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Upper k-tuple total domination in graphs
Adel P. Kazemi

Abstract: Let G = (V,E) be a simple graph. For any integer
k ≥ 1, a subset of V is called a k-tuple total dominating set of G if
every vertex in V has at least k neighbors in the set. The minimum
cardinality of a minimal k-tuple total dominating set of G is called
the k-tuple total domination number of G. In this paper, we intro-
duce the concept of upper k-tuple total domination number of G
as the maximum cardinality of a minimal k-tuple total dominat-
ing set of G, and study the problem of finding a minimal k-tuple
total dominating set of maximum cardinality on several classes of
graphs, as well as finding general bounds and characterizations.
Also, we find some results on the upper k-tuple total domination
number of the Cartesian and cross product graphs.
Keywords: k-Tuple total domination number, upper k-tuple to-
tal domination number, Cartesian and cross product graphs, hy-
pergraph, (upper) k-transversal number.

1. Introduction

All graphs considered here are finite, undirected and simple. For standard
graph theory terminology not given here we refer to [27]. Let G = (V,E) be
a graph with the vertex set V of order n(G) and the edge set E of size m(G).
The open neighborhood of a vertex v ∈ V is NG(v) = {u ∈ V | uv ∈ E},
while its cardinality is the degree of v and denoted by degG(v). The closed
neighborhood of a vertex v ∈ V is also N [v] = NG(v)∪{v}. The minimum and
maximum degree of G are denoted by δ = δ(G) and Δ = Δ(G), respectively.
We write Kn, Cn and Pn for a complete graph, a cycle, and a path of order
n, respectively, while Kn1,...,np denotes a complete p-partite graph. Also for
a subset S ⊆ V , G[S] denotes the induced subgraph of G by S in which
V (G[S]) = S and for any two vertices x, y ∈ S, xy ∈ E(G[S]) if and only if
xy ∈ E(G).
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Definition 1. Let k ≥ 1 be an integer and let v ∈ S ⊆ V . A vertex v′ is
called a k-open private neighbor of v with respect to S, or simply a (S, k)-opn
of v if v ∈ NG(v′) and |NG(v′)∩S| = k, in other words, there exists a k-subset
Sv ⊆ S containing v such that NG(v′) ∩ S = Sv. The set

opnk(v;S) = {v′ ∈ V |v′ is a (S, k)-opn of v}

is called the k-open private neighborhood set of v with respect to S. Also, a
k-open private neighbor of v with respect to S is called external or inner if
the vertex is in V − S or S, respectively.

Hypergraphs. Hypergraphs are systems of sets which are conceived as
natural extensions of graphs. A hypergraph H = (V,E) is a set V of elements,
called vertices, together with a multiset E of arbitrary subsets of V , called
edges. For integer k ≥ 1, a k-uniform hypergraph is a hypergraph in which
every edge has size k. Every simple graph is a 2-uniform hypergraph. For a
graph G = (V,E), HG = (V,C) denotes the open neighborhood hypergraph of
G with the vertex set V and edge set C consisting of the open neighborhoods
of vertices of V in G.

A transversal in a hypergraph H = (V,E) is a subset S ⊆ V such that
|S ∩ e| ≥ 1 for every edge e ∈ E; that is, the set S meets every edge in H.
The transversal number τ(H) of H is the minimum size of a transversal in H.
In a natural way, Wanless et al. generalized the concept of transversal in a
Latin square to k-transversal [26]. We recall that for any integere n ≥ 1, a
Latin square of order n is a n-by-n grid, each entry of which is a number from
the set [n] = {1, 2, · · · , n} such that no number appears twice in any row or
column.

Definition 2. [26] For any positive integer k, a k-transversal or a k-plex
in a Latin square of order n is a set of nk cells, k from each row, k from
each column, in which every symbol occurs exactly k times. The maximum
number of disjoint k-transversals in a Latin square L is called its k-transversal
number and denoted by τk(L). Obviously τk(L) ≤ n/k. A Latin squre L has
a decomposition into disjoint k-transversals means τk(L) = n/k.

