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Abstract: The weighted essentially non-oscillatory (WENO)
schemes are a popular class of high order accurate numerical meth-
ods for solving hyperbolic partial differential equations (PDEs).
The computational cost of such schemes increases significantly
when the spatial dimensions of the PDEs are high, due to large
number of spatial grid points and nonlinearity of high order accu-
racy WENO schemes. How to achieve fast computations by WENO
methods for high spatial dimension PDEs is a challenging and im-
portant question. Recently, sparse-grid has become a major ap-
proximation tool for high dimensional problems. The open ques-
tion is how to design WENO computations on sparse grids such
that comparable high order accuracy of WENO schemes in smooth
regions and essentially non-oscillatory stability in non-smooth re-
gions of the solutions can still be achieved as that for computations
on regular single grids? In this paper, we combine the third or-
der finite difference WENO method with sparse-grid combination
technique and solve high spatial dimension hyperbolic equations on
sparse grids. WENO interpolation is proposed for the prolongation
part in sparse grid combination techniques to deal with discontin-
uous solutions of hyperbolic equations. Numerical examples are
presented to show that significant computational times are saved
while both high order accuracy and stability of the WENO scheme
are maintained for simulations on sparse grids.
Keywords: Weighted essentially non-oscillatory (WENO)
schemes, Sparse grids, High spatial dimensions, Hyperbolic par-
tial differential equations.

1. Introduction

High order accuracy numerical methods are especially efficient for solving par-
tial differential equations (PDEs) which contain complex solution structures.
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High order numerical schemes have been applied extensively in computational
fluid dynamics for solving convection dominated problems with both discon-
tinuities / sharp gradient regions and complicated smooth structures, for ex-
ample, the Rayleigh-Taylor instability simulations [20, 21, 31, 35], the shock
vortex interactions [4, 29, 30, 28], and direct simulation of compressible tur-
bulence [25]. Its resolution power over the lower order schemes was verified in
these applications. For hyperbolic PDEs or convection dominated problems,
their solutions can develop singularities such as discontinuities, sharp gradi-
ents, discontinuous derivatives etc. For problems containing both singularities
and complicated smooth solution structures, schemes with uniform high order
of accuracy in smooth regions of the solution which can also resolve singulari-
ties in an accurate and essentially non-oscillatory (ENO) fashion are desirable,
since a straightforward high order approximation for the non-smooth region of
a solution will generate instability called Gibbs phenomena. A popular class
of such schemes is the class of weighted essentially non-oscillatory (WENO)
schemes.

WENO schemes are designed based on the successful ENO schemes [7,
23, 24] with additional advantages. The first WENO scheme was constructed
by Liu, Osher, and Chan in their pioneering paper [16] for a third order finite
volume version. In [10], Jiang and Shu constructed arbitrary order accurate
finite difference WENO schemes for efficiently computing multidimensional
problems, with a general framework for the design of the smoothness indica-
tors and nonlinear weights. To deal with complex domain geometries, WENO
schemes on unstructured meshes were developed, in e.g. [8, 32, 15, 3, 33, 17].
The main idea of the WENO schemes is to form a weighted combination of
several local reconstructions based on different stencils (usually referred to as
small stencils) and use it as the final WENO reconstruction. The combina-
tion coefficients (also called nonlinear weights) depend on the linear weights,
often chosen to increase the order of accuracy over that on each small sten-
cil, and on the smoothness indicators which measure the smoothness of the
reconstructed function in the relevant small stencils. Hence an adaptive ap-
proximation or reconstruction procedure is actually the essential part of the
WENO schemes.

Since WENO schemes were designed to deal with problems with compli-
cated solution structures, their sophisticated nonlinear properties and high
order accuracy requires more operations than many other schemes. For PDEs
with high spatial dimensions, large number of spatial grid points leads to
significant increase of the computational cost for WENO schemes, especially
for long time simulations or steady state computations [37, 36, 27, 9, 6, 26].
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It is challenging and important to achieve fast computations when WENO
methods are used for solving high spatial dimension PDEs.

In recent years, sparse-grid techniques have been used broadly as an ef-
ficient approximation tool for high-dimensional problems in many scientific
and engineering applications. Discretizations on sparse grids involve O(N ·
(logN)d−1) degrees of freedom only, where d denotes the dimensionality of
the underling problems and N is the number of grid points in one coor-
dinate direction. A detailed review on sparse-grid technique can be found
in [1]. Sparse-grid techniques were introduced by Zenger [38] in 1991 to re-
duce the number of degrees of freedom in finite element calculations. The
sparse-grid combination technique, which was introduced in 1992 by Griebel
et al. [5], can be seen as a practical implementation of the sparse-grid tech-
nique. In the sparse-grid combination technique, the final solution is a linear
combination of solutions on semi-coarsened grids, where the coefficients of
the combination are chosen such that there is a canceling in leading-order
error terms and the accuracy order can be kept to be the same as that
on single full grids [13, 14, 5]. Recently in [18], the sparse-grid combina-
tion technique has been used in Krylov implicit integration factor methods
[2, 11, 12, 19] to efficiently solve high spatial dimension convection-diffusion
equations.

Our goal is to apply sparse-grid techniques in high order WENO schemes
to achieve more efficient computations than that in their regular performance
in solving multidimensional PDEs. The open question is how to design WENO
computations on sparse grids such that comparable high order accuracy of
WENO schemes in smooth regions and essentially non-oscillatory stability in
non-smooth regions of the solutions can still be achieved as that for com-
putations on regular single grids? This is not straightforward due to the
high nonlinearity of high order WENO schemes. In this paper, we design
and test a third order sparse grid WENO finite difference scheme for solv-
ing hyperbolic PDEs by using the sparse-grid combination approach. To deal
with discontinuous solutions of hyperbolic PDEs, we apply WENO interpo-
lation for the prolongation part in sparse-grid combination techniques. Both
two dimensional (2D) and three dimensional (3D) numerical examples with
smooth or non-smooth solutions are presented to show that significant com-
putational times are saved, while both accuracy and stability of the WENO
scheme are maintained for simulations on sparse grids. The rest of the paper
is organized as following. In Section 2, we design the third order sparse grid
WENO scheme. In Section 3, numerical experiments are presented to test the
sparse grid WENO method and show significant savings in computational
costs by comparisons with single-grid computations. Conclusions are given in
Section 4.
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2. A third order sparse grid WENO finite difference scheme

We consider multidimensional hyperbolic PDEs

(1) ut + ∇ · �f(u) = 0,

where u(�x, t) is the unknown, and �f = (f1, · · · , fd)T is the vector of flux
functions in d spatial dimensions respectively. The method of lines (MOL) is
applied to the equation (1). The third order finite difference WENO scheme
with Lax-Friedrichs flux splitting is used for spatial discretizations. In this
section, we first describe the spatial discretization by finite difference WENO
scheme, then the sparse-grid combination approach with the WENO prolon-
gation is introduced and a complete algorithm is given.

