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Jacobian-squared function-germs
Takashi Nishimura

Abstract: In this paper, it is shown that, for any equidimensional
C∞ map-germ f : (Rn, 0) → (Rn, 0), the map-germ F : (Rn, 0) →
R

n×R
� defined by F (x) =

(
f(x), μ1(x)|Jf |2(x), · · · , μ�(x)|Jf |2(x)

)
is always a frontal, where μi is a C∞ function-germ and |Jf | is the
Jacobian-determinant of f . Moreover, it is also shown that when
the multiplicity of f is less than or equal to 3, any frontal con-
structed from f must be A-equivalent to a frontal F of the above
form.
Keywords: Jacobian-squared, Frontal, Opening, Ramification
module, Equidimensional map-germ.

1. Introduction

Throughout this paper, let n, � be positive integers; and all map-germs, vector
fields and differential forms are of class C∞ unless otherwise stated.

Let f : (Rn, 0) → (Rn, 0) be a map-germ and let |Jf | denote the Jacobian-
determinant of f . The square of |Jf | is called the Jacobian-squared function-
germ of f . In the theory of singularities of mappings, it is well-known that the
function-germ |Jf | plays an essential role to investigate the behavior of f (for
instance, see [2, 17]). However, to the best of author’s knowledge, so far there
have been no literatures to emphasize the importance of the Jacobian-squared
|Jf |2. In this paper, it is explained that |Jf |2 is very significant to construct
non-trivial frontals from a given equidimensional map-germ f : (Rn, 0) →
(Rn, 0).

Let F : (Rn, 0) → (Rn+�, 0) be a map-germ and let TRn+� be the tangent
bundle of R

n+�. A map-germ Φ : (Rn, 0) → TRn+� is called a vector field
along F if the equality π ◦ Φ(x) = F (x) holds, where π : TRn+� → R

n+� is
the canonical projection. Namely, Φ has the form Φ(x) = (F (x), φ(x)) where
φ(x) ∈ TF (x)R

n+�. A map-germ F : (Rn, 0) → R
n+� is called a frontal if

there exist vector fields Φ1, . . . ,Φ� : (Rn, 0) → TRn+� along F such that the
following two conditions are satisfied:
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(1) φi(x) · tF (ξ)(x) = 0 for any i (1 ≤ i ≤ �) and any ξ ∈ θ(n), where
Φi(x) = (F (x), φi(x)) and the dot in the center stands for the scalar
product of two vectors in TF (x)R

n+�.
(2) φ1(0), . . . , φ�(0) are linearly independent.

Here, tF and θ(n) are the notations defined by J. Mather in [12] (For details,
see § 2). Given an equidimensional map-germ f : (Rn, 0) → (Rn, 0), the pull-
back f∗ : En → En is defined by f∗(η) = η ◦ f (for the definition of En, see
Subsection 2.1). The pull-back f∗ gives an En-module structure via f∗. In this
paper, an En-module via f∗ is called and denoted by an f∗ (En)-module. For
example, f∗ (En) itself is an f∗ (En)-module.

Definition 1 ([9, 10]). Let f = (f1, . . . , fn) : (Rn, 0) → (Rn, 0) be an equidi-
mensional map-germ.

(1) Let Ω1
n denote the En-module of 1-forms on (Rn, 0). Then, the En-module

generated by dfi (i = 1, . . . , n) in Ω1
n is called the Jacobi module of f

and is denoted by Jf , where dh for a function-germ h : (Rn, 0) → R

stands for the exterior differential of h.
(2) The ramification module of f (denoted by Rf ) is defined as the f∗ (En)-

module consisting of all function-germs ϕ such that dϕ belongs to Jf .

Though frontals have been already well-investigated (for instance see [10]),
it seems to be desired to obtain how to construct non-trivial frontals easily
and systematically from a given equidimensional map-germ f : (Rn, 0) →
(Rn, 0) which is not necessarily finite (for the definition of finite map-germ,
see Subsection 2.1).

Theorem 1. Let f : (Rn, 0) → (Rn, 0) be an equidimensional map-germ.
Then, the following inclusion holds:

|Jf |Ω1
n ⊂ Jf .

Since d(μ|Jf |2) = |Jf |(|Jf |dμ + 2μ d|Jf |) ∈ |Jf |Ω1
n for any μ ∈ En, the

following corollary can be obtained from Theorem 1.

Corollary 1. Let f : (Rn, 0) → (Rn, 0) be an equidimensional map-germ.
For any i (1 ≤ i ≤ �), let μi : (Rn, 0) → R be a function-germ. Then, the
map-germ F : (Rn, 0) → R

n+� defined by

F =
(
f, μ1|Jf |2, . . . , μ�|Jf |2

)
is always a frontal.
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It is clear that f∗ (En) itself is contained in Rf . By using the notion of
the ramification module Rf , Corollary 1 is equivalent to assert that

〈|Jf |2〉En + f∗ (En) ⊂ Rf ,

where 〈|Jf |2〉En is the En-module generated by |Jf |2.
Definition 2 ([9, 10]). Let f : (Rn, 0) → (Rn, 0) be an equidimensional
map-germ and let ψ1, . . . , ψ� be elements of Rf . Then, the map-germ

(f, ψ1, . . . , ψ�) : (Rn, 0) → R
n × R

�

is called an opening of f .
By definition, for any equidimensional map-germ, its opening is always a

frontal. Corollary 1 guarantees that even for non-finite equidimensional map-
germs, it is constructed automatically infinitely many non-trivial openings.
This is one advantage of Theorem 1. In Subsections 5.1-5.7, by direct elemen-
tary calculations, it is easily shown that the normal forms of known frontals
are actually A-equivalent to the frontals constructed by Corollary 1. In other
words, in Subsections 5.1-5.7, frontals constructed by using Jacobian-squared
function-germs are already very near (with respect to A-equivalence) to the
normal forms of celebrated frontals, and therefore criteria for these noticeable
frontals are not needed. Since the normal forms of these frontals seem to be
not easy to memorize, this may be another advantage of Theorem 1.
Proposition 1 ([10]). For any frontal germ F : (Rn, 0) → (Rn+�, 0), there
exist germs of diffeomorphism h : (Rn, 0) → (Rn, 0) and H : (Rn+�, 0) →
(Rn+�, 0), an equidimensional map-germ f : (Rn, 0) → (Rn, 0) and elements
ψ1, . . . , ψ� of Rf such that the following equality holds:

H ◦ F ◦ h = (f, ψ1, . . . , ψ�).

Based on Proposition 1, it is natural to ask the converse of Corollary 1.
Subsections 5.1-5.7 suggest that if f satisfies dimRQ(f) ≤ 3, then asking the
converse of Corollary 1 is reasonable (for the definition of Q(f), see Section 2).
This question can be answered affirmatively as follows.
Theorem 2. Let F : (Rn, 0) → (Rn+�, 0) be a frontal germ. Suppose that
there exist germs of diffeomorphism h : (Rn, 0) → (Rn, 0) and H : (Rn+�, 0) →
(Rn+�, 0), an equidimensional map-germ f : (Rn, 0) → (Rn, 0) with
dimRQ(f) ≤ 3 and elements ψ1, . . . , ψ� of Rf such that the following equality
holds:

H ◦ F ◦ h = (f, ψ1, . . . , ψ�).
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Then, the following holds:〈
|Jf |2

〉
En

+ f∗ (En) = Rf .

Corollary 2. Let F : (Rn, 0) → (Rn+�, 0) be a frontal germ. Suppose that
there exist germs of diffeomorphism h : (Rn, 0) → (Rn, 0) and H : (Rn+�, 0) →
(Rn+�, 0), an equidimensional map-germ f : (Rn, 0) → (Rn, 0) with
dimRQ(f) ≤ 3 and elements ψ1, . . . , ψ� of Rf such that the following equality
holds:

H ◦ F ◦ h = (f, ψ1, . . . , ψ�).
Then, there exist a germ of diffeomorphism H̃ : (Rn+�, 0) → (Rn+�, 0) and
function-germs μi : (Rn, 0) → R (1 ≤ i ≤ �) such that

H̃ ◦H ◦ F ◦ h = (f, μ1|Jf |2, . . . , μ�|Jf |2).

On the other hand, if dimRQ(f) > 3, it turns out that there exist coun-
terexamples against the converse of Corollary 1 (see Subsection 5.9). Thus,
in general, it is natural to ask the following:
Question 1. Let f : (Rn, 0) → (Rn, 0) be an equidimensional map-germ.
Then, does the following equality hold?

〈|Jf |2〉En =
{
h ∈ En | dh ∈ |Jf |Ω1

n

}
.

Question 2. Let f : (Rn, 0) → (Rn, 0) be an equidimensional map-germ.
Then, does there exist a finitely generated En-module A such that the following
holds?

A + f∗ (En) = Rf .

Notice that by Ishikawa ([8, 9], see also [10]), it is known if “f is finite
and of corank one” or “it is A-equivalent to a finite analytic map-germ”, then
there exists a finitely generated f∗ (En)-module B satisfying the equality:

B + f∗ (En) = Rf .

Notice also that in the case of Mather’s Ae tangent space for a map-germ g :
(Rn, 0) → (Rp, 0), the corresponding En-module is nothing but tg(θ(n)) (for
the definition of Mather’s Ae tangent space, see Section 2). Thus, Question 2
asks whether or not the ramification module Rf has a similar structure as
TAe(g).

This paper is organized as follows. In Section 2, preliminaries are given.
Theorem 1 (resp., Theorem 2) is proved in Section 3 (resp., Section 4). Finally,
in Section 5, examples concerning Theorem 1 and Theorem 2 are given.
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2. Preliminaries

2.1. Theory of singularities of mappings

In this subsection, it is partially reviewed several well-known notions/
terminologies in the theory of singularities of mappings which are mainly
developed by J. Mather in [12, 13]. [17] is an excellent survey article on no-
tions/terminologies reviewed in this subsection, which is recommended to
readers.

Two map-germ f, g : (Rn, 0) → R
p are said to be A-equivalent if there

exist germs of diffeomorphism h : (Rn, 0) → (Rn, 0) and H : (Rp, f(0)) →
(Rp, g(0)) such that H ◦ f ◦ h = g.

Given a map-germ f : (Rn, 0) → (Rp, 0), the A-equivalence class of f
is denoted by A(f). Let En be the R-algebra consisting of function-germs
(Rn, 0) → R and let mn be the unique maximal ideal of En. Let f : (Rn, 0) →
(Rp, 0) be a map-germ. The set consisting of all vector fields along f is denoted
by θ(f). Notice that θ(f) is a finitely generated En-module and it is a Ep-
module via f . For the identity map-germ idn : (Rn, 0) → (Rp, 0), θ(idn) is
denoted by θ(n). The mapping tf : θ(n) → θ(f) (resp., ωf : θ(p) → θ(f))
is defined by tf(ξ) = df ◦ ξ (resp., ωf(η) = η ◦ f). The set A(f) may be
regarded as an orbit of f by the direct product of the following two groups:

{a germ of diffeomorphism h : (Rn, 0) → (Rn, 0)},
{a germ of diffeomorphism H : (Rp, 0) → (Rp, 0)}.

Thus, the tangent space of A(f) at f is naturally defined as follows:

TA(f) = tf(mnθ(n)) + ωf(mpθ(p)).

It is meaningful if {diffeomorphism h : (Rn, 0) → (Rn, 0)} (resp., {diffeomor-
phism H : (Rp, 0) → (Rp, 0)}) is replaced with {diffeomorphism h : (Rn, 0) →
(Rn, h(0))} (resp., {diffeomorphism H : (Rp, 0) → (Rp, H(0))}). In this case,
tf(θ(n)) + ωf(θ(p)) is denoted by TAe(f).

TAe(f) = tf(θ(n)) + ωf(θ(p)).

Two map-germ f, g : (Rn, 0) → (Rp, 0) are said to be R-equivalent if
there exists a germ of diffeomorphism h : (Rn, 0) → (Rn, 0) such that f ◦ h =
g. Given a map-germ f : (Rn, 0) → (Rp, 0), similarly as in the case of A-
equivalence class of f , TR(f) and TRe(f) can be naturally defined as follows:

TR(f) = tf(mnθ(n))
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TRe(f) = tf(θ(n)).

Therefore, the condition (1) of the definition of frontal may be regarded as
the condition that φ ∈ θ(F ) is perpendicular to TRe(F ) in θ(F ).

Given a map-germ f : (Rn, 0) → (Rp, 0), the R-algebra En/f∗mpEn is
denoted by Q(f). The R-algebra Q(f) is called the local algebra of the map-
germ f . Since the local algebra Q(f) is an R-algebra, it is a vector space. A
map-germ f : (Rn, 0) → (Rp, 0) is said to be finite if the vector space Q(f)
is of finite dimension. The dimension of Q(f) as R vector space is called the
multiplicity of f .

2.2. Openings

In this subsection, it is partially reviewed several well-known notions/
terminologies in the theory of openings which are mainly developed by
G. Ishikawa. [9, 10] are excellent survey articles on notions/terminologies
reviewed in this subsection, which are recommended to readers. There is one
remark. In [10], openings are defined for a map-germ f : (Rn, 0) → (Rm, 0)
(n ≤ m); and in [9] they are defined even for any multigerm f : (Rn, S) →
(Rm, 0) (n ≤ m). However, in this paper, it is needed only openings of an
equidimensional mono-germ. Thus, for the sake of clearness, in this subsec-
tion, we concentrate on reviewing notions/terminologies of opening only for
an equidimensional mono-germ.

Definition 3. Let f : (Rn, 0) → (Rn, 0) be an equidimensional map-germ.
An opening F = (f, ψ1, . . . , ψ�) of f is called a versal opening (resp., mini-
versal opening) of f if 1, ψ1, . . . , ψ� form a system (resp., minimal system) of
generators of Rf as an f∗ (En)-module.

Lemma 1 ([9]). Let f : (Rn, 0) → (Rn, 0) be an equidimensional map-germ.
Then, the following hold.

(1) f∗ (En) ⊂ Rf ⊂ En.
(2) Rf is a f∗ (En)-module.
(3) Rf is a C∞ subring of En.
(4) For a germ of diffeomorphism on the target space H : (Rn, 0) →

(Rn, 0), RH◦f = Rf holds. For a germ of diffeomorphism on the source
space h : (Rn, 0) → (Rn, 0), Rf◦h = h∗ (Rf ) holds.

Proposition 2 ([8]). Let f : (Rn, 0) → (Rn, 0) be a finite map-germ of corank
one. Then, the following hold.
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(1) Rf is a finitely generated f∗ (En)-module. Therefore, there is a versal
opening of f .

(2) Function-germs 1, ψ1, . . . , ψ� ∈ Rf generate Rf as f(En)-module if
and only if [1], [ψ1], . . . , [ψ�] generate the vector space Rf/ (f∗mn)Rf ,
where [a] stands for a + (f∗mn)Rf .

Proposition 3. Let f : (Rn, 0) → (Rn, 0) be a map-germ A-equivalent to a
finite analytic map-germ. Then, the following hold.

(1) Rf is a finitely generated f∗ (En)-module. Therefore, there is a versal
opening of f .

(2) Function-germs 1, ψ1, . . . , ψ� ∈ Rf generate Rf as f(En)-module if
and only if [1], [ψ1], . . . , [ψ�] generate the vector space Rf/ (f∗mn)Rf .

For the proof of Proposition 3, see [7, 9].

Proposition 4 ([9]). Let f : (Rn, 0) → (Rn, 0) be a finite equidimensional
map-germ. Then, every versal opening F : (Rn, 0) → (Rn+�, 0) is injective.

Here, a map-germ is said to be injective if it has an injective representa-
tive.

3. Proof of Theorem 1

Let J̃f be the cofactor matrix of the Jacobian matrix Jf . Then, notice that
J̃fJf = |Jf |En where En is the n × n unit matrix. For any 1-form α =∑n

i=1 aidxi, we have the following:

|Jf |α = (a1, . . . , an) J̃fJf

⎛⎜⎝ dx1
...

dxn

⎞⎟⎠ = (a1, . . . , an) J̃f

⎛⎜⎝ df1
...

dfn

⎞⎟⎠ ∈ Jf .

This completes the proof.

4. Proof of Theorem 2

4.1. The case n = 1

Set δ = dimRQ(f). In the case of n = 1, there exists a germ of diffeomorphism
h : (R, 0) → (R, 0) such that g(x) = f ◦ h(x) = 1

δx
δ. By [6], the ramification
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module of g can be described as follows.

Rg =

⎧⎪⎪⎨⎪⎪⎩
〈1〉g∗(E1) = 〈1〉E1

(δ = 1),〈
1, x3〉

g∗(E1) (δ = 2),〈
1, x4, x5〉

g∗(E1) (δ = 3).

On the other hand, since |Jg|2(x) = x2(δ−1), the following holds.

〈
|Jg|2

〉
E1

=

⎧⎪⎪⎨⎪⎪⎩
〈1〉E1

(δ = 1),〈
x2, x3〉

E1
(δ = 2),〈

x4, x5〉
E1

(δ = 3).

Thus, we have the following inclusion.〈
|Jg|2

〉
E1

+ g∗ (E1) ⊃ Rg.

Combining this inclusion with Theorem 1, the following equality holds.〈
|Jg|2

〉
E1

+ g∗ (E1) = Rg.

Since h is a germ of diffeomorphism, we have the following by the chain rule.
〈
|Jg|2

〉
E1

=
〈
|J(f ◦ h)|2

〉
E1

= h∗
(〈

|Jf |2
〉
E1

)
.

It follows
h∗

(〈
|Jf |2

〉
E1

+ f∗ (E1)
)

= h∗ (Rf ) .

Hence, by pulling both sides back by
(
h−1)∗, the desired equality can be

obtained as follows. 〈
|Jf |2

〉
E1

+ f∗ (E1) = Rf .

4.2. The case n ≥ 2

Again in this subsection, dimRQ(f) is denoted by δ. The assumption δ ≤ 3
implies that f is of corank one. Since 1

2x
2 + tx (resp., 1

3x
3 + tx) is an R-

versal unfolding of 1
2x

2 (resp., 1
3x

3), it is deduced that there exist germs of



Jacobian-squared function-germs 719

diffeomorphism h,H : (Rn, 0) → (Rn, 0) and a function-germ α : (Rn−1, 0) →
R such that

H ◦ f ◦ h(x, λ1, . . . , λn−1)

=

⎧⎪⎪⎨⎪⎪⎩
(x, λ1, . . . , λn−1) (δ = 1),(1

2x
2 + α(λ1, . . . , λn−1)x, λ1, . . . , λn−1

)
(δ = 2),(1

3x
3 + α(λ1, . . . , λn−1)x, λ1, . . . , λn−1

)
(δ = 3),

where (x, λ1, . . . , λn−1) is an element of R × R
n−1 = R

n. Set g = H ◦ f ◦ h
and λ = (λ1, . . . , λn−1). By [6], the ramification module of g can be described
as follows.

Rg =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
〈1〉g∗(En) = 〈1〉En (δ = 1),〈
1, 1

3x
3 + 1

2α(λ)x2〉
g∗(En) (δ = 2),〈

1, 1
4x

4 + 1
2α(λ)x2, 1

5x
5 + 1

3α(λ)x3〉
g∗(En) (δ = 3).

On the other hand, we have

〈
|Jg|2

〉
En

=

⎧⎪⎪⎨⎪⎪⎩
〈1〉En (δ = 1),〈
(x + α(λ))2

〉
En (δ = 2),〈

(x2 + α(λ))2
〉
En (δ = 3).

Since

(x + α(λ))2 = 2
(1

2x
2 + α(λ)x

)
+ (α(λ))2 ,

x (x + α(λ))2 = 3
(1

3x
3 + 1

2α(λ)x2
)

+ α(λ)
(1

2x
2 + α(λ)x

)
,(

x2 + α(λ)
)2

= 4
(1

4x
4 + 1

2α(λ)x2
)

+ (α(λ))2 and

x
(
x2 + α(λ)

)2
= 5

(1
5x

5 + 1
3α(λ)x3

)
+ α(λ)

(1
3x

3 + α(λ)x
)
,

the following holds. 〈
|Jg|2

〉
En

+ g∗ (En) ⊃ Rg.

Combining this inclusion with Theorem 1, we have the following equality.〈
|Jg|2

〉
En

+ g∗ (En) = Rg.
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Since h,H are germs of diffeomorphism, it follows the following.〈
|Jg|2

〉
En

=
〈
|J(H ◦ f ◦ h)|2

〉
En

= h∗
(〈

|Jf |2
〉
En

)
.

Combining this property with two facts g∗ (En) = h∗ ((H ◦ f)∗ (En))
= h∗ (f∗ (En)) and Rg = RH◦f◦h = h∗ (RH◦f ) = h∗ (Rf ), we have

h∗
(
〈|Jf |2〉En + f∗ (En)

)
= h∗ (Rf ) .

Therefore, also in this case, we have the following desired equality.〈
|Jf |2

〉
En

+ f∗ (En) = Rf .

5. Examples of Theorems 1 and 2

All map-germs hi : (Rn, 0) → (Rn, 0) and Hj : (Rn+�, 0) → (Rn+�, 0) appear-
ing in this section are germs of diffeomorphism.

5.1. Fold singularity

Let f : (R2, 0) → (R2, 0) be the map-germ defined by f(x, y) =
(1

2x
2 + xy, y

)
.

The map-germ f is A-equivalent to the map-germ named Type 2 in the list
of [14]. It is clear that |Jf |(x, y) = x+y and dimRQ(f) = 2. Set μ1(x, y) = 1.
Then, by Theorem 1, the map-germ F : (R2, 0) → (R3, 0) defined by

F (x, y) =
(
f(x, y), μ1(x, y)|Jf |2(x, y)

)
=

(1
2x

2 + xy, y, (x + y)2
)

=
(1

2 (x + y)2 − 1
2y

2, y, (x + y)2
)

is a frontal. Set H1(X, Y, Z) = (X − 1
2Y

2, Y, Z). Then,

H1 ◦ F (x, y) =
(1

2(x + y)2, y, (x + y)2
)
.

Secondly, set h1(x, y) = (x− y, y) and H2(X, Y, Z) = (2X, Y, Z − 2X).
Then,

H2 ◦H1 ◦ F ◦ h1(x, y) =
(
x2, y, 0

)
.

In Differential Geometry, the map-germ H2 ◦H1 ◦F ◦ h1 is called the normal
form of fold singularity ([4]).
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5.2. Cuspidal edge

Not only in this subsection, but also until Subsection 5.4, we start from
the same map-germ f : (R2, 0) → (R2, 0) as in Subsection 5.1. Namely, in
this subsection, f is the map-germ defined by f(x, y) =

(1
2x

2 + xy, y
)
. Set

μ1(x, y) = x. Then, by Theorem 1, the map-germ F : (R2, 0) → (R3, 0)
defined by

F (x, y) =
(
f(x, y), μ1(x, y)|Jf |2(x, y)

)
=

(1
2x

2 + xy, y, x(x + y)2
)

=
(1

2 (x + y)2 − 1
2y

2, y, (x + y)3 − y(x + y)2
)

is a frontal. Set H1(X, Y, Z) = (X − 1
2Y

2, Y, Z). Then,

H1 ◦ F (x, y) =
(1

2(x + y)2, y, (x + y)3 − y(x + y)2
)
.

Secondly, set h1(x, y) = (x− y, y) and H2(X, Y, Z) = (2X, Y, Z − 2XY ).
Then,

H2 ◦H1 ◦ F ◦ h1(x, y) =
(
x2, y, x3

)
,

well-known as the normal form of cuspidal edge (for instance, see [11]).

5.3. Folded umbrella (cuspidal crosscap)

As explained in the last subsection, in this subsection again, f : (R2, 0) →
(R2, 0) is the map-germ defined by f(x, y) =

(1
2x

2 + xy, y
)
. Set μ1(x, y) = x2.

Then, by Theorem 1, the map-germ F : (R2, 0) → (R3, 0) defined by

F (x, y) =
(
f(x, y), μ1(x, y)|Jf |2(x, y)

)
=

(1
2x

2 + xy, y, x2(x + y)2
)

=
(1

2x
2 + xy, y, x4 + 2x3y + x2y2

)
is a frontal. Set H1(X, Y, Z) = (X, Y, Z −X2). Then,

H1 ◦ F (x, y) =
(1

2x
2 + xy, y,

3
4x

4 + x3y

)
.
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Secondly, set h1(x, y) =
(
x, 1

2y
)
. Then,

H1 ◦ F ◦ h1(x, y) =
(1

2x
2 + 1

2xy,
1
2y,

3
4x

4 + 1
2x

3y

)
.

Thirdly, set H2(X, Y, Z) =
(
2X, 2Y, 4

3Z
)
. Then, we have

H2 ◦H1 ◦ F ◦ h1(x, y) =
(
x2 + xy, y, x4 + 2

3x
3y

)
,

called the normal form of folded umbrella (for instance, see [10]). A folded
umbrella is also called a cuspidal crosscap. As the normal form of cuspidal
crosscap, Some references adopt (x, y) 
→

(
x2, y, x3y

)
(for instance, see [5]).

Set h2(x, y) =
(1

2(x− y), y
)

and

H3(X, Y, Z)

=
(
4
(
X + 1

4Y
2
)
, Y,−6

(
Z −

(
X + 1

4Y
2
)2

− 1
2

(
X + 1

4Y
2
)
Y 2 − 1

16Y
4
))

.

Then, it is easily confirmed

H3 ◦H2 ◦H1 ◦ F ◦ h1 ◦ h2(x, y) =
(
x2, y, x3y

)
.

5.4. Open folded umbrella

As explained, we start from the same f : (R2, 0) → (R2, 0) as in Subsec-
tion 5.1. Thus, f is defined by f(x, y) =

(1
2x

2 + xy, y
)

in this subsection. Sup-
pose that � ≥ 3 and set μ1(x, y) = x2, μ2(x, y) = x2|Jf |(x, y) and μi(x, y) = 0
(3 ≤ i ≤ �). Then,

F (x, y) =
(
f(x, y), μ1|Jf |2(x, y), . . . , μ�(x, y)|Jf |2(x, y)

)
=

(1
2x

2 + xy, y, x2(x + y)2, x2(x + y)3, 0, . . . , 0
)

=
(1

2x
2 + xy, y, x4 + 2x3y + x2y2,

x5 + 3x4y + 3x3y2 + x2y3, 0, . . . , 0
)
.

Set

H1(X, Y, U1, U2, U3, . . . , U�) = (X, Y, U1 −X2, U2 − Y U1, U3, . . . , U�).
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Then,

H1 ◦ F (x, y) =
(1

2x
2 + xy, y,

3
4x

4 + x3y, x5 + 2x4y + x3y2, 0, . . . , 0
)
.

Set h1(x, y) =
(
x, 1

2y
)
. Then,

H1 ◦ F ◦ h1(x, y)

=
(1

2x
2 + 1

2xy,
1
2y,

3
4x

4 + 1
2x

3y, x5 + x4y + 1
4x

3y2, 0, . . . , 0
)
.

Nextly, set

H2(X, Y, U1, U2, U3, . . . , U�) = (X, Y, U1, U2 − Y U1, U3, . . . , U�) .

Then, we have

H2 ◦H1 ◦ F ◦ h1(x, y)

=
(1

2x
2 + 1

2xy,
1
2y,

3
4x

4 + 1
2x

3y, x5 + 5
8x

4y, 0, . . . , 0
)
.

Finally, set

H3(X, Y, U1, U2, . . . , U�) =
(

2X, 2Y, 4
3U1, U2, . . . , U�

)
.

Then,

H3 ◦H2 ◦H1 ◦ F ◦ h1(x, y)

=
(
x2 + xy, y, x4 + 2

3x
3y, x5 + 5

8x
4y, 0, . . . , 0

)
,

called the normal form of open folded umbrella ([1, 10]).

5.5. Swallowtail

Let f : (R2, 0) → (R2, 0) be the map-germ defined by f(x, y) =
(1

3x
3 + xy, y

)
.

The map-germ f is A-equivalent to the map-germ named Type 3 in the list of
[14]. It is clear that |Jf |(x, y) = x2 + y and dimRQ(f) = 3. Set μ1(x, y) = 1.
We consider the map-germ F : (R2, 0) → (R3, 0) defined by

F (x, y) =
(
f(x, y), μ1(x, y)|Jf |2(x, y)

)
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=
(1

3x
3 + xy, y, (x2 + y)2

)
=

(1
3x

3 + xy, y, x4 + 2x2y + y2
)
.

By Theorem 1, F is a frontal. Set H1(X, Y, Z) = (X, Y, Z − Y 2),
H2(X, Y, Z) = (−12X, 6Y, 3Z). Then,

H2 ◦H1 ◦ F (x, y) =
(
−4x3 − 12xy, 6y, 3x4 + 6x2y

)
.

Next, set h1(x, y) =
(
x, 1

6y
)
. Then,

H2 ◦H1 ◦ F̃ ◦ h1(x, y) =
(
−4x3 − 2xy, y, 3x4 + x2y

)
,

well-known as the normal form of swallowtail (for instance see [3], page 129).

5.6. Open swallowtail

As in Subsection 5.5, let f : (R2, 0) → (R2, 0) be the map-germ defined by
f(x, y) =

(1
3x

3 + xy, y
)
. Suppose that � ≥ 3 and set μ1(x, y) = 1, μ2(x, y) =

x, μi(x, y) = 0 (3 ≤ i ≤ �). Let F : (R2, 0) → (R2+�, 0) be the map-germ
defined by

F (x, y) =
(
f(x, y), μ1|Jf |2(x, y), . . . , μ�|Jf |2(x, y)

)
=

(1
3x

3 + xy, y, (x2 + y)2, x(x2 + y)2, 0, . . . , 0
)

=
(1

3x
3 + xy, y, x4 + 2x2y + y2, x5 + 2x3y + xy2, 0, . . . , 0

)
.

Set

H1(X, Y, U1, U2, U3, . . . , U�) = (X, Y, U1 − Y 2, U2 −XY, U3, . . . , U�).

Then,

H1 ◦ F (x, y) =
(1

3x
3 + xy, y, x4 + 2x2y, x5 + 5

3x
3y, 0, . . . , 0

)
.

