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Abstract: We exhibit the first non-trivial concrete examples of
Gromov-Hausdorff compactifications of moduli spaces of Kähler-
Einstein Fano manifolds in all complex dimensions bigger than two
(Fano K-moduli spaces). We also discuss potential applications to
explicit study of moduli spaces of K-stable Fano manifolds with
large anti-canonical volume. Our arguments are based on recent
progress about the geometry of metric tangent cones and on related
ideas about the algebro-geometric study of singularities of K-stable
Fano varieties.

1. Introduction

The understanding of moduli spaces of Einstein metrics on smooth manifolds,
together with the process of formation of singularities, is a difficult task still
far from being fully achieved. However, in certain cases the picture become
clearer. Under non-collapsing assumptions, Cheeger-Colding theory of limit
spaces [9], which generalizes results of Anderson [2], Tian [64] and others
previously obtained in real four dimension, provides important insights on
the limit singularities. Moreover, when the Einstein metrics are also Kähler,
one can use information from complex geometry to study such moduli spaces.

Moduli spaces of biholomorphic isometry classes of complex n-dimensional
Kähler-Einstein (KE) manifolds with positive scalar curvature, which we de-
note by E+M , are always pre-compact in the Gromov-Hausdorff (GH) topol-
ogy. By Cheeger-Colding theory, degenerate limits are non-collapsed spaces,
singular in Hausdorff codimension at least four. Moreover, such limits are nat-
urally projective KE Fano varieties, that is, normal algebraic varieties with
positive anticanonical divisor carrying singular KE metrics where the metric
and algebraic singularities match precisely [21]. Thus we can define a fairly ab-
stract GH compactification E+M

GH parameterizing certain smoothable Fano
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varieties. More precisely, thanks to the equivalence between the existence of
KE metrics and the algebro-geometric notion of K-stability [13], which also
holds in the singular smoothable setting [62], one can define by forgetting the
metric structure a natural “Hitchin-Kobayashi map”

φ : E+M
GH −→ KM,

where the set KM denotes the isomorphism classes of (Q-Gorenstein smooth-
able) K-polystable Fano varieties. It can be shown that KM admits a natural
structure of complex analytic space for which the above map φ become a
homeomorphism [43, 53, 54], and [61] for a survey.

These abstract Fano K-moduli spaces KM generalize analogous compact-
ifications of moduli of varieties with positive canonical bundle (KSBA com-
pactifications [38]), and thus they are important spaces to study also for
purely algebro-geometric reasons.

However, very few explicit examples of such compact Fano KE/K-moduli
spaces have been known: the only non-trivial ones are the complex two di-
mensional orbifold compactifications pioneered in [46] and completed in [54].
In this article, we begin an investigation of some higher dimensional cases. We
are mainly interested in two situations. One is the hypersurfaces/complete in-
tersections cases: here, on one hand, there are known results on classical GIT
constructions of moduli compactifications and, on the other hand, we often
know that the KE moduli is non-empty. The other situation is the three di-
mensional case, in which there is a complete classification of smooth Fanos
by works of Iskovskikh, Mori and Mukai (see the reference book [36]).

More precisely, first natural examples to consider in higher dimensions are
given by del Pezzo manifolds, i.e., n-dimensional Fano manifolds such that
K−1

X = Ln−1 with L an ample line bundle, in other words, with Fano index
n−1. Smooth del Pezzos and, as it will be important later on, mildly singular
ones, are classified by T. Fujita [29]. When the del Pezzo degree d := cn1 (L)
is less than or equal to four there are non-trivial moduli deformations. For
d = 4 all such smooth del Pezzo manifolds are realized as smooth complete
intersection of two quadrics X = Q1 ∩Q2 in CPn+2, giving an n-dimensional
generalization of degree four Del Pezzo surfaces studied in [46, 54]. Such
Fanos form, up to biholomorphism, a family of deformations which we will
denote as MdPn

4
and they all admit KE metrics by [4]. An algebro-geometric

compactification of MdPn
4

is given by a standard GIT quotient MGIT
dPn

4
naturally

associated to their defining embedding [5] (compare Section 4). Its boundary
GIT polystable points are well-understood.

We are now ready to state our first main result.
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Theorem 1.1. For any dimension n ≥ 2, the GH compactification E+M
GH
dPn

4
of the moduli space of KE del Pezzo manifolds of degree four is naturally
identified with the classical GIT quotient MGIT

dPn
4
. Hence, MGIT

dPn
4
∼= KMdPn

4
.

We will discuss some properties of these compact moduli spaces and of
the varieties they parameterize in Section 4. In particular, this result implies
an explicit classification of which possibly singular complete intersections of
two quadrics in CPn+2 admit KE metrics (see Theorem 4.9), thus extend-
ing and reproving the results for the smooth case in [4]. Moreover, thanks to
the matching between algebraic and metric singularities, it gives a concrete
description of all singularities in the GH limits (see Corollary 4.10). How-
ever, the precise asymptotic metric behaviors near the singular loci remain
unsettled, but conjecturally clear.

Similarly to [54], the main idea behind the proof of Theorem 1.1 is based
on finding a good preliminary a-priori understanding of GH limits via the
study of their singularities, and then use some classification results for Fano
varieties combined with stability comparison arguments to show that a GH
limit of KE intersections of quadrics must be a standard GIT-polystable inter-
section too. Thus the main content of this paper is to find the right constraints
on the singularities (in general not of quotient type) of the metric limits. To
obtain this, we make use of the recent algebro-geometric understanding of
metric tangent cones via the two steps construction [22]

sing. germ (Z, p) � weighted algebraic tangent cone W

� metric tangent cone C(Y ),

combined with the improved volume bound for K-stable Fano varieties re-
cently obtained by Liu [44] (after works of Berman [6], K. Fujita [25] and Li
[40]) in term of normalized volume of valuations.

Another motivation for the writing to this article is related to finding
explicit examples of Kähler-Einstein Fano manifolds. By the result in [13]
this amounts to verify the K-stability for a given Fano manifold. There have
been important recent progresses towards this, see for example [28, 26, 27,
55] as well as older results based on α-invariant/log canonical threshold and
multiplier ideal sheaves techniques, for example [59, 64, 66, 50, 19, 12, 14],
or with large symmetries, e.g., [68, 18, 35]. However, in general, a systematic
understanding is not yet accomplished.

The study in this paper leads to a different strategy via moduli spaces,
which originates from [54] and, when it works, it produces not only one ex-
ample of K-stable Fano manifold, but a whole explicit family of them. This
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strategy seems particularly appealing for Fano 3-folds, thanks to the above
mentioned complete classification of smooth ones [36]. In essence the basic
strategy consists in first showing that a given Fano in a family is KE and then
run a “moduli continuity method” to show that the set of KE Fano varieties is
both open (via small deformations argument) and closed (via a-priori bound
on GH limits and stability comparison) in a given explicit GIT quotient or,
more generally, glueings of GIT quotients.

We make some first steps along this direction, mostly under the natural
hypothesis of an explicit gap conjecture on the volume density of Ricci-flat
Kähler cones, which is the ratio between the volume of a ball of radius one
centered at the vertex and the corresponding ball in the Euclidean space of the
same dimension. We believe that such conjecture holds, especially for small
values of n. Notice that, for our interest, in this paper we always assume the
dimension to be n ≥ 3.