2.1. WENO discretization

For the hyperbolic PDEs (1), the conservative finite difference scheme we use
approximates the point values at a uniform (or smoothly varying) grid in a
conservative fashion. Since the finite difference WENO schemes approximate
derivatives of multi-dimension in a dimension by dimension way, we will just
describe the discretization of derivatives for one spatial direction. As a general
notation, for example, we consider the x-direction derivative f(u)x. Its value
at a grid point with x-coordinate xi on a uniform grid with x-direction grid
size Δx is approximated by a conservative flux difference

(2) f(u)x|x=xi ≈
1

Δx
(f̂i+1/2 − f̂i−1/2),

where for the third order WENO scheme the numerical flux f̂i+1/2 depends on
the three-point values f(ul) (here for the simplicity of notations, we use ul to
denote the value of the numerical solution u at the point x = xl along the lines
of other spatial directions, e.g., y = yj , z = zk, etc, with the understanding
that the value could be different for different coordinates of other spatial
directions), l = i− 1, i, i + 1, when the wind is positive (i.e., when f ′(u) ≥ 0
for the scalar case, or when the corresponding eigenvalue is positive for the
system case with a local characteristic decomposition). This numerical flux
f̂i+1/2 is written as a convex combination of two second order numerical fluxes
based on two different substencils of two points each, and the combination
coefficients depend on a “smoothness indicator” measuring the smoothness of
the solution in each substencil. The detailed formula is

(3) f̂i+1/2 = w0

[1
2f(ui) + 1

2f(ui+1)
]

+ w1

[
−1

2f(ui−1) + 3
2f(ui)

]
,
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where

(4) wr = αr

α1 + α2
, αr = dr

(ε + βr)2
, r = 0, 1.

d0 = 2/3, d1 = 1/3 are called the “linear weights”, and β0 = (f(ui+1) −
f(ui))2, β1 = (f(ui)− f(ui−1))2 are called the “smoothness indicators”. ε is a
small positive number chosen to avoid the denominator becoming 0.

When the wind is negative (i.e., when f ′(u) < 0), right-biased stencil with
numerical values f(ui), f(ui+1) and f(ui+2) are used to construct a third order
WENO approximation to the numerical flux f̂i+1/2. The formulae for negative
and positive wind cases are symmetric with respect to the point xi+1/2. For
the general case of f(u), we perform the “Lax-Friedrichs flux splitting”

(5) f+(u) = 1
2(f(u) + αu), f−(u) = 1

2(f(u) − αu),

where α = maxu |f ′(u)|. f+(u) is the positive wind part, and f−(u) is the
negative wind part. Corresponding WENO approximations are applied to find
numerical fluxes f̂+

i+1/2 and f̂−
i+1/2 respectively. Similar procedures are applied

to other spatial directions’ derivatives. See [22, 34] for more details.

2.2. WENO scheme on sparse grids

To efficiently solve the hyperbolic equations (1) on high spatial dimensions
by WENO schemes, we study the WENO schemes on sparse grids by sparse-
grid combination technique. In this paper, we focus on the third order finite
difference WENO scheme given in the last section.

The basic idea of sparse-grid combination technique is that by combin-
ing several solutions on different semi-coarsened grids (sparse grids), a final
solution on the most refined mesh is obtained. The most refined mesh is cor-
responding to the usual single full grid. Since the PDEs are solved on semi-
coarsened grids which have much fewer grid points than the single full grid,
computation costs are saved a lot. The final solution obtained by sparse-grid
combination technique is required to have comparable accuracy to that by
solving the PDEs directly on a single full grid. For example see [5, 13, 14, 18].

2D case is used here as the example to illustrate the idea. Algorithms
are similar for higher dimensional cases. Let’s consider a 2D domain [a, b]2.
The semi-coarsened grids are constructed as follows. First the domain is par-
titioned into the coarsest mesh, which is called a root grid Ω0,0 with Nr cells
in each direction. The root grid mesh size is H = b−a

Nr
. The multi-level refine-

ment on the root grid is performed to obtain a family of semi-coarsened grids
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Figure 1: Semi-coarsened sparse grids {Ωl1,l2} with the finest level NL = 3.

{Ωl1,l2}. The semi-coarsened grid {Ωl1,l2} has mesh sizes hl1 = 2−l1H in the
x direction and hl2 = 2−l2H in the y direction, where l1 = 0, 1, · · · , NL, l2 =
0, 1, · · · , NL (see Figure 1). Superscripts l1, l2 denote the level of refinement
relative to the root grid Ω0,0, and NL denotes the finest level. Therefore, our
finest grid is ΩNL,NL with mesh size h = 2−NLH for both x and y directions.

To solve equation (1), we use the third order WENO scheme described in
Section 2.1 for spatial discretizations with the third order TVD Runge-Kutta
scheme [23, 22] for time discretization. Following the spare-grid combination
techniques, rather than on a single full grid, the PDE (1) is solved on the
following (2NL + 1) sparse grids {Ωl1,l2}I :{

Ω0,NL ,Ω1,NL−1, · · · ,ΩNL−1,1,ΩNL,0
}

and{
Ω0,NL−1,Ω1,NL−2, · · · ,ΩNL−2,1,ΩNL−1,0

}
.

And I denotes the index set

I =
{
(l1, l2)|l1 + l2 = NL or l1 + l2 = NL − 1

}
.

By carrying out time marching of the PDE using Runge-Kutta WENO scheme
on these (2NL+1) sparse grids, we obtain (2NL+1) sets of numerical solutions
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{U l1,l2}I , where one set of numerical solutions is obtained on each sparse
grid. The next step is to combine solutions on sparse grids to obtain the final
solution on the finest grid ΩNL,NL . The key point here is that the PDE is never
solved directly on ΩNL,NL in order to save computational costs. In order to
obtain numerical solutions on the finest grid ΩNL,NL , we apply a prolongation
operator PNL,NL , which will be discussed in the following subsections, on each
sparse grid solution U l1,l2 to obtain (2NL + 1) solutions on the finest grid.
And finally, these solutions are combined to form the final solution ÛNL,NL

on ΩNL,NL .

2.2.1. Lagrange prolongation We provide details on the prolongation
operator PNL,NL . Prolongation operator PNL,NL maps numerical solutions
{U l1,l2}I on sparse grids onto the finest grid ΩNL,NL . And a prolongation op-
erator is basically an interpolation operator. For example, U l1,l2 is numerical
solution on Ωl1,l2 , then PNL,NLU l1,l2 gives numerical values on the most re-
fined mesh ΩNL,NL . For smooth solutions, the regular Lagrange interpolation
can be used directly. The interpolations are performed in the dimension by
dimension way. For the 2D case, first in grid lines of one direction (e.g. the x
direction with a fixed y-coordinate), we construct (Nr2l1−1) quadratic inter-
polation polynomials P 2

i (x), i = 1, · · · , Nr2l1−1, by the third order Lagrange
interpolation. Each interpolation uses three adjacent grid points to construct
a quadratic polynomial. Note that a higher order interpolation is needed for
comparable numerical accuracy as that of the numerical schemes, if higher
order accuracy numerical schemes are used to solve PDEs on sparse grids (see
[5, 13, 14]). Then we evaluate P 2

i (x) on the grid points of ΩNL,l2 , which is the
most refined meshes in the x direction. Next, in grid lines of the other direc-
tion (e.g. the y direction with a fixed x-coordinate), we construct (Nr2l2−1)
quadratic interpolation polynomials P 2

j (y), j = 1, · · · , Nr2l2−1, and evaluate
them on the grid points of ΩNL,NL . Then we get PNL,NLU l1,l2 , defined on the
finest grid ΩNL,NL .

2.2.2. WENO prolongation In general, since the solutions may develop
discontinuities, instead of Lagrange interpolation, more robust WENO in-
terpolations are used in the prolongation. Replacing the third order La-
grange interpolation by a third order WENO interpolation in the proce-
dure described in the section 2.2.1, we obtain a third order WENO pro-
longation in the sparse-grid combination technique. We provide the detailed
formulas for a third order WENO interpolation here. Given numerical values
ui−1, ui and ui+1 at the grid points xi−1, xi and xi+1, we find a third or-
der WENO interpolation uWENO(x) for any point x ∈ [xi−1/2, xi+1/2). Here
xi−1/2 = (xi−1 + xi)/2 and xi+1/2 = (xi + xi+1)/2. Denote the uniform grid
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size by h, then ∀x ∈ [xi−1/2, xi+1/2), x = xi−1 + α̃h where α̃ ∈ [1/2, 3/2). The
third order WENO interpolation uWENO(x) at a point x is

(6) uWENO(x) = w1P
1
(1)(x) + w2P

1
(2)(x),

where P 1
(1)(x) and P 1

(2)(x) are two second order approximations

(7) P 1
(1)(x) = α̃ui − (α̃− 1)ui−1, P 1

(2)(x) = (α̃− 1)ui+1 − (α̃− 2)ui.

w1 and w2 are nonlinear weights

(8) w1 = w̃1

w̃1 + w̃2
, w2 = 1 − w1,

where

(9) w̃1 = γ1

(ε + β1)2
, w̃2 = γ2

(ε + β2)2
,

and γ1 = 1− α̃/2, γ2 = α̃/2, β1 = (ui − ui−1)2, β2 = (ui+1 − ui)2. Again, ε is
a small positive number chosen to avoid the denominator becoming 0.

