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Orbital stability of solitary wave solutions of
Zakharov–Rubenchik equation∗

XiaoHua Liu

Abstract: We study orbital stability of bell-shaped solitary wave
solutions of the Zakharov–Rubenchik equation for the interaction
of high–frequency and low–frequency waves in an arbitrary medium.
Our approach is based on the theories of orbital stability presented
by Grillakis, Shatah and Strauss, and relies on a reformulation of
the coupled equations in Hamiltonian form. We investigate stabil-
ity of solitary wave solutions by ascertaining the number of nega-
tive eigenvalues of the linear operator and the number of positive
eigenvalues of its Hessian of the scalar function.
Keywords: Solitary wave solution, undeterminded coefficient method,
orbital stability, the Zakharov–Rubenchik equation.

1. Introduction

The Zakharov equation [1] in a commonly form

(1.1)
{

iBt + ΔB = Bρ, x ∈ Rn, t ∈ R, n ≥ 1
ρtt − Δρ = Δ(|B|2)

deduced by Zakharov, model the nonlinear interaction of high–frequency and
low–frequency waves in an arbitrary medium, where B denotes the slowly
varying envelope of high–frequency electic field, ρ denotes the low-frequency
variation of density of ions. Tsutsumi and Ozawa [2] investigated the local
well-posedness of equation (1.1). The more research about Zakharov equation
and their multiple variants were presented in the literatures [3, 4, 5, 6, 7, 8, 9].
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By a quantum fluid approach Garcia, Haas, and Oliveira et al. [8] obtained
the following modified Zakharov equation:

(1.2)
{

iBt + Bxx −H2Bxxxx = Bρ,

ρtt − ρxx + H2ρxxxx = (|B|2)xx.

You, Guo and Ning [3] proved the existence and uniqueness of solutions
to the initial boundary value problem for equation (1.2).

The one–dimension version of equation (1.1) is the following Zakharov–
Rubenchik equation [10]:

(1.3)

⎧⎪⎪⎨
⎪⎪⎩

iBt + wBxx = γ(u− v
2ρ + q|B|2)B,

θρt + (u− vρ)x = −γ(|B|2)x,
θut + (βρ− vu)x = γ

2 (|B|2)x,

where x, t ∈ R, B is a complex–valued function, ρ and u are real-valued
functions, γ, β, q, w, v and θ are real parameters and satisfy the conditions
that w > 0, γq < 0, q = γ + v(γv−1)

2(β−v2) , β > 0 and β �= v2.
Setting u = 0, equation (1.3) become the Benny equation

(1.4)
{

iBt + Bxx + efψB + c|B|2B = 0,
εψt + eψx = f |B|2x.

The well-posedness of equation (1.4) has been studied in [11], and the
study of stability of solitary wave type solution of equation (1.4) in the case
where c = 0 has been found in [12].

Oliveira [13] studied stability and existence of solitary wave solutions of
equation (1.3) for small enough positive θ, and he also proved the local and
global well–posedness for data in H2(R) × H1(R) × H1(R) by the ideas of
Tsutsumi and Ozawa [2]. Oliveira [14] investigated that the magnetic field
B of equation (1.3) converge point by point to a solution of the nonlinear
Schrödinger equation iBt +wBxx + kv

4(β−v2) |B|2B = 0, in the case of adiabatic
limit θ → 0. Ponce and Saut [15] studied the local well-posedness of multi–
dimensional version of equation (1.3). The numerical solution of equation (1.3)
has been considered in [16].

Setting

ρ = ψ1 + ψ2, u =
√
β(ψ1 − ψ2),
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equation (1.3) become the following form:

(1.5)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

iBt + wBxx = γ(
√
β − v

2 )Bψ1 − γ(
√
β + v

2 )Bψ2 + γq|B|2B,

θψ1t + (
√
β − v)ψ1x = γ

2 (−1 + v

2
√

β
)(|B|2)x,

θψ2t − (
√
β + v)ψ2x = γ

2 (−1 − v

2
√

β
)(|B|2)x.

Linares and Matheus [17] proved that equation (1.5) was globally well-
posedness for data in Hk(R) ×H l(R) ×H l(R)(0 ≤ k ≤ l + 1

2) with the help
of the methods presented by Colliander, Holmer and Tzirakis in [9]. To the
best of our knowledge, there is no references in the literature of the stability
of solitary wave solutions of equation (1.5) for any θ > 0.

Our purpose is to investigate the orbital stability of solitary wave solutions
for equation (1.5). The rest of content is structured as follows, in Section 2,
we state the main result of the orbital stability of solitary wave solutions
of equation (1.5) for any positive θ, using the abstract theories of orbital
stability proposed by Grillakis, Shatah and Strauss [18, 19]. In Section 3, we
prove the stability. The main intermediate step is to determine the number
of negative eigenvalues of the linear operator Hλ,c and the number of positive
eigenvalues of its Hessian of the scalar function d(λ, c) at c, which Hλ,c and
d(λ, c) is denoted by (2.33) and (2.40), respectively.

2. The main result

In order to state the main result, we firstly study the exact solitary wave
solutions of equation (1.5).

2.1. The exact solitary wave solutions

By substituting k1 =
√
β− v

2 , k2 =
√
β+ v

2 , k3 =
√
β−v, k4 =

√
β+v, k5 =

−1 + v

2
√

β
and k6 = 1 + v

2
√

β
into equation (1.5), it can be rewrited as

(2.1)

⎧⎪⎪⎨
⎪⎪⎩

iBt = −wBxx + γk1Bψ1 − γk2Bψ2 + γq|B|2B,

θψ1t = −k3ψ1x + γ
2k5(|B|2)x,

θψ2t = k4ψ2x − γ
2k6(|B|2)x.

Let

(2.2)
B(x, t) = e−iλteif(x−ct)ϕ(x− ct),
ψ1(x, t) = φ1(x− ct), ψ2(x, t) = φ2(x− ct)
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be the solitary wave solutions of equation (2.1), where λ, f, c are real num-
bers, ϕ, φ1, φ2 are real functions. Substituting (2.2) into (2.1), we have the
following equations:

(2.3)⎧⎪⎪⎨
⎪⎪⎩

cfϕ + λϕ− icϕ = −wϕ′′ − 2iwfϕ′ + wf2ϕ + γk1ϕφ1 − γk2ϕφ2 + γqϕ3,

−cθφ′
1 = −k3φ

′
1 + γk5ϕϕ

′,

−cθφ′
2 = k4φ

′
2 − γk6ϕϕ

′,

where the prime denotes the derivative with respect to x. In order to study
the exact solitary wave solutions of equation (2.1), we consider the exact
solutions of ordinary differential equation (2.3).

Firstly, by integrating the second and third equation of (2.3) with respect
to x from −∞ to x, we obtain that

(2.4) φ1 = γk5

2(k3 − cθ)ϕ
2, φ2 = γk6

2(k4 + cθ)ϕ
2,

in the above process of calculation, we use the boundary conditions: ϕ, φ1
and φ2 → 0 as |x| → ∞.

By calculating and simplifying the first equation of (2.3) with the help of
expressions (2.4), we have

(2.5) f = c

2w

and

(2.6) ϕ′′ + c2 + 4λw
4w2 ϕ− m

4w2ϕ
3 = 0,

where

(2.7) m = 2γ2wk1k5

k3 − θc
− 2γ2wk2k6

k4 + θc
+ 4wγq.

Equation (2.6) is a second order ordinary differential equation, we can
convert it into the equivalent of planar dynamical system, by taking advantage
of the theories of qualitative analysis and method provided by Zhang [20, 21],
we can investigate many exact traveling wave solutions. In here, we mainly
consider the orbital stability of exact bell solitary wave solutions. By using
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the undeterminded coefficient method which has been presented by Zhang
[22], we may assume that equation (2.6) have solutions in the following form

(2.8) ϕ(x) =
Asech2( r2x)

4 + Bsech2( r2x)
+ D,

where A,B,D and r are undeterminded real parameters.
Substituting (2.8) and ϕ′′(x) into (2.6), we obtain the following algebraic

equations with respect to A,B,D and r:

(2.9)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

− m
4w2D

3 + c2+4wλ
4w2 D = 0,

r2 − 3m
4w2D

2 + c2+4wλ
4w2 = 0,

− 3m
4w2DA− 3r2(2 + B) = 0,

− m
4w2A

2 − 8r2 −DA(2 + B) 3m
4w2 − r2(2 + B)2 = 0.

We solve equations (2.9) by using Maple 10.0 and obtain that its solutions
are

(2.10) r = ±
√
−c2 + 4wλ

4w2 , A = ±
√

8(c2 + 4wλ)
m

, B = −2, D = 0,

the solutions (2.10) of A,B,D and r are meaning in the case of m < 0, c2 +
4wλ < 0.

We simplify expression (2.8) by using the solutions (2.10), and obtain the
following solutions of equation (2.6):

(2.11) ϕ(x) = ±
√

c2 + 4wλ
m

sech

√
−c2 + 4wλ

4w2 (x),

In the above process of calculation, we use the property of sech(x) =
sech(−x). On the basis of expressions (2.4) and (2.5), along with solutions
(2.11) of equation (2.6), the exact solutions of ordinary differential equa-
tion (2.3) are:

(2.12)

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

ϕ(x) = ±
√

c2+4wλ
m sech

√
− c2+4wλ

4w2 (x),

φ1(x) = γk5(c2+4wλ)
(k3−cθ)m sech2

√
− c2+4wλ

4w2 (x),

φ2(x) = γk6(c2+4wλ)
(k4+cθ)m sech2

√
− c2+4wλ

4w2 (x),
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where m < 0, c2 + 4wλ < 0.
In according to the relationship between the exact solitary wave solutions

of equation (2.1) and exact solutions of ordinary differential equation (2.3),
We have result:

Theorem 2.1. If parameters m, c, λ, w satisfy m < 0, c2 + 4wλ < 0, then
equation (2.1) has the solitary wave solution with the form (2.2), where f and
ϕ, φ1, φ2 denoted by (2.5) and (2.12) respectively.

In the following content, we study the orbital stability of solitary wave
solutions (2.2) of equation (2.1) for any θ > 0 by employing the method
represented by Guo and Chen [23].

2.2. The orbital stability of solitary wave solutions

Setting B = B1 + iB2 and rewriting equation (2.1), we have

(2.13)

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

B1t = −wB2xx + γk1ψ1B2 − γk2ψ2B2 + γq(B2
1 + B2

2)B2,

B2t = wB1xx − γk1ψ1B1 + γk2ψ2B1 − γq(B2
1 + B2

2)B1,

ψ1t = 1
θ [−k3ψ1 + γ

2k5(B2
1 + B2

2)]x,
ψ2t = 1

θ [k4ψ2 − γ
2k6(B2

1 + B2
2)]x.

Assuming that

(2.14) �u = (B1, B2, ψ1, ψ2)T ,

where .T denotes the column vector. Let X = H1(R)×H1(R)×L2(R)×L2(R)
with the inner product

(2.15) (�f,�g) =
∫
R
(f1g1 + f1xg1x + f2g2 + f2xg2x + f3g3 + f4g4)dx,

where �f = (f1, f2, f3, f4)T , �g = (g1, g2, g3, g4)T in X. The dual space X∗ =
H−1(R) × H−1(R) × L2(R) × L2(R), a natural isomorphism I : X → X∗

denoted by

(2.16)
〈
I �f,�g

〉
=
(
�f,�g

)
,

with
〈
�f,�g

〉
=
∫
R(
∑4

i=1 figi)dx.
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According to (2.15) and (2.16), we have

(2.17) I =

⎛
⎜⎜⎜⎜⎜⎝

1 − ∂xx 0 0 0
0 1 − ∂xx 0 0
0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠ .

Let T1, T2 one-parameter group of unitary operators on X, and

T1(s1)�u(·) = �u(· − s1), for �u(·) ∈ X, s1 ∈ R,(2.18)

T2(s2)�u(·) =

⎛
⎜⎜⎜⎜⎜⎝

cos s2 sin s2 0 0
− sin s2 cos s2 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎝

B1

B2

ψ1

ψ2

⎞
⎟⎟⎟⎟⎟⎠ ,(2.19)

for �u(·) ∈ X, s2 ∈ R

We derivative (2.18) and (2.19) with respect to s1, s2, respectively, and
have

(2.20)

T ′
1(0) =

⎛
⎜⎜⎜⎜⎜⎝

−∂x 0 0 0
0 −∂x 0 0
0 0 −∂x 0
0 0 0 −∂x

⎞
⎟⎟⎟⎟⎟⎠ , T ′

2(0) =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ .

Letting

(2.21)
�Φλ,c(x) =

(
ϕλ,c(x) cos c

2wx, ϕλ,c(x) sin c

2wx, φ1λ,c(x), φ2λ,c(x)
)
.

In the light of definitions (2.18) and (2.19) of T1, T2, comparing (2.21)
with (2.12), we find that T1(ct)T2(λt)�Φλ,c(x) is the solitary wave solution of
equation (2.13). Next we need the following definition of orbital stability of
solitary wave solutions:

Definition 2.2. [17] The solitary wave solution T1(ct)T2(λt)�Φλ,c(x) is or-
bitally stable: if for all ε > 0, there exists δ > 0, with the following property:
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if ‖ �u0 − �Φ ‖X< δ and �u(t) is a solution of (2.13) in some interval [0, t0)
with �u(0) = �u0, then �u(t) can be continued to a solution in 0 ≤ t < +∞, and

sup
0<t<+∞

inf
s1∈R

inf
s2∈R

‖ �u(t) − T1(s1)T2(s2)�Φ ‖X< ε.

Otherwise, T1(ct)T2(λt)�Φλ,c(x) is called orbitally unstable.
The above definition can also be found in [22]. We can rewrite equa-

tion (2.13) as the following Hamiltonian system with the form

(2.22) d�u

dt
= J ′E(�u),

where �u denoted by (2.14),

(2.23) J =

⎛
⎜⎜⎜⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 k5

k1θ
∂x 0

0 0 0 k6
k2θ

∂x

⎞
⎟⎟⎟⎟⎟⎠ ,

and

(2.24)
E(�u) =

∫
R

[
w
2 (B2

1x + B2
2x) + γ

2k1ψ1(B2
1 + B2

2) − γ
2k2ψ2(B2

1 + B2
2)

+ qγ
4 (B2

1 + B2
2)2 − k1k3

2k5
ψ2

1 + k2k4
2k6

ψ2
2

]
dx,

E′(�u) is the Fréchet derivative of E(�u).
E is invariant under T1, T2, that is

(2.25) E(T1(s1)T2(s2)�u) = E(�u), for s1, s2 ∈ R, �u ∈ X

and for t ∈ R, E(�u(t)) = E(�u(0)) under the flow �u of equation (2.13).
Let be

F1 =

⎛
⎜⎜⎜⎜⎜⎝

0 ∂x 0 0
−∂x 0 0 0
0 0 − θk1

k5
0

0 0 0 − θk2
k6

⎞
⎟⎟⎟⎟⎟⎠ and F2 =

⎛
⎜⎜⎜⎝

1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎟⎠ ,

By (2.20) and (2.23), we have

T ′
1(0) = JF1, T ′

2(0) = JF2.
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Introducing the functional

(2.26) Q1(�u) = 1
2 〈F1�u, �u〉 = 1

2

∫
R

[
B1B2x −B2B1x −

θk1

k5
ψ2

1 −
θk2

k6
ψ2

2

]
dx

and

(2.27) Q2(�u) = 1
2 〈F2�u, �u〉 = 1

2

∫
R

(
B2

1 + B2
2

)
dx.

From (2.18) and (2.19), we obtain that Q1, Q2 are also invariant under
T1, T2,

(2.28)
Q1(T1(s1)T2(s2)�u) = Q1(�u),
Q2(T1(s1)T2(s2)�u) = Q2(�u),

for s1, s2 ∈ R, �u ∈ X

Q1, Q2 are conserved under the flow �u of equation (2.13), namely

(2.29) Q1(�u(t)) = Q1(�u(0)), Q2(�u(t)) = Q2(�u(0)), t ∈ R

By (2.24), we obtain the Fréchet derivatives E′(�u) of E(�u), that is

(2.30) E′(�u) =

⎛
⎜⎜⎜⎜⎜⎝

−wB1xx + γk1ψ1B1 − γk2ψ2B1 + γqB1(B2
1 + B2

2)
−wB2xx + γk1ψ1B2 − γk2ψ2B2 + γqB2(B2

1 + B2
2)

γ
2k1(B2

1 + B2
2) − k1k3

k5
ψ1

−γ
2k2(B2

1 + B2
2) + k2k4

k6
ψ2

⎞
⎟⎟⎟⎟⎟⎠ ,

According to (2.26) and (2.27), we have the Fréchet derivatives Q′
1,2(�u)

of Q1,2(�u):

(2.31) Q′
1(�u) =

⎛
⎜⎜⎜⎜⎜⎝

B2x

−B1x

− θk1
k5

ψ1

− θk2
k6

ψ2

⎞
⎟⎟⎟⎟⎟⎠ , Q′

2(�u) =

⎛
⎜⎜⎜⎜⎝

B1

B2

0
0

⎞
⎟⎟⎟⎟⎠ .

By (2.13), (2.21), (2.30) and (2.31), after simply calculation, we get

(2.32) E′(�Φλ,c) − cQ′
1(�Φλ,c) − λQ′

2(�Φλ,c) = 0.
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In order to discuss the stability, we need the linear operator Hλ,c from X
to X∗, denoted by

(2.33) Hλ,c = E′′(�Φλ,c) − cQ′′
1(�Φλ,c) − λQ′′

2(�Φλ,c).

Noting that ϕ = ϕλ,c, φ1 = φ1λ,c, φ2 = φ2λ,c, then
(2.34)

Hλ,c =

⎛
⎜⎜⎜⎜⎝

L + γqϕ2 cos c
wx γqϕ2 sin c

wx− c∂x γk1ϕ cos c
2wx −γk2ϕ cos c

2wx

γqϕ2 sin c
wx + c∂x L− γqϕ2 cos c

wx γk1ϕ sin c
2wx −γk2ϕ sin c

2wx

γk1ϕ cos c
2wx γk1ϕ sin c

2wx k1
k5

(cθ − k3) 0

−γk2ϕ cos c
2wx −γk2ϕ sin c

2wx 0 k2
k6

(cθ + k4)

⎞
⎟⎟⎟⎟⎠,

where L = −w∂xx + γk1φ1 − γk2φ2 − λ + 2γqϕ2.
It is easy to test that Hλ,c is a self-adjoint operator in the sense that

H∗
λ,c = Hλ,c. This means that I−1Hλ,c is a bounded operator. The spectrum

of Hλ,c consists of the real numbers μ such that Hλ,c − μI is irreversible.
By (2.20), (2.21), (2.34) and (2.32), we have

(2.35) Hλ,c(T ′
1(0)�Φλ,c(x)) = 0, Hλ,c(T ′

2(0)�Φλ,c(x)) = 0,

so we claim that λ = 0 belongs to the spectrum of Hλ,c and T ′
1(0)�Φλ,c(x),

T ′
2(0)�Φλ,c(x) are the corresponding eigenvectors with eigenvalue zero.

Denoted by

(2.36) Z =
{
h1T

′
1(0)�Φλ,c(x) + h2T

′
2(0)�Φλ,c(x) | h1, h2 ∈ R

}
.

It follows (2.35) that Z is included in the kernel of Hλ,c.

Lemma 2.3. (Spectral decomposition of Hλ,c) For any θ > 0, if the wave
velocity c satisfies −

√
β−v

θ < c <

√
β−v

θ , then the space X is decomposed as a
direct sum

(2.37) X = N + Z + P,

where Z is defined by (2.36), N is a finite-dimensional subspace such that

(2.38) 〈Hλ,c�u, �u〉 < 0, for 0 �= �u ∈ N,

and P is a closed subspace such that

(2.39) 〈Hλ,c�u, �u〉 ≥ δ ‖ �u ‖2
X , for �u ∈ P,
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with some constant δ > 0 which is independent of �u.
In Section 3, we prove Lemma 2.3. Let d(λ, c) : R×R → R be

(2.40) d(λ, c) = E(�Φλ,c) − cQ1(�Φλ,c) − λQ2(�Φλ,c)

and d′′(λ, c) be the Hessian matrix of function d(λ, c).

Lemma 2.4. [15] For any (B10, B20, φ10, φ20, ) ∈ H l+ 1
2 (R) × H l+ 1

2 (R) ×
H l(R) × H l(R), l > 1

2 , there exists a unique function B : [0, T ] × R → C
satisfying (2.13) such that �u ∈ X for all T > 0.
Lemma 2.5. For w > 0, m < 0, if parameters c, λ, w satisfy c2 + 4wλ < 0,
then p(d′′) = n(Hλ,c), where n(Hλ,c) denotes the number of negative eigen-
values of Hλ,c, p(d′′) denotes the number of positive eigenvalues for Hessian
matrix d′′ at (λ, c).

The proof of p(d′′) = n(Hλ,c) has been given in Section 3.
We give the main results in the following theorem.

Theorem 2.6. Under the condition of Theorem 2.1, if for any θ > 0, the
wave velocity c satisfying −

√
β−v

θ < c <

√
β−v

θ , and w > 0, then the solitary
wave solutions T1(ct)T2(λt)�Φλ,c(x) of (2.13) with the expression (2.2), (2.5)
and (2.12) are orbitally stable.
Proof. According to Lemma 2.3 and p(d′′) = n(Hλ,c), along with theorem 4.1
of [18], we know that the result is right.

3. The proof of lemma

In this section, we prove the stability of solitary wave solutions of equa-
tion (2.13). The main intermediate step is to determine the number of negative
eigenvalues of the linear operator Hλ,c and the number of positive eigenvalues
of the Hessian of scalar function d(λ, c).

3.1. The proof of Lemma 2.3

In this content, we consider the spectrum of the linear operator (2.33). Firstly,
let

(3.1) �ψ =

⎛
⎜⎜⎜⎜⎝

cos c
2wx − sin c

2wx 0 0
sin c

2wx cos c
2wx 0 0

0 0 1 0
0 0 0 1

⎞
⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎝

y1

y2

y3

y4

⎞
⎟⎟⎟⎟⎠ ,
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and

�y = (y1, y2, y3, y4)T ∈ X.

Obviously,
〈
�ψ, �ψ

〉
= 〈�y, �y〉, by (2.34) we have

(3.2)〈
Hλ,c

�ψ, �ψ
〉

= 〈L1y1, y1〉 + 〈L2y2, y2〉 +
∫
R

k1
k5

(θc− k3)
[
y3 + γk5

θc−k3
ϕy1

]2
dx

+
∫
R

k2
k6

(θc + k4)
[
y4 − γk6

θc+k4
ϕy1

]2
dx,

where

(3.3) L1 = −w∂xx−
c2 + 4λw

4w +3m
4w ϕ2, L2 = −w∂xx−

c2 + 4λw
4w + m

4wϕ2.

By the Wely theorem and the solitary wave solutions (2.12), the essential
spectrum of L1, L2, denoted by

(3.4) σess(L1) = σess(L2) =
[
−c2 + 4λw

4w , +∞
)
.

By (2.3), (2.5), (2.7) and (2.32),(3.3), we get

(3.5) L1ϕx = 0, L2ϕ = 0.

By the Strum-Liouville theorem and the fact that ϕx has simple zero at
x = 0, we can deduce that zero is the second eigenvalue of L1 which only
owns one negative eigenvalue denoted by −σ2, the corresponding eigenvector
denoted by χ1, that is

(3.6) L1χ1 = −σ2χ1, 〈χ1, χ1〉 = 1.

Zero is also the simple eigenvalue of L2. From (3.3),(3.4) and (3.5), we
obtain the following two lemmas.
Lemma 3.1. For any real function y1 ∈ H1(R), satisfying 〈y1, χ1〉 =
〈y1, ϕx〉 = 0, then there exists a positive constant δ1 such that

(3.7) 〈Ł1y1, y1〉 ≥ δ1 ‖ y1 ‖2
H1 .

Lemma 3.2. For any real function y2 ∈ H1(R), satisfying 〈y2, ϕ〉 = 0, there
exists a positive constant δ2 such that

(3.8) 〈Ł2y2, y2〉 ≥ δ2 ‖ y2 ‖2
H1 .
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Let be

(3.9)
y−1 = χ1, y−2 = 0, y−3 = − γk5

θc−k3
ϕχ1, y−4 = γk6

θc+k4
ϕχ1,

�ψ− = (y−1 , y−2 , y−3 , y−4 )T .

By using (3.2), we have

(3.10)
〈
Hλ,c

�ψ−, �ψ−
〉

= 〈L1χ1, χ1〉 = −σ2 〈χ1, χ1〉 < 0.

Assuming that
(3.11)

Z =
{
h1 �ψ01 + h2 �ψ02 | h1, h2 ∈ R

}
, N =

{
h�ψ | h ∈ R

}
,

P =
{
�p ∈ X | �p = (p1, p2, p3, p4)T

}
, 〈p1, χ1〉 = 〈p1, ϕx〉 = 〈p1, ϕ〉 = 0.

On the base of (3.10), (3.11), (2.38) is correct.
For �u = (y1, y2, y3, y4)T ∈ X, let be a = 〈y1, χ1〉 , b1 = 〈ϕx, y1〉

〈ϕx, ϕx〉 , b2 =
〈ϕ, y2〉
〈ϕ,ϕ〉 , then �u can only expressed as

(3.12) �u = a�ψ− + b1 �ψ01 + b2 �ψ02 + �p, �p ∈ P.

So the decompose expression (2.37) for direct sum of space X holds.

Lemma 3.3. For any θ > 0, the wave velocity c satisfying −
√

β−v

θ < c <√
β−v

θ , there exists constant δ3 > 0 such that

(3.13) 〈Hλ,c�p, �p〉 ≥ δ3 ‖ �p ‖X ,

where δ3 > 0 is independent of �p, �p ∈ P denoted by (3.11).

Proof. For �p ∈ P , by (3.2) and (3.11), we have
(3.14)
〈Hλ,c�p, �p〉 = δ1 ‖ p1 ‖2

H1
+δ2 ‖ p2 ‖2

H1
+k1

k5
(θc− k3)

∫
R

[
p3 + γk5

θc−k3
ϕp1

]2
dx

+k2
k6

(θc + k4)
∫
R

[
p4 − γk6

θc+k4
ϕp1

]2
dx,

By k1
k5

< 0, k2
k6

< 0 and −
√

β−v

θ < c <

√
β−v

θ , then k1
k5

(θc − k3) > 0, k2
k6

(θc +
k4) > 0. We discuss that the sign of expression (3.14) in the following content:

Case 1 if ‖ p3 ‖2
L2≥ 4γ2k2

5M

(θc−k3)2k2
1
‖ p1 ‖2

L2 , then



706 XiaoHua Liu

(3.15)
k1
k5

(θc− k3)
∫
R

[
p3 + γk5

θc−k3
ϕp1

]2
dx ≥ k1

k5
(θc− k3) ‖p3 ‖2

L2 − 2γ2k5M
(θc−k3)k1

‖p1 ‖2
L2

≥ k1
k5

(θc− k3) ‖ p3 ‖2
L2 − 2γ2k5M

(θc−k3)k1

(θc−k3)2k2
1

4γ2k2
5M

‖ p3 ‖2
L2= k1

2k5
(θc− k3) ‖ p3 ‖2

L2 .

Case 2 if ‖ p3 ‖2
L2≤ 4γ2k2

5M

(θc−k3)2k2
1
‖ p1 ‖2

L2 , then

(3.16) δ1 ‖ p1 ‖2
H1≥ δ1

2 ‖ p1 ‖2
H1 + δ1

2
(θc−k3)2k2

1
4γ2k2

5M
‖ p3 ‖2

L2 .

Case 3 if ‖ p4 ‖2
L2≥ 4γ2k2

6M

(θc+k4)2k2
2
‖ p1 ‖2

L2 , then

(3.17)
k2
k6

(θc + k4)
∫
R

[
p4 − γk6

θc+k4
ϕp1

]2
dx ≥ k2

k6
(θc + k4) ‖p4 ‖2

L2 − 2γ2k6M
(θc+k4)k2

‖p1 ‖2
L2

≥ k2
k6

(θc + k4) ‖ p4 ‖2
L2 − 2γ2k6M

(θc+k4)k2

(θc+k4)2k2
2

4γ2k2
6M

‖ p4 ‖2
L2= k2

2k6
(θc + k4) ‖ p4 ‖2

L2 .

Case 4 if ‖ p4 ‖2
L2≤ 4γ2k2

6M

(θc+k4)2k2
2
‖ p1 ‖2

L2 , then

(3.18) δ1 ‖ p1 ‖2
H1≥ δ1

2 ‖ p1 ‖2
H1 + δ1

2
(θc+k4)2k2

2
4γ2k2

6M
‖ p4 ‖2

L2 ,

where M =| ϕ |2∞. Let

(3.19)
δ′1 = min

{
k1
2k5

(θc− k3), δ1
2

(θc−k3)2k2
1

4γ2k2
5M

}
,

δ′2 = min
{

k2
2k6

(θc + k4), δ1
2

(θc+k4)2k2
2

4γ2k2
6M

}
.

It follows (3.14)–(3.19) that

〈Hλ,c�p, �p〉 ≥ δ1
2 ‖ p1 ‖2

H1
+δ2 ‖ p2 ‖2

H1
+δ′1 ‖ p3 ‖2

L2 +δ′2 ‖ p4 ‖2
L2 ,

then

(3.20) 〈Hλ,c�p, �p〉 ≥ δ3 ‖ �p ‖X ,

where δ3 = min
{

δ1
2 , δ2, δ

′
1, δ

′
2

}
be independent of �p.

Using (3.10), (3.12) and (3.20), we establish the proof of Lemma 2.3 and
n(Hλ,c) = 1.
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3.2. The proof of Lemma 2.5

By (2.40), we have

(3.21) dλ = −Q2(�Φλ,c), dc = −Q1(�Φλ,c).

According to (2.12), (2.21), (2.26), (2.27) and (3.21), after the simple
calculation, we obtain

(3.22)

dλ = −1
2

∫
R

(
B2

1 + B2
2

)
dx = −c2 + 4λw

2m

∫
R
sech2

√
−c2 − 4λw

4w2 xdx = y0

m
< 0

and

(3.23) dc = cy0

2wm + y0γ
2θk1k5(−c2 − 4wλ)
3m2(k3 − θc)2 + y0γ

2θk2k6(−c2 − 4wλ)
3m2(k4 + θc)2 ,

where y0 =
√
−4w2(c2 + 4λw). Further more, by (3.22) and w > 0 we have

(3.24) dλλ = − 8w3

my0
> 0

and

(3.25) dλc = −4cw2

my0
− 2ȳy0

m2 ,

where ȳ = θγ2wk1k5
(k3−θc)2 + θγ2wk2k6

(k4+θc)2 .
By (3.23) we have

(3.26) dcλ = dλc

and

(3.27)

dcc = y0
2mw − 2wc2

my0
− cy0ȳ

wm2 − cγ2θk1k5y0
m2(k3−cθ)2 + 4γ2θ2k1k5y0(−c2−4wλ)

3m2(k3−cθ)2

−4γ2θk1k5y0(−c2−4wλ)
3m3(k3−cθ)2 ȳ − cγ2θk2k6y0

m2(k4+cθ)2 − 4γ2θ2k2k6y0(−c2−4wλ)
3m2(k4+cθ)2

−4γ2θk2k6y0(−c2−4wλ)
3m3(k4+cθ)2 ȳ.

By (3.24)–(3.27), we get
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(3.28)
det(d′′) = dλλdcc − dλcdcλ

= −4w2

m2 − 16w2(−c2−4wλ)
3m4 ȳ2 − 32w3θ2γ2k1k5(−c2−4wλ)

3m3(k3−cθ)2 + 32w3θ2γ2k2k6(−c2−4wλ)
3m3(k4+cθ)2 ,

According to m < 0, k1k5 < 0, k2k6 > 0, −c2 − 4wλ > 0 and (3.28), after
simple analyzing, we have

(3.29) det(d′′) < 0.

From (3.22), (3.24) and (3.29), we obtain that d′′ only owns one positive
eigenvalue and one negative eigenvalue. by using n(Hλ,c) = 1 which has been
proved in Section 3.1, we get

(3.30) p(d′′) = n(Hλ,c) = 1.
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