge spike, as can be seen from the steep
slope for Exp. 114 in Fig. 6, presumably resulting in a somewhat enlarged
meniscus m-bubble and bulk bubble delay. This delay is the striking feature
clearly visible in the experimental plates, see Fig. 3, which now has a possible
physics based interpretation.

The sign of g changes upon acceleration and becomes some 30 times
larger in magnitude according to (4). The resulting new stable meniscus is
in the reversed direction, and much larger. However, this reversed stability
meniscus does not occur. The Rayleigh-Taylor unstable acceleration of the
static meniscus is stronger. As is clear from the experimental plates, the
meniscus seeds a single mode Rayleigh-Taylor spike.

3. Instability analysis

The picture indicated in Fig. 4 and its discussion, of acceleration growth
rates with delay terms proportional to ¢ is supported by direct analysis of
the experimental data from [49]. The experimental plates were digitized and
magnified down to a pixel level, so that sub millimeter phenomena were clearly
visible. Each of the plates for the five experiments was analyzed independently
by two of the authors, and the results were compared and in the few cases of
difference, were reconciled.

Uncertainties in the data reading are of three types. We mention first the
identification of the location of the bulk bubbles from the data. These are
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Table 2: Data for five immiscible experiments, see Table 6 and Fig. 40 of [49].
Am = 27(30/g(p1 — p2))'/?, is the maximum unstable wave length, and o is
the surface tension

99 103 104 105 114
ap edge bubbles | 0.057 | 0.059 | 0.068 | 0.072 | 0.060
Am (mm) 4.0 4.1 4.2 4.5 4.2
9/90 17 16 16 15 16
p1 (g/em?) 1.0 1.0 | 0.626 | 0.626 | 0.626
pa (g/em?) 0.0742 | 0.0319 | 0.0340 | 0.0739 | 0.0318
hg/hl > 1.7 > 1.8 1.9 1.5 2.3
A 0.89 | 097 | 057 | 079 | 0.90

clearest in experiment 114, see Fig. 3, with limited but still useful data from
other experiments. This uncertainty is mitigated by the simulations, which
independently of the data interpretation, support the main conclusions of the
article.

We mention two additional uncertainties. The location of the 95% concen-
tration location, while omitting edge effects, was assessed qualitatively and
thus uncertain. The parallax corrections, utilized in [49], were unavailable to
us as the report did not contain the camera location. These two uncertain-
ties are mitigated by the fact that their impact is a few percent, whereas the
major concern of the analysis is a factor of 2 discrepancy between the ex-
periments and many simulations in the determination of as, to be attributed
or not to long wave length noise in the initial data. Small corrections do
not influence the analysis of major discrepancies. Small corrections, however,
do preclude meaningful comparison of small differences depending on exper-
imentally derived quantities. For this reason, our conclusions are qualitative
and not quantitative in nature where they depend on small differences in ex-
perimental quantities. This limitation on the interpretation of small effects
arises in the analysis of the delay for Exp. 105, where we split the unobserved
bulk spike amplitude B from the 3rd plate into a fraction f related to the
m-bubble size and delay and the fraction 1 — f giving the strength of the ran-
dom surface perturbation. An appeal to 2D simulations to resolve this issue
gives qualitative information only (f is near 1) due to dependence on small
effects from the observations.

Summary and background information from these experiments is given in
Table 2.

Most of the phenomena analyzed are single effects in that they depend
on a single parameter and process. This is in contrast to the observed edge
bubbles, whose initial conditions are a sum of three distinct three terms, as
discussed in Sec. 3.3.
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Table 3: Experimentally observed and simulated edge spike data

99 | 103 | 104 | 105 | 114
exp slope h/Y 401 6.2 | 40 | 5.7 | 76
sim slope h/Y - - - | 45| -
sim contact angle - - - 34 -
sim meniscus height (mm) 24
100 * exp 99
O exp103
80 ® exp104
_ |2exptos a /
g 6ol 2 exp114 , x
§ 40f
20f
ox =" n
0 5 10 15 20 25

Y (mm)

Figure 6: Plot of the edge spike penetration distance h;y vs. the scaled dis-
tance Y = {/Agt mm. Data shown for times up to the 4th plate immiscible
experiments, data from [49].

