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Higher order terms in asymptotic expansion of colored
Jones polynomials

Shengmao Zhu

Abstract: SL(2,C) Chern-Simons theory provide several methods
to calculate the higher order terms in asymptotic expansion of col-
ored Jones polynomial from the view of A-polynomial and noncom-
mutative A-polynomial. First, we present one of those algorithms
explicitly. Then through the detailed calculations, we conjecture
that the Melvin-Morton-Rozansky (MMR) expansion of colored
Jones polynomial is consistent with the asymptotic expansion of
colored Jones polynomial in abelian branch of A-polynomial stud-
ied in this article.
Keywords: Colored Jones polynomial, asymptotic expansion,
volume conjecture, A-polynomial, non-commutative A-polynomial,
AJ conjecture.

1. Introduction

1.1.

Let JN (K; q) be the normalized colored Jones polynomial of a knot K colored
by the N -dimensional irreducible representation of SU(2). Thus,
JN (unknot; q) = 1, J1(K; q) = 1 for all K and J2(K; q) is the Jones poly-
nomial of K. JN (K; q) is an important quantum invariant in knot theory.
People want to find the geometric information from JN (K; q). More precisely,
let q = e

2πi
k and consider the following limit,

k, N → ∞, u = πi
N

k
fixed.(1)

The question is what can we get from the following limit

lim
N→∞

JN (K; e
2u
N ).(2)
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The first progress in this direction is the volume conjecture. Let us briefly
review it. R.M. Kashaev [29, 30] defined a knot invariant associated with the
quantum dilogarithm and an integer N , denoted by 〈K〉N . He conjectured
that for any hyperbolic knot K [31], when N → ∞,

|〈K〉|N ∼N→∞ exp
(
N

2πV ol(MK)
)

(3)

where MK is equal to the knot complement S3 \ K and V ol(MK) is the hy-
perbolic volume of MK. Then, in [34], H. Murakami and J. Murakami proved
that for any knot K,

〈K〉N = JN (K; e
2πi
N ).

Moreover, they generalized the volume definition at the right hand side of (3)
to simplicial volume of any knot complement MK. Now, the standard volume
conjecture can be formulated as follow [34]: For a knot K, then

|JN (K; e
2πi
N )| ∼N→∞ exp

(
N

2πV ol(MK)
)

where V ol(MK) is the simplicial volume of knot complement MK = S3 \K. In
particular, when K is a hyperbolic knot, V ol(MK) is the hyperbolic volume
of MK.

We remark that the original volume conjecture was actually proposed
for link L [31], but in this paper, we only consider the case of knot K. It is
also possible to remove the absolute value to study the complexified volume
conjecture [35]: For any hyperbolic knot K,

JN (K; e
2πi
N ) ∼N→∞ exp

(
N

2π (V ol(MK) + iCS(MK))
)

(4)

where CS(MK) is the Chern-Simons invariant of MK [8]. Furthermore, a u-
parameterized version of complexified volume conjecture for any hyperbolic
knot K was firstly proposed in [25]:

JN (K; e
2u
N ) ∼N→∞ exp

(
k

πi
S0(u)

)
(5)

where S0(u) is a geometric invariant related to the u-deformation volume of
MK [49]. In fact, formula (5) is a generalization of (4) for u near the point
πi in C. Moreover, the expansion form of (5) has been further extended to
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higher order terms by S. Gukov and H. Murakami [26]. We refer to [38] for a
nice introduction of the volume conjecture.

It is also interesting to consider the situation when u near the point 0.
Another expansion form of colored Jones polynomial which was referred as
Melvin-Morton-Rozansky (MMR) conjecture was proposed in [33] and gener-
alized by [45]. Later, the MMR conjecture was proved by D. Bar-Natan and
S. Garoufalidis in [5]. Recently, S. Garoufalidis and T. T. Q. Le obtained the
following analytic version of MMR expansion: For every knot K, there exists
a neighborhood O ⊂ C at u = 0, such that for any u ∈ O, we have

JN (K; e
2u
N ) ∼N→∞

∞∑
d=0

PK,d(e2u)
ΔK(e2u)2d+1

(2u
N

)d

,(6)

where ΔK(t) is the Alexander polynomial of K, and {PK,d(t), d ≥ 0} is a
sequence of Laurent polynomials with PK,0(t) = 1.

1.2.