Conjecture 1.2 (ODP volume gap conjecture in dimension k). Let C(Y )
be a Ricci-flat Kähler cone in dimension k with an isolated singularity at
the vertex. Then the volume density of C(Y ) is at most the volume of the k-
dimensional Stenzel’s cone, which is the ordinary double point (ODP)∑k+1

i=1 x2
i = 0 in Ck+1 endowed with the explicit Ricci-flat Kähler cone metric.

The standard Bishop-Gromov theorem implies that the volume density
is at most 1, and it is also well-known that there is a definite but abstract
gap from 1 (compare Lemma 5.1). One can also reinterpret the statement as
that the link of the ODP singularity has the maximal volume of among all
smooth Sasaki-Einstein manifolds in dimension 2k − 1 that are not isometric
to the sphere. We will say more about this in Section 5 and also formulate a
corresponding algebro-geometric statement.

Theorem 1.3. Assuming the Conjecture 1.2 is true for all k ≤ n, then it
holds:

1. For smooth KE Fano n-folds with anti-canonical volume cn1 (−KX) >(
n2−1
n

)n
, the GH moduli closure must contain only Fano varieties with

at worst Gorenstein canonical singularities.
2. The GIT moduli of cubic n-folds coincides with the KE/K-moduli. In

particular, all smooth cubics admit KE metrics.

We remark that the above results will be direct consequences of a more
general statement independent of the conjecture (compare Theorem 5.2).

In dimension three there is a partial extension of the classification to cer-
tain Gorenstein Fano 3-folds by Mukai [49]. It seems possible that one can use
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similar results in combination with our discussion to understand further ex-
amples of Fano K-moduli spaces. Most examples of Fano 3-folds are within the
above volume bound, e.g., the moduli space of Iskovskikh-Mukai-Umemura
Fano 3-folds. It is an interesting open problem to understand on their whole
moduli which of them admit KE metrics. As we will discuss in Section 5, the
moduli techniques explained in this article suggest a possible strategy for this
and other similar situations.

Postscript Remarks: After the first version of this paper was posted
on the ArXiv, two related preprints appeared. In [45] the authors showed
that for n = 3, the GAP Conjecture 5.5 (the algebro geometric version of
the above Conjecture 1.2) holds true using classifications results of three
dimensional singularities, and, using the moduli continuity method as in [54],
they similarly argue the K-polystability of GIT-polystable cubic threefolds.
In [42], it is proved that the equality in Proposition 2.2 holds in general; as a
consequence, even Conjecture 1.2 (hence Theorem 1.3) holds for n = 3.

2. Metric tangent cones, volume densities and valuations

In this section we review and collect some previously known results. Let Z
be a GH limit of an n-dimensional KE Fano manifolds (Xi, ωi) with fixed
volume V = cn1 (−KXi). By general theory [21], we know that Z is a naturally
smoothable Q-Fano variety, that is, a normal variety whose canonical bundle
is Q-Cartier and with at worst Kawamata log terminal (klt) singularities.
Moreover, it carries a weak KE metric ω∞ in the sense of pluri-potential
theory [23] with V ol(Z) = cn1 (−KZ) = V .

Let p be a singular point in the GH limit, recalling that the set of singu-
lar points of the underlying algebraic Q-Fano variety coincides with the set
where the limit metric is not smooth. A metric tangent cone C(Y ) at p is by
definition a pointed GH limit centered at p of (Z, aiω∞, p) for some increasing
sequence of positive numbers ai → +∞. A priori C(Y ) may depend on the
chosen scaling sequence, but in this case it has been proved in [22] that the
tangent cone is actually unique, and it can be realized by some affine complex
variety admitting a singular CY cone metric, on the smooth part written as
gC(Y ) = dr2+r2gY , with Y its 2n−1 real dimensional link, carrying a (possibly
singular) Sasaki-Einstein metric. Similarly one can talk about iterated tangent
cones, that is, metric tangent cones at singular points of the tangent cones,
and further iterations. The theory described below applies to these as well.

The cone C(Y ) can be obtained from the analytic germ (Z, p) ⊂ Z near
p via the following two steps procedure, which we now recall.
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Let rKE(x) = dKE(x, p) be the distance function from p with respect to
the limit KE metric. Then one can define the order of vanishing with respect
to the KE metric of a germ of holomorphic function f ∈ Op to be equal to

νKE(f) = lim sup
r→0+

log
(
suprKE≤r |f |

)
log(r) .

It is proved in [22], that the above is actually a limit, and νKE(f) takes values
in a discrete set S(C(Y )) ⊆ R≥0 called holomorphic spectrum of the tangent
cone C(Y ). Ordering the elements of S(C(Y )) ⊆ R≥0, one has a filtration of
ideals Op = I0 ⊃ I1 ⊃ I2 . . . and an associated ring Rp = ⊕kIk/Ik+1. Then
W := Spec(Rp) is a well defined normal affine complex variety. Moreover, the
analytic germ (Z, p) admits a flat degeneration to W , which further admits an
equivariant degeneration to C(Y ). Furthermore, it is conjectured in [22] that
both W and C(Y ) should be uniquely characterized in terms of the algebraic
geometry of the germ at p.

Going back to more Riemannian consideration, thanks to Bishop-Gromov
monotonicity, which also holds for GH limits and their (iterated) tangent
cones by Colding’s volume convergence theorem [15], we can define the volume
density at any point p ∈ Z:

Θ(Z, p) = lim
r→0+

V ol(BKE
p (r))

ω2nr2n ∈ (0, 1],

where ω2n denotes the volume of the unit ball in the flat Cn. Here are some
well-known properties:

• Θ(Z, p) = Θ(C(Y )) = V ol(Y )
V ol(S2n−1(1)) , where Y is the link of the (unique)

metric tangent Calabi-Yau cone C(Y ) at p.
• Θ(Z, p) = 1 if and only if p ∈ Z is smooth.
• Θ(Z, p) is a lower semi-continuous function of p. The same is true for

densities on the (iterated) metric tangent cones.

Next we need to introduce further algebro-geometric inputs (see [40] for
details). Given a valuation ν centered at p ∈ Z, one can consider its normal-
ized volume

v̂ol(ν) = An(ν) lim
k→+∞

n!
kn

dimOp/Jk,

where the ideal Jk = {f ∈ Op | ν(f) ≥ k}, and A(ν) the log-discrepancy of ν.
Generalizing K. Fujita’s bound of the volume of smooth KE manifolds

[25] (algebro-geometrically proved via the notion of Ding semistability) to
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the singular setting, Liu has recently shown the following optimal volume
bound in term of the normalized volume of valuations.
Theorem 2.1 (Liu’s volume estimate, [44]). Let X be a K-semistable Q-Fano
variety. Then

cn1 (−KX) ≤
(

1 + 1
n

)n

v̂ol(ν),

for any valuation ν centered at p ∈ X.
In particular, one can consider in the above inequality the valuation in-

duced by the order of vanishing νKE , which appeared in the above recalled def-
inition of weighted tangent cone W , since a GH limit Z is indeed K-polystable
by Berman’s result [6]. It is conjectured in [40], and partially verified [41], that
such valuation minimizes the normalized volume.