2.2.3. Algorithm We summarize the algorithm of WENO scheme on
sparse grids as following.

Algorithm: WENO scheme with sparse-grid combination technique

• Step 1: Restrict the initial condition u(x, y, 0) to (2NL +1) sparse grids
{Ωl1,l2}I defined above. Here “Restrict” means that functions are eval-
uated at grid points;

• Step 2: On each sparse grid Ωl1,l2 , solve the equation (1) by Runge-
Kutta WENO scheme to reach the final time T . Then we get (2NL +1)
sets of solutions {U l1,l2}I ;

• Step 3: At the final time T ,
– on each grid Ωl1,l2 , apply prolongation operator PNL,NL on U l1,l2 .

Then we get PNL,NLU l1,l2 , defined on the most refined mesh
ΩNL,NL . For smooth solutions, the regular Lagrange prolongation
can be used directly. In general, WENO prolongation is used;

– do the combination to get the final solution

(10) ÛNL,NL =
∑

l1+l2=NL

PNL,NLU l1,l2 −
∑

l1+l2=NL−1
PNL,NLU l1,l2 .
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For three dimensional (3D) or higher dimensional problems, the algorithm
is similar although prolongation operations are performed in additional spatial
directions. The sparse-grid combination formula for higher dimensional cases
can be found in the literature (e.g. [5]). Specifically the 3D formula is

ÛNL,NL,NL =
∑

l1+l2+l3=NL

PNL,NL,NLU l1,l2,l3 − 2
∑

l1+l2+l3=NL−1
PNL,NL,NLU l1,l2,l3

(11)

+
∑

l1+l2+l3=NL−2
PNL,NL,NLU l1,l2,l3 .

Remark: Linear error analysis of the sparse-grid combination technique for a
linear advection equation solved by an upwind scheme has been performed in
[13]. In this paper, we focus on the algorithm development and its numerical
experiments for the nonlinear WENO scheme on sparse grids. The nonlinear
analysis of the scheme will be performed in one of our future work.

3. Numerical experiments

In this section, we use various numerical examples to show the computational
efficiency of the third order WENO scheme with sparse-grid combination
technique on sparse grids, by comparing to the same scheme on regular grids.
Examples include both 2D and 3D numerical examples with smooth or non-
smooth solutions. For each example, we compute numerical accuracy errors
and convergence orders of the schemes, and record CPU times. Here in the
data Tables and texts of this section, Nh×Nh denotes the most refined mesh
ΩNL,NL in sparse grids or a regular mesh in single grid computations.

The third order linear scheme is obtained by replacing nonlinear weights
w0 and w1 in WENO approximation (3) with linear weights d0 and d1. Linear
schemes are stable and efficient for solving problems with smooth solutions,
and they serve as the base schemes for high order WENO schemes. We also
test the computational efficiency of the third order linear scheme on sparse
grids for solving problems with smooth solutions.

For computations on sparse grids, PDEs are evolved on different semi-
coarsened sparse grids. How to choose time step sizes for each individual time
evolution is an interesting question. Via numerical experiments, we find that
time step sizes on all semi-coarsened sparse grids need to take the same value.
It is determined by the spatial grid size h of the most refined grid ΩNL,NL and
the chosen CFL number. Numerical experiments show that the desired numer-
ical accuracy are reached with time step sizes taken this way. Hence for a gen-
eral problem, the numerical experiments in this paper suggest that time step
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sizes on all semi-coarsened sparse grids should be determined by the spatial
grid size h of the most refined grid ΩNL,NL . All of the numerical simulations
in this paper are performed on a 2.3 GHz, 16GB RAM Linux workstation.

3.1. Examples with smooth solutions

In this section, we test the scheme on sparse grids for solving problems with
smooth solutions.

Example 1 (A 3D linear equation):

(12)
{
ut + ux + uy + uz = 0, −2 ≤ x ≤ 2,−2 ≤ y ≤ 2,−2 ≤ z ≤ 2;
u(x, y, z, 0) = sin(π2 (x + y + z)),

with periodic boundary condition. We compute this 3D problem till final
time T = 1 by both the third order linear scheme and WENO scheme on both
single grids and sparse grids, and compare their computational efficiency. The
L∞ errors, L2 errors, the corresponding numerical accuracy orders, and CPU
times on successively refined meshes to show the efficiency of computations
on sparse grids are reported. To refine meshes for computations on sparse
grids, we refine the root grid Ω0,0,0, and keep the number of semi-coarsened
sparse-grid levels (total NL + 1 levels) unchanged. For example, sparse-grid
with a 10× 10× 10 root grid and NL = 3 has the finest mesh 80× 80× 80. If
the root grid is refined once to be 20 × 20 × 20, with NL = 3 unchanged we
can obtain the finest mesh 160 × 160 × 160. The numerical errors, accuracy
orders, and CPU times are listed in Table 1 for the third order linear scheme
and Table 2 for the third order WENO scheme. Two different finest levels
NL = 3 and NL = 2 are tested in sparse-grid computations. From Table
1, we can see that for the linear scheme, the computations on single grids
and sparse grids achieve the comparable numerical errors and the third order
accuracy. However, computations on sparse-grid are much more efficient than
those on single-grid. Comparing the CPU times in Table 1, we can see that
for computations on sparse grids with NL = 3, more than 80% computation
time can be saved to reach the similar error levels as that on single grids.
If NL = 2, 55% ∼ 64% computation time is saved. From Table 2 for the
third order WENO scheme, we can see that on relatively coarse meshes, the
numerical errors of computations on sparse grids are larger than that on
single grids. However, with more refined meshes the computations on sparse
grids show superconvergence and achieve comparable numerical errors and
accuracy as that on single grids. For NL = 3, 84% CPU time can be saved
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Table 1: Example 1, Linear scheme, comparison of numerical errors and CPU
times for computations on single-grid and sparse-grid. Lagrange interpolation
for prolongation is used in sparse-grid computations. Final time T = 1.0. CFL
number is 0.75. Nr: number of cells in each spatial direction of a root grid. NL:
the finest level in a sparse-grid computation. CPU: CPU time for a complete
simulation. CPU time unit: seconds

Single-grid
Nh ×Nh ×Nh L∞ error Order L2 error Order CPU(s)
80 × 80 × 80 2.30 × 10−4 1.63 × 10−4 52.95

160 × 160 × 160 2.88 × 10−5 3.00 2.04 × 10−5 3.00 930.30
320 × 320 × 320 3.60 × 10−6 3.00 2.55 × 10−6 3.00 15,030.00
640 × 640 × 640 4.50 × 10−7 3.00 3.18 × 10−7 3.00 261,972.90

Sparse-grid, refine root grids, NL = 3
Nr NL Nh ×Nh ×Nh L∞ error Order L2 error Order CPU(s)
10 3 80 × 80 × 80 7.16 × 10−4 4.91 × 10−4 9.87
20 3 160 × 160 × 160 3.96 × 10−5 4.17 2.79 × 10−5 4.14 148.34
40 3 320 × 320 × 320 3.88 × 10−6 3.35 2.74 × 10−6 3.35 3,087.23
80 3 640 × 640 × 640 4.58 × 10−7 3.08 3.24 × 10−7 3.08 52,702.50