Now we focus on the general expansion form of the limit (2), it was conjectured
in [25] that the asymptotic expansion of JN (K; q) at the limit N → ∞, q → 1
was equal to the SL(2,C) Chern-Simons partition Z(MK) function up to a
certain normalization. Based on the standard perturbative Chern-Simons the-
ory [1, 6, 2], the general perturbative computations of Z(MK) were explored in
[12, 13]. Therefore, motivated by the conjectured intimate relation between
the colored Jones polynomial and Chern-Simons partition, it is rational to
consider the higher order expansion of colored Jones polynomial [26]. If we
introduce the quantum parameter � as � = iπ

k . The two parameters (k,N)
in colored Jones polynomial are changed to two parameters (�, u) by formula
(1). Then the general asymptotic expansion of colored Jones polynomial has
the following form [12, 11],

JN (K; e
2u
N ) ∼N→∞ exp

(
S0(u)
�

− δK(u)
2 log � +

∞∑
n=1

Sn(u)�n−1
)
.(7)

In this paper, we propose that the two expansion formulas (5) and (6) can
be unified from the view of A-polynomial and noncommutative A-polynomial
of a knot K. In order to determine every terms Sn(u) appearing at the
right side of (7), one needs to solve the following equation with initial value
SInitial(u):

(8)
{
ÂK(l̂, m̂; q)JN (K; e

2u
N ) = 0

S0(u) = SInitial(u)
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where the initial value SInitial(u) is determined by the solution of the equation
AK(ev, eu) = 0 up to a constant, where AK(l,m) is the A-polynomial of K and
ÂK(l̂, m̂; q) is an operator defined from the noncommutative A-polynomial of
K which will be introduced in Section 2. First, the work [12] implies
Conjecture 1.1. i) There exists a solution of equation AK(ev, eu) = 0 called
geometric branch of A-polynomial: v = vG(u). In this branch, we have a
neighborhood OG ⊂ C at u = πi, such that for any u ∈ OG,

JN (K; e
2u
N ) ∼N→∞ exp

(
SG

0 (u)
�

− 3
2 log � +

∞∑
n=1

SG
n (u)�n−1

)
,(9)

with dSG
0 (u)
du = vG(u), SG

0 (u) is related to the u-deformed volume of MK by
Gukov’s conjecture formula (5), and SG

1 (u) = 1
2 log iTK(u)

4π [26]. Moreover,
every SG

n (u) for n ≥ 2 can be obtained by the algorithm described in Section 2.
ii) By the properties of A-polynomial, we know that there is an abelian

branch which corresponding to the branch l = 1 of AK(l,m) = 0. In this
branch, we have a neighborhood OA ⊂ C of 0, such that for any u ∈ OA,

JN (K; e
2u
N ) ∼N→∞ exp

(
SA

0 (u)
�

+
∞∑
n=1

SA
n (u)�n−1

)
,(10)

with SA
0 (u) = 0 and SA

1 (u) = log 1
ΔK(2u) , where ΔK(t) is the Alexander poly-

nomial of knot K. Moreover, every SA
n (u) for n ≥ 2 can also be obtained by

the same algorithm.
Through the detailed calculations carried out by using the algorithm il-

lustrated in Section 2, we propose that
Conjecture 1.2. The expansion formula (10) is consistent with the analytic
version of MMR expansion (6).

In fact, there exists a sequence of Laurent polynomials {QK,n(t)} such
that for n ≥ 2, we have

SA
n (u) = QK(e2u)

ΔK(e2u) .

By the consistence of (10) and (6), if we let CK,d(u) = 2dPK,d(e2u)
ΔK(e2u)2d+1 , then

CK,d(u) = exp(SA
1 (u))

∑
μ�→d

∏l(μ)
i=1 S

A
μi+1(u)

|Aut(μ)| ,
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where μ is the partition of d with length l(μ). In other words, Conjecture 1.2
provides a method to compute every PK,d(e2u) appears in the analytic version
of MMR expansion. The concrete calculations will be carried out in Section 3.

Remark 1.3. The algorithm mentioned above is extracted from the physi-
cists’ works on perturbative computation of SL(2,C) Chern-Simons theory
[12, 13]. We note that, by the definitions in their works, the colored Jones
polynomial JN (K; e 2πi

k ) and Z(MK;u, �) are only difference with a normaliza-
tion q

N
2 −q−

N
2

q
1
2 −q−

1
2

. Thus, we are able to apply their method to study the colored

Jones polynomial JN (K; e 2πi
k ) with a slight modification. Besides the geo-

metric and abelian branches, they also introduced the conjugate branch of
A-polynomial. See [12] for more details.

The rest of this paper is organized as follows: In Section 2, we review the
definitions of A-polynomial, non-commutative A-polynomial, AJ conjecture
for colored Jones polynomial and their recent progresses. Then, we illustrate
the quantization algorithm to compute Sn(u) which was introduced in [12]
to study the pertubative computation of SL(2,C) Chern-Simons theory. In
Section 3, we give some examples to illustrate the calculations of the higher
order terms by this quantization algorithm. More precisely, we have calculated
the following examples:

i) Figure-8 knot 41 in both geometric and abelian branches which has been
computed in [12, 13] under the context of SL(2,C) Chern-Simons theory with
three different methods.

ii) Twist knots 52 and 61 in abelian branch which support our Conjec-
ture 1.2.