A crucial observation for us is that the volume of such KE valuation νKE

is related with the volume density, as shown in [33], Appendix C.
Proposition 2.2. [33] Let p a point in KE Q-Fano variety Z. Then the
following inequality holds:

nnΘ(Z, p) ≥ v̂ol(νKE).

We remark that the above inequality is actually an equality if the metric
tangent cone C(Y ) at p is quasi-regular, and it is conjectured in [33] that it
is always an equality even if the metric tangent cone is irregular.

Thus the above two results combine to provide an estimate of the total
volume of a n-dimensional KE Q-Fano variety Z in terms of the volume of
CPn, with the Fubini-Study metric with the same Einstein constant:

(2.1) Θ(Z, p) ≥ V ol(Z)
V ol(CPn) = cn1 (−KZ)

cn1 (−KPn) ,

for any p ∈ Z.
By semi-continuity of densities, the same inequality also holds with the

left hand side equal to the volume densities Θ(C(Y ′)) for any iterated tangent
cone C(Y ′) at q ∈ C(Y ), and further iteration. Strict inequality between
densities holds if the iterated tangent cone is not isometric to the original
tangent cone itself by the rigidity of Bishop-Gromov, see Lemma 4.5.

Finally, we remark that such estimate should be compared to the anal-
ogous one we could obtain using differential geometric argument based on
Bishop-Gromov theorem. However, such estimate (based on comparison with
the 2n-dimensional round sphere) is weaker then the above one obtained
via algebro-geometric techniques. For example, one can check that in our
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three dimensional case, a differential geometric estimate would be given by
c31(−KZ) ≤ 100 Θ(Z, p), but clearly c31(−KCP3) = 64 < 100. Having this
improved bound is essential for our next investigation.

3. Local Cartier index bound and volume density

Let V and r be positive integers, and denote by Kn,V,r be the set of all n-
dimensional Kähler-Einstein Fano manifolds (X,ω) with cn1 (−KX) = V and
K−1

X = Lr for an ample line bundle L. Let Z be a GH limit of elements in
Kn,V,r.

Since we have smooth convergence on the smooth locus Zsm of Z, there is
a limit Hermitian holomorphic line bundle LZ on Zsm ⊂ Z with Lr

Z = K−1
Z .

Moreover, by [21], LZ extends as a Q-line bundle on the whole Z. Namely,
there is an integer r̃ such that Lr̃

Z extends as a holomorphic line bundle to Z.
In other words, Lr̃

Z is Cartier on Z. At each singular point p of Z, we define
the local Cartier index ind(p, LZ) to be the smallest integer r̃ such that Lr̃

Z

is Cartier near p, and let ind(p) = ind(p, LZ)/gcd(r, ind(p, LZ)) be the local
Gorenstein index of p, so that K−ind(p)

Z is Cartier near p.
More generally, if we choose a sequence of points pi ∈ Xi that converge

naturally to p under the GH convergence, and a sequence of positive integers
ai, we can discuss pointed rescaled GH limits of (Xi, aiωi, pi). It is shown in
[22], Theorem 1.4 that such a rescaled limit (Z ′, p′) if non-compact (i.e., when
ai → ∞), is an affine algebraic variety with log terminal singularities which
is endowed with a weak Ricci-flat Kähler metric. On Z ′, there is also a limit
Hermitian Q-line bundle LZ′ which is a genuine line bundle on the smooth
locus, and one can similarly define the local Cartier index and the Gorenstein
index at a singular point of Z ′. Notice that if ai → ∞, then the limit Chern
connection on LZ′ over the smooth locus of Z ′ is flat (since the curvature of
the connection is fixed but the Kähler metric is rescaled by ai). In general the
flat connection may not be trivial since we do not know a-priori its holonomy,
which depends on the local topology around the singular locus. This is a key
technical issue that has to be overcome in the proof of the main result in
[21], and the idea there was to raise the power of the line bundle to make
the holonomy sufficiently small, which suffices for [21]. For our main purpose
here however, we need to get explicit estimates of the power needed.

Let (Z ′, p) be a pointed rescaled GH limit, which may be Z itself (i.e.,
when ai is bounded). One can take a metric tangent cone Cp := C(Y ) at p.
Notice that, by a diagonal argument, Cp itself is also a pointed rescaled limit.
Let Op be the vertex of Cp, then we have:

Lemma 3.1. ind(p, LZ′) = ind(Op, LCp).
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Proof. We first prove that ind(p, LZ′) ≥ ind(Op, LCp). Let r1 = ind(p, LZ′),
then there is a local non-vanishing holomorphic section s of Lr1

Z′ in a neighbor-
hood of p. Using the local gradient estimate of holomorphic sections as in [22]
we know |∇s| is uniformly bounded in a neighborhood of p. As we rescale the
metric, we see the derivative of s tends to zero, so that s gives rise to a parallel
section of Lr1

Cp
on the smooth part of Cp. In particular ind(Op, LCp) ≤ r1.

For the other direction it seems likely to follow from general algebro-
geometric facts, but here we point out that it also follows directly from the
results of [21, 22]. Let r0 = ind(Op, LCp). Given a local non-vanishing holo-
morphic section s of Lr0

Cp
in a neighborhood of Op, one can apply the Hör-

mander construction to obtain a local non-vanishing holomorphic section of
(LZ′)r0 around p. This can be proved in exactly the same way as in Lemma
2.5 and Proposition 2.9 of [22]. One can simply replace the holomorphic func-
tion there by the holomorphic section s. The point is that locally one can
realize (Z ′, p) as GH limits of smooth Kähler-Einstein manifolds, and one can
use s to construct local holomorphic sections with uniform lower bound on
these smooth manifolds by L2-estimate on Stein manifolds. Then by applying
a diagonal argument we obtain the required section of Lr0

Z′ on a neighborhood
of p in Z ′.

Remark 3.2. We have indeed proved more: on the tangent cone Cp, the flat
connection on Lr1

Cp
is trivial and in particular Lr1

Cp
is holomorphically trivial.

Here r1 = ind(p, LZ′).

Let Ip be the set of all iterated metric tangent cones at p, i.e., we include
Cp, the set of all the tangent cones of all points in Cp, all the further tangent
cones, and so on. As we explained in Section 2, we have that Θ(C) ≥ V/(n+
1)n for all C in Ip. Recall from general convergence theory of Riemannian
manifolds that each element in Ip is a geodesic length space, meaning that
given any two points there is a length minimizing geodesic whose length agrees
with the distance between the two points. By Cheeger-Colding theory, any
element C(Y ) in Ip admits a regular-singular decomposition which is invariant
under radial dilation. By the result of Colding-Naber [17] the regular locus of
C(Y ) is geodesically convex, namely, any two regular points can be connected
by a length minimizing geodesic that consists only of regular points. Indeed,
a stronger statement is proved in [17]: given one regular point and another
point, then one can find a length minimizing geodesic connecting them, all
points on which are regular except possibly one end point. For convenience
we call this property strong geodesic convexity.