Sparse-grid, refine root grids, NL = 2
Nr NL Nh ×Nh ×Nh L∞ error Order L2 error Order CPU(s)
20 2 80 × 80 × 80 2.32 × 10−4 1.64 × 10−4 18.97
40 2 160 × 160 × 160 2.85 × 10−5 3.03 2.02 × 10−5 3.02 368.89
80 2 320 × 320 × 320 3.59 × 10−6 2.99 2.54 × 10−6 2.99 6,741.18
160 2 640 × 640 × 640 4.49 × 10−7 3.00 3.18 × 10−7 3.00 106,619.00

for the computation on the 640 × 640 × 640 mesh. While NL = 2, 63% CPU
time is saved on the 320 × 320 × 320 mesh and 67% CPU time is saved on
the 640 × 640 × 640 mesh. If we compare the results of NL = 2 and NL = 3
in Table 2 for the WENO scheme, we find that the computations on sparse
grids can achieve smaller numerical errors with a smaller finest-level NL, while
CPU costs are less if NL is larger.

Example 2 (A 2D nonlinear equation):

(13)
{
ut + (1

2u
2)x + (1

2u
2)y = −0.1u, 0 ≤ x ≤ 2π, 0 ≤ y ≤ 2π;

u(x, y, 0) = sin(x− y),

with periodic boundary condition. The exact solution of the problem is u(x, y,
t) = e−0.1t sin(x − y). We compute this 2D nonlinear problem till final time
T = 1 by both the third order linear scheme and WENO scheme on both
single grids and sparse grids, and compare their computational efficiency. In
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Table 2: Example 1, WENO scheme, comparison of numerical errors and CPU
times for computations on single-grid and sparse-grid. Lagrange interpolation
for prolongation is used in sparse-grid computations. Final time T = 1.0. CFL
number is 0.75. Nr: number of cells in each spatial direction of a root grid. NL:
the finest level in a sparse-grid computation. CPU: CPU time for a complete
simulation. CPU time unit: seconds

Single-grid
Nh ×Nh ×Nh L∞ error Order L2 error Order CPU(s)
80 × 80 × 80 8.30 × 10−4 3.81 × 10−4 90.74

160 × 160 × 160 4.83 × 10−5 4.10 2.56 × 10−5 3.89 1,561.30
320 × 320 × 320 4.21 × 10−6 3.52 2.67 × 10−6 3.26 30,656.40
640 × 640 × 640 4.69 × 10−7 3.17 3.22 × 10−7 3.05 521,562.00

Sparse-grid, refine root grids, NL = 3
Nr NL Nh ×Nh ×Nh L∞ error Order L2 error Order CPU(s)
10 3 80 × 80 × 80 1.35 × 10−1 5.82 × 10−2 18.15
20 3 160 × 160 × 160 1.46 × 10−2 3.21 6.86 × 10−3 3.09 306.79
40 3 320 × 320 × 320 1.64 × 10−4 6.47 7.93 × 10−5 6.44 5,325.82
80 3 640 × 640 × 640 6.97 × 10−7 7.88 3.40 × 10−7 7.86 82,575.40

Sparse-grid, refine root grids, NL = 2
Nr NL Nh ×Nh ×Nh L∞ error Order L2 error Order CPU(s)
20 2 80 × 80 × 80 2.77 × 10−2 1.38 × 10−2 33.49
40 2 160 × 160 × 160 6.69 × 10−4 5.37 3.09 × 10−4 5.48 777.97
80 2 320 × 320 × 320 5.47 × 10−6 6.93 2.71 × 10−6 6.83 11,242.90
160 2 640 × 640 × 640 4.70 × 10−7 3.55 3.21 × 10−7 3.08 171,576.00

Table 3 and Table 4, the L∞ errors, L2 errors, the corresponding numerical
accuracy orders, and CPU times on successively refined meshes to show the
efficiency of computations on sparse grids are reported. Similar as Example 1,
for the linear scheme, comparable numerical errors and third order accuracy
are obtained on single grids and sparse grids, except that the errors are larger
on the 80 × 80 mesh for the NL = 3 case. For the WENO scheme, numerical
errors and accuracy on sparse grids are comparable to those on single grids
if the mesh is relatively refined. Comparing the CPU costs of computations
on sparse grids and single grids, we find that for 2D problem, the saving of
CPU times of sparse-grid computations is less than that for 3D problem. As
that shown in Table 3 and Table 4, about 30% computation time can be
saved if NL = 3 in sparse-grid computations. The CPU times of sparse-grid
computations with NL = 2 are similar as that of single-grid computations.
Again similar as Example 1, the computations on sparse grids can achieve
smaller numerical errors with a smaller finest-level NL, while CPU costs are
less if NL is larger. In sparse-grid computations presented in this paper, the
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Table 3: Example 2, Linear scheme, comparison of numerical errors and CPU
times for computations on single-grid and sparse-grid. Lagrange interpolation
for prolongation is used in sparse-grid computations. Final time T = 1.0. CFL
number is 0.5. Nr: number of cells in each spatial direction of a root grid. NL:
the finest level in a sparse-grid computation. CPU: CPU time for a complete
simulation. “Ratio” is the ratio of corresponding CPU times on an Nh ×Nh

mesh to that on a Nh

2 × Nh

2 mesh. CPU time unit: seconds
Single-grid

Nh ×Nh L∞ error Order L2 error Order CPU(s) Ratio
80 × 80 6.95 × 10−5 4.91 × 10−5 0.40

160 × 160 8.69 × 10−6 3.00 6.14 × 10−6 3.00 3.20 7.93
320 × 320 1.09 × 10−6 3.00 7.68 × 10−7 3.00 26.02 8.14
640 × 640 1.36 × 10−7 3.00 9.60 × 10−8 3.00 220.63 8.48

Sparse-grid, refine root grids, NL = 3
Nr NL Nh ×Nh L∞ error Order L2 error Order CPU(s) Ratio
10 3 80 × 80 3.64 × 10−4 1.57 × 10−4 0.33
20 3 160 × 160 1.14 × 10−5 4.99 6.50 × 10−6 4.59 2.33 7.16
40 3 320 × 320 1.11 × 10−6 3.36 7.73 × 10−7 3.07 17.76 7.61
80 3 640 × 640 1.36 × 10−7 3.03 9.61 × 10−8 3.01 141.14 7.95

Sparse-grid, refine root grids, NL = 2
Nr NL Nh ×Nh L∞ error Order L2 error Order CPU(s) Ratio
20 2 80 × 80 8.05 × 10−5 5.10 × 10−5 0.43
40 2 160 × 160 8.76 × 10−6 3.20 6.17 × 10−6 3.05 3.22 7.42
80 2 320 × 320 1.09 × 10−6 3.01 7.69 × 10−7 3.00 25.29 7.84
160 2 640 × 640 1.36 × 10−7 3.00 9.60 × 10−8 3.00 199.79 7.90

saving of CPU times of sparse-grid computations is due to the fact that less
number of grid points is used. For 2D sparse grids with Nr number of cells
in each spatial direction of the root grid and the finest level NL, the number
of grid points of the most refined grid ΩNL,NL is (Nr · 2NL + 1)2. Note that
this is also the number of grid points which are used in discretizing and
solving the PDEs on the corresponding single grids. While in the sparse-grid
computations, the number of grid points which are used in discretizing and
solving the PDEs is

NL∑
i=0

(Nr · 2i + 1) · (Nr · 2NL−i + 1) +
NL−1∑
i=0

(Nr · 2i + 1) · (Nr · 2NL−i−1 + 1).