In the final Section 4, we discuss the possible generalizations and related
works.

2. A-polynomial, noncommutative A-polynomial and the
quantization algorithm

2.1. A-polynomial AK(l,m) of a knot K

Let us start with the review of definition of A-polynomial of a knot K in S3 [7].
Denoted by R(M) = Hom(π1(M), SL(2,C)) the set of all homomorphisms
ρ from π1(M) to SL(2,C) where M = S3 \ K. Let RU (M) be the subset
of R(M) consisting of a representation ρ such that ρ(μ) and ρ(λ) are upper
triangular matrices for a fixed meridian μ and longitude λ of K. Then one
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can define a projection ξ = (ξλ, ξμ) : RU (M) → C
2 by ξ(ρ) = (l,m) for

ρ ∈ RU (M) with

ρ(λ) =
(
l ∗
0 l−1

)
, ρ(μ) =

(
m ∗
0 m−1

)
.

The Zariski closure of ξ(RU (M)) is an algebraic variety in C
2 and each of its

irreducible components is a curve, which is defined by zeros of polynomial with
integer coefficients in l and m. Then the product of those defining polynomials
is defined as the A-polynomial of knot K. Note that the A-polynomial of K
has a factor l−1, which corresponds to abelian representations which related
to the Alexander polynomial of K. Thus someone defines the A-polynomial
AK(l,m) as the original A-polynomial divided by l − 1. The A-polynomial
reflects the geometric properties of the knot K. More algebraic properties of
A-polynomial are listed in [25].

Many A-polynomials of knots have been computed by now. Here we give
the A-polynomials for two types of knots. For a (p, q)-torus knot Kp,q, the
A-polynomial is given by:

AKp,q(l,m) = 1 + lmpq.

Denote by Kp, p ∈ Z the p-twist knot, its A-polynomial was computed in [28].
When p �= −1, 0, 1, 2, AKp(l,m) is given recursively by

AKp(l,m) =
{

cAKp−1(l,m) − dAKp−2(l,m), p > 0,(11)
cAKp+1(l,m) − dAKp+2(l,m), p < 0.

where

c = −l + l2 + 2lm2 + m4 + 2lm4 + l2m4 + 2lm6 + m8 − lm8,

d = m4(l + m2)4,

and with the initial conditions

AK2(l,m) = −l2 + l3 + 2l2m2 + lm4 + 2l2m4 − lm6 − l2m8

+ 2lm10 + l2m10 + 2lm12 + m14 − lm14,

AK1(l,m) = l + m6,

AK0(l,m) = 1,
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AK−1(l,m) = −l + lm2 + m4 + 2lm4 + l2m4 + lm6 − lm8.

For example, by the recursion (11), we have

AK−2(l,m) = l2 − l3 − 3l2m2 + l3m2 − 2lm4 − l2m4 + 3lm6 + 3l2m6

+ m8 + 3lm8 + 6l2m8 + 3l3m8 + l4m8 + 3l2m10 + 3l3m10

− l2m12 − 2l3m12 + lm14 − 3l2m14 − lm16 + l2m16.

Remark 2.1. The twist knots Kp for p ∈ Z include some basic knots from
Rolfsen’s table:

K1 = 31,K2 = 52,K3 = 72,K4 = 92,

K−1 = 41,K−2 = 61,K−3 = 81,K−4 = 101.

Recently, S. Garoufalidis and T. Mattman [19] gave a recursion formula
for the A-polynomial of the (−2, 3, n) Pretzel knots.

2.2. Noncommutative A-polynomial ÂK(E,Q; q)

The colored Jones polynomial JN (K; q) has many beautiful structures. It was
shown by S. Garoufalidis and TTQ Le [16, 22] that the colored Jones func-
tion is q-holonomic, i.e. it satisfies a nontrivial linear recursion relation with
appropriate coefficients. With such holonomicity, they introduce a geometric
invariant of a knot: the characteristic variety which is an affine 1-dimensional
variety in C

2. By comparing the character variety of SL(2,C) representations
in the case of the trefoil and figure-eight knots, they stated a conjecture that
these two varieties must be equal [16, 22]. They also define the noncommuta-
tive A-polynomial ÂK(E,Q; q) for a knot K which is the unique monic, linear,
minimal order q-difference equation satisfied by the sequence of colored Jones
polynomials {JN (K; q)}. Considering two operators E and Q acting on the
Jones polynomial JN (K; q) by

(QJK)(N) = qNJN (K; q), (EJK)(N) = JN+1(K; q).(12)

It is easy to see that EQ = qQE.
Then ÂK(E,Q; q) controls the recursion structure of colored Jones poly-

nomial

ÂK(E,Q; q)JN (K; q) = 0.(13)
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Note that ÂK(E,Q; q) can be written as the form

ÂK(E,Q; q) =
∑
k≥0

ak(Q; q)Ek(14)

with ak(Q; q) ∈ Z[q,Q]. Then S. Garoufalidis conjectured that

Conjecture 2.2 (AJ Conjecture). For every knot K in S3, AK(l,m) =
εÂK(l,m2; q), where ε is the evaluation map at q = 1.