In a similar way, we generalize the concept of transversal in a hypergraph
to k-transversal as following:

Definition 3. For any integer k ≥ 1, a k-transversal in a hypergraph H =
(V,E) is a subset S ⊆ V such that |S ∩ e| ≥ k for every edge e ∈ E; that is,
every edge in H contains at least k vertices from the set S. The k-transversal
number τk(H) of H is the minimum cardinality of a minimal k-transversal
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in H, while the upper k-transversal number Υk(H) of H is defined as the
maximum cardinality of a minimal k-transversal in H.

Domination. Domination in graphs is now well-studied in graph theory
and the literature on this subject has been surveyed and detailed in the two
books by Haynes, Hedetniemi, and Slater [11, 12]. A subset S ⊆ V is a
dominating set (resp. total dominating set) of G if each vertex in V \S (resp.
V ) is adjacent to at least one vertex of S. The domination number γ(G)
(resp. total domination number γt(G)) of G is the minimum cardinality of
a dominating set (resp. total dominating set) of G. The following extension
of total domination number introduced by Henning and Kazemi in [13] (see
[14, 19, 20, 21, 22] for more information).

Definition 4. [13] Let k ≥ 1 be an integer and let G be a graph with
δ(G) ≥ k. A subset S ⊆ V is called a k-tuple total dominating set, briefly
kTDS, of G if for each x ∈ V , |N(x) ∩ S| ≥ k. The minimum number of
vertices of a kTDS of G is called the k-tuple total domination number of
G and denoted by γ×k,t(G). A kTDS with cardinality γ×k,t(G) is called a
min-kTDS of G.

Finding the maximum cardinality of the set of minimal subsets of the
vertices (or edges or both) of a graph with a property is one of the important
problems in graph theory. According to this fact, in this paper, we initiate to
study the problem of finding a minimal kTDS of maximum cardinality in a
graph. This leads to our next definition.

Definition 5. The upper k-tuple total domination number Γ×k,t(G) of a
graph G is the maximum cardinality of a minimal kTDS of G, and a minimal
kTDS with cardinality Γ×k,t(G) is called a Γ×k,t(G)-set, or a Γ×k,t-set of
G. Also, we say that a graph G is a Γ×k,t-external graph if it has a Γ×k,t-set
S such that every vertex in it has an external k-open private neighbor with
respect to S.

Obviously, for every graph G and every positive integer k, γ×k,t(G) ≤
Γ×k,t(G), and this bound is sharp for any complete graph of order n > k. We
remark that the upper 1-tuple total domination number Γ×1,t(G) is the well-
studied upper total domination number Γt(G), while the upper 2-tuple total
domination number is known as the upper double total domination number.
The redundancy involved in upper k-tuple total domination makes it useful
in many applications.

In this paper, as we mentioned, we initiate to study the problem of finding
a minimal kTDS of maximum cardinality on several classes of graphs, as well
as finding general bounds and characterizations. Also we present a Vizing-like
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conjecture on the upper k-tuple total domination number, and prove it for a
family of graphs. Proving

Γ×k�,t(G×H) ≥ Γ×k,t(G) · Γ×�,t(H) (for any k, � ≥ 1)

is our next work in which G×H denotes the cross product of two graphs G
and H. Then we characterize graphs G satisfying Γ×k,t(G) = γ×k,t(G), and
show that for any graph G with minimum degree at least k,
1. Γ×k,t(G) = Υk(HG), and
2. Γ×k,t(G) = γ×k,t(G) if and only if Υk(HG) = τk(HG).

We begin our discussion with the following useful observation.
Observation 1. Let k ≥ 1 be an integer and let G be a graph of order n with
δ(G) ≥ k. Then

i. γ×k,t(G) ≤ Γ×k,t(G) ≤ n,
ii. every kTDS S of G is minimal if and only if opnk(v;S) �= ∅ for every

vertex v ∈ S,
iii. all neighbors of every vertex of degree k in G belong to every kTDS

of G, and
iv. if H is a spanning subgraph of G which has a Γ×k,t-set that is also a

minimal kTDS of G, then Γ×k,t(H) ≤ Γ×k,t(G).
Observation 1 (iii) implies the next proposition.

Proposition 1. For any k-regular graph G, Γ×k,t(G) = n.
The converse of Proposition 1 does not hold. For example, if G is the graph

obtained by the union of two disjoint complete graphs of order k + 1 ≥ 3,
with an edge between them, then G is not regular but Γ×k,t(G) = 2k + 2.
The next two propositions are useful for our investigations. First we recall
that for any positive integer k, the k-join G ◦k H of a graph G to a graph H
with δ(H) ≥ k is the graph obtained from the disjoint union of G and H by
joining each vertex of G to at least k vertices of H.
Proposition 2. [9] For any path Pn of order n ≥ 2, Γt(Pn) = 2�(n + 1)/3�.
Proposition 3. [13] Let G be a graph with δ(G) ≥ k. Then γ×k,t(G) = k+ 1
if and only if G = Kk+1 or G = F ◦k Kk+1 for some graph F .

2. Cycles and complete mutipartite graphs

In this section, we calculate the upper k-tuple total domination number of a
cycle and a complete multipartite graph. Proposition 1 implies Γ×2,t(Cn) = n.
The next proposition calculates Γt(Cn).
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Proposition 4. For any cycle Cn of order n ≥ 3, Γt(Cn) = �2n
3 �.

Proof. Let V (Cn) = {1, 2, · · · , n}, and let ij ∈ E(Cn) if and only if j ≡ i+ 1
(mod n). Let S be a Γt(Cn)-set. If at least one vertex of any two consecutive
vertices belongs to S, then n ≡ 0 (mod 3). Since, otherwise, S will contain
at least three consecutive vertices of V (Cn), which contracts the minimality
of S. Hence |S| = �2n

3 �, when n ≡ 0 (mod 3). Now, assume there exist two
consecutive vertices, say 1 and n, out of S. Then S is also a minimal TDS in
the path Pn = Cn − {e} in which e = 1n ∈ E(Cn). This implies

|S| = Γt(Cn)
≤ Γt(Pn)
= 2�(n + 1)/3� (by Proposition 2).

Now since {3i + 1, 3i + 2|0 ≤ i ≤ �n3 � − 1} is a minimal TDS in Cn with
cardinality Γt(Pn) when n �≡ 2 (mod 3), we obtain Γt(Cn) = 2�n+1

3 � = �2n
3 �.

Now let n ≡ 2 (mod 3) and let S be a minimal TDS of Cn with cardinality
Γt(Pn). Then there exist seven consecutive vertices, say 1, 2, · · · , 7, such that
S ∩ {1, 2, · · · , 7} = {i} in which i = 2 or 4. Since S − {i + 1} is a TDS
of Cn, we obtain |S| < Γt(Pn), and so Γt(Cn) ≤ Γt(Pn) − 1. Now since
{3i+1, 3i+2|0 ≤ i ≤ �n3 �−1}∪{n} is a minimal TDS of Cn with cardinality
Γt(Pn) − 1 = �2n

3 �, we obtain Γt(Cn) = �2n
3 �.

Theorem 1. Let G = Kn1,n2,··· ,np be a complete p-partite graph with δ(G) ≥
k ≥ 1 in which n1 ≤ n2 ≤ · · · ≤ np. Then

Γ×k,t(G) = k + max{x | (�− 1)x = k and x ≤ min{k, np−�+1, · · · , np}}.

Proof. Let S be a minimal kTDS of G = Kn1,n2,··· ,np and let V = X1 ∪X2 ∪
· · · ∪ Xp be the partition of the vertex set of G to the p independent sets
X1, X2, · · · , Xp in which |Xi| = ni for each i and n1 ≤ n2 ≤ · · · ≤ np. Let
I = {ij | j = 1, · · · , �} be an index subset of {1, 2, · · · , p} for some 2 ≤ � ≤ p
such that S ∩Xi �= ∅ if and only if i ∈ I. Also assume |S ∩Xij | = xij for each
ij ∈ I, and xi1 ≤ xi2 ≤ · · · ≤ xi� . The minimality of S implies xij ≤ k for
each ij ∈ I, and there exists a (�− 1)-subset L ⊆ I such that

∑
ij∈L xij = k.