Note that this count of grid points on sparse grids does not include those grid
points used in the prolongation step, which is not in the time evolution process
and done only at the final time step, and does not directly involve solving the
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Table 4: Example 2, WENO scheme, comparison of numerical errors and CPU
times for computations on single-grid and sparse-grid. Lagrange interpolation
for prolongation is used in sparse-grid computations. Final time T = 1.0. CFL
number is 0.5. Nr: number of cells in each spatial direction of a root grid. NL:
the finest level in a sparse-grid computation. CPU: CPU time for a complete
simulation. “Ratio” is the ratio of corresponding CPU times on an Nh ×Nh

mesh to that on a Nh

2 × Nh

2 mesh. CPU time unit: seconds
Single-grid

Nh ×Nh L∞ error Order L2 error Order CPU(s) Ratio
80 × 80 2.48 × 10−4 1.05 × 10−4 0.78

160 × 160 1.45 × 10−5 4.09 7.40 × 10−6 3.83 6.17 7.90
320 × 320 1.27 × 10−6 3.52 7.97 × 10−7 3.21 48.85 7.92
640 × 640 1.42 × 10−7 3.17 9.68 × 10−8 3.04 399.74 8.18

Sparse-grid, refine root grids, NL = 3
Nr NL Nh ×Nh L∞ error Order L2 error Order CPU(s) Ratio
10 3 80 × 80 2.28 × 10−2 1.07 × 10−2 0.58
20 3 160 × 160 9.45 × 10−4 4.59 4.36 × 10−4 4.61 4.43 7.58
40 3 320 × 320 1.17 × 10−5 6.33 4.44 × 10−6 6.62 34.10 7.70
80 3 640 × 640 1.85 × 10−7 5.98 9.93 × 10−8 5.48 268.65 7.88

Sparse-grid, refine root grids, NL = 2
Nr NL Nh ×Nh L∞ error Order L2 error Order CPU(s) Ratio
20 2 80 × 80 5.11 × 10−3 2.32 × 10−3 0.82
40 2 160 × 160 9.03 × 10−5 5.83 3.64 × 10−5 5.99 6.29 7.65
80 2 320 × 320 1.60 × 10−6 5.82 8.24 × 10−7 5.47 49.78 7.92
160 2 640 × 640 1.43 × 10−7 3.49 9.68 × 10−8 3.09 403.93 8.11

PDEs. In Table 5, we list numbers of spatial grid points which are used in dis-
cretizing and solving this example on sparse grids and single grids. Especially,
the ratios of numbers of spatial grid points on sparse grids to that on single
grids are shown. They are compared with the ratios of CPU times of the third
order WENO scheme on sparse grids to that on single grids. We obtain con-
sistent results. If NL = 3, sparse-grid computations use about 70% grid points
of that in single-grid computations, which leads to the saving of around 30%
CPU times. For NL = 2, the numbers of grid points used in sparse-grid and
single-grid computations are similar, hence their CPU times are also similar.

Example 3 (A 3D nonlinear equation):
⎧⎪⎪⎨
⎪⎪⎩
ut + (1

2u
2)x + (1

2u
2)y + (1

2u
2)z = −0.1u,

0 ≤ x ≤ 4π, 0 ≤ y ≤ 4π, 0 ≤ z ≤ 4π;
u(x, y, z, 0) = sin(x− 0.5y − 0.5z),

(14)
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Table 5: Example 2, comparison of numbers of spatial grid points and CPU
times in sparse-grid and single-grid computations. Nr: number of cells in
each spatial direction of a root grid. NL: the finest level in a sparse-grid
computation. “CPU”: CPU times in WENO computations (Table 4, unit:
seconds); “sparse/single (C)”: ratios of corresponding CPU times on sparse
grids to that on single grids; “Grid point #”: numbers of spatial grid points
in sparse-grid and single-grid computations; “sparse/single (G)”: ratios of
corresponding numbers of spatial grid points on sparse grids to that on single
grids

Single-grid
Nh ×Nh CPU(s) Grid point #
80 × 80 0.78 6,561

160 × 160 6.17 25,921
320 × 320 48.85 103,041
640 × 640 399.74 410,881

Sparse-grid, refine root grids, NL = 3
Nr NL Nh ×Nh CPU(s) sparse/single (C) Grid point # sparse/single (G)
10 3 80 × 80 0.58 0.75 4,847 0.74
20 3 160 × 160 4.43 0.72 18,487 0.71
40 3 320 × 320 34.10 0.70 72,167 0.70
80 3 640 × 640 268.65 0.67 285,127 0.69

Sparse-grid, refine root grids, NL = 2
Nr NL Nh ×Nh CPU(s) sparse/single (C) Grid point # sparse/single (G)
20 2 80 × 80 0.82 1.05 6,805 1.04
40 2 160 × 160 6.29 1.02 26,405 1.02
80 2 320 × 320 49.78 1.02 104,005 1.01
160 2 640 × 640 403.93 1.01 412,805 1.00

with periodic boundary condition. This is a 3D version of Example 2. The
exact solution of the problem is u(x, y, z, t) = e−0.1t sin(x − 0.5y − 0.5z).
We compute this 3D nonlinear problem till final time T = 1 by both the
third order linear scheme and WENO scheme on both single grids and sparse
grids, and compare their computational efficiency. In Table 6 and Table 8, the
L∞ errors, L2 errors, the corresponding numerical accuracy orders, and CPU
times on successively refined meshes to show the efficiency of computations
on sparse grids are presented. Similar as the previous examples, for the linear
scheme, comparable numerical errors and third order accuracy are obtained
on single grids and sparse grids, except that the errors are larger on coarser
meshes for the NL = 3 case. For the WENO scheme, numerical errors and
accuracy on sparse grids are comparable to those on single grids if the mesh
is more refined, while on relatively coarse meshes, the numerical errors of
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Table 6: Example 3, Linear scheme, comparison of numerical errors and CPU
times for computations on single-grid and sparse-grid. Lagrange interpolation
for prolongation is used in sparse-grid computations. Final time T = 1.0. CFL
number is 0.75. Nr: number of cells in each spatial direction of a root grid. NL:
the finest level in a sparse-grid computation. CPU: CPU time for a complete
simulation. CPU time unit: seconds

Single-grid
Nh ×Nh ×Nh L∞ error Order L2 error Order CPU(s)
80 × 80 × 80 3.82 × 10−4 2.38 × 10−4 31.81

160 × 160 × 160 4.20 × 10−5 3.19 2.82 × 10−5 3.08 447.45
320 × 320 × 320 4.99 × 10−6 3.07 3.47 × 10−6 3.02 10,618.80
640 × 640 × 640 6.14 × 10−7 3.02 4.33 × 10−7 3.01 160,662.44

Sparse-grid, refine root grids, NL = 3
Nr NL Nh ×Nh ×Nh L∞ error Order L2 error Order CPU(s)
10 3 80 × 80 × 80 7.09 × 10−2 1.38 × 10−2 13.89
20 3 160 × 160 × 160 1.10 × 10−4 9.33 4.50 × 10−5 8.26 115.09
40 3 320 × 320 × 320 5.12 × 10−6 4.43 3.52 × 10−6 3.68 1,641.56
80 3 640 × 640 × 640 6.16 × 10−7 3.06 4.33 × 10−7 3.02 26,387.20