In order to prove the AJ conjecture, a natural way is to compute the
non-commutative A-polynomial. So far, we have known its explicit formula
for torus knot in [24], figure-eight knot 41 in [16], and 2-bridge knots [32].
Moreover, Takata found out an explicit inhomogeneous q-difference equations
for knots 52 and 61 with degree 5 and 6 respectively [47]. But it is not the
really non-commutative A-polynomial in the sense of our definition. Then S.
Garoufalidis and X. Sun [20, 21] gave an explicit formula for non-commutative
A-polynomial of twist knots Kp for p = −8, .., 11. Recently, S. Garoufalidis
and C. Koutschan [18] obtained the non-commutative A-polynomial the for
Pretzel knot (−2, 3, 3 + 2p) for p = −5, .., 5 by using the method of guessing.

Let us briefly describe the philosophy to calculate the noncommutative
A-polynomial ÂK(E,Q; q) of knot K.

For a generic planar projection of a knot K, S. Garoufalidis and T.T.Q.
Le proved that the colored Jones polynomial of a knot K can be written as a
multisum [22]

JN (K; q) =
∞∑

k1,..,kr

F (N, k1, .., kr),(15)

where F (N, k1, .., kr) is a proper q-hypergeometric function and for a fixed
N ∈ Z

+, only finitely many terms are nonzero. Because F (N, k1, .., kr) is
a proper q-hypergeometric function, one can use the algorithm invented by
Wilf-Zeilberger [44, 52] (the WZ algorithm), also called creative telescoping
method, to produce the noncommutative operator eliminate JN (K; q). See
[42, 43] for a mathematica implementation of WZ-algorithm. We will give
some examples to demonstrate how to use this computer program to derive
the noncommutative A-polynomial in next section.
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2.3. The algorithm to compute the asymptotic expansion of
JN(K; q)

Let AK(l,m) be the A-polynomial of a knot K. Define the operator l̂ and m̂
such that

l̂ = E, m̂2 = Q.(16)

Then by (13), we known that ÂK(l̂, m̂2; q)JN (K; q) = 0.
Recall the parameters we have described in Section 1

� = πi

k
, u = πiN

k
, q = e

2πi
k .

Then q = e2�, the operator ÂK(l̂, m̂2; q) annihilates

J(K; �, u) := JN (K; e2�)

i.e. we have the equation

ÂK(l̂, m̂2; q)J(K; �, u) = 0,(17)

and by (12) and (16), the action of the operators l̂, m̂ is

m̂J(K; �, u) = euJ(K; �, u), l̂J(K; �, u) = J(K; �, u + �).(18)

It is clear that l̂m̂ = q
1
2 m̂l̂. As in (14), we expand ÂK(l̂, m̂2; q) as follows

ÂK(l̂, m̂2; q) =
d∑

j=0
aj(m̂, �)l̂j .(19)

Then we obtain

d∑
j=0

aj(m̂, �)J(K; �, u + j�) = 0.(20)

By the formula (7), one can assume that at large N ,

J(K; �, u) = exp
(
S0(u)
�

− δK(u)
2 log � +

∞∑
n=1

Sn(u)�n−1
)
.
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Therefore, from the above restriction equation for J(K; q, u), one can ob-
tain a sequence of expansion coefficients {Sn(u)} recursively by solving the
equation (17) for a given initial value S0(u) [12]. In the following, we show
how to get the recursion formula for Sn(u) step by step.

Equation (20) is equivalent to

0 =
d∑

j=0
aj(m̂, �) exp

⎛
⎝1
�
S0(u + j�) − 3

2 · log � +
∑
n≥0

�
nSn+1(u + j�)

⎞
⎠(21)

= exp
(
−δK(u)

2 · log �
) d∑

j=0
aj(m̂, �) exp

⎛
⎝ ∑

n≥−1
�
nSn+1(u + j�)

⎞
⎠ .