Set h1(x, y) =
(
x, 1

3y
)
. Then,

H1 ◦ F ◦ h1(x, y) =
(1

3x
3 + 1

3xy,
1
3y, x

4 + 2
3x

2y x5 + 5
9x

3y, 0, . . . , 0
)
.
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Set H2(X, Y, U1, . . . , U�) = (3X , 3Y, U1, . . . , U�). Then,

H2 ◦H1 ◦G ◦ h1(x, y) =
(
x3 + xy, y, x4 + 2

3x
2y, x5 + 5

9x
3y, 0, . . . , 0

)
,

known as the normal form of open swallowtail ([10]).

5.7. Opening of 4k in the list of [14]

Let k be an integer greater than 1 and let fk,± : (R2, 0) → (R2, 0) be the
map-germ defined by fk,±(x, y) =

(1
3x

3 ± xyk, y
)
. The map-germ fk,± is A-

equivalent to the map-germ named Type 4k in the list of [14]. It is clear that
|Jf |(x, y) = x2 ± yk and dimRQ(f) = 3. Set μ1(x, y) = 1. We consider the
map-germ Fk,± : (R2, 0) → (R3, 0) defined by

Fk,±(x, y) =
(
fk,±(x, y), μ1(x, y)|Jf |2(x, y)

)
=

(1
3x

3 ± xyk, y, (x2 ± yk)2
)

=
(1

3x
3 ± xyk, y, x4 ± 2x2yk + y2k

)
.

Theorem 1 guarantees that Fk,± is a frontal. Set H1(X, Y, Z) = (X, Y, Z −
Y 2k) and H2(X, Y, Z) = (6X, 6Y, 3Z). Then,

H2 ◦H1 ◦ Fk,±(x, y) =
(
2x3 ± 6xyk, 6y, 3x4 ± 6x2yk

)
.

Next, set h1(x, y) =
(
x, 1

k√6
y
)

and H3(X, Y, Z) = (X,
k√6
6 Y, Z). Then,

H3 ◦H2 ◦H1 ◦ Fk,± ◦ h1(x, y) =
(
2x3 ± xyk, y, 3x4 ± x2yk

)
.

The form of H3 ◦ H2 ◦ H1 ◦ F2,− ◦ h1 is exactly the same as the map-germ
called a double swallowtail given in [15].

5.8. A non-analytic example

Let ψ : (R, 0) → (R, 0) be a flat function-germ (i.e. j∞ψ(0) = 0) and let f∞ :
(R2, 0) → (R2, 0) be the map-germ defined by f∞(x, y) =

(1
3x

3 ± xψ(y), y
)
.

It is clear that dimRQ(f∞) = 3. Thus, by Theorem 2, the following equality
holds even for the f∞. 〈

|Jf∞|2
〉
E2

+ f∗
∞ (E2) = Rf∞ .
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Therefore, for any opening F : (R2, 0) → (R2+�, 0) of f∞ there exist germs
of diffeomorphisms h : (R2, 0) → (R2, 0), H : (R2+�, 0) → (R2+�, 0) and
function-germs μ1, . . . , μ� : (R2, 0) → R such that the following holds.

H ◦ F ◦ h = (f∞, μ1|Jf∞|2, . . . , μ�|Jf∞|2).

5.9. Ak-front singularity

Let k be an integer greater than 1 and let fk : (Rk, 0) → (Rk, 0) be the
map-germ defined as follows:

fk(x1, . . . , xk) =
( 1
k + 1x

k+1
1 + 1

k − 1x
k−1
1 x2 + · · · + x1xk, x2, . . . , xk

)
.

The map-germ fk is a generalization of f given in Subsection 5.5 because f2
is exactly the same as the f . The map-germ fk is well-known as the normal
form of corank-one isolated stable singularity (for instance, see [2, 13]). For
the fk, dimRQ(fk) = k + 1 and |Jfk|2(x1, 0, . . . , 0) = xk1.

From now on, suppose that k is greater than 2. Let μ : (Rn, 0) → R be a
function-germ. Since 2k − (k + 1) = k − 1 > 1, for the normal vector field ν
of the frontal (fk, μ|Jfk|2), ν(x1, 0, . . . , 0) must be singular at the origin.

On the other hand, since fk is a polynomial map-germ of corank one, Rfk

can be described explicitly by [6]. In particular, there exists an opening F̃k of
fk whose normal vector field ν is non-singular with respect to x1 (A concrete
construction of ν can be found in [16]). Therefore, if k ≥ 3, it is impossible
to expect the converse of Theorem 1 for the frontal F̃k.
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