Lemma 3.3. For any cone C ∈ Ip which is isometrically of the form Ck ×
C(Y ) where k ≥ 0, we have π1(Y ) is finite and its order is bounded by Θ(C)−1.
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Proof. It is elementary to see that given any two point q1, q2 in Y with dis-
tance D smaller than π, a length minimizing geodesic connecting (0, q1) and
(0, q2) in Ck×C(Y ) is of the form (0, c(t)γ(t)) for a length minimizing geodesic
γ(t) in Y connecting q1 and q2 and a function c(t) that depends only on D
(which can be determined by considering the model case Y = S1). This im-
plies that the regular set of Y is strongly geodesically convex.

Let π : Ỹ → Y be the universal cover. Then Ỹ is also naturally a geodesic
length space, and a length minimizing geodesic on Ỹ locally maps to length
minimizing geodesic in Y . We claim that the regular part of Ỹ is also strongly
geodesically convex. To see this, take a regular point q1 and an arbitrary point
q2 in Ỹ , and let γ̃(t)(t ∈ [0, 1]) be a length minimizing geodesic connecting
them. If γ̃(t)(t ∈ [0, 1)) does not contain entirely of regular points, then since
the regular set is open, we can find the first time T ∈ (0, 1) such that γ̃(T )
becomes singular. Let δ > 0 be such that any ball of radius 2δ in Ỹ is mapped
isometrically to a ball in Y . Then we consider γ̃(t) for t ∈ [T−δ, T +δ]∩ [0, 1].
Denote by T̃ = min(T +δ, 1). We know π(γ̃(T−δ)) is regular, so by the strong
geodesic convexity of Y it follows that we can find a possibly different length
minimizing geodesic γ′(t) connecting π(γ̃(T − δ)) and π(γ̃(T̃ )) so that γ′ is
regular in the interior. Now by our choice of δ we can lift γ′ to a length
minimizing geodesic γ̃′ in Ỹ connecting γ̃(T − δ) and γ̃(T̃ ). So we can replace
the portion of γ̃(t) over [T − δ, T̃ ] by γ̃′, and still obtain a length minimizing
geodesic but on which the first singular time is at least T̃ . Now we can continue
this process and since δ > 0 is a fixed number we can in the end reach a length
minimizing geodesic on which there is no singular point in the interior. This
proves the claim.

By Cheeger-Colding-Tian [10] it follows that k ≤ n − 2, and the regular
locus of Ỹ is Einstein with Ricci curvature 2(n − k). Now since the singular
set of Ỹ has zero volume (since it has Hausdorff codimension at least 2), we
can adapt the usual proof of Bishop-Gromov volume comparison theorem to
Ỹ , and conclude that the volume of a ball centered at a regular point q ∈ Ỹ
is at most the volume of the corresponding ball in S2n−2k−1. Therefore the
volume of Ỹ is at most the volume of S2n−2k−1. On the other hand, it is easy
to see by definition that the volume of Y is equal to Θ(C)V ol(S2n−2k−1), so
we conclude that the degree of the cover is finite, and is bounded above by
Θ(C)−1.

Remark 3.4. Indeed the above arguments prove more. Take a singular point
q̃ of Ỹ , with image q ∈ Y ⊂ C(Y ), then it holds that

(3.1) V ol(Ỹ ) ≤ Θ(C(Y ), q)V ol(S2n−2k−1),
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where Θ(C(Y ), q) is the density of the tangent cone of C(Y ) at q. This follows
from the fact that for fixed r < δ, V ol(B(q, r)) is a continuous function of q
in Ỹ , and applying Bishop-Gromov volume comparison on balls centered at a
regular point of Ỹ .

Remark 3.5. We mention that for n = 3 it is proved in [21] that the link
of tangent cones are five dimensional Sasaki-Einstein orbifolds, in which case
the above arguments can be made more direct since the universal cover Ỹ is
also a Sasaki-Einstein orbifold.

We can now use the above proposition to study the Cartier index on
iterated tangent cones via an induction argument based on the stratification
of the singularities.

Lemma 3.6. If Θ(Z, p) > 1/2, then the Q-line bundle LC is Cartier for all
C ∈ Ip.
Proof. We prove this by induction on k where n− k is the maximum number
of flat factor C that a tangent cone can splits off holomorphic isometrically.
When k ≤ 1 by [10] the tangent cone is Cn and there is nothing to prove.
Suppose the conclusion holds for all k ≤ l. Now suppose one cone C is of
the form Cn−l−1 × C ′. For each non-vertex point q of C ′, the metric tangent
cone Cq would split off at least a factor Cn−l, by the splitting theorem [10].
So by induction assumption and Lemma 3.1 we know LC′ is Cartier near q,
hence LC is Cartier on the complement of Cn−l−1 × {OC′}. It then suffices
to prove that LC is holomorphically trivial. By Remark 3.2 we know Lr1

C is
holomorphically trivial with r1 = ind(p, LZ′). Let m be the smallest integer
so that Lm

C is holomorphically trivial, and let s be a trivializing section. Then
we can define a degree m covering of C \ Cn−l−1 × {OC′} as the subset of
(l, x) where l ∈ (LC)x with lm = sx. This is clearly well-defined on the regular
locus and it also extends naturally over the singular locus since LC is Cartier.
The covering is connected by our choice of m. By the volume bound we know
Θ(C) ≥ Θ(Z, p) > 1/2, so by Lemma 3.3 the set C \Cn−l−1×{OC′} is simply
connected hence m must be equal to 1. Hence we have finished the induction
proof.

Proposition 3.7. If Θ(Z, p) > 1/2, then LZ is a genuine line bundle near
p, and p is a Gorenstein canonical singularity.

Proof. By the density estimate, we know Θ(C) > 1/2 for all possibly iterated
tangent cones. Applying Lemmas 3.1 and 3.6 we see that ind(p, LZ) = 1.
Hence LZ is Cartier. Then so is −KX , hence the Gorenstein index of Z
is one. Since Z has log terminal singularities, the discrepancies of any log
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resolution, which must be integers in our case, are bigger than −1, so they
are non-negative. This shows Z has canonical singularities. It is well-known
that canonical singularities are Cohen-Macaulay so must be Gorenstein.

Using (2.1) we immediately obtain the following result on GH limits of
KE Fanos with large volumes.

Corollary 3.8. Suppose V > 1
2(n + 1)n, then a Gromov-Hausdorff limit Z

of KE Fanos in Kn,V,r has Gorenstein canonical singularities and KZ = L−r
Z

for a genuine line bundle LZ .

As we will see below, such condition is not empty since del Pezzo manifold
of degree four are within that bound. However, it is not known to us if there
exist other Fano n-folds (n ≥ 4) which have non-trivial K-moduli and which
satisfy the above volume inequality. Thus, we ask the following question:

Question 3.9. Beside the degree four del Pezzo case, are there any other
examples of not rigid K-stable Fano manifolds whose volume is bigger than
half the volume of the projective space?

In any case, one can use exactly the same argument to obtain the following
more general Cartier index bound.