By Taylor expansion

∑
n≥−1

�
nSn+1(u + j�) =

∑
n≥−1

∑
k≥0

S
(k)
n+1(u)
k! jk�k+n

=
∑
t≥−1

t∑
r=−1

S
(t−r)
r+1 (u)
(t− r)! jt−r

�
t

=
∑
t≥−1

St+1(u)�t +
∑
t≥0

t−1∑
r=−1

S
(t−r)
r+1 (u)
(t− r)! jt−r

�
t

=
∑
t≥−1

St+1(u)�t + jS′
0(u) +

∑
t≥1

t−1∑
r=−1

S
(t−r)
r+1 (u)
(t− r)! jt−r

�
t.

It follows that

d∑
j=0

aj(m̂, �) exp

⎛
⎝jS′

0(u) +
∑
t≥1

Bt(u, j)�t
⎞
⎠ = 0,

where we have defined

Bt(u, j) =
t−1∑
r=−1

S
(t−r)
r+1 (u)
(t− r)! jt−r.

Furthermore, one can expand aj(m̂, �) and exp
(∑

t≥1 Bt(u, j)�t
)

as

aj(m̂, �) =
∑
p≥0

ai,p(m̂)�p
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and

exp

⎛
⎝∑

t≥1
Bt(u, j)�t

⎞
⎠ = 1 +

∑
n≥1

(∑
t≥1 Bt(u, j)�t

)n
n!

=
∑
μ∈P

Bμ(u, j)
|Aut(μ)|�

|μ|

where, P = ∪n≥1Pn∪{∅}, and Pn is the set of all partitions of integer n ∈ Z
+,

and we denote Bμ(u, j) = Bμ1(u, j) · · ·Bμl(μ)(u, j) and B∅(u, j) = 1.
Then formula (21) is equal to

d∑
j=0

ejS
′
0(u)

⎛
⎝∑

p≥0

∑
μ∈P

aj,p(m̂)Bμ(u, j)
|Aut(μ)|�

|μ|+p

⎞
⎠ = 0.(22)

By the action of m̂ defined in (18), one can replace the m̂ with eu in aj,p(m̂).
As a series of �, all the coefficients of left hand side of (22) must be zero. The
constant term gives

d∑
j=0

ejS
′
0(u)aj,0(eu) = 0.(23)

which in fact is the A-polynomial.
When n = |μ|+ p > 0, one can solve the n-th equation obtained from the

coefficient of �n in equation (22) and get

S′
n(u) = − 1∑d

j=0 e
jS′

0(u)aj,0(eu)j

d∑
j=0

ejS
′
0(u)

⎛
⎝ n∑

p=1
aj,p(eu)

∑
μ∈Pn−p∪{∅}

Bμ(u, j)
|Aut(μ)|

(24)

+aj,0(eu)
∑

μ∈P\{(n)}

Bμ(u, j)
|Aut(μ)| + aj,0(eu)

n−2∑
r=−1

S
(n−r)
r+1 (u)
(n− r)! jn−r

⎞
⎠ .

Example 2.3. When n = 1 and 2, we have

S′
1(u) = − 1∑d

j=0 e
jS′

0(u)aj,0(eu)j

d∑
j=0

ejS
′
0(u)

(
aj,1(eu) + aj,0(eu)

S′′
0 (u)
2 j2

)
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S′
2(u) = − 1∑d

j=0 e
jS′

0(u)aj,0(eu)j

d∑
j=0

ejS
′
0(u)

[
aj,1(eu)

(
S′′

0 (u)
2 j2 + S′

1(u)j
)

+aj,2(eu) + aj,0(eu)
(

1
2

(
S′′

0 (u)
2 j2 + S′

1(u)j
)2

+ S′′′
0 (u)
6 j3 + S′′

1 (u)
2 j2

)]

The above formula (24) gives a recursion relation for Sn(u). In other
words, if one knows the initial value S0(u), then all the coefficients Sn(u)
are determined uniquely. How to choose S0(u) depends on the choice of the
branch of A-polynomial as described in Section 1, i.e. in the geometric branch:
choosing S0(u) = SG

0 (u); and in abelian branch: choosing S0(u) = SA
0 (u) = 0.

Remark 2.4. By AJ-conjecture, the classical limit q → 1 of noncommutative
A-polynomial is the A-polynomial. Thus, the noncommutative A-polynomial
can be considered as the quantization of A-polynomial. So the above method
to compute Sn(u) can be called quantization algorithm. All the information of
colored Jones polynomial are implied in a hierarchy of equations (23), (24).
The equation (23) is the A-polynomial if we let l = eS

′
0(u). A-polynomial

reflects some geometric information of the knot complement MK. Finding the
geometric meaning of the generic equations (24) will be interesting.