Sparse-grid, refine root grids, NL = 2
Nr NL Nh ×Nh ×Nh L∞ error Order L2 error Order CPU(s)
20 2 80 × 80 × 80 5.03 × 10−4 2.85 × 10−4 14.83
40 2 160 × 160 × 160 4.29 × 10−5 3.55 2.85 × 10−5 3.32 218.43
80 2 320 × 320 × 320 5.00 × 10−6 3.10 3.48 × 10−6 3.03 3,563.63
160 2 640 × 640 × 640 6.14 × 10−7 3.02 4.33 × 10−7 3.01 75,802.70

computations on sparse grids are larger than that on single grids. Again, the
computations on sparse grids show superconvergence to reach comparable
numerical errors and accuracy as that on single grids. For CPU times, we
observe about 70% ∼ 85% saving if NL = 3, and 50% ∼ 65% saving for the
NL = 2 case. We also count the saving of grid points used in the sparse-grid
computations. For 3D sparse grids with Nr number of cells in each spatial
direction of the root grid and the finest level NL, the number of grid points
of the most refined grid ΩNL,NL,NL is (Nr · 2NL + 1)3. This is also the number
of grid points which are used in discretizing and solving the PDEs on the
corresponding 3D single grids. While in the 3D sparse-grid computations, the
number of grid points which are used in discretizing and solving the PDEs
is

NL∑
i=0

NL−i∑
j=0

(Nr · 2i + 1) · (Nr · 2j + 1) · (Nr · 2NL−i−j + 1)
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Table 7: Example 3, comparison of numbers of spatial grid points and CPU
times in sparse-grid and single-grid computations. Nr: number of cells in
each spatial direction of a root grid. NL: the finest level in a sparse-grid
computation. “CPU”: CPU times in computations by Linear scheme (Table 6,
unit: seconds); “sparse/single (C)”: ratios of corresponding CPU times on
sparse grids to that on single grids; “Grid point #”: numbers of spatial grid
points in sparse-grid and single-grid computations; “sparse/single (G)”: ratios
of corresponding numbers of spatial grid points on sparse grids to that on
single grids

Single-grid
Nh ×Nh ×Nh CPU(s) Grid point #
80 × 80 × 80 31.81 531,441

160 × 160 × 160 447.45 4,173,281
320 × 320 × 320 10,618.80 33,076,161
640 × 640 × 640 160,662.44 263,374,721

Sparse-grid, refine root grids, NL = 3
Nr NL Nh ×Nh ×Nh CPU(s) sparse/single (C) Grid point # sparse/single (G)
10 3 80 × 80 × 80 13.89 0.44 132,549 0.25
20 3 160 × 160 × 160 115.09 0.26 967,679 0.23
40 3 320 × 320 × 320 1,641.56 0.15 7,385,739 0.22
80 3 640 × 640 × 640 26,387.20 0.16 57,693,059 0.22

Sparse-grid, refine root grids, NL = 2
Nr NL Nh ×Nh ×Nh CPU(s) sparse/single (C) Grid point # sparse/single (G)
20 2 80 × 80 × 80 14.83 0.47 276,570 0.52
40 2 160 × 160 × 160 218.43 0.49 2,096,330 0.50
80 2 320 × 320 × 320 3,563.63 0.34 16,317,450 0.49
160 2 640 × 640 × 640 75,802.70 0.47 128,750,090 0.49

+
NL−1∑
i=0

NL−i−1∑
j=0

(Nr · 2i + 1) · (Nr · 2j + 1) · (Nr · 2NL−i−j−1 + 1)

+
NL−2∑
i=0

NL−i−2∑
j=0

(Nr · 2i + 1) · (Nr · 2j + 1) · (Nr · 2NL−i−j−2 + 1).(15)

Again the count of grid points on sparse grids does not include those grid
points used in the prolongation step, since the prolongation step is done only
at the final time step and does not directly involve solving the PDEs. In Table
7, we list numbers of spatial grid points which are used in discretizing and
solving this 3D example on sparse grids and single grids. It is observed that
sparse-grid computations just use about 20% grid points of single grids for
the NL = 3 case, and about 50% grid points of single grids for the NL = 2
case. The ratios of numbers of spatial grid points on sparse grids to that on



74 Dong Lu et al.

Table 8: Example 3, WENO scheme, comparison of numerical errors and CPU
times for computations on single-grid and sparse-grid. Lagrange interpolation
for prolongation is used in sparse-grid computations. Final time T = 1.0. CFL
number is 0.75. Nr: number of cells in each spatial direction of a root grid. NL:
the finest level in a sparse-grid computation. CPU: CPU time for a complete
simulation. CPU time unit: seconds

Single-grid
Nh ×Nh ×Nh L∞ error Order L2 error Order CPU(s)
80 × 80 × 80 2.73 × 10−3 1.11 × 10−3 54.20

160 × 160 × 160 1.34 × 10−4 4.34 5.71 × 10−5 4.29 816.97
320 × 320 × 320 7.95 × 10−6 4.08 4.10 × 10−6 3.80 16,298.10
640 × 640 × 640 7.08 × 10−7 3.49 4.47 × 10−7 3.20 217,742.62

Sparse-grid, refine root grids, NL = 3
Nr NL Nh ×Nh ×Nh L∞ error Order L2 error Order CPU(s)
10 3 80 × 80 × 80 1.86 × 10−1 4.05 × 10−2 14.68
20 3 160 × 160 × 160 2.19 × 10−2 3.09 5.62 × 10−3 2.85 197.14
40 3 320 × 320 × 320 5.69 × 10−4 5.26 1.44 × 10−4 5.28 3,005.57
80 3 640 × 640 × 640 1.64 × 10−6 8.44 6.15 × 10−7 7.87 48,099.20

Sparse-grid, refine root grids, NL = 2
Nr NL Nh ×Nh ×Nh L∞ error Order L2 error Order CPU(s)
20 2 80 × 80 × 80 3.27 × 10−2 1.03 × 10−2 27.05
40 2 160 × 160 × 160 1.29 × 10−3 4.67 3.75 × 10−4 4.77 408.71
80 2 320 × 320 × 320 1.45 × 10−5 6.47 5.52 × 10−6 6.09 6,385.60
160 2 640 × 640 × 640 7.32 × 10−7 4.31 4.49 × 10−7 3.62 115,599.00

single grids are compared with the ratios of CPU times on sparse grids to that
on single grids. Consistent results are obtained and verify that the saving of
CPU times in sparse-grid computations is due to the fact that less number of
grid points is used.

3.2. Examples with discontinuous solutions

In this section, we test the method for solving 2D and 3D Burgers’ equations,
in which shock waves form at certain time and discontinuities develop in
the solutions. WENO prolongation in sparse grid combination techniques is
necessary to deal with discontinuous solutions here.

Example 4 (A 2D Burgers’ equation):

(16)
{
ut + (u2

2 )x + (u2

2 )y = 0, (x, y) ∈ [−2, 2] × [−2, 2];
u(x, y, 0) = 0.3 + 0.7 sin(π2 (x + y)),
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Table 9: Example 4, Linear scheme, comparison of numerical errors and CPU
times for computations on single-grid and sparse-grid. Lagrange interpolation
for prolongation is used in sparse-grid computations. Final time T = 0.5/π2.
CFL number is 0.5. Nr: number of cells in each spatial direction of a root
grid. NL: the finest level in a sparse-grid computation. CPU: CPU time for a
complete simulation. CPU time unit: seconds

Single-grid
Nh ×Nh L∞ error Order L2 error Order CPU(s)
80 × 80 6.76 × 10−6 3.88 × 10−6 0.04

160 × 160 7.84 × 10−7 3.11 4.67 × 10−7 3.05 0.25
320 × 320 9.78 × 10−8 3.00 5.73 × 10−8 3.03 1.92
640 × 640 1.22 × 10−8 3.00 7.10 × 10−9 3.01 15.13

Sparse-grid, refine root grids, NL = 3
Nr NL Nh ×Nh L∞ error Order L2 error Order CPU(s)
10 3 80 × 80 9.29 × 10−5 3.01 × 10−5 0.03
20 3 160 × 160 1.04 × 10−5 3.16 3.94 × 10−6 2.93 0.16
40 3 320 × 320 1.34 × 10−6 2.96 5.03 × 10−7 2.97 1.00
80 3 640 × 640 1.67 × 10−7 3.00 6.30 × 10−8 3.00 7.22