Proposition 3.10. The local Cartier index satisfies ind(p, LZ) ≤ Λn−1,
where Λ = �1/Θp�.
Proof. By general results from Cheeger-Colding-Tian theory we know that
if a metric cone in Ip splits off isometrically a factor Cn−1 then it must be
isometric to Cn. Using this, we can easily follow the proof of Lemma 3.6.

Remark 3.11. Notice this bound is certainly not optimal. One expects the
exponent n − 1 should not appear. We need it here due to purely technical
reason since we used the induction argument. In general at a singular point
p, similar to the proof of Lemma 3.6, one can always take the covering of the
regular part of Cp with degree equal to ind(Op, LCp), and then this yields a
bound of the Cartier index if one understands the metric completion of the
covering well-enough to show the Bishop-Gromov inequality holds. This is a
non-trivial question and we leave it for future study.

4. KE moduli of degree four del Pezzos

Let X be a smooth n-dimensional del Pezzo manifolds of del Pezzo degree
d = 4. Then, by classification, X is realized as a smooth complete intersection
of two quadrics X = Q1 ∩Q2 in CPn+2.
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Now we recall that, more generally, a Del Pezzo variety is a Q-Fano variety
with Gorenstein canonical singularities such that K−1

X = Hn−1 for some ample
line bundle H. Then clearly cn1 (−KX) = d(n− 1)n. The classification theory
of T. Fujita extends also to this singular case [29]. In particular when d = 4
we still get intersection of two quadrics in CPn+2.

By (2.1), we see that if n > 3, d = 4, then d(n− 1)n > 1
2(n + 1)n. So by

Corollary 3.8 we know any GH limit of Kähler-Einstein del Pezzo manifolds
of degree 4 in dimension n > 3 must be again a del Pezzo variety of degree
4, in the above sense. In combination with T. Fujita’s classification [29] of
Gorenstein canonical Fano variety with large Fano index, we immediately
obtain:

Corollary 4.1. For any dimension n > 3, a GH limit of KE del Pezzo
manifolds of degree 4 is always an intersection of two quadrics in CPn+2.

The case n = 3 does not follow immediately, since we hit the equality
case in the volume estimate 2.1. To deal with it, some ad hoc consideration,
based on rigidity results, is required.

4.1. GH limits in the three dimensional case

Our next goal is to show that Corollary 4.1 also holds for n = 3. Namely:

Proposition 4.2. Let Z be a GH limit of three dimensional smooth Kähler-
Einstein del Pezzo manifolds of degree 4, then Z is a del Pezzo 3-fold of
degree 4.

Again by Fujita’s classification it suffices to show that on any GH limit Z,
the corresponding limit bundle LZ is a genuine line bundle on the whole Z.

If p ∈ Z is a singular point in the GH limit with density Θ(Z, p) > 1/2,
then Proposition 3.7 still apply, giving that LZ is a line bundle near p and
that the singularity is Gorenstein canonical.

We remark that in this three dimensional case there is another argument.
Note that in such case the link of the tangent cone Y (clearly necessarily
smooth, by semicontinuity of densities) is simply connected (again by volume
comparison). Moreover by Cheeger-Tian [11] and Colding-Minicozzi [16]) we
have Y ×R is diffeomorphic a punctured neighborhood of the singularity, so
to M × R, where M is to the classical Milnor’s link obtained by intersecting
the germ with a small Euclidean sphere in an embedding of the singularity.
Hence M is also simply connected, and this is also enough to have our local
index bound at p.
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Remark 4.3. It may be interesting to note that, even if a-priori it is not
clear that the link of the cone Y and the Milnor’s link M at the singularity are
homeomorphic, the fact that they are actually diffeomorphic follows easily (see
uniqueness statement in the main Theorem of [8]) by using the h-cobordism
Theorem. We thank Marcel Bökstedt for pointing such reference to us.

We now assume that Θ(Z, p) = 1/2. Here there are two possible sub-cases:

Case 1: Θ(Z, p) = 1
2 and C(Y ) has an isolated singularity; The

same argument as before works to imply that the singularity is Gorenstein
canonical and L is a line bundle near p, due to the following lemma.

Lemma 4.4. In this case the link Y is simply connected.

Proof. Applying the Bishop-Gromov volume comparison to the universal cover
of Y we obtain that either Y is simply connected, or π1(Y ) = Z2. In the second
case the universal cover of Y is isometric to the round sphere S5 with radius
one. So the tangent cone C(Y ) is the orbifold C3/Z2 where the action is free
on S5. But this is impossible by Schlessinger’s rigidity of quotient singulari-
ties [58], since the cone is a degeneration of W , which is itself a degeneration
of the smoothable local germ Z at p.

Case 2: Θ(Z, p) = 1
2 and C(Y ) has non-isolated singularity; The

first observation is based on the following general rigidity splitting Lemma
for CY tangent cones we mention in Section 2.

Lemma 4.5. Let q( �= 0) ∈ C(Y ) be a point where Θ(C(Y ), q) = Θ(C(Y ), 0).
Then C(Y ) splits isometrically as C(Y ′) × C.

Proof. Consider the volume ratio f(r) = V olCY
q (B(r))
ω2nr2n centered at q. Then f is

non-increasing and Θ(C(Y ), q) = limr→0+ f(r). On the other end, the volume
density at infinity is always equal to limr→+∞ f(r) = V ol(Y )

V ol(S2n−1(1)) . Thus f(r)
is identically constant, i.e., there is a volume cone centered at q. But, by
Cheeger-Colding theory, any volume cone is actually a metric cone. Thus
there is a line going through q and hence, by the almost splitting Theorem,
we obtain the result.

Applying the Lemma to our case, we have that C(Y ) splits as C×
(
C2/Z2

)
,

i.e., the cone is locally analytically given by the equation x2 + y2 + z2 = 0 in
C4.

We now prove the following more general proposition, which will be useful
also in the discussion of Section 5.
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Proposition 4.6. Let Z ′ be a pointed rescaled Gromov-Hausdorff limit of a
sequence of elements in Kn,V,r (as in the beginning of Section 3), suppose a
point p ∈ Z ′ has metric tangent cone C2/Z2 × Cn−2, then the limit LZ′ is
Cartier near p and hence p is a Gorenstein canonical singularity of Z ′.

We begin with the following easy Lemma, which is a direct consequence
of the arguments in [22]. We think such statement should be well-known (for
an algebro-geometric version see for example Exercise II.5.8 and Proposition
II.8.7 in [31]), but we gave an argument for readers’ convenience.

Recall the embedding dimension (denoted by Embdim(Z, p)) of a germ
of a singularity (Z, p) is the minimal integer N > 0 such that there is a
complex-analytic embedding F : (Z, p) → (CN , 0). By general theory (see
Grauert-Remmert [30]), suppose (Z, p) is embedded in some CM with M >
Embdim(Z, p), then there is a holomorphic function f in a neigborhood of
the origin in CM that vanishes on Z and has non-vanishing derivative, i.e.,
f ∈ IZ \m2

0.

Lemma 4.7.