Remark 2.5. The above quantization algorithm was introduced in [12] to
study the SL(2,C) Chern-Simons partition function of MK. They assumed
that the colored Jones polynomial JN (K; e 2πi

k ) and Chern-Simons partition
Z(MK;u, �) are only difference with a normalization q

N
2 −q−

N
2

q
1
2 −q−

1
2

. So in order to

get the quantization operator Ã(l̃, m̃) of Z(MK;u; �) such that

Ã(l̃, m̃)Z(MK;u; �) = 0,

one only needs to do some modifications on operator ÂK(l̂, m̂2; q). See [12, 13]
for detail discussion.

3. Examples and calculations

Example 3.1. When p = −1, K−1 = 41, this example was first calculated
in [12]. But as a basic example to illustrate the application of the above
algorithm, we still recalculate here with a slight difference; see Remark 3.2.

Step 1. Finding the noncommutative A-polynomial of 41.
We download Paule and Riese’s qZeil.m and qMultiSum.m package [42]

and run them in Mathematica 7.0.
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In[1]:= << c:/qZeil.m
q-Zeilberger Package by Axel Riese–@RISC Linz -V 2.42 (02/18/05)
In[2]:= << c:/qMultiSum.m
qMultiSum Package by Axel Riese–@RISC Linz -V 2.52 (30-Jul-2010)
In[3]:=summandfigure8 = qnkqfac[q−n−1, q−1, k]qfac[q−n+1, q, k]
Out[3]:=qknqPochhammer[q−1−n, 1/q, k]qPochhammer[q1−n, q, k]
In[4]:=qZeil[summandfigure8, k, 0, Infinity, n, 2]
Out[4]:=

SUM[n] == q−1−n(q+qn)(−q+q2n)
−1+qn

− (1 − q−2+n)(1 − q−1+2n)SUM[-2 + n]
(1 − qn)(1 − q−3+2n) +

q−2−2n(1 − q−1+n)2(1+q−1+n)(q4+q4n − q3+n − q1+2n − q3+2n − q1+3n)SUM[-1 + n]
(1 − qn)(1 − q−3+2n)

This is a second-order inhomogeneous recursion relation, we convert it
into a third-order homogeneous recursion relation:

In[5]:=MakeHomRec [%, SUM[n]];
Converting to forward shifts:
In[6]:=Rec41=ForwardShifts[%]

Out[6] :=q5+n(q − q3+n)(q3 − q3+n)(q + q3+n)(q − q6+2n)(q3 − q6+2n)SUM[n]
− q−5−n(q − q3+n)(q2 − q3+n)(q2 + q3+n)(q − q6+2n)(q3 − q6+2n)
× (q8 − 2q9+n + q10+n − q9+2n + q10+2n − q11+2n + q10+3n

− 2q11+3n + q12+4n)SUM[1 + n] + q−4−n(q − q3+n)2(q + q3+n)
× (q3 − q6+2n)(q5 − q6+2n)(q4 + q5+n − 2q6+n − q7+2n + q8+2n

− q9+2n − 2q10+3n + q11+3n + q12+4n) SUM[2 + n] + q4+n

× (q − q3+n)(−1 + q3+n)(q2 + q3+n)(q3 − q6+2n)(q5 − q6+2n)
× SUM[3 + n] == 0

Converting it to operator form:
In[7]:=F=ToqHyper[Rec41[[1]] - rec41[[2]]]/.{SUM[N] → 1, SUM[N qc. ] :>

Xc}/.N → Q

Out[7] :=q5Q(q − q3Q)(q3 − q3Q)(q + q3Q)(q − q6Q2)(q3 − q6Q2)

− 1
q5Q

(q − q3Q)(q2 − q3Q)(q2 + q3Q)(q − q6Q2)(q3 − q6Q2)

× (q8 − 2q9Q + q10Q− q9Q2 + q10Q2 − q11Q2 + q10Q3 − 2q11Q3

+ q12Q4)X + 1
q4Q

(q − q3Q)2(q + q3Q)(q3 − q6Q2)(q5 − q6Q2)
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× (q4 + q5Q− 2q6Q− q7Q2 + q8Q2 − q9Q2 − 2q10Q3 + q11Q3

+ q12Q4)X2 + q4Q(q − q3Q)(−1 + q3Q)(q2 + q3Q)(q3 − q6Q2)

× (q5 − q6Q2)X3

Then F is the non-commutative A-polynomial of 41 if we replace X
by E.