3.1. Single effects: edge spikes

The edge spikes are 2D isolated perturbations through Plate 3 and for Exp.
105, through Plate 4, with a translational symmetry along the wall parallel
direction. We present experimental data for 5 experiments, Plates 1-4 in Fig. 6
and compare to simulation data for Exp. 105 in Fig. 2, right frame and Table 3.
At later times, the effects of the random surface perturbations disrupt the 2D
nature of the data. These later times are excluded from our analysis. The
Plate 1 data is the initial meniscus, not visible from the experimental plates.
Thus the available data is limited to at Plates 2, 3, 4 for Exp. 105 and Plates
2, 3 for the other experiments with approximate validity for Plate 4 in these
cases. The edge spike growth for h is approximately linear in time modeled
by (3) while they remain 2D. In the simulations, the contact angle is a free
parameter. The edge spike slope vx is sensitive to the contact angle, with
a smaller contact angle resulting in a steeper slope. Accordingly, we adjust
the contact angle to maximize agreements with the experimentally observed
slopes v, given by the model (3). We observe from Table 3 that the slopes of
the edge bubbles for the two experiments (99 and 104) with no visible bulk
bubbles are the smallest, 4.0 mm. The two experiments with marginally visible
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Table 4: Experimental bulk growth rate ay for immiscible experiments 103,
105, 114 [49] analyzed with the model (2) The miscible experiment 112 is
included for comparison, with a nonzero delay. For 112, there are no edge
bubbles distinct from bulk bubbles

99 | 103 | 104 | 105 | 114 |112 (misc)
asg exp bulk bubble - 0.049 - 0.087 | 0.068 0.052
ap exp edge bubble 0.057 | 0.059 | 0.068 | 0.072 | 0.060 0.052
ha,q exp bulk bubble delay (mm) | - 7.3 - 2.7 | 6.5 4.16
ha.q exp edge bubble delay (mm)| 0 0 0 0 0 4.16
10T expi03
go| 2 exP105 P
O exp114 L’
- -
E 60 . _ - ”/
£ 40 c -7 =
2 ” - -
z 20 -, :E"' _¢9"'
-
0;_%250’
-20
0 200 400 600 800 1000

X Scaled Distance (mm)

Figure 7: Experimental instability growth of bulk bubbles for experiments
103, 105 and 114. The lines through the data are defined by least squares
for each of the three experiments. The lines define growth rates which match
the observed edge bubble as within about 15%. The final data point for
experiment 114 appears to be anomalous and was removed from this analysis.

bulk bubbles have intermediate slopes, 6.2 and 5.7 mm. The single experiment
with clearly visible bulk bubbles (114) has the largest edge bubble slope. These
trends for the slopes presumably translate into trends in the meniscus height
and m-bubble related delay for the bulk bubbles.

3.2. Single effects: bulk bubbles

The bulk bubbles, to the limited extent that they are observable in the data
(for several steps of Exps. 103, 105, 114 and isolated steps otherwise), satisfy
the steady acceleration law with delay (2), with an acceleration growth rate
in agreement to the edge bubble growth rate within an average discrepancy of
+15%. Due to the limited data available, the slopes and delay are determined
from a least squares fit to data for three experiments. In Table 4 and Fig. 7
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Table 5: Comparison of the growth law ay and delay for Exp. 105 bubbles.
Edge and bulk experimental values are shown (left and right columns) to-
gether with simulation growth rates and delays for five values of the fraction
f of the N = 0 mode assigned to the delay; the fraction 1 — f is initialized
as broad band initial random perturbations
Exp. N=0|N=0| N=0
edgeb. | f=0 | f=1]f=3 =15 | hulk b.
Qs 0.072 0.076 0.078 0.078 0.078 0.087
delay (mm) 0.0 0.0 1.23 1.14 1.20 1.21 2.7

N=0 Exp.