Embdim(Z, p) ≤ Embdim(W, 0) ≤ Embdim(C(Y ), 0)

Proof. We first prove the the first inequality. Notice W is given by the
weighted tangent of (Z, p) under some analytic embedding F : (Z, p) → Ck,
with respect to some weight w ∈ (R+)k. If k = Embdim(W, 0) then we are
done. Otherwise, by the above discussion, we find a function f ∈ IW \ m2

0.
Using the grading on W we may further assume that f is homogenous with
respect to the weight w, and f has non-vanishing linear term. From the defi-
nition of weighted tangent cone, we may find a holomorphic function g ∈ IZ
such that f is the initial term of g with respect to w. Clearly g also has non-
vanishing linear term. Say this is zk. Then we may project (Z, p) and W to
the z1, · · · , zk−1 plane, and these projections are indeed holomorphic equiva-
lence onto their images. Hence we have realized W as weighted tangent cone
of (Z, p) in a smaller Ck−1. We can repeat this until we reach the embedding
dimension of W , and we are done.

For the second inequality, we notice that there is an equivariant test
configuration degenerating W to C(Y ). One can work purely in a polynomial
level, and essential argue as in the above: if there is a function vanishing on
C(Y ) with non-vanishing linear term, then there must be another function
vanishing on W also with non-vanishing linear term.

A corollary of Lemma 4.7 is that if C(Y ) is a hypersurface, then Z is also
a hypersurface singularity. Note that it is in general not the case that the
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GH limit Z is also locally isomorphic to C × C2/Z2 near p: as suggested by
[22] and [32], a Kähler-Einstein metric on the three dimensional (isolated) Ak

singularity x2 + y2 + z2 + wk+1 = 0 in C4 should have metric tangent cone
C× C2/Z2 when k ≥ 3.

By [22] and the above lemma we can realize C(Y ) as the hypersurface
x2 + y2 + z2 = 0 in C4 and embed a neighborhood of p in Z analytically
into C4 (with p mapped to 0), such that W is given by the weighted tangent
cone of Z at p with respect to the weight (2, 2, 2, 1) (which corresponds to the
Reeb vector field of C(Y )), and C(Y ) is a further equivariant degeneration
limit of W . Now, by taking a generic hyperplane H in C4 passing 0, we
obtain a deformation of S∞ = H ∩ C(Y ), which is locally isomorphic to
the 2 dimensional ordinary double point x2 + y2 + z2 = 0 in C3, by the
corresponding slices in Z. Since the versal deformation of 2d ordinary double
point is given by x2 + y2 + z2 = ε which is one dimensional, it follows that
a generic hyperplane slice SZ at p in Z must also have an ordinary double
point singularity at p, see for example [37].

Now we consider the convergence of Xi to Z inside a projective space [21].
We can fit Xi in a flat family (say, over a certain Hilbert scheme) X with
central fiber Z. Similar argument as in the proof of the lemma shows that
by restricting to the germ around p, we may obtain a corresponding family
of germs of hypersurfaces in C4, which we still denote by X , that gives rise
to a deformation of the germ Z at p. By taking generic hyperplane sections
again we may assume that the corresponding slices in X gives a deformation
of SZ . Again by versality of deformations we conclude that for i large by
shrinking the size, the slice Si in Xi must be isomorphic to a neighborhood
in the smoothing x2 +y2 +z2 = 1, given by intersecting with a Euclidean ball
in C3.

The important fact here is that such a neighborhood is topologically iso-
morphic to a neighborhood of the zero section in the cotangent bundle of an
S2 (the vanishing sphere), hence it must be simply connected.

Now we can prove that LZ must be a genuine line bundle. As in Lemma
3.1 it suffices to show that LC(Y ) is the trivial line bundle. To see this we
first recall by the result of [21] that there is a fixed integer N > 0 such that
LN
Z is a line bundle and it is naturally the limit of LN

i over Xi under the GH
convergence. We can take holomorphic sections si of LN

i in a neighborhood
in Xi, that converges to a non-vanishing section s of LN

Z . As in the proof
of Lemma 3.1 this further gives rise to a parallel section sC(Y ) of LN

C(Y ).
Since Si is simply connected, and we can take a N -th root of si, to obtain a
holomorphic section σi of Li over Si. Under the natural convergence of Si to
the slice S∞ (first take limit to SZ , then dilate, and we can take a diagonal
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sequence), we know σi converges naturally a holomorphic section σ∞ of LC(Y )
restricted to the smooth locus of S∞ (which is homotopic to the link S3/Z2),
with σ⊗N

∞ = s∞. Indeed, because of the scaling procedure the section σ∞
(also s∞) is parallel section of the flat bundle LC(Y ). This implies the flat
connection on LC(Y ) restricted to one link S3/Z2 has trivial holonomy, hence
it is the trivial flat connection outside the singular locus of C(Y ). So the
corresponding holomorphic line bundle LC(Y ) is also trivial. This concludes
the proof of Proposition 4.6.

Finally, we remark that there is another argument to conclude such 3-
dimensional case. If p is an isolated singularity of Z, then by Milnor’s Theo-
rem on the homotopy groups of hypersurfaces singularites [48] Theorem 5.2
we know the topological link of p has trivial fundamental group. Then one
can argue similarly as we did several times before to see that L must be holo-
morphically trivial on the link, hence must be a line bundle near p. If p is
an non-isolated singularity of Z, then again by the above slice argument we
know a generic nearby singularity must locally be given by C× C2/Z2. Now
we can apply the rigidity case of the Liu’s estimate in [44] Theorem 3, to
conclude that Z = CP3/Z2, with [x : y : z : t] � [x : y : −z : −t]. Moreover
CP3/Z2 embeds in CP5 via the map [x : y : z : t] �→ [x2 : y2 : xy : z2 : t2 : zt]
as the unique, up to linear transformation, GIT-polystable intersection of two
quadrics with non-isolated singularities.

In conclusion, by combining the results of this section, we have proved
Proposition 4.2.

4.2. Moduli identification

In the previous sections we have shown that all GH limits Z of smooth KE
intersection of quadrics are themselves embedded in CPn+2 as intersection of
two quadrics (and the limit root L of the anticanonical bundle is very ample).

By considering the pencil spanned by the two quadrics (i.e., taking the
second Hilbert point) one can consider the following GIT picture for the
natural Plücker linearization:

SL(n + 3,C) � Gr(2, Sym2(Cn+3)) ↪→ P(∧2Sym2(Cn+3)).

Let MdPn
4

GIT such GIT quotient. It is well-known [5], that strictly GIT sta-
ble points correspond precisely to smooth quadric intersections, thus forming
a moduli space MdPn

4
, itself of dimension n, while more general polystable
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boundary points corresponds to certain simultaneously diagonalizable inter-
sections of two quadrics. The study of intersection of quadrics, and questions
of simultaneous diagonalization (see for example Reid thesis [57]), is an old
subject. Here we mention that the study of the above GIT quotient is in fact
related to the study of binary forms, which can be naturally associated to a
pencil by taking its discriminant (see [46] and [5]).

Our next goal is to show that all GH limits of smooth KE intersections
of quadrics correspond to GIT polystable points. Using K-polystability of
the limit Z, which holds by [6], we can say more, via a stability comparison
argument based on the CM line bundle [56]. Since the proof is the same as
Theorems 3.4 and 4.2 in [54], we just sketch the main points.

Moreover, note that we know E+MdPn
4

is not empty [50].