Sparse-grid, refine root grids, NL = 2
Nr NL Nh ×Nh L∞ error Order L2 error Order CPU(s)
20 2 80 × 80 1.57 × 10−5 5.08 × 10−6 0.03
40 2 160 × 160 1.59 × 10−6 3.31 6.05 × 10−7 3.07 0.21
80 2 320 × 320 1.91 × 10−7 3.05 7.44 × 10−8 3.02 1.51
160 2 640 × 640 2.36 × 10−8 3.02 9.20 × 10−9 3.01 11.50

with periodic boundary conditions. We first apply both the third order lin-
ear scheme and WENO scheme on single grids and sparse grids to solve this
problem to T = 0.5/π2, when the solution is still smooth. The WENO prolon-
gation in sparse grid combination techniques is used in the WENO scheme. In
Table 9 and Table 10, the L∞ errors, L2 errors, the corresponding numerical
accuracy orders, and CPU times on successively refined meshes are reported.
We observe that on relatively coarse meshes, the sparse-grid computations
have larger errors than the single-grid computations. However along with the
mesh refinement, the numerical errors of the sparse-grid computations catch
up with that of the single-grid computations, and comparable numerical er-
rors are obtained. As that in the previous examples, the WENO scheme show
superconvergence when the mesh is refined. Then we compute the solution
of the problem at T = 5/π2, when the shock waves form and the solution is
discontinuous. The results on sparse grids and the corresponding single grid
are shown in Figure 2. We can see that the numerical solution by the sparse
grid WENO scheme with the WENO prolongation is similar as that by the
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Table 10: Example 4, WENO scheme, comparison of numerical errors and
CPU times for computations on single-grid and sparse-grid. WENO inter-
polation for prolongation is used in sparse-grid computations. Final time
T = 0.5/π2. CFL number is 0.5. Nr: number of cells in each spatial direction
of a root grid. NL: the finest level in a sparse-grid computation. CPU: CPU
time for a complete simulation. CPU time unit: seconds

Single-grid
Nh ×Nh L∞ error Order L2 error Order CPU(s)
80 × 80 7.80 × 10−5 2.09 × 10−6 0.08

160 × 160 3.05 × 10−6 4.68 9.90 × 10−7 4.40 0.57
320 × 320 1.66 × 10−7 4.20 6.99 × 10−8 3.82 4.29
640 × 640 1.42 × 10−8 3.55 7.42 × 10−9 3.24 34.11

Sparse-grid, refine root grids, NL = 3
Nr NL Nh ×Nh L∞ error Order L2 error Order CPU(s)
10 3 80 × 80 3.40 × 10−2 3.82 × 10−3 0.08
20 3 160 × 160 1.72 × 10−3 4.30 1.72 × 10−4 4.47 0.49
40 3 320 × 320 1.02 × 10−5 7.39 1.03 × 10−6 7.39 3.30
80 3 640 × 640 2.78 × 10−8 8.52 7.79 × 10−9 7.04 23.92

Sparse-grid, refine root grids, NL = 2
Nr NL Nh ×Nh L∞ error Order L2 error Order CPU(s)
20 2 80 × 80 1.02 × 10−2 1.13 × 10−3 0.10
40 2 160 × 160 6.76 × 10−5 7.23 9.96 × 10−6 6.82 0.63
80 2 320 × 320 2.77 × 10−7 7.93 7.33 × 10−8 7.09 4.49
160 2 640 × 640 1.44 × 10−8 4.27 7.43 × 10−9 3.30 33.90

single-grid computation. The non-oscillatory and high resolution properties
of the WENO scheme for resolving shock waves are preserved well in the
sparse-grid computations. In Table 11, CPU time costs for the sparse-grid
and single-grid computations are listed. We observe about 25% ∼ 35% CPU
time savings by using sparse-grid with NL = 3 for this 2D problem with
discontinuous solution.

Example 5 (A 3D Burgers’ equation):

{
ut + (u2

2 )x + (u2

2 )y + (u2

2 )z = 0, (x, y, z) ∈ [−3, 3] × [−3, 3] × [−3, 3];
u(x, y, z, 0) = 0.3 + 0.7 sin(π2 (x + y + z)),

(17)

with periodic boundary conditions. As that for the last example, we first ap-
ply both the third order linear scheme and WENO scheme on single grids and
sparse grids to solve this problem to T = 0.5/π2, when the solution is still
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Figure 2: Example 4, solution of two dimensional Burgers’ equation by third
order WENO scheme on sparse grids (Nr = 40 for root grid, finest level
NL = 3 in the sparse-grid computation) and the corresponding 320 × 320
single grid, using third order WENO interpolation for prolongation in sparse
grid combination. CFL = 0.5, final time T = 5/π2. (a), (c), (e): sparse-
grid results; (b), (d), (f): single-grid results. (a), (b): 3D surface plots of the
solutions; (c), (d): contour plots; (e), (f): 1D cutting-plot along x = y.
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Table 11: Example 4, WENO scheme, comparison of CPU times for com-
putations of discontinuous solution on single-grid and sparse-grid. WENO
interpolation for prolongation is used in sparse-grid computations. Final time
T = 5/π2. CFL number is 0.5. NL = 3 in sparse-grid computations. CPU
time unit: seconds

Nh ×Nh CPU time on sparse-grid CPU time on single-grid
80 × 80 0.50 0.64

160 × 160 3.24 5.11
320 × 320 30.08 40.55
640 × 640 225.01 341.36

smooth. Both the regular Lagrange prolongation and the WENO prolonga-
tion in sparse grid combination techniques are tested in the WENO scheme.
In Table 12 and Table 13, the L∞ errors, L2 errors, the corresponding nu-
merical accuracy orders, and CPU times on successively refined meshes are
reported. For the linear scheme, comparable numerical errors and third order
accuracy are obtained on single grids and sparse grids, except that the errors
are larger on the 80 × 80 × 80 mesh for the NL = 3 case. For the WENO
scheme, numerical errors and accuracy on sparse grids are comparable to
those on single grids if the mesh is more refined, while on relatively coarse
meshes, the numerical errors of computations on sparse grids are larger than
that on single grids, especially for the NL = 3 case. The NL = 2 case has
smaller numerical errors and better accuracy, but more CPU time costs than
these of the NL = 3 case. The WENO computations on sparse grids show su-
perconvergence to reach comparable numerical errors and accuracy as that on
single grids. The numerical errors of the sparse-grid computations using the
WENO prolongation are larger than that using the regular Lagrange prolon-
gation on relatively coarse meshes, however they are comparable if the mesh
is more refined. This is due to the typical asymptotic convergence property
of nonlinear WENO approximations. For the 3D problem, much more signif-
icant CPU time savings than the 2D problem are observed. We observe up
to 77% CPU time saving by using sparse-grid with NL = 3, and up to 56%
CPU time saving if NL = 2 in the simulations.

Then we compute the solution of the problem at T = 5/π2, when the
shock waves form and the solution is discontinuous. If we apply the WENO
scheme on sparse grids using the regular Lagrange prolongation, spurious
oscillations are observed in the results. These spurious oscillations are removed
if the WENO prolongation is used in sparse grid combinations. We show the
results on sparse grids and the corresponding single grid in Figure 3. Similar
as the 2D example, we can see that the numerical solution by the sparse
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Table 12: Example 5, Linear scheme, comparison of numerical errors and CPU
times for computations on single-grid and sparse-grid. Lagrange interpolation
for prolongation is used in sparse-grid computations. Final time T = 0.5/π2.
CFL number is 0.75. Nr: number of cells in each spatial direction of a root
grid. NL: the finest level in a sparse-grid computation. CPU: CPU time for a
complete simulation. CPU time unit: seconds

Single-grid
Nh ×Nh ×Nh L∞ error Order L2 error Order CPU(s)
80 × 80 × 80 8.31 × 10−6 4.08 × 10−6 3.59

160 × 160 × 160 1.13 × 10−6 2.88 5.05 × 10−7 3.01 57.95
320 × 320 × 320 1.45 × 10−7 2.96 6.28 × 10−8 3.01 1,072.84
640 × 640 × 640 1.83 × 10−8 2.98 7.83 × 10−9 3.00 16,671.93

Sparse-grid, refine root grids, NL = 3
Nr NL Nh ×Nh ×Nh L∞ error Order L2 error Order CPU(s)
10 3 80 × 80 × 80 9.74 × 10−5 1.44 × 10−5 3.64
20 3 160 × 160 × 160 1.29 × 10−6 6.24 5.91 × 10−7 4.61 37.98
40 3 320 × 320 × 320 1.49 × 10−7 3.12 6.54 × 10−8 3.17 344.57
80 3 640 × 640 × 640 1.84 × 10−8 3.01 7.91 × 10−9 3.05 4,314.76

Sparse-grid, refine root grids, NL = 2
Nr NL Nh ×Nh ×Nh L∞ error Order L2 error Order CPU(s)
20 2 80 × 80 × 80 8.69 × 10−6 3.82 × 10−6 2.96
40 2 160 × 160 × 160 1.12 × 10−6 2.96 4.98 × 10−7 2.94 35.67
80 2 320 × 320 × 320 1.45 × 10−7 2.95 6.26 × 10−8 2.99 473.95
160 2 640 × 640 × 640 1.83 × 10−8 2.98 7.83 × 10−9 3.00 8,552.87

grid WENO scheme with the WENO prolongation is similar as that by the
single-grid computation. The non-oscillatory and high resolution properties
of the WENO scheme for resolving shock waves are preserved well in the
sparse-grid computations. In Table 14, CPU time costs for the sparse-grid
and single-grid computations are listed. We observe about 50% ∼ 70% CPU
time savings by using sparse-grid with NL = 3 for this 3D problem with
discontinuous solution.

4. Conclusions

In this paper, we develop a third order finite difference WENO scheme on
sparse grids via sparse-grid combination technique for solving high dimen-
sional hyperbolic problems. Comparable accuracy of the WENO scheme in
smooth regions of the solutions to that of computations on regular single grids
is obtained for sparse-grid computations on relatively refined meshes. A novel
WENO prolongation is designed in sparse-grid combination to achieve the
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Table 13: Example 5, WENO scheme, comparison of numerical errors and
CPU times for computations on single-grid and sparse-grid. Both Lagrange
and WENO interpolations for prolongation are used in sparse-grid computa-
tions. Final time T = 0.5/π2. CFL number is 0.75. Nr: number of cells in each
spatial direction of a root grid. NL: the finest level in a sparse-grid computa-
tion. CPU: CPU time for a complete simulation. CPU time unit: seconds

Single-grid
Nh ×Nh ×Nh L∞ error Order L2 error Order CPU(s)
80 × 80 × 80 1.57 × 10−5 5.71 × 10−6 6.38

160 × 160 × 160 1.36 × 10−6 3.53 5.54 × 10−7 3.37 109.56
320 × 320 × 320 1.52 × 10−7 3.16 6.43 × 10−8 3.11 1,839.92
640 × 640 × 640 1.85 × 10−8 3.04 7.88 × 10−9 3.03 28,522.89

Sparse-grid, refine root grids, NL = 3, Lagrange interpolation for prolongation
Nr NL Nh ×Nh ×Nh L∞ error Order L2 error Order CPU(s)
10 3 80 × 80 × 80 1.39 × 10−2 1.37 × 10−3 4.28
20 3 160 × 160 × 160 3.17 × 10−4 5.45 2.12 × 10−5 6.01 42.97
40 3 320 × 320 × 320 2.82 × 10−7 10.14 7.51 × 10−8 8.14 488.31
80 3 640 × 640 × 640 1.90 × 10−8 3.89 8.01 × 10−9 3.23 6,566.05
Sparse-grid, refine root grids, NL = 2, Lagrange interpolation for prolongation
Nr NL Nh ×Nh ×Nh L∞ error Order L2 error Order CPU(s)
20 2 80 × 80 × 80 7.49 × 10−4 9.36 × 10−5 5.06
40 2 160 × 160 × 160 2.06 × 10−6 8.51 5.56 × 10−7 7.40 59.90
80 2 320 × 320 × 320 1.52 × 10−7 3.76 6.41 × 10−8 3.12 802.99
160 2 640 × 640 × 640 1.85 × 10−8 3.04 7.87 × 10−9 3.02 14,057.20

Sparse-grid, refine root grids, NL = 3, WENO interpolation for prolongation
Nr NL Nh ×Nh ×Nh L∞ error Order L2 error Order CPU(s)
10 3 80 × 80 × 80 2.14 × 10−1 1.12 × 10−2 6.68
20 3 160 × 160 × 160 9.30 × 10−4 7.85 8.26 × 10−5 7.08 62.41
40 3 320 × 320 × 320 6.01 × 10−7 10.59 9.44 × 10−8 9.77 641.35
80 3 640 × 640 × 640 1.95 × 10−8 4.95 8.00 × 10−9 3.56 7,696.12
Sparse-grid, refine root grids, NL = 2, WENO interpolation for prolongation

Nr NL Nh ×Nh ×Nh L∞ error Order L2 error Order CPU(s)
20 2 80 × 80 × 80 4.48 × 10−3 4.51 × 10−4 6.05
40 2 160 × 160 × 160 3.79 × 10−6 10.21 7.55 × 10−7 9.22 73.17
80 2 320 × 320 × 320 1.56 × 10−7 4.60 6.39 × 10−8 3.56 916.54
160 2 640 × 640 × 640 1.85 × 10−8 3.07 7.87 × 10−9 3.02 15,179.40

non-oscillatory and high resolution properties of the WENO scheme for re-
solving shock waves. With the WENO scheme on sparse grids, more efficient
algorithm than our previous work is obtained for solving the multidimensional
hyperbolic equations. Numerical experiments are performed for the sparse
grid WENO method to show significant savings in computational costs of
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Figure 3: Example 5, solution of three dimensional Burgers’ equation by third
order WENO scheme on sparse grids (Nr = 40 for root grid, finest level
NL = 3 in the sparse-grid computation) and the corresponding 320×320×320
single grid, using third order WENO interpolation for prolongation in sparse
grid combination. CFL = 0.75, final time T = 5/π2. (a), (c), (e),(g): sparse-
grid results; (b), (d), (f),(h): single-grid results. (a), (b): 2D contour plots of
x − y plane cutting at z = −3; (c), (d): 1D cutting-plot along x = y on the
plane z = −3; (e), (f): 2D contour plots of x− y plane cutting at z = 0; (g),
(h): 1D cutting-plot along x = y on the plane z = 0.
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Table 14: Example 5, WENO scheme, comparison of CPU times for com-
putations of discontinuous solution on single-grid and sparse-grid. WENO
interpolation for prolongation is used in sparse-grid computations. Final time
T = 5/π2. CFL number is 0.75. NL = 3 in sparse-grid computations. CPU
time unit: seconds

Nh ×Nh ×Nh CPU time on sparse-grid CPU time on single-grid
80 × 80 × 80 19.18 28.54

160 × 160 × 160 241.01 484.41
320 × 320 × 320 3,518.58 8,023.08
640 × 640 × 640 53,515.70 172,030.00

solving 3D problems by comparisons with single-grid computations. On rel-
atively coarse meshes, the sparse grid WENO method has larger numerical
errors than that by regular single-grid computations. It will be interesting to
improve the accuracy of the sparse grid WENO scheme on coarser meshes,
and perform theoretical error analysis for the scheme. These will be our future
work.
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