O Exp105 a=0.072
O =0 «=0.076
A f=1/2  «=0.078

f=3/4 «=0.078
+ f=7/8 «=0.078
| * f=15/16 «=0.078

w
o

bubble penetration (mm)
3
9,
Y

h=
o
R

O v L L L L
0 100 200 300 400 500 600 700

X = scaled acceleration distance (mm)

Figure 8: Simulation of the bubble growth rate with five values for delay for
experiment 105. Experimental data for the edge bubble is also shown.

we present the experimental data that supports these statements.

This data analysis, independently of any simulations, establishes our main
point. The experimental and simulated bulk bubbles have a growth rates
close to those of the edge bubbles and these growth rates are not affected
appreciably by long wave noise in the initial conditions.

Fig. 8 displays simulations of experiment 105 showing that the growth
rate ao is approximately independent of the size of the delay term, with com-
parison to experiment summarized in Table 5. We do not model the meniscus
explicitly in these simulations. According to the analysis to be presented in
Sec. 3.3, we model bulk bubble delays by changes in the initialization for the
N = 0 mode, split between a constant (fraction f) and broad band initial-
ization (fraction 1 — f). One curve at the edge of this family (f = 0) is the
edge bubble simulation [18], already in approximate agreement with exper-
iment [49]. One curve, with f near one, is the bulk bubble. All members of
the family share a nearly common «g, again, confirming our main conclu-
sion: meniscus and edge effects do not appreciably modify the value of as,
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which is thus not appreciably affected by long wave length noise in the initial
conditions.

Commenting on the data in Table 5, we note that the values for as are
nearly identical. The experimental bulk bubble value, which has the largest
discrepancy, we judge to be the least reliable, due to limited data and the
missing parallax correction. The other values are indistinguishable, nearly
within the error bounds £+0.004 proposed for as in [18].

3.3. Combined effects: edge bubbles

We recall the purpose of this paper and its antecedent [18], to show that long
wave perturbations of the initial nominally flat interface in the Rayleigh-
Taylor instability experiments [49] do not contribute appreciably to the in-
stability growth rate as. The effects of the initial perturbations are observed
in Plate 3, after they have grown to sufficient size to be visible and while the
growth is still in the single mode (exponential growth) regime, so that initial
conditions can be reconstructed from this data using analytic formulas. This
describes the central enterprise of [18]. Now we insert the effects of the menis-
cus perturbation to the initial conditions into this analysis. The long wave
length perturbations are identified through Fourier analysis of the Plate 3
bubble tips. The bubble tips are in a bounded domain with reflecting bound-
aries [18], and are discrete, with a spacing on the order of \,,, the maximally
unstable wave length. In this analysis, N is the zero frequency Fourier mode
and we interpret G — N as the RMS sum of the nonzero Fourier modes for
the bubble tip.

The combined effects problem arises for the analysis of NV itself. For such
a bounded, discrete Fourier series, the mode N = 0 is ambiguous, and can
be assigned to either a constant mode or a high wave number mode. This
possibility has a physics interpretation, with the constant term, as a frac-
tion f of the N = 0 total coming from the meniscus induced m-bubble and
contributing to the delay. The high mode number contribution, the fraction
1 — f, is the broad band noise originating in the bulk bubble random surface
perturbations, and contributing to the average bulk bubble position.