Then, by the minimality of S,
∑

ij∈L xij = k for every (� − 1)-subset L ⊆ I,
which implies xi1 = xi2 = · · · = xi� . Let x := xi1 = xi2 = · · · = xi� . Then
xi1 + xi2 + · · · + xi� = �x = k + x ≤ Γ×k,t(G) where x ≤ min{k, ni1 , ..., ni�},
and so

Γ×k,t(G) = k + max{x | (�− 1)x = k and x ≤ min{k, ni1 , · · · , ni�}}
= k + max{x | (�− 1)x = k and x ≤ min{k, np−�+1, · · · , np}}.
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Corollary 1. Let G = Kn1,n2,··· ,np be a complete p-partite graph. For any
integer k ≥ 1 if |{ i | ni ≥ k}| ≥ 2, then Γ×k,t(G) = 2k.

In a similar way, the next theorem can be proved.
Theorem 2. Let G = Kn1,n2,··· ,np be a complete p-partite graph with δ(G) ≥
k ≥ 1 in which n1 ≤ n2 ≤ · · · ≤ np. Then

γ×k,t(G) ≤ k + min{x|(�− 1)x = k and x ≤ min{k, n1, · · · , n�}}.

3. Two upper bounds

In this section, we present two upper bounds for the upper k-tuple total
domination number of a graph. The first one is in terms of k, n, δ, and the
second is in terms of the upper �-tuple total domination number of the graph
for some � < k.
Theorem 3. If G is a graph of order n with δ ≥ k + 1 ≥ 2, then Γ×k,t(G) ≤
n− δ + k, and this bound is sharp.
Proof. Let G be a graph of order n with δ ≥ k + 1 ≥ 2 and let S be a
Γ×k,t(G)-set. Then for every v ∈ S there exist a k-subset Sv ⊆ S and a vertex
v′ ∈ V (G) such that NG(v′) ∩ S = Sv, by Observation 1 (ii). If v′ ∈ S, then
NG(v′) − Sv ⊆ V (G) − S, and so

δ − k ≤ deg(v′) − k ≤ n− |S| = n− Γ×k,t(G),

which implies Γ×k,t(G) ≤ n − δ + k. If v′ �∈ S, then v′ is not adjacent to at
least |S| − k vertices of S − Sv, and so

δ ≤ deg(v′) ≤ n− |S| + k − 1 = n− Γ×k,t(G) + k − 1,

which implies Γ×k,t(G) < n− δ + k.

The sharpness of this bound can be checked as following: Let δ ≥ k+1 ≥ 2.
Consider b vertex-disjoint complete graphs Kk+1 where b ≥ � δ

k+1�, and let
Hb = Kk+1 + · · · + Kk+1 be the union of b vertex-disjoint complete graphs
Kk+1. Also consider an empty graph T with δ − k vertices. Let Gb = Hb ∨ T
be the join of Hb and T , which is the union of Hb and T such that every
vertex of Hb is adjacent to all vertices in T . Then Gb is a connected graph
of order n = b(k + 1) + δ − k with minimum degree δ. Since V (Hb) is a
minimal kTDS of Gb, we obtain Γ×k,t(Gb) ≥ n − δ + k, and consequently
Γ×k,t(Gb) = n− δ + k.
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Figure 1: The 3 × 4 rook’s graph, i.e., K3�K4.

Theorem 4. Let G be a graph with δ ≥ k ≥ 1. Let L = ∩v∈SSv be a
set of cardinality � in which S is a Γ×k,t(G)-set and Sv is the set given in
Definition 1. If � < k, then Γ×k,t(G) ≤ Γ×(k−�),t(G) + �.

Proof. Let S be a Γ×k,t(G)-set and let L = ∩v∈SSv be a set of cardinality � in
which Sv is the set given in Definition 1 and � < k. Since S − L is a minimal
(k − �)TDS of G, we obtain

Γ×(k−�),t(G) ≥ |S − L|
= |S| − �

= Γ×k,t(G) − �.

4. The Cartesian product and a Vizing-like conjecture

The Cartesian product G�H of two graphs G and H is a graph with the ver-
tex set V (G)×V (H) and two vertices (g1, h1) and (g2, h2) are adjacent if and
only if either g1 = g2 and (h1, h2) ∈ E(H), or h1 = h2 and (g1, g2) ∈ E(G). For
more information on product graphs see [24]. The Cartesian product Kn�Km

is known as the n ×m rook’s graph, as edges represent possible moves by a
rook on an n×m chess board. For example see Figure 1.

Now for integers n ≥ m ≥ k + 1 ≥ 3 we consider the n×m rook’s graph
Kn�Km with the vertex set V = {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ m}. Since the
set {(i, j) | 1 ≤ i ≤ n, 1 ≤ j ≤ k} is a minimal kTDS of Kn�Km, we have
the following proposition.

Proposition 5. For any integers n ≥ m ≥ k + 1 ≥ 3, Γ×k,t(Kn�Km) ≥ kn.

As we will show in Proposition 6 for n = m = k+1 ≥ 3, we guess equality
holds in Proposition 5.
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Figure 2: The dark vertices highlight a minimal 3TDS of K4�K4 with maxi-
mum cardinality.

Proposition 6. For any integer k ≥ 2, Γ×k,t(Kk+1�Kk+1) = k(k + 1).

Proof. Let V (Kk+1�Kk+1) = {(i, j) | 1 ≤ i, j ≤ k + 1} in which k ≥ 2. We
know Γ×k,t(Kk+1�Kk+1) ≥ k(k + 1) by Proposition 5. Now let

S =
⋃

1≤i≤k+1
Sr
i =

⋃

1≤j≤k+1
Sc
j

be a minimal kTDS of Kk+1�Kk+1 with cardinality more than k(k + 1) in
which

Sr
i = S ∩ {(i, j) | 1 ≤ j ≤ k + 1},

Sc
j = S ∩ {(i, j) | 1 ≤ i ≤ k + 1}.

Then |Sr
i | ≥ k and |Sc

j | ≥ k for each i and each j, and also |Sr
t | = k + 1

and |Sc
� | = k + 1 for some t and some �. Now since S − {(t, �)} is a kTDS of

Kk+1�Kk+1, which contradicts the minimality of S, we obtain Γ×k,t(Kk+1�
Kk+1) = k(k + 1). See Figure 2 for an example.

In 1963, more formally in 1968, Vizing [25] made an elegant conjecture
that has subsequently become one the most famous open problems in domi-
nation theory.

Conjecture 1 (Vizing’s Conjecture). For any graphs G and H,

γ(G) · γ(H) ≤ γ(G�H).

Over more than fifty years (see [1] and references therein), Vizing’s Con-
jecture has been shown to hold for certain restricted classes of graphs, and
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furthermore, upper and lower bounds on the inequality have gradually tight-
ened. Additionally, research has explored inequalities (including Vizing-like
inequalities) for different forms of domination [12]. A significant breakthrough
occurred in 2000, when Clark and Suen [7] proved that

γ(G) · γ(H) ≤ 2γ(G�H)

which led to the discovery of a Vizing-like inequality for total domination
[15, 16], i.e.,

(1) γt(G) · γt(H) ≤ 2γt(G�H),

as well as for paired [4, 5, 17], and fractional domination [8], and the {k}-
domination function (integer domination) [3, 6, 18], and total {k}-domination
function [18]. In 1996, Nowakowski and Rall in [23] made the following Vizing-
like conjecture for the upper domination of Cartesian products of graphs.

Conjecture 2 (Nowakowski-Rall’s Conjecture). For any graphs G and H,

Γ(G) · Γ(H) ≤ Γ(G�H).

A beautiful proof of the Nowakowski-Rall’s Conjecture was found by
Brešar [2]. Also Paul Dorbec et al. in [10] proved that for any graphs G

and H with no isolated vertices,

(2) Γt(G) · Γt(H) ≤ 2Γt(G�H),

We guess (2) can be extended as follows:

Conjecture 3. (Vizing-like conjecture for upper k-tuple total domi-
nation)
For any integer k ≥ 2 and any graphs G and H with minimum degrees at
least k,

Γ×k,t(G) · Γ×k,t(H) ≤ k + 1
k

· Γ×k,t(G�H).

Let G1, G2, · · · , Gn and H1, H2, · · · , Hm be respectively the all connected
components of two graphs G and H which have minimum degrees at least
k ≥ 2. Then G�H is a disconnected graph with the connected components
Gi�Hj for 1 ≤ i ≤ n and 1 ≤ j ≤ m. By the truth of Conjecture 3 for
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connected graphs, since

Γ×k,t(G�H) =
∑

1≤i≤n

∑
1≤j≤m Γ×k,t(Gi�Hj)

≥ ∑
1≤i≤n

∑
1≤j≤m

k
k+1 · Γ×k,t(Gi) · Γ×k,t(Hj)

= k
k+1 · (∑1≤i≤n Γ×k,t(Gi)) · (

∑
1≤j≤m Γ×k,t(Hj))

= k
k+1 · Γ×k,t(G)) · Γ×k,t(H)

we may conclude that Conjecture 3 is true for disconnected graphs. Proposi-
tion 6 shows the bound in Conjecture 3, if true, is best possible. Theorem 6,
which is obtained by Theorem 5, shows that Conjecture 3 is true for a family
of graphs.
Theorem 5. For any two Γ×k,t-external graphs G and H with minimum
degree at least k ≥ 2,

Γ×k,t(G�H) ≥ max{Γ×k,t(G) · |V (H)|,Γ×k,t(H) · |V (G)|}.

Proof. Let G and H be two Γ×k,t-external graphs with minimum degrees at
least k ≥ 2, and let Γ×k,t(G) · |V (H)| = max{Γ×k,t(G) · |V (H)|,Γ×k,t(H) ·
|V (G)|}. Assume DG is a Γ×k,t(G)-set in which every vertex of it has an
external (DG, k)-opn. Obviously, D = DG × V (H) is a kTDS of G�H.
To prove that D is minimal, let v′ ∈ opnk(v;DG) ∩ (V (G) − DG). Then
NG(v′) ∩DG = {v, v1, v2, · · · , vk−1} for some vertices v1, v2, · · · , vk−1 ∈ DG,
and so

NG�H((v′, w)) ∩D = ((NG(v′) × {w}) ∪ ({v′} ×NH(w)) ∩D

= (NG(v′) ∩DG) × {w} ∪ (∅ ×NH(w)
= {(v, w), (v1, w), (v2, w), · · · , (vk−1, w)},

which implies opnk((v, w);D) �= ∅ for every vertex (v, w) ∈ D, that is, D is
minimal. Hence

Γ×k,t(G�H) ≥ |D|
≥ Γ×k,t(G) · |V (H)|
= max{Γ×k,t(G) · |V (H)|,Γ×k,t(H) · |V (G)|}.

Theorem 6. Let G be a Γ×k,t-external graph with δ(G) ≥ k ≥ 2. Then for
any graph H with δ(H) ≥ k,

Γ×k,t(G�H) ≥ Γ×k,t(G) · Γ×k,t(H).
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Figure 3: The K3 ×K4.

The proof of Theorem 5 with Proposition 1 and Theorem 3 imply next
theorem.
Theorem 7. Let G be a Γ×k,t-external graph, and let H be an arbitrary graph.
Then the following statements hold.

i. If δ(H) ≥ k+ 1, then Γ×k,t(G�H) ≥ Γ×k,t(G)(Γ×k,t(H) + δ(H)− k).
ii. If H is k-regular, then Γ×k,t(G�H) ≥ Γ×k,t(G) · Γ×k,t(H).
iii. If H is not k-regular and δ(H) = k, then Γ×k,t(G�H) ≥ Γ×k,t(G)×

(Γ×k,t(H) + 1).

5. The cross product of graphs

In this section, we study the upper k-tuple total domination number of the
cross product of two graphs. First we recall that the cross product (also known
as the direct product, tensor product, categorical product, and conjunction in
the literature) G×H has V (G)×V (H) as vertex set and two vertices (g1, h1)
and (g2, h2) are adjacent if and only if (g1, g2) ∈ E(G) and (h1, h2) ∈ E(H).
For example see Figure 3.
Theorem 8. If G and H are graphs satisfying δ(G) ≥ k ≥ 1 and δ(H) ≥
� ≥ 1, then

Γ×k�,t(G×H) ≥ Γ×k,t(G) · Γ×�,t(H).
Proof. Let DG and DH be two Γ×k,t-sets of G and H, respectively. For a
vertex (u, v) ∈ V (G×H), let DG,u = DG ∩NG(u) and DH,v = DH ∩NH(v).
Since DG is a kTDS of G and DH is a �TDS of H, we have |DG,u| ≥ k and
|DH,v| ≥ �, and so |DG,u ×DH,v| ≥ k�. Now by knowing

DG,u ×DH,v ⊆ NG(u) ×NH(v)
= NG×H((u, v)),

we conclude the Cartesian product DG ×DH of DG and DH is a k�TDS of
G×H. To prove the minimality of DG×DH let (a, b) ∈ DG×DH . Then a ∈ DG
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Figure 4: The dark vertices highlight a minimal 2TDS of K4 ×K2 with max-
imum cardinality.

and b ∈ DH and the minimality of DG and DH imply NG(a′)∩DG = Sa and
NH(b′)∩DH = Sb for some vertices a′, b′ ∈ V (G) and some k-subset Sa ⊆ DG

and some �-subset Sb ⊆ DH . Hence

NG×H((a′, b′)) ∩ (DG ×DH) = Sa × Sb

for the vertex (a′, b′) ∈ V (G×H) and the k�-subset Sa×Sb. Hence DG×DH

is a minimal k�TDS of G×H, and so

Γ×k�,t(G×H) ≥ |DG ×DH |
= |DG| · |DH |
= Γ×k,t(G) · Γ×�,t(H).

Corollary 2. If G and H are graphs satisfying δ(G) ≥ δ(H) ≥ k ≥ 1, then

Γ×k,t(G×H) ≥ max{Γ×k,t(G) · Γt(H),Γ×k,t(H) · Γt(G)}.

Next proposition shows that the bound given in Theorem 8 is tight.

Proposition 7. For any integers 1 ≤ k ≤ n− 1, Γ×k,t(Kn ×K2) = 2k + 2.

Proof. For integers 1 ≤ k ≤ n − 1 let Kn × K2 be the cross product of Kn

and K2 with V (Kn × K2) = V1 ∪ V2 in which Vi = {1, 2, · · · , n} × {i} for
i = 1, 2. For a minimal kTDS S of Kn ×K2 with maximum cardinality, let
Si = S ∩ Vi for i = 1, 2, and |S1| ≥ |S2|. Obviously |Si| ≥ k for each i, and
the minimality of S implies |S2| ≤ k+ 1. Furthermore, since S has maximum
cardinality, |S2| = k + 1. If |S1| > k + 1, then for any vertex v ∈ S1 − S′

2
the set S − {v} is a kTDS of Kn ×K2 in which S′

2 = {(a, 1)|(a, 2) ∈ S2}, a
contradiction. Hence |S1| = |S2| = k + 1, and so Γ×k,t(Kn × K2) ≤ 2k + 2.
Now the equality can be obtained by Corollary 2. Figure 4 shows a minimal
2TDS of K4 ×K2 with maximum cardinality.

As a natural question we may ask the next question.
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Question 1. For any n,m ≥ 2 such that max{n,m} ≥ k + 1, whether
Γ×k,t(Kn ×Km) = 2k + 2?

Now we present a lower bound for the upper k-tuple total domination
number of the cross product of two complete multipartite graphs.

Proposition 8. Let G×H be the cross product of two complete multipartite
graphs G = Kt1,t2,··· ,tm and H = Ks1,s2,··· ,sn with δ(G×H) ≥ k. If

∑

1≤�≤n

tis� ≥
∑

1≤�≤n

tjs� ≥ 2k for some 1 ≤ i �= j ≤ m, or

∑

1≤i≤m

s�ti ≥
∑

1≤i≤m

srti ≥ 2k for some 1 ≤ � �= r ≤ m,

then Γ×k,t(G×H) ≥ 4k.

Proof. Let G = Kt1,t2,··· ,tm be a complete m-partite graphs which has the
partition V (G) = X1 ∪ X2 ∪ · · · ∪ Xm to the disjoint independent sets X1,
X2, · · · , Xm in which |Xi| = ti for each i. Similarly, let H = Ks1,s2,··· ,sn be a
complete n-partite graphs which has the partition V (H) = Y1 ∪ Y2 ∪ · · · ∪ Yn

to the disjoint independent sets Y1, Y2, · · · , Yn in which |Yi| = si for each
i. Then V (G × H) =

⋃
1≤i≤m, 1≤j≤n(Xi × Yj) is the partition of the vertex

set of G × H to the independent sets Xi × Yj . Without loss of generality,
we may assume m ≥ n ≥ 2 and

∑
1≤�≤n t1s� ≥ ∑

1≤�≤n t2s� ≥ 2k. For
1 ≤ i ≤ r, let ki ≤ min{t1si, t2si, t1si+r, t2si+r} be a positive integer such
that k = k1 + · · · + kr. Now we choose a subset S of V (G × H) such that
|S∩ (X1×Yi)| = ki for each i. It can be easily seen that S is a minimal kTDS
of G×H, and so Γ×k,t(G×H) ≥ 4k.

We think that finding some complete multipartite graphs G and H with
Γ×k,t(G×H) = 4k is a good problem to work.

6. Upper k-transversal in hypergraphs

In this section, we show that the problem of finding upper k-tuple total dom-
inating sets in graphs can be translated to the problem of finding upper k-
transversal in hypergraphs. We recall that HG denotes the open neighborhood
hypergraph of a graph G.

Theorem 9. If G is a graph with δ(G) ≥ k ≥ 1, then Γ×k,t(G) = Υk(HG).
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Proof. Since every kTDS of G contains at least k vertices from the open
neighborhood of each vertex in G, we conclude every kTDS of G is a k-
transversal in HG. On the other hand, we know that every k-transversal in
HG contains at least k vertices from the open neighborhood of each vertex
of G, and so it is a kTDS of G. Therefore we have proved that a vertex
subset S is a kTDS of G if and only if it is a k-transversal in HG, and so
Γ×k,t(G) = Υk(HG).

The authors in [13] proved the problem of finding k-tuple total dominat-
ing sets in graphs can be translated to the problem of finding k-transversal
in hypergraphs, that is, for every integer k ≥ 1 and every graph G with min-
imum degree k, γ×k,t(G) = τk(HG). This fact and Theorem 9 imply the next
theorem.
Theorem 10. For any graph G with δ(G) ≥ k ≥ 1,

Γ×k,t(G) = γ×k,t(G) if and only if Υk(HG) = τk(HG).

In Proposition 3, we have characterized graphs G satisfying
γ×k,t(G) = k + 1. The next theorem characterizes graphs G satisfying
γ×k,t(G) = m for each m ≥ k + 2 ≥ 3. We note that in the next three
theorems, K ′

m denotes a simple graph of order m which has minimum degree
at least k.
Theorem 11. Let G be a graph with δ(G) ≥ k ≥ 1, and let m ≥ k + 2 be an
integer. Then γ×k,t(G) = m if and only if G = K ′

m or G = F ◦k K ′
m in which

m is minimum in

T = {t | G = F ′ ◦k K ′
t for some graphs F ′ and K ′

t},

and F = G−K ′
m.

Proof. Let G be a graph with δ(G) ≥ k ≥ 1, and let S be a min-kTDS of
G = (V,E) with cardinality m ≥ k + 2. Then G[S] = K ′

m for some graph
K ′

m (because every vertex has at least k neighbors in S). If |V | = m, then
G = K ′

m. Otherwise, let F = G[V − S]. Since every vertex in V − S has at
least k neighbors in S, we conclude G = F ◦k K ′

m, and by the definition of
the k-tuple total domination number, m is minimum in T .

Conversely, let G = K ′
m or G = F ◦k K ′

m, in which m is minimum in T ,
and let F = G − K ′

m. Then γ×k,t(G) ≤ m because V (K ′
m) is a kTDS with

cardinality m. Now if γ×k,t(G) = m′ for some m′ < m, then, by the previous
discussion, G = F ′ ◦k K ′

m′ for some graph F ′ and some graph K ′
m′ , which

contradicts the minimality of m. This implies γ×k,t(G) = m.
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By Proposition 3 and Theorem 11, we obtain the next theorem.

Theorem 12. For any graph G with δ(G) ≥ k ≥ 1, Γ×k,t(G) = γ×k,t(G) if
and only if G = K ′

m or G = F ◦k K ′
m in which m is minimum in

T = {t | t ≥ m + 1, G = F ′ ◦k K ′
t for some graphs F ′ and K ′

t},

and F = G−K ′
m.

Now by Theorems 10 and 12, we conclude:

Theorem 13. For any integer k ≥ 1 and any hypergraph H, Υk(H) =
τk(H) if and only if H = HG, in which G is K ′

m or F ◦k K ′
m for some graph

K ′
m and m is minimum in

T = {t | t ≥ m + 1, G = F ′ ◦k K ′
t for some graphs F ′ and K ′

t},

and F = G−K ′
m.
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