Step 2. Finding the operator Â41(l̂, m̂; q) =
∑d

j=0 aj(m̂, �)l̂j .
Substituting Q and X by m2 and l respectively in F , we get

Â41(l̂, m̂) =
3∑

j=0
aj(m̂, �)l̂j

where

â0(m̂, q) = m̂2q5(q − m̂2q3)(q3 − m̂2q3)(q + m̂2q3)(q − m̂4q6)(q3 − m̂4q6)

â1(m̂, q) = 1
m̂2q5 (q − m̂2q3)(q2 − m̂2q3)(q2 + m̂2q3)(q − m̂4q6)(q3 − m̂4q6)

× (q8 − 2m̂2q9 − m̂4q9 + m̂2q10 + m̂4q10 + m̂6q10 − m̂4q11 − 2m̂6q11

+ m̂8q12)

â2(m̂, q) = 1
m̂2q4 (q − m̂2q3)2(q + m̂2q3)(q3 − m̂4q6)(q5 − m̂4q6)

× (q4 + m̂2q5 − 2m̂2q6 − m̂4q7 + m̂4q8 − m̂4q9 − 2m̂6q10 + m̂6q11

+ m̂8q12)

â3(m̂, q) = m̂2q4(q − m̂2q3)(−1 + m̂2q3)(q2 + m̂2q3)(q3 − m̂4q6)(q5 − m̂4q6)

Step 3 Choosing the different branches.
The A-polynomial of 41 is

A41(l,m) = (−1 + l)(l − lm2 −m4 − 2lm4 − l2m4 − lm6 + lm8)

Solving this equation, we obtain the three branches: lA = 1 is called the
abelian branch and lG = −−1+m2+2m4+m6−m8+(−1+m4)

√
1−2m2−m4−2m6+m8

2m4 is
the geometric branch. The third one is the conjugate of lG called conjugate
branch which have the intimate relation with geometric branch discussed in
[12].

Step 4 Calculating the expansion coefficients Sn(u) in different branches
by formula (24).
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Abelian branch expansion: taking the initial value SA
0 (u) = log lA = 0,

then

SA
1 (u) = log 1

Δ41(m2) ;

SA
2 (u) = constant;

SA
3 (u) = 4(m−2 − 1 + m2)

Δ41(m2)3 ;

SA
4 (u) = constant;
· · ·

where Δ41(t) = 1
t + t−3 is the Alexander polynomial of 41. The above results

match the Conjecture 1.2.
Geometric branch expansion: the initial value SG

0 (u) = i
2V ol(41) +∫ u

iπ vG(u)du− 2π2 [12].

SG
1 (u) = 2 log(m) − log(−1 + m2) − 1

4 log(1 − 2m2 −m4 − 2m6 + m8);

SG
2 (u) = 1 −m2 − 2m4 + 15m6 − 2m8 −m10 + m12

12(−1 + 2m2 + m4 + 2m6 −m8) 3
2

;

SG
3 (u) = −2m6(−1 + m2 + 2m4 − 5m6 + 2m8 + m10 −m12)

(1 − 2m2 −m4 − 2m6 + m8)3 ;

SG
4 (u) = m2

90(1 − 2m2 −m4 − 2m6 + m8) 9
2
(1 − 4m2 − 128m4 + 36m6

+ 1074m8 − 5630m10 + 5782m12 + 7484m14 − 18311m16 + 7484m18

+ 5782m20 − 5630m22 + 1074m24 + 36m26 − 128m28 − 4m30 + m32);
· · ·

If we use the Ray-Singer torsion of 41 [26, 11]

T41(u) = 4π2m2
√
−1 + 2m2 + m4 + 2m6 −m8

,

we may conjecture that Sn(u) has the form

Sn(u) =
(
T41(u)
4π2

)3n−3
Gn(m) for n ≥ 2,

where {Gn(m)} is a sequence of Laurent polynomial of m.
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Remark 3.2. [12] has calculated the perturbative expansion for Z (M41 ;u; �)
assume that Z(M41 ;u; �) = qN/2−q−N/2

q1/2−q−1/2 J(K;u, �). By this relation, we should
make a modification for âj(m̂, q),

âj(m̂, q) → âj(m̂, q)
m2qj/2 − q−j/2 .

With these new â(m̂, q), they calculated the Sn(u) for Z(M41 ;u, �) up to
n = 8.

Now, we give more new examples calculated in abelian branch expansion
by using the above method.

Example 3.3. When p = 2, the twist knot K2 = 52. Setting the initial value
SA

0 (u) = 0, we get

SA
1 (u) = log

( 1
Δ52(m2)

)
;

SA
2 (u) = −4(m−2 + m2) + 13

2Δ52(m2)2 ;

SA
3 (u) = −−32 + 104m2 + 200m4 − 607m6 + 200m8 + 104m10 − 32m12

8m6Δ52(m2)4 ;

S4(u) = − 1
24m10Δ52(m2)6 (320 − 752m2 − 3808m4 + 3052m6 + 39692m8

− 78163m10 + 39692m12 + 3052m14 − 3808m16 − 752m18 + 320m20)
· · ·

where Δ52(t) = 2(t−1 + t)− 3 is the Alexander polynomial of 52. It is easy to
see these results match the Conjecture 1.2.