Lemma 4.8. Z is GIT-polystable.

Proof. Being the Picard group of the Grassmanian parameter space isomor-
phic to Z and the action an SL(n+ 3,C) action, the CM line bundle (whose
weight is the Donaldson-Futaki invariant) on such Grassmanian is equivari-
antly equivalent up to positive scaling to the Plücker linearization, since we
know that there is at least one K-polystable point. Hence K-polystability
implies GIT-polystability1.

For readers’ convenience, let us sketch the moduli continuity type argu-
ment used to prove our main theorem. By the above results we can now define
a natural map

φdPn
4

: E+M
GH
dPn

4
→ M

GIT
dPn

4
.

Such map is continuous with respect to the GH, and analytic topology of
the target. This follows by Luna’s slice Theorem (or [43, 53]): if (Xi, ωi) GH
converge to X∞, then [Xi] are represented by GIT polystable points near
[X∞], since the varieties Xi converge to X∞. Hence [Xi] → [X∞]. The con-
tinuity of φdPn

4
extends to the boundary. Now we claim that φdPn

4
is actually

a homeomorphism. Injectivity follows by Bando-Mabuchi uniqueness and its
generalization to the singular setting [7]. Since Aut(X) is finite for a smooth
X, by Implicit Function Theorem φdPn

4
(E+MdPn

4
) is open in MdPn

4
. Moreover

φdPn
4
(E+MdPn

4
) is also closed: let [Xi] → [X∞] in MdPn

4
, with Xi KE. Then,

by continuity of the map, φ32([Xij , ωij ]) → φdPn
4
([Y∞, ω∞]) = [Y∞] ∈ M

GIT
dPn

4
,

with Y∞ a (a-priori possibly singular) KE GH limit. Since M
GIT
dPn

4
is Hausdorff

1The CM line bundle is not defined on all the Grassmanian due to the presence of
points representing non-equidimensional intersection of quadrics. The proof requires
some further checking (see the Appendix).
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and by definition φdPn
4
([Xij , ωij ]) = [Xij ], the limit is unique, hence X∞ ∼= Y∞

admits a KE metric. MdPn
4

is also connected, hence φdPn
4
(E+MdPn

4
) = MdPn

4
,

recovering [4]. Finally φdPn
4
(E+M

GH
dPn

4
) is a compact set containing the dense

subset MdPn
4
. Hence φdPn

4
has to be onto. Being φdPn

4
a continuous map be-

tween a compact and an Hausdorff space, φdPn
4

is also open. This conclude
the proof of our main Theorem 1.1.

We now describe some properties of such KE moduli spaces and of their
boundary points. By the classification of GIT polystable intersections of two
quadrics [5] (Theorem 4.2 and its proof), we get the following result on the
explicit existence of (weak) KE metrics on intersections of two quadrics in
CPn+2.

Theorem 4.9. A possibly singular complete intersection of two quadrics in
CPn+2 admits a KE metric if and only if the two quadrics can be simultaneusly
diagonalized, the discriminant of their pencil admits no roots of multiplicity
> n+3

2 and if there is a root of multiplicity exactly equal to n+3
2 then Q1 ∩Q2

is actually isomorphic to {∑n+1
2

i=0 x2
i =

∑n+2
i=n+3

2
x2
i = 0}.

The above just says that, by changing basis, KE intersections are cut by
Q1 = Id and Q2 diagonal with eigenvalues whose multiplicities are no greater
than n+3

2 . Note that the equality n+3
2 case for the multiplicity can occur for

odd dimensional intersections of two quadrics only.
In dimension three, in particular, we can say that GH limits have at

most isolated singularities or, if not, they coincide with the orbifold CP3/Z2,
which is singular along two disjoint smooth rational curves (this a rigidity
case for Liu’s volume estimate). It is also easy to see that the number of
ODP singularities is always even, their maximum number is six, and this is
achieved by the unique toric KE intersection xy = zt = uv. Moreover, thanks
to the relation with the well-understood invariants of binary sextics, we have
E+M

GH
dP 3

4
∼= KMdP 3

4
∼= CP(1, 2, 3, 5) as topological spaces, with boundary

divisor given by t = 0, where t is the weight 5 coordinate in the weighted
projective space.

More generally, from Theorem 4.9, we can get the following understanding
of the singular set:

Corollary 4.10. The singular set of GH limits of KE intersections of two
quadrics in CPn+2 is at most of complex dimension �n−1

2 �. Moreover, the alge-
braic stratification of the singular set consists of disjoint smooth strata which
are bundles of ODP singularities, i.e., locally analytically of type Ck × An−k

1
with k ∈ {0, . . . , �n−1

2 �}. In particular, there are no quotient singularities as
soon as n ≥ 4.
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Clearly the description is so explicit that one can even compute the num-
ber of connected components of the singular set, as well as describe their
topology.

Finally a couple of remarks are needed.

Remark 4.11. It may be interesting to observe that the above KE spaces have
isolated ODP singularities which degenerate to non-isolated singularities (here
still of type Ck×An−k

1 ) in their GH limits: locally analytically this corresponds
to deformations of singularities like:

Vt : x2
0 + x2

1 + x2
2 + tx2

3 = 0.

Such behavior shares some similarities with the jumping of metric tangent
cones described in Section 2.

The above phenomenon already happens for certain deformations of the
three dimensional KE orbifold CP3/Z2. Note also that, in such case, stability
excludes the possibility of obtaining a KE smoothing of this KE orbifold with
only one of the two rational curves of singularities smoothed out. Clearly,
similar behaviors occur in higher dimensions too.

Remark 4.12. It is natural to conjecture that the above singular KE metrics
admit asymptotic expansions in suitable local holomorphic gauge to products
of flat times Stenzel’s cone metrics (i.e., they are conically singular metrics).
We should remark that by [33] similar results hold for smoothable Calabi-Yau
varieties with isolated ODP singularities. It is natural to expect that similar
arguments may work also in the KE Fano case, and we leave this for future
work.

4.3. Relations with moduli of hyperelliptic curves

Finally, we briefly emphasize that smooth intersections of two quadrics are
also deeply related to moduli spaces of hyperelliptic curves: to any such
smooth Fano n-fold one can naturally associate a genus two curve by tak-
ing the ramified 2 : 1 cover branching over the zeros of the discriminant of
the pencil.

When n = 3, one can further recover the original Fano as a moduli of
stable rank 2 vector bundles of odd degree on the curve ([52, 51]). This gives
a well-know instance of a “Fourier-Mukai type duality” between moduli space
of genus two curves and moduli space of our Fano manifolds.

However (see [5]), this 1-1 relation breaks at the boundaries of their two
canonical compactifications: the Deligne-Mumford compactification M2

DM
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(which is the exactly equal to the K-compactification in the case of curves) is
a (smooth) blow-up of our K-compactifiaction KMdP 3

4
. In particular, KMdP 3

4
is more related to a different algebro-geometric compactification of genus two
curves, namely to the so-called M2[A2] compactification (e.g., the survey [24]).
Such compactification naturally appears in the Hassett-Keel birational study
of the moduli space of curves.

More precisely, the coarse varieties KMdP 3
4

and M2[A2] are isomorphic to
each other and are both categorical quotients of some good moduli spaces in
Alper’s sense: of the KE-K moduli stack of K-semistable degree four del Pezzo
threefolds (see [43, 53, 54] for details on the definitions), and of the stack of
pseudostable curves (nodal curves where elliptic tails are replaced by cusps
singularities) for M2[A2]. In particular, there is a set theoretical 1-1 map
between closed points in the stacks (the relation become more complicated
on the full semistable strata). For example, the orbifold CP3/Z2 corresponds
to the bicuspidal rational curve, i.e., the rational curve with only two cuspidal
singularities of type x2 = y3. It is not clear how the vector bundle relation
extends to the boundary. We think that such correspondences deserve further
investigation.

For higher dimensions, here we just recall that, by the well-known theo-
rem of Desale and Ramanan [20] there is still an identification between moduli
spaces of stable rank two vector bundles with fixed determinant on smooth
hyperelliptic curves of genus g and the variety of g−2 dimensional linear sub-
spaces of the corresponding simultaneously diagonalized smooth intersection
of two quadrics.

5. Further KE moduli examples: conjectures

In this last section we discuss further examples of KE moduli under the
hypothesis of a natural gap conjecture about volume of CY cones/Sasaki-
Einstein manifolds. Moreover, we formulate an analogous conjecture on the
algebro-geometric counterpart.

5.1. ODP volume gap conjecture

As it is apparent from the discussion in previous sections, the volume of the
link of tangent cones plays an important role. In dimension two, since the
singularities occurring in GH limits are of orbifold type, it is obvious that
such volume densities are always of type 1/|Gp| where |Gp| is the order of the
orbifold group at p. In particular, one sees immediately that there is a gap
between smooth or singular points where the density is always Θ(Z, p) ≤ 1

2
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and the value 1
2 precisely occurs for the A1 singularity, i.e., the ordinary double

point singularity, which can be considered in some sense as “the simplest
singularity” in dimension two.

In higher dimensions non-quotient singularities may appear in GH limits,
and the metric tangent cone may not be isomorphic to the singularity itself.
Nonetheless one can still consider the volume density at a singular point p,
and we still have the following well-known abstract gap result:

Lemma 5.1. There is a constant δ < 1 depending only on n, such that for
any GH limit Z of KE Fano manifolds in dimension n, we have Θ(Z, p) ≤ δ

for all singular points p ∈ Z.

Proof. If the tangent cone C(Y ) has smooth cross section Y , then Y is Sasaki-
Einstein and this follows from Anderson’s rigidity result [3]. In general one
needs to use in addition Colding’s theorem on volume convergence under
GH limits [15]. Indeed, if p has volume density sufficiently close to 1, then
we can find a ball centered at p with radius r sufficiently small such that
V ol(B(p, r))/ω2nr

2n is also close to 1. By volume convergence, we can find
corresponding balls B(pi, r) on the smooth manifolds before we take limits,
with V ol(B(pi, r))/ω2nr

2n close to 1, hence by Anderson’s gap result one
obtains that B(pi, r) converges smoothly to B(p, r) (see Theorem 0.8 in [15]).

Now for n ≥ 2 we define A(n) to be the supremum of Θ(Z, p) for all GH
limits Z of KE Fano manifolds in dimension n, and for all singular points p ∈
Z. By the above lemma A(n) < 1, and 1−A(n) can be viewed as the optimal
volume gap in dimension n. Again by Colding’s volume convergence theorem
A(n) can be realized as the density of some pointed Gromov-Hausdorff limit
metric cone of a sequence of smooth KE Fano manifolds.

For our purpose here we only need a slightly different notion, without
referring to singular GH limits. Namely we define A′(n) to be the supremum
of Θ(C(Y )), where C(Y ) is a cone of the form Cn−k × C(Y ′) for C(Y ′)
a k dimensional CY cone which is singular precisely at the vertex. Clearly
A(n) ≤ A′(n) ≤ 1, and A′(m) ≤ A′(n) for m ≤ n. Moreover, by [47], A′(n)
is always an algebraic number.

For the simplest possible singularity, namely, the A1 ODP singularity∑n+1
i=1 x2

i = 0 (which is not of quotient type as soon as n > 2), we know it
admits a natural Stenzel’s CY cone metric. The corresponding Sasaki-Einstein
manifold is a circle bundle over the quadric hypersurface in Pn equipped with
a homogeneous Kähler-Einstein metric. It is easy to calculate that the volume
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density is 2(1 − 1
n)n. Hence we have a lower bound

(5.1) A′(n) ≥ 2(1 − 1
n

)n.

Theorem 5.2. Let Z be a GH limit of KE Fano manifolds Xi with Fano
index r and

cn1 (−KXi) >
1
2A

′(n)(n + 1)n,

then Z has Gorenstein canonical singularities and −KZ = rLZ for some
Cartier divisor LZ .

Proof. The proof follows similar lines as in Section 3 and 4. Below we only
sketch the new technical points.

Lemma 5.3. For any iterated tangent cone of the form Ck × C(Y ) with
k ≥ 0, π1(Y ) is trivial unless the cone is a quotient of the form Cn/G for a
finite subgroup G ⊂ U(n).

Proof. Suppose π1(Y ) is not trivial, then arguing as in the proof of Lemma
3.3, we obtain the universal cover Ỹ with V ol(Ỹ ) > A′(n)V ol(S2n−2k−1). We
claim that Ỹ must be smooth. Otherwise, by Remark 3.4 there is a point
q ∈ Y ⊂ C(Y ) with Θ(C(Y ), q) > A′(n). By passing to an iterated tangent
cone we obtain a cone of the of form Cl ×C(Y ′) with Y ′ smooth but volume
density bigger than A′(n). Contradiction. Now given the claim, by our gap
assumption we conclude that the cone over Ỹ must be the flat Cn, hence
C(Y ) is a quotient of Cn.

By (5.1), A′(n) > 2/3 for n ≥ 6 and A′(n) > 1/2 for all n, it follows that
the above subgroup G can only be either Z2 or Z3. Now one can follow the
induction proof of Lemma 3.6. If at p all the iterated tangent cones are not
equal to quotient of Cn, then the proof is exactly the same. If one iterated
tangent cone is a quotient Cn/G, then for the induction argument to go
through, we need to follow the proof of Proposition 4.6. Notice such quotient
is necessarily of the form Cn−l × Cl/G, where G acts non-trivially in the
sphere S2l−1 ⊂ Cl. We claim l = 2. This follows by taking generic sections as
in the proof of Proposition 4.6, and using Schlessinger’s rigidity of quotient
singularities in dimension greater than two [58]. Now for our induction to
work by the proof of Proposition 4.6, it suffices to show that on a smoothing
of C2/G with G = Z2 or Z3, there is a Stein neighborhood of the vanishing
cycle that has trivial fundamental group. This is clearly the case when G ⊂
SU(2). So we are left with the case G = Z3 acts diagonally on C2 with
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weight (ζ3, ζ3). We claim this case never occurs. Notice it is is the non-Q-
Gorenstein smoothable cone over a rational normal curve of degree 3. Its
versal deformation space (coