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detonation structure simulations
Peng Li, Zhen Gao

∗
, and Wai Sun Don

Abstract: In (Li et al. J. Sci. Comput. 2015, 64: 670–695), a
Hybrid FC-WENO-Z scheme (Hybrid) conjugating the Fourier-
Continuation (FC) method with the improved fifth order charac-
teristic-wise weighted essentially non-oscillatory (WENO-Z) finite
difference scheme for solving the system of hyperbolic conserva-
tion laws was developed. The Hybrid scheme is used to keep the
solutions parts displaying high gradients and discontinuities always
captured by the WENO-Z scheme in an essentially non-oscillatory
manner while the smooth parts are highly resolved by a linear,
essentially non-dissipative and non-dispersive FC method. A high
order multi-resolution algorithm by Harten is used for measuring
the smoothness of the solutions. In this study, the Hybrid scheme
is employed in the long time simulations of multi-dimensional det-
onation structures which contain both discontinuous and complex
smooth structures for the first time. The fine scale structures be-
hind the detonation front and the quasi-steady state cellular struc-
tures of the peak pressure in the half reaction zone are well cap-
tured. A classical stable two-dimensional detonation waves shows
that an improved resolution of the more fine scale structures of
detonation waves as computed by the Hybrid scheme with less
CPU times when compares with the pure WENO-Z scheme. The
influence of initial and boundary conditions on the formation and
evolution of the detonation structures are also illustrated with ex-
amples. Finally, the in-phase rectangular, out-of-phase rectangular
and in-phase diagonal cellular structures in the three-dimensional
detonation simulations are shown to demonstrate the ability of the
Hybrid scheme in capturing the intrinsic evolution of the detona-
tion fronts, which are in good agreement with the published results
in the literature.
Keywords: Weighted essentially non-oscillatory, Fourier-Contin-
uation, multi-resolution, Hybrid, detonation wave structures.
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1. Introduction

Detonation is a type of combustion involving a supersonic exothermic front
accelerating through a medium that eventually drives a shock front propa-
gating directly in front of it. It usually occurs in both conventional solid and
liquid explosives [13], as well as in the reactive gases. Gaseous detonations
are often associated with a mixture of fuel and oxidant in a composition
somewhat below conventional flammability ratios. We refer to the website1

for more descriptions on the detonation theories and applications. However,
direct experiments of the detonations, which exists in the most challenging
and hostile environment, are difficultly conducted if and when possible. Ac-
curate and efficient numerical simulations of a mathematical model of the
detonation waves provide a way to obtain insights in the physical problems
and guide researchers to have a deeper understanding of the physics and to
design better experiments.

Numerical simulations of the unsteady detonation require solving the sys-
tem of hyperbolic conservation laws with a reactive source term. The solution
of such nonlinear system could develop finite time singularities and create
both fine complex smooth and large strong gradient flow structures dynami-
cally in space and time. Direct numerical simulations of fine scale and delicate
structures of detonation waves demand the use of highly accurate and effi-
cient numerical schemes, which must be able to resolve a very broad range of
length and time scales. For example, second order Godunov scheme [1, 37],
extended space-time Conservation Element (CE) and Solution Element (SE)
method [44], unsplit scheme [33], non-MUSCL-type TVD scheme [39], classi-
cal WENO-JS scheme [12, 41, 42, 43] and optimal WENO-Z scheme [18, 19]
have been implemented to simulate detonation waves under different research
backgrounds. The grid convergence study for the case of overdrive factor
f = 1.6 in [18] showed that the WENO schemes converge faster than other
existing numerical methods such as PPM with front tracking and mesh re-
finement [4], unsplit scheme [32], Roe’s solver with minmod limiter [34] and
Roe’s solver with superbee limiter [34].

However, the WENO scheme is highly complex to implement and com-
putationally expensive as it requires, at each grid point, the setup of the
Roe-averaged eigensystem, the flux splitting, the forward and backward pro-
jections between characteristic and physical spaces, the computation of the
smoothness indicators and nonlinear weights. The overhead could make the
WENO scheme at least five times more expensive than other nonlinear shock

1https://en.wikipedia.org/wiki/Detonation
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capturing schemes. Moreover, the WENO scheme is, in general, too dissi-
pative for certain class of problems (for example, compressible turbulence)
than the linear schemes (for example, compact scheme) at a given order and
resolution. Furthermore, the results in [23] have demonstrated clearly that
the WENO-Z scheme is not only less dissipative and dispersive but also less
sensitive to the random phases than the WENO-JS scheme.

The Fourier-Continuation (FC) method [5, 31] is a high order complex
technique for reconstruction of a non-periodical function using the Fourier col-
location method on an extended periodical function over an extended domain
on an uniformly spaced grid. It has been shown, for a sufficiently smooth non-
periodical function, the reconstructed trigonometric function, when used as
Fourier collocation method [20] for solving a wave equation with the smooth
solution, is of high order and essentially non-dissipative and non-dispersive
[5, 31], which is very important in a long time simulation such as the quasi-
steady state solution of the detonation waves. However, in the present of high
gradients and discontinuities, the numerical oscillations known as the Gibbs
phenomena will appear in the solution and might cause instability and loss
of accuracy [10].

To alleviate some of these difficulties, a natural way is to avoid using the
WENO scheme and to use high order linear scheme in the smooth regions
of the solution wherever and whenever possible. In a multi-domain frame-
work [35, 36], the non-dissipative and non-dispersive FC method worked well
together with the WENO-Z scheme for solving the system of hyperbolic con-
servation laws. In [27], we designed a Hybrid FC-WENO-Z scheme for the
numerical simulations of the system of hyperbolic conservation laws in a
single-domain framework. Many critical and unique numerical issues in an
accurate and efficient implementation are discussed there. The accuracy and
efficiency of the Hybrid FC-WENO-Z scheme in solving the one- and two-
dimensional system of hyperbolic conservation laws was demonstrated with
several classical examples of shocked flow, such as the one-dimensional Rie-
mann initial value problems (123, Sod and Lax), the Mach 3 shock-entropy
wave interaction problem with a small entropy sinusoidal perturbation, the
Mach 3 shock-density wave interaction problem, and the two-dimensional
Mach 10 double Mach reflection problem. For a sufficiently large problem
size, a factor of almost two has been observed in the speedup of the Hybrid
FC-WENO-Z scheme over the WENO-Z scheme.

In this followup work, the main aim is to examine the applicability and
performance of the Hybrid FC-WENO-Z scheme, despite the complexity of
the algorithm, for the multi-dimensional detonation wave simulations which
contain both discontinuities and fine scale complex structures for the first
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time. Several classical stable and unstable two-dimensional detonation waves
are simulated. The structures behind the detonation front and the quasi-
steady state cellular structures of peak pressure in the half reaction zone are
used to verify the accuracy and robustness of the proposed scheme. The nu-
merical examples show that more fine scale structures of detonation waves are
well resolved by the Hybrid FC-WENO-Z scheme with less CPU times than
the pure WENO-Z scheme for a given grid resolution. We study the factors
like the initial and boundary conditions, which are related to the propaga-
tion and evolution of the detonation waves. The results show that they play
a minor role in the width-to-length ratio of the cellular structures of quasi-
steady state solution of the detonation waves. Furthermore, we investigate
the performance of Hybrid FC-WENO-Z scheme for the three-dimensional
simulations of detonation waves and illustrate the in-phase rectangular, out-
of-phase rectangular and in-phase diagonal cellular structures that appear in
the three-dimensional detonation waves in a square shock tube. For simplic-
ity, we shall refer to the Hybrid FC-WENO-Z scheme simply as the Hybrid
scheme in the rest of the paper.

The paper is organized as follows. In Section 2, a brief introduction to the
governing equations and its initial and boundary conditions is presented. In
Section 3, a brief introduction to the Hybrid scheme for solving the detonation
system is given. In Section 4, several two-dimensional classical stable and
unstable detonation waves and three-dimensional stable detonation waves are
simulated and their results are discussed. Conclusion and future works are
given in Section 5.

2. Governing equations

The three-dimensional unsteady reactive Euler equations for a perfect ideal
gas coupled with one-step irreversible chemical reaction is given by

(1) ∂Q
∂t

+ ∇ · −→F = S,

where −→F = (F,G,H) is the flux vector.

Q =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ρ
ρu
ρv
ρw
E
ρf1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,F =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ρu
ρu2 + P
ρuv
ρuw

(E + P )u
ρf1u

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ρv
ρuv

ρv2 + P
ρvw

(E + P )v
ρf1v

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,(2)
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H =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ρw
ρuw
ρvw

ρw2 + P
(E + P )w

ρf1w

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,S =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
0
0
0
0

ω(T, f1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
,

where ρ is density, P is pressure, u, v and w are the x-, y- and z-components
of velocity vector respectively. 0 ≤ f1 ≤ 1 is the reactant mass fraction. The
total specific energy E is given by,

(3) E = P

γ − 1 + 1
2ρ(u

2 + v2 + w2) + ρf1q0,

where γ is the ratio of specific-heat, and q0 is the heat-release parameter. The
source term ω(T, f1) due to the Arrhenius rate law is

(4) ω(T, f1) = −Kρf1e
−Ea/T ,

where T = P/(ρR) is the temperature, R is the specific gas constant (with a
suitable normalization, R = 1 in this study), Ea is the activation-energy pa-
rameter, and K is a pre-exponential factor that sets the spatial and temporal
scales.

Remark 1. There are many detonation models such as the one-step simple
model based on the Arrhenius rate law [14, 15, 16, 25], the multi-step chain-
branching model [28, 29, 38], the detailed chemical reaction model [22]. Gen-
erally speaking, the multi-step chain-branching or the detailed reaction model
for detailed investigating the mechanism of detonation are necessary. How-
ever, Gamezo et al. [14] claimed that almost all of the complex phenomena of
detonation can be generated by the one-step Arrhenius kinetics. Therefore, in
this study, we use the one-step model for our simulations.

In this work, we simulate three classical multi-dimensional detonation
waves, which are the stable, weakly unstable and highly unstable detonations.
The corresponding parameters are listed in Table I, where f is the overdrive
factor. The parameters γ, q0, Ea and f determine the primary state of the
detonation waves. We refer to [26] for detailed discussion of the relationship
between the detonation structures and these parameters.

In the two- and three-dimensional problems, the y- and z-components of
initial velocity are perturbed by a transversely sinusoidal planar ZND wave,
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Table I: Cases of simulation and corresponding parameters
Cases studied Stability in 1D γ q0 Ea f

Case A Stable 1.2 2 20 1.1
Case B Unstable, with one unstable mode 1.2 50 50 1.6
Case C Unstable, with five unstable mode 1.2 50 50 1.2

i.e.,

v(x, y, z, 0) =

⎧⎪⎨
⎪⎩

0 x < xd −Ww

A sin
(

2yπk
L + θ1

)
xd −Ww ≤ x ≤ xd

0 x > xd

,

w(x, y, z, 0) =

⎧⎪⎨
⎪⎩

0 x < xd −Ww

A sin
(

2zπk
L + θ2

)
xd −Ww ≤ x ≤ xd

0 x > xd

,

where A, k, L and θi (i = 1, 2) are the amplitude, wave number, wavelength
and phases in the y- and z-directions respectively. Ww is the width of per-
turbation zone. xd is the initial location of the detonation wave front in the
x-direction. L is equal to the length of the physical domain in the y- or z-
directions. In this study, Ww = 1 is used, the right boundary condition is
set to be the initial free stream inflow condition. The perfectly match layer
(PML) absorbing boundary condition is created to minimize the reflection
wave generated from the left boundary condition. The reflective boundary
conditions are imposed in the y- and z-directions. We refer to [19] for details
on the initial conditions and the PML absorbing boundary condition.

3. Hybrid FC-WENO scheme

In this section, we briefly introduce the three main components of the Hybrid
scheme: WENO-Z scheme, Fourier-Continuation method and multi-resolution
analysis in solving the system of hyperbolic conservation laws with source
terms (1). We refer to [27] and the references therein for detailed descriptions
of the Hybrid scheme. We assume the computational domain as Ω0 = [a, b]
of length L = b − a. The domain is discretized by N + 1 equidistant grids
with grid spacing Δx = L/N . The cell centers and boundaries are given by
xi = a+ iΔx and xi+ 1

2
= xi + Δx

2 , i = 0, . . . , N respectively. Three additional
ghost points are setup at both ends of the domain.
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3.1. The WENO-Z scheme

The semi-discretized form of the convection terms of (1) is transformed into
the system of ODEs and solved by the method of lines

dQi(t)
dt

= − ∂f

∂x

∣∣∣∣
x=xi

, i = 0, . . . , N,(5)

where Qi(t) is a numerical approximation to the cell-averaged value Q(xi, t).
To form the flux difference and to obtain a high-order numerical flux con-
sistent with the hyperbolic conservation laws, a conservative finite difference
formulation is required at the cell boundaries. By defining a numerical flux
function h(x) implicitly, one has

f(x) = 1
Δx

∫ x+Δx
2

x−Δx
2

h(ξ)dξ,(6)

such that the spatial derivative in (5) is approximated by a conservative finite
difference formula at the cell center xi,

dQi(t)
dt

= − 1
Δx

(
hi+ 1

2
− hi− 1

2

)
,(7)

where hi± 1
2

= h(xi± 1
2
).

We takes the fifth order WENO-Z scheme for example. The 5-points
global stencil S5 is subdivided into three 3-points substencils {S0, S1, S2} (see
Fig. 1). The fifth degree polynomial approximation f̂i± 1

2
= hi± 1

2
+ O(Δx5)

is built through the convex combination of three second degree interpolation

Figure 1: The computational uniformly spaced grid xi and the 5-points stencil
S5, composed of three 3-points substencils {S0, S1, S2}, used for the fifth-order
WENO reconstruction step.
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polynomials f̂k(x) in substencils Sk, k = 0, 1, 2 at the cell boundaries xi+ 1
2
,

(8) f̂i+ 1
2

=
2∑

k=0
ωk

⎛
⎝ 2∑

j=0
ckjfi−k+j

⎞
⎠ ,

where ωk and ckj are the normalized nonlinear weights and the Lagrangian
interpolation coefficients [24] respectively. Similar formulation can be derived
for f̂i− 1

2
. The nonlinear weights ωk in the WENO-Z scheme [2, 6, 11] are

defined as

(9) αk = dk

(
1 +

(
τ5

βk + ε

)p)
, ωk = αk∑2

l=0 αl

, k = 0, 1, 2,

where τ5 = |β2 − β0|, βk is the local smoothness indicators which measure the
regularity of the second degree interpolation polynomial in substencils Sk, k =
0, 1, 2. The coefficients

{
d0 = 3

10 , d1 = 3
5 , d2 = 1

10
}

are the ideal weights, such
that when the solution is sufficiently smooth, one has {ωk ≈ dk, k = 0, 1, 2}.
The power parameter p = 2 and the sensitivity parameter ε = 10−16 are used
in this study.

Remark 2. The polynomial reconstruction procedure is applied to the charac-
teristic projection of the positive and negative fluxes after applying the global
Lax-Fredrichs flux splitting of the Euler flux above.

3.2. The Fourier-Continuation method

In the Fourier-Continuation (FC) method, as shown in Fig. 2, we shall take
a smooth non-periodical function f(x) defined over a domain Ω0 = [a, b] for
example. The definition of f(x) is then extended to a new periodical function
h(z) with period L + d over an extended periodical domain Ω2 = Ω0

⋃
Ω1 =

[a, b + d], that is,

h(z) =
{

f(z) z ∈ Ω0 = [a, b]

fmatch(z) z ∈ Ω1 = [b, b + d]
,(10)

where d is a parameter that determines the size of the domain Ω1. fmatch(z)
is a matching periodical function defined over a matching periodical domain
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Figure 2: Setup of the FC method of a non-periodical function f(x) (red line)
in the domain [0, 1]. Raised for visibility, the matching periodical function
fmatch(x) (blue and green lines) is displayed in the upper-right portion of the
figure.

Ω3 = [b− δ, b + 2d + δ] with period 2(d + δ) and satisfies

fmatch(z) =
{

f(x) x ∈ [b− δ, b] and z ∈ Ωleft = [b− δ, b]

f(x) x ∈ [a, a + δ] and z ∈ Ωright = [b + d, b + d + δ]
,

(11)

where δ is a parameter that determines the length of an overlapped subdomain
between f(x) and fmatch(z).

Since we are using the Fourier collocation method [20], the grid spacing
Δx must remain unchanged on Ω2. Hence, the parameters d and δ must be in
a form of d = γΔx and δ = βΔx, for some non-zero positive integers γ and
β. Therefore, the Fourier collocation points zj on Ω1 must then be defined
accordingly as zj = b + jΔx, j = 0, . . . , γ.

In the left overlapped subdomain Ωleft = [b − δ, b], instead of forcing
the matching function fmatch(z) = f(x) strictly, f(x) is approximated by the
orthogonal Gram polynomial [8] to some desirable accuracy, provided that
the degree of the Gram polynomial M is not too large (says, M ≤ 10),

fmatch(z) =
M∑
n=0

fleft
n P left

n (ξ), fleftn =
β∑

i=0
fmatch(zi)P left

n (ξi), M ≤ β,

(12)
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ξ = −1 + 2
δ
(z − (b− δ)), z ∈ Ωleft,(13)

where P left
n (ξ) are the Gram polynomials of degree n and fleftn are the n_th

Gram coefficients. Similarly, in the right overlapped subdomain Ωright =
[b + d, b + d + δ], one can obtain the corresponding P right

n (ξ) and frightn .
To obtain the Fourier continuation of the periodical matching function

fmatch(z) in domain Ω3 = [b− δ, b+ 2d+ δ] with period 2(d+ δ) that satisfies
the matching conditions (11) in the overlapped subdomain Ωleft and Ωright,
we discretize the domain Ωleft = [b− δ, b] with R+ 1 equidistant grid points,
namely, zl = b − δ + lΔz, l = 0, . . . , R. We then define an even function
feven
n (z) and an odd function fodd

n (z) such that

fevenn (z�) =
∑

k∈teven(K)
ânke

i πk
δ+d

z� ≈ P left
n (ξ�), 
 = 0, · · · , R,(14)

foddn (z�) =
∑

k∈todd(K)
b̂nke

i πk
δ+d

z� ≈ P left
n (ξ�), 
 = 0, · · · , R,(15)

where z� ∈ Ωleft, ξ� = −1 + 2
δ (z� − (b − δ)), teven(K) = {j ∈ t(K)|

mod (j, 2) = 0} and todd(K) = {j ∈ t(K)| mod (j, 2) = 1} where t(K) =
{j ∈ N, mod (K, 2) = 0| − K/2 + 1 ≤ j ≤ K/2} or t(K) = {j ∈ N,
mod (K, 2) = 1| − (K − 1)/2 ≤ j ≤ (K − 1)/2}, and K is a user tunable
parameter for accuracy in approximating the Gram polynomials with the
[K/2] Fourier modes. One can easily verify that fevenn (z) = feven

n (z + d + δ)
and foddn (z) = −fodd

n (z + d + δ) for all n and z ∈ Ωleft. The system (14)
and (15) above must be solved in a least square sense since the system is an
over-determined system of linear equations. We compute the singular value
decomposition (SVD) of a complex matrix with element Ak� = ei

πk
δ+d

z� . To
improve the conditioning of the over-determined system of linear equations,
we reset those singular values to zero if they are smaller than a certain user
defined threshold εSVD, for example, εSVD = 10−11.

Once the functions fevenn (z) and fodd
n (z) have been determined, the match-

ing function fmatch can be obtained by means of the linear combination as,

fmatch(z) =
M∑
n=0

[
fleft
n + frightn

2 feven
n (z) + fleft

n − fright
n

2 fodd
n (z)

]
.(16)

We refer to [5, 31] and references therein for a more detailed discussion of the
theoretical development, practical implementation, and application of the FC
method.



Hybrid FC method and WENO-Z finite difference scheme 37

In this work, the parameters β = 10, γ = 19, M = 6, R = 100, K = 30 are
used. A fast transform algorithm, which uses a version of fast Fourier trans-
form (FFT) algorithm [30], is applied to perform the Fourier differentiation
of h(z) to obtain h′(x) which approximates f ′(x) [27].

3.3. Multi-resolution analysis

To quantify the smoothness of a solution at each grid point xi, the coefficients
of the Multi-Resolution (MR) analysis [21] can be used.

Given an initial number of the grid points N0 and grid spacing Δx0, we
shall consider a set of nested dyadic grids up to level L < log2 N0,

Gk = {xki , i = 0, . . . , Nk}, 0 ≤ k ≤ L,(17)

where xki = iΔxk with Δxk = 2kΔx0, Nk = 2−kN0 and the cell averages of
function u at xki :

ūki = 1
Δxk

∫ xk
i

xk
i−1

u(x)dx,(18)

Let ũk2i−1 be the approximation to ūk2i−1 by a unique polynomial of degree
nMR = 2s that interpolates ūki+l, |l| ≤ s at xki+l, where q = 2s + 1 is the order
of approximation.

The multi-resolution coefficients, taking k = 1 for a single-level MR, di =
ū0

2i−1 − ũ0
2i−1 at xi, has the property that if u(x) is a Cp−1 function, then

(19) di ≈

⎧⎨
⎩ [u(p)

i ]Δxp1 p ≤ q

u
(q)
i Δxq1 p > q

,

where [·] and (·) denote the jump and the derivatives of the function, respec-
tively. The MR coefficient di measures how close the data at the finer grid{
x0
i

}
can be interpolated by the data at the coarser grid

{
x1
i

}
. It follows that

(20) |d2i| ≈ 2−p̄|di|, p̄ = min{p, q},

which implies that away from discontinuities, the MR coefficients {di} dimin-
ish in size with a refinement of the grid at smooth parts of the solution; close
to discontinuities, they remain essentially the same size, independent of the
order q = 2s+1. Examples of the performance of the MR analysis in detecting
discontinuities in the solution of nonlinear system of hyperbolic PDEs can be
found in [7].
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3.4. The Hybrid scheme algorithm

Algorithmically, the Hybrid scheme is implemented with the following essen-
tial steps:

1. Perform a nMR (Typically nMR = 2r) order multi-resolution (MR) anal-
ysis [21, 7] on one or more suitable variable(s) (Density is used in this
study) once at the beginning of a time stepping scheme.

2. Set a MR flag Flag, based on the MR coefficients di, at a grid point xi
as

Flagi =
{

1, |di| > εMR (non-smooth stencil),
0, otherwise (smooth stencil),(21)

where εMR is a user tunable parameter. (Typically εMR = 1 × 10−3 �
5 × 10−2.)

3. A buffer zone is created around each grid point xi that all the grid
points inside the buffer zone are flagged as non-smooth stencils. This
condition prevents the computation of the derivative of the fluxes by
the FC method using non-smooth functional value.
If, for example, a grid point xi is flagged as a non-smooth stencil,
then its neighboring grid points {xi−m, . . . , xi, . . . , xi+m} will also be
designated as non-smooth stencils as well, that is, {Flagj = 1, j =
i−m, . . . , i, . . . , i + m}. (Typically, m = r.)

4. Use the FC method to compute the derivative of the fluxes in each
segment of smooth stencils of data length N according to the procedure
outlined in [27].

5. Use the WENO-Z scheme to compute the derivative of the fluxes for
the remaining grid points.

The resulting system of ODEs resulted from the spatial discretization
is advanced in time via the third order TVD Runge-Kutta scheme [2]. The
CFL condition is set to be CFL = 0.4 in this study. The eighth order finite
difference filtering is applied to the smooth stencils at the end of each Runge-
Kutta step to stabilize the Hybrid scheme. We would like to note that the
optimal order of the Hybrid scheme as designed is bounded by the optimal
order of the WENO-Z scheme, which is fifth order in this case.

4. Numerical results and discussion

In this section, we evaluate the performance of the Hybrid scheme in simulat-
ing a long time evolution of the detonation front and its associated fine scale
structures by several classical two- and three-dimensional examples.
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Figure 3: (Left): Open-shutter photograph and (Right): Schlieren photograph
of the detonation in a thin channel [26] pp. 184–185.

4.1. 2D detonation wave simulations

It is well-known that all the realistic detonation phenomena are essentially
three-dimensional, but many important essential detonation structures can
be observed from the two-dimensional simulations, such as the regular or ir-
regular cellular structures, triple-shock Mach intersection in the shock inter-
face, unburned pockets behind the leading front. Furthermore, the results of
two-dimensional simulations usually provide valuable reference for the three-
dimensional simulations. For example, Fig. 3 shows an open-shutter photo-
graph of the transverse wave trajectories for C2H2 + 2.5O2 and a highly re-
solved schlieren photograph illustrating the detailed structures of the reaction
zone for CH4 + 2O2 in a thin channel [26].

In this section, three classical detonations (Cases A, B and C in Ta-
ble I.) are simulated. The computational domain is set to be (x, y) = [0, 40]×
[−15, 15] with PML layer (x, y) = [0, 6] × [−15, 15] and the location of the
initial detonation front at xd = 30. The grid sizes are Nx ×Ny = 800 × 600.
εMR = 0.03, 0.03, 0.01 are used in the Cases A, B and C respectively.

4.1.1. Case A: stable detonation The stiffness coefficient in this case is
chosen as K = 1134363.64. The corresponding one-dimensional detonation
wave is linearly stable. It allows the formation of the stable regular cellular
structures.

To show the dissipation and dispersion properties, the contours of tem-
perature computed by two schemes at time t = 30 are shown in Fig. 4
respectively. We observe more fine scale structures (for example, the small
mushroom shaped vortical rollups along the slip line) in the flow field are
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Figure 4: Case A: (Color online) The temperature T with the perturbed wave
parameters (k = 3, A = 0.1) computed by (Left): the WENO-Z scheme and
(Right): the Hybrid scheme.

more clearly resolved by the Hybrid scheme than those computed by the pure
WENO-Z scheme.

The steady state contours of pressure and mass fraction at time t = 260 ∼
268 are shown in Fig. 5 in which the global structures near the detonation
front agree well with those in the literature [3, 33]. From the pressure contours,
the strength of the transverse wave is similar and interacts with shock front to
form triple points (TPs). The TPs move perpendicular to the solid wall. The
Mach stem and the incident wave alternatively appear on the shock front.
The contours of mass fraction show that the combustion front evolves in a
regular manner in time and space.

Fig. 6 shows the temporal evolution of the peak pressure. The initial
transverse waves are weak and propagate along the leading shock front with
the same number as that in the initial conditions [3, 19]. With the detona-
tion decaying, the transverse waves coalesce, reducing the total number of
the transverse waves until reaching a steady state. At that time, the trans-
verse waves are weak and propagate more or less at the acoustic velocity. The
width-to-length ratio of the regular cellular pattern is about 0.55.

In Fig. 7, we show the steady state results computed by the Hybrid scheme
with the periodical boundary condition in the y-direction, which was used
extensively in the detonation simulations in a vast channel such as [3, 17, 19,
33, 44]. The temporal evolution of the cellular structure is very similar to
those with the reflective boundary condition. An interesting phenomenon is
found that the number of cellular structures in the y-direction is always an
integer, but the width-to-length ratio is also about 0.55, which is the same as
that with the reflective boundary condition before.
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Figure 5: Case A: (Color online) The pressure P and mass fraction f1 with
the perturbed wave parameters (k = 6, A = 0.1) computed by the Hybrid
scheme with L1/2 = 20.

Due to the unstable system, the external noises and any small perturba-
tions might affect the evolution, formation and size of the cellular structures.
Therefore, we investigate the effects of the initial conditions with different per-
turbed waves on the detonation structures. The temporal histories of the peak
pressure with the initial perturbation wave parameters (k = 15, A = 0.1)
and random initial perturbation waves computed by the Hybrid scheme are
shown in Fig. 8 and Fig. 9 (only showing a representative one out of many
realizations) respectively. Compared with Fig. 6, we observe that the ini-
tial conditions only play an important role in the initial transient phase of
the formation of the cellular structures. The cellular structures at the final
steady state does not depend on the randomness of the initial perturbation
and are similar to those presented in Fig. 6. We also conduct many examples
with random perturbations and obtain a similar observation. Moreover, the
width-to-length ratio of the cellular structures is always 0.52 ∼ 0.55.

Hence, we conclude that an unstable cellular detonation structure af-
ter reaching the steady state solution is extremely robust and the external
noise and boundary conditions do not influence the final steady state solu-
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Figure 6: Case A: The history of the peak pressure with the perturbed wave
parameters (k = 6, A = 0.1) with reflective boundary condition in the y-
direction.

Figure 7: Case A: The history of the peak pressure with the perturbed wave
parameters (k = 6, A = 0.1) (from x = 400 to x = 600) with the periodical
boundary condition in the y-direction.

tion. Therefore, we use the parameters (k = 6, A = 0.1) and the reflective
boundary condition in the y-direction in the following examples.

4.1.2. Case B: weakly unstable detonation We evaluate the perfor-
mance of the Hybrid scheme by considering the weakly unstable case in
this part. The pre-exponential parameter is set to be K = 230.75. The
corresponding one-dimensional flow is linearly unstable with one unstable
mode.

We first show the contours of pressure and mass fraction in Fig. 10 when
the detonation wave reaches the steady state solution at time t = 60 ∼ 66.
From Fig. 10, we observe that the curvature of the leading front is larger and
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Figure 8: Case A: The temporal history of the peak pressure with the per-
turbed wave parameters (k = 15, A = 0.1).

Figure 9: Case A: The temporal history of the peak pressure with a random
perturbation.

the flow field in its wake has more complex structures than those in Case A.
The transverse waves emanating from the TPs interact with each other as
well as the burning gas inside the reaction zone. The interactions result in the
formation of the un-reacted gas pockets, which burn at subsequent times and
generate the compression waves, which further interact with the structures of
front.

The cellular pattern shown in Fig. 11 is more irregular and complex than
those in Case A. We can also observe that the transverse waves disappear
when they coalesce and spontaneously appearing due to the rapid growth
of small perturbations from instabilities around time t = 180. However, the
averaged number of transverse waves in the y-direction remains the same as
that in Case A.
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Figure 10: Case B: (Color online) The pressure P and mass fraction f1 under
the perturbation waves with parameters (k = 6, A = 0.1) computed by the
Hybrid scheme with L1/2 = 20.

4.1.3. Case C: highly unstable detonation This case is an example of
a highly unstable detonation with the pre-exponential parameter K = 871.42.
According to the linear stability analysis, the corresponding one-dimensional
case has five unstable modes. Two-dimensional linear stability studies reveal
that the corresponding two-dimensional flow is unstable at arbitrarily short
wavelengths.

In Fig. 12 and Fig. 13, we show the structures of pressure and mass frac-
tion at time t = 147 ∼ 155 near the detonation front and temporal history
of the peak pressure respectively. In the early stages, the evolution of the
flow-field resembles the equivalent one-dimensional process. More specifically,
the shock pressure and temperature drop below the ZND values and, as a
consequence, the reaction zone stays temporarily behind the hydrodynamic
shock. Later on, material burns fast due to the thermal runaway, resulting in
high over-pressure. It suggests that in the early times the evolution process is
dominated by longitudinal instabilities. Once the transverse instabilities grow
and start dominating the flow, the structures of flow field become increasingly
chaotic. However, the transverse waves appear and disappear very quickly in
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Figure 11: Case B: The history of the peak pressure with the perturbed wave
parameters (k = 6, A = 0.1).

this case, the number of TPs on the shock front is no longer fixed and dif-
ficult to estimate. There are one or two very strong transverse waves, which
mainly depend on the structures near the front. In the wake of front, there are
many vortical structures. The pockets of unreacted material are constantly
created and subsequently burn. Sometimes they can span the width of the
channel. Furthermore, from the contours of mass fraction, we find that the
combustion zone is narrower compared with case B. The transverse-wave col-
lisions are happening more frequently. The shock wave systems resulting from
those collisions interact with the vortical structures that have been convected
downstream from the main front. Similar phenomena were observed and have
been reported in [3, 33].

4.1.4. Efficiency of the Hybrid scheme Generally speaking, the Hybrid
scheme should be faster than the pure WENO-Z scheme. However, as we
know, the overall efficiency of the Hybrid scheme depends on the problems.
In some particular problems containing complex flow structures, the Hybrid
scheme might not achieve the computational efficiency due to the increase of
the percentage of WENO region in the computational domain.

To gain a better understanding of the efficiency of the Hybrid scheme for
the class of problems and setup in this study, we show the CPU time and the
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Figure 12: Case C: (Color online) The pressure P and mass fraction f1 under
the perturbation waves with parameters (k = 6, A = 0.1) computed by the
Hybrid scheme with L1/2 = 20.

percentage of WENO region in the computational domain in Fig. 14 respec-
tively. One can easily observe that the Hybrid scheme is more efficient than
the pure WENO-Z scheme for Cases A and B. Moreover, the Hybrid scheme
uses roughly the same amount of CPU time to that of the pure WENO-Z
scheme in Case C. From Fig. 14, we conclude that when the percentage of
WENO region increases, the efficiency of the Hybrid scheme decreases. The
corresponding WENO Flags of three cases used in one Runge-Kutta stage
also shown in Fig. 15.

4.2. 3D detonation wave simulations

In the 1960s, the experiments revealed that the gas-phase detonations were
most often characterized by unsteady, three-dimensional structures. There-
fore, in this part, we consider a stable three-dimensional detonation wave
using the parameters of Case A, which can generate the in-phase rectangular,
out-of-phase rectangular and in-phase diagonal detonations in the experi-
ments, for investigating the performances of the Hybrid scheme.
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Figure 13: Case C: The history of the peak pressure with the perturbed wave
parameters (k = 6, A = 0.1).

Figure 14: (Left) The CPU time used and (Right) percentage of WENO region
in one Runge-Kutta stage of three cases.

The perturbation waves with parameters (k = 2, A = 0.5) and θ1 = θ2 =
0 are imposed on y- and z-directions respectively. The computational domain
is set to be (x, y, z) = [170, 200] × [−10, 10] × [−10, 10], and PML layer is
(x, y, z) = [170, 176] × [−10, 10] × [−10, 10]. The number of grid points are
Nx × Ny × Nz = 300 × 100 × 100. The detonation front is initially located
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Figure 15: The WENO flags in x- and y-directions for cases A, B and C at
the steady state.

at xd = 195. We choose εMR = 0.03 for this case. The history of the peak
pressure on the walls of the in-phase rectangular, out-of-phase rectangular
and in-phase diagonal detonations are shown in Fig. 16 which are in a good
agreement with those in [9, 40, 43].
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Figure 16: The history of the peak pressure on the walls: (Left) in-phase
rectangular, (Middle) out-of-phase rectangular and (Right) in-phase diagonal
detonations.

Figure 17: The front structure and pressure on the walls in one periodic:
(Top) in-phase rectangular, (Middle) out-of-phase rectangular and (Bottom)
in-phase diagonal detonation.

• In-phase rectangular
We show the in-phase rectangular detonation in the top figure of Fig. 17.
We observe that the detonation front contains four pairs of triple point
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lines (TPLs), and each pair is parallel to the y- and z-directions respec-
tively. When the TPLs collide with the walls, the slapping waves are
formed on the walls (see the left figure of Fig. 16). Due to the same per-
turbation waves mode used in the y- and z-directions, the TPLs arrive
at the walls simultaneously.

• Out-of-phase rectangular
To generate the out-of-phase rectangular detonation, the transverse sine
perturbation waves with different phases are imposed on the y- and z-
directions (e.g. θ1 = 0 and θ2 = π in this study) respectively. In the
middle figure of Fig. 17 shows the pressure and the front structure on
the walls for the out-of-phase rectangular detonation. We find that the
cellular structures are similar to those generated in the in-phase case.

• In-phase diagonal
We impose a symmetrical perturbation with period two along the diag-
onal direction where the pressure and density are increased by a factor
of five. The bottom figure of Fig. 17 displays an evolution of a typical
diagonal structure of the detonation front in one full period. The results
show that the TPLs, moving along the diagonal direction, do not collide
perpendicularly with the walls. Hence, the slapping waves on the walls
disappear (see the right figure of Fig. 16). These results are in a very
good agreement with those given in the literature [9, 40, 43]. Under this
configuration, the detonation waves propagate in an in-phase diagonal
mode, and the detonation front maintains a diagonal structure in a long
time simulation.

5. Conclusion and future work

In this work, we study the performance of the hybrid FC-WENO-Z finite
difference (Hybrid) scheme in the simulation of multi-dimensional detonation
waves. The Hybrid scheme is used to keep the solutions parts displaying
high gradients and discontinuities always captured by the WENO-Z scheme
in an essentially non-oscillatory manner while the smooth parts are highly
resolved by a linear, essentially non-dissipative and non-dispersive Fourier
Continuation method. To detect the smoothness of the solutions, a high order
multi-resolution algorithm by Harten is used.

For three classical two-dimensional cases, we show the cellular structures
of detonations generated by imposing a transversely sinusoidal wave on a
strong planar shock wave as a source of initial fluctuations. The structures
behind the detonation front and cellular structures along the channel formed
by the propagation of detonation waves are presented. The numerical results
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show that the initial fluctuations affect the cell formation process, but play
a minor role in the cell size and regularity of the structures of the quasi-
steady state solutions. The reflective and periodic boundary conditions behave
similarly in the evolution of cellular structures. A stable two-dimensional
detonation waves show that more fine scale structures of detonation waves
are well resolved by the Hybrid scheme with less CPU times than the pure
WENO-Z scheme. We observe that the transverse waves emanate from the
triple points interact with each other as well as the burning gas inside the
reaction zone. These interactions result in the formation of the unburned
gas pockets for the unstable detonations. The in-phase rectangular, out-of-
phase rectangular and in-phase diagonal cellular structures are observed in the
three-dimensional examples. The in-phase and out-of-phase slapping waves
are also found in the rectangular detonations.

Our future work in this research area, we will perform more three-dimensional
high resolution detonation wave simulations with multi-species undergoing a
chain of chemical reactions using the Hybrid scheme in a parallel computer.
We will also simulate the process of detonation under the multi-domain frame-
work of reactive Navier-Stokes system in a complex geometry.
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