Referring to the schematic diagram Fig. 4, the ambiguity arises from
the location of B, which our analysis is trying to determine. There are three
contributions to the initial conditions of the random surface, of which a single
term and the sum N of two others is observed. We identify a splitting of the
sum N, to resolve the ambiguity qualitatively. The three components of the
initial random surface are the meniscus and its resulting m-bubble and the
broad band noise (neither observed) and their (observed) sum N. We resolve
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Table 6: The experimental bulk bubble locations and the edge bubble mean
and extreme tip locations for the third plate, for five experiments. Units are
in mm relative to a centerline = 0, and in directions of the negative axis. The
G locations experiment are from [49] and are parallax corrected. The B and
N data are not parallax corrected. The N locations are from [18] as read from
[49]

Plate 3 99 | 103 | 104 | 105 | 114
B = exp bulk bubble (mm) | 5.5 | 0.5 | 4.2 3
N = mean bubble tip (mm) | 9 9 | 77| 6 | 6.3
G = exp edge bubble (mm) | 9 9 11 8 8

this problem through a 2D simulation of the meniscus edge spike and its m-
bubble. This fixes the meniscus contact angle. The 2D simulation shows that
the random surface initialization as a fraction 1 — f of N must be small, but
the uncertainties in the reading of observed data preclude going beyond this
qualitative conclusion. This qualitative limitation also applies to use of the
observed bubble delay from Table 4.

4. Verification and validation of simulations for [49]
4.1. Background

The comprehensive review articles [57, 58] of Zhou set the stage for our shorter
and more focused V&V review. As Zhou documents, RT and RM instabilities
arise in a wide variety of physical contexts, for which there are natural physi-
cal parameters and time scales. Specific applications and specific time regimes
encounter a variety of diffusion levels and acceleration rates, sometimes even
within a single problem. In this situation, it is clear that a range of experimen-
tal programs is advantageous, as is the V&V of their simulation. We focus on
low diffusion physics, rapid acceleration and intermediate to moderately late
time scales. For short, we refer to this regime as the intermediate asymptotics
regime. In this sense the very late time RT asymptotics of [5] is out of our
scope. We do not consider single RT mode studies beyond the details where
they enter into our main focus.

The intermediate asymptotics regime includes the chaotic flow regime and
its transitional development out of random initial conditions, in a context of
low diffusion and rapid acceleration physics. Ref. [58] pp. 1-33 provides a
summary of the regimes we consider as well as some we do not. Among the
important issues identified, we emphasize initial conditions (long wave length
dominated or not). A major issue within this regime is the lack of agreement
of a number of simulations with data.
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4.2. V&V vs. consensus

Verification simulations are contained in [26, 27], validation simulations are
summarized in Sec. 4.5.2. A confirming quantitative theory is described in
Sec. 4.5.1. The important issue of long wave noise in the initial conditions is
addressed [18] with the meniscus and edge effect corrections addressed in the
body of this paper.

To emphasize the value of V&V, we recall the first correctly validated RM
instability [20, 21], with a new theoretical model of RM growth [54, 55, 56],
new experiments removing a controversy regarding initialization with under
specified details and two new independent simulations. The result reversed
a scientific consensus that poorly characterized initializations were the ba-
sis for a disagreement between simulations and experiments. The consensus
simulations were in agreement with a theory which was valid for small times.
Our analysis showed the theory to be incorrect for times of experimental data
collection. There is no possibility of absolute truth in science, but in this ex-
ample we see that the agreement of theory, experiment and simulation, i.e.,
V&V, was more reliable than a scientific consensus.

An important standard of science, and one subsumed into V&V methodol-
ogy, is the duplication of results. This step has already been taken with an in-
dependent derivation of a related confirming theoretical model, see Sec. 4.5.1,
and with two independent simulations listed below. We also list below 4 addi-
tional simulation paths to independent duplication of our results, some rather
easily carried out.

1) Duplication and confirmation of the simulation results of Sec. 4.5.2 have
already occurred. The simulations [38] based on the front tracking code
LEEOR-3D give as = 0.05.

2) Duplication and confirmation of simulation has also been achieved, us-
ing the Monte Carlo simulation of [4] starting from a random interface.
This procedure gives a growth rate ag = 0.052. There are two other
MD simulations in this family of simulations, [3, 23]. These three deal
with distinct time periods. [3] deals with the early time, exponentially
growing RT phase and contains a self standing V&V effort, with sup-
porting theory and a validating experiment. The second reference deals
with late time. Here Zhou notes an anomaly: in late time the RT growth
totally stops and the velocity is constant. this calculation and the late
time phenomena it predicts is unconfirmed, but in our view it is not
necessarily wrong. See Sec. 4.3.
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3) To facilitate further independent tests, we have developed FTI, an API
for front tracking, to allow ready insertion of this algorithm into other
codes [47]. We have implemented FTI for the high energy density code
FLASH [33]. See Sec. 4.3.

4) The Lagrangian Particle method [22, 44] has been tested in plasma
linear implosion and classical RT problems. This method appears at a
glance to be related to smooth particle hydrodynamics (SPH), but is
far superior in quality, having removed the instabilities of SPH which
constrain it to low orders of accuracy. As the method is particle based, it
is well suited to the modeling of low diffusion rapid acceleration physics.
Converged LES simulations without recourse to fine DNS grids requires
additionally the use of dynamic SGS [15, 34, 31].

5) A simple diagnostic test is to add passive Lagrangian particles to a con-
ventional Eulerian code and observe that it does not track the interface
as defined by the Eulerian solver. This test is so simple that it would
be surprising if it had not already been taken, but we are not aware of
reported results.

6) A conventional Eulerian solver can be used to provide an independent
test of low diffusion, rapid acceleration mixing rates. With modern com-
puters, the available resolution is far in excess of what is needed [26] for
converged solutions determining a5 in a low diffusion solver. We propose
to use this enhanced computational resource as follows: A conventional
solver with artificially lowered resolution will achieve a lower resolution
but low diffusion solution. This is accomplished through modified in-
put parameters, namely by adding to the physical viscosity. In this way
we treat an augmented physical viscosity as a numerical parameter.
An increase in viscosity by a sufficient factor will boost the numeri-
cal Schmidt number well above 1, and give an as in the experimental
range of values. The result lowers the resolution, but increases the ef-
fective Schmidt number of the simulation, defined as the ratio of total
(numerical plus physical) viscosity to total (numerical plus physical)
concentration diffusion.

4.3. Can ay = 07

To state the matter clearly, is it possible that a;; = 0 in the late time asymp-
totic limit with only perturbations in the initial data of a finite, bounded
range?

Such a limit, if it occurs, is outside of the range of current experimental
observation. Bubble interactions and merger have been observed for the ad-
vanced stages of the ablator-plasma interface in NIF [36] and OMEGA [48]
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experiments. We discuss g = 0 at late times asymptotically as a strictly
mathematical possibility. We ask: does the RT #? growth rate, observed to
agree with experiment for an intermediate time period become zero (ag = 0)
at later times?

The dynamic nature of RT growth, according to the bubble merger model
[7], depends on a variation in the bubble radii and velocities at the current
(growing with time) length scale defined by the bubble radius. For sustained
RT growth, this randomness must have at the current time an amplitude
measured as a (small) multiple of the current bubble radius. The required
randomness at these large scales is excluded from initial condition perturba-
tions by hypothesis, and so it must be introduced from smaller wave lengths
via mode coupling. Such a large scale transfer of randomness requires an in-
verse cascade of transfer of information from large k values to small. This
occurs in 2D turbulence, for length scales longer than those of energy injec-
tion, and is excluded in 3D turbulence according to Kolmogorov theory.

4.4. Experiments with low diffusion and rapid acceleration

Within the framework of low diffusion rapid acceleration physics, there are
three main classes of experiments to consider: the rocket rig [49], the gas gun
[24], and the linear electric motor [10, 43]. Other than [43], the three give
comparable acceleration rates o, with small variation, which our simulations
[26] suggest are due to the differing effects of fluid transport properties be-
tween the different experiments. The experiments [43] report somewhat lower
values of ay = 0.041. Comparing the effect of different cutoff concentrations
on ay from Fig. 2 of [38], we see a 10% drop in a9 using a 10% cutoff and also
a decline with time in the ay value. The analyses of ref. [49] truncate some
late time data which fall below early time a9 trend lines. A 10% reduction of
the ap = 0.50 of experiment 102 of [49] gives an a9 of 0.045, which is nearly
consistent with [43]. We do not consider the low diffusion but slow accelera-
tion hot-cold, fresh-salt and air-helium channels of [2, 39, 40] nor the weight
and pulley drop tower experiments of [37, 42].