Example 3.4. When p = −2, the twist knot K−2 = 61. Setting the initial
value SA

0 (u) = 0, we obtain

SA
1 (u) = log

( 1
Δ61(m2)

)
;

SA
2 (u) = −4m2 + 7m4 − 4m6

2m4Δ61(m2)2 ;

SA
3 (u) = −32 − 504m2 + 1656m4 − 2303m6 + 1656m8 − 504m10 + 32m12

8m6Δ61(m2)4 ;

S4(u) = − 1
24m10Δ61(m2)6 (320 − 2512m2 + 23968m4 − 103404m6
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+ 225900m8 − 288925m10 + 225900m12 − 103404m14 + 23968m16

− 2512m18 + 320m20) · · ·

where Δ61(t) = 2(t−1 + t)−5 is the Alexander polynomial of 61. These results
match the Conjecture 1.2.

Remark 3.5. In the above two examples, we have used the non-commutative
A-polynomial for twist knot Kp obtained by S. Garoufalidis and X. Sun [20,
21]. In fact, they have calculated all the non-commutative A-polynomial of Kp

for p = −8, .., 11. So we can compute more examples by using their results.

4. Conclusions and discussions

In this paper, following [12], we present an algorithm to calculate the higher
ordered terms in asymptotic expansion of colored Jones polynomial from the
view of A-polynomial and noncommutative A-polynomial. In the large N
limit, the colored Jones polynomial JN (K; e2u) has the following expansion
form

J(K; �, u) = exp
(
S0(u)
�

− 3
2 log � +

∞∑
n=1

Sn(u)�n−1
)
.(25)

In order to determine every terms Sn(u) appearing at the left hand side of
(25), we need to solve the following equation with initial value SInitial(u):

(26)
{
ÂK(l̂, m̂; q)J(K; �, u) = 0
S0(u) = SInitial(u)

Up to a constant, the initial value SInitial(u) is determined by the solution
of the equation AK(ev, eu) = 0, where AK(l,m) is the A-polynomial of knot
K. More precisely, if we assume AK(l,m) = (l − 1)fd(l,m), where fd(l,m) =∑d

i=1 ai(m)li. For a given m, the equation fd(l,m) = 0 has d solutions in C

denoted by l = lα(m), α = 1, .., d. Thus AK(l,m) = 0 has d + 1 branches:
abelian branch lA = 1, and lα(m), for α = 1, .., d. There are some symmetries
between these different branches α = 1, .., d. See [12] for discussions from
Chern-Simon theory.

One of the most interesting branch is called geometric branch denoted by
lG(m) which is relevant with the hyperbolic volume of knot complement MK.
In this geometric branch, the initial value is dSInitial(u)

du = vG(u) and SInitial(u)
is the complexified volume of MK parameterized by u. Then all the terms
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SG
n (u) can be solved from the recursive relation (24). Moreover, SG

1 (u) has
the geometric interpretation SG

1 (u) = 1
2 log iTK(u)

4π [26], where TK(u) denotes
the u-deformed torsion of MK. But what’s the geometric mean of SG

n (u) for
n ≥ 2 is still unknown.

In the abelian branch lA = 1, the initial value is dSInitial(u)
du = vA = 0.

So SInitial(u) is a constant. One can also get every SA
n (u) by formula (24).

Moreover, the first term is SA
1 (u) = log 1

ΔK(2u) , where ΔK(t) is the Alexan-
der polynomial of K which has the geometric meaning, but the geometric
interpretation is still unclear for SA

n (u), n ≥ 2. We found that the higher
order term SA

n (u) is in consistence with the Melvin-Morton-Rozansky expan-
sion for colored Jones polynomial [33, 11, 45, 46, 22], so we proposed the
Conjecture 1.2.

Colored Jones polynomial is just a special quantum link invariant. One of
generalization is the categorified link invariant, i.e. superpolynomial. During
the past several years, a lot of works, such as [14, 15, 41] is devoted to inves-
tigating the asymptotic expansion of the superpolynomial. Another general-
ization is the colored HOMFLYPT invariants which is an important quantum
invariant in large N duality of topological string and Chern-Simons theory
[55, 9]. Aganagic and Vafa [3] predicted that colored HOMFLYPT invariant
carried the similar A-polynomial, i.e. Q-deformed A-polynomial, whose ex-
istence was then explained in [17]. From the view of representation theory,
colored Jones polynomials is the SU(2) quantum invariant, it is natural to
consider the higher rank SU(n) quantum invariant. In [10], we have proposed
the volume conjecture for SU(n) quantum invariant. Therefore, one can also
ask how to investigate the higher order terms in asymptotic expansion of the
SU(n)-invariants.
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