In summary, we have a nearly or fully consistent set of experimental values
within the range of physics we consider.

4.5. Growth rate modeling

4.5.1. Theory Our theory and simulation results are both in agreement
with the intermediate asymptotics RT experiments of Sec. 4.4. We originated
the bubble merger concepts and model development. According to the bubble
merger model, adjacent bubbles, one slightly more advanced than the other,
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Table 7: Predictions of the bubble merger model with good agreement to
three experiments, for the bubble growth rate as and for related growth rates
a, and «j, for the mean bubble radius and for the mean height separation
between leading and training bubbles

Experiment | o, aSxP ap, oy Qs ay P
104 0.014 | 0.009 | 0.027 | 0.028 | 0.057 | 0.068
105 0.014 | 0.012 | 0.027 | 0.021 | 0.056 | 0.072
114 0.011 | 0.011 | 0.022 | 0.036 | 0.054 | 0.060

interact, and the larger, more advanced one speeds up while the slower one
drops behind, and falls out of the front defined by the leading bubbles [46, 45].
As this model has evolved, the bubble front motion has two components, one
due to the intrinsic motion of the bubbles comprising the front, and the other
due to the interaction between slightly displaced neighboring bubbles. Vali-
dation of the bubble interaction comes from [19]. The concept of an envelope
velocity was introduced in [16]. A statistical version of the model with an
RNG fixed point was developed in [17]. This fixed point was evaluated in [53]
with the value as = 0.045 in approximate agreement with experiment. An
important advance [8] uses the bubble merger model to predict ay for three
experiments. This model also predicts the mean bubble radius and the mean
height separation between the most advanced and retarded bubble tips, both
characterized with their own «. See Table 7. This circle of ideas has been
confirmed in an independent development, [1], although with incorrect pre-
dictions of the bubble height to radius ratio and with an extension of the
ideas to the modeling of spikes.

This theoretically validated prediction has been extended to the predic-
tion of aq, based on a closed form expression for a;/as [7], and including
predictions for the dimensionless Richtmyer-Meshkov asymptotics 6;. The
predictions for oy show good agreement to the experimental Linear Electric
Motor (LEM) data [9, 11].

4.5.2. Simulations In a series of investigations, we have obtained excel-
lent simulation agreement between theory and experiment, even at the level
of finding the differing values of ay between experiments due to the fluid
transport properties of the experiment [26, 27, 18, 29, 13]. See Table 8.

In contrast, a comprehensive study [12] illustrates the central problem.
The experiments show a value as = 0.057 £ 0.008 while the simulations show
the lower growth rates as = 0.025 £ 003, less than 50% of the experimental
values.

Aside from the discrepancy of the simulations relative to the experiments,
there is considerable variation among the distinct simulations reported in [12].
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Table 8: Comparison of FT simulation to experiment. *Original simulation
results presented here. 1 Simulation and experimental results reported with
two significant digits only. Discrepancy refers to the comparison of results
outside of uncertainty intervals, if any, as reported

Ref. Exp. Sim. Ref. Qlexp Olsim Discrepancy
[49] #112 [26] 0.052 0.055 6%
49] #105* [18] 0.072 0.078 = 0.004 7%
[49, 41] 10 exp. [14] 0.055-0.077 0.066 0%
[39] air-He [29] 0.065-0.07 0.069 0%
[35] Hot-cold [18] [26] | 0.070 4+ 0.011 0.075 0%
[35] Salt-fresh [18] 0.085 £+ 0.005 0.084 0%

It has been proposed that under-specified initial conditions are the cause of
this disparity. Our simulations indicate that initial condition variation should
modify the delay but not the growth rates of the distinct simulations. On this
basis, a more plausible explanation lies in the varying levels of fluid transport
(effective Schmidt and Prandtl numbers), which should affect the simulation
growth rates.

A validation issue newly addressed here is next to leading order large time
solution asymptotics. V&V for the next to leading order asymptotics is critical
for understanding of immiscible fluids, regarding the influence of a meniscus at
the immiscible fluid interface-container boundary triple point. The meniscus
is a significant perturbation to the initial conditions, and the boundary layer
interface perturbation it generates has a role developed in Sec. 3.

5. Summary

From the introduction, we repeat our main conclusion.

The leading order time asymptotics as ~ 0.06+0.01 for Rayleigh-Taylor
mixing observed experimentally [49] is not contaminated appreciably
by long wave noise in the initial conditions. The view that long wave
length noise in the initial conditions could be an important factor in
the asymptotic instability growth rate « for Rayleigh-Taylor mixing
was explored in [50], where an adjustable amplitude multiplies the k=3
power spectrum (k is a wave number). Modification of this adjustable
amplitude in the initial conditions was shown to yield code results that
match experimental data.

Our agreement with the experiment in Sec. 3 includes nearly exact
matches to distinct experiments with distinct a’s. For high-Reynolds
experiments in [49], we constructed the initial conditions and found
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the initial power spectral power law k33 for the reconstructed long
wave noise spectrum as well as the amplitude multiplying the power
law. Our resulting agreement with experiment is acknowledged in [51].
The [51] compares DNS and ILES simulations which produce a growth
rate 0.06 under a variety of assumptions not constrained by reference
to experimental data on the initial conditions for moderate Reynolds
numbers (< 5000), which may not be relevant to the high-Reynolds
experiments.

In support of our central claim, we offer the three secondary conclusions:

a) Adherence to standards of V&V is a more reliable indicator of
scientific truth than is a scientific consensus.

b) Multiple independent simulations (free from artifacts of numerical
diffusion) and a quantitative theory from multiple independent
groups support standards of V&V for our central claim.

¢) The role of the meniscus in immiscible experiments is analyzed in
detail here, and found to contribute to the growth at a next to
leading order in the time asymptotics, but leaves the as leading
order asymptotics largely unchanged. Thereby, our central claim,
as analyzed in [18], is confirmed.

Concerning item (a), we note that standards for V&V were developed to
address the obvious shortcomings of expert opinion and expert judgment.

Item (b) documents our belief that we have met standards of V&V as
normally defined. We have established a V&V program for our RT simu-
lations, with simulations showing excellent agreement with experiment and
with supporting quantitative theory, also in agreement with experiments. The
simulations have been repeated independently by two groups, using two dif-
ferent simulation packages and the theory has been developed and confirmed
by two independent groups. We anticipate (and welcome) others to question
what we have done. To allow the questioning to proceed constructively, we
outline a protocol to allow multiple routes for others to adapt our technology.
Within this road, some options are easily followed, and provide a path for
others to check independently our main conclusions. Some are so simple that
they may have already been taken. We identify two shortcomings in common
simulation methods, critical in order to obtain for RT simulations which agree
with experimental data.

The detailed contribution of this paper comes under item (c).

The meniscus corrections to our estimate of the influence upon ay of
the long range noise in the initial conditions were found to be small. The
methodology is a combination of data analysis and simulation, connected by
a simple theoretical framework. We have a detailed and new reading of the
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experimental data. We have detailed 2D simulations of the meniscus induced
edge spike for the limited time that the experiments themselves show 2D edge
spikes. We simulate the associated m-bubble, which introduces a delay in the
growth of the bulk bubbles. We compute bulk bubbles in new 3D simulations
with varying degrees of delay, and observe only small effects on the leading
asymptotic growth rate as. The simple theory is built around the notion of
a delay for the onset of the asymptotic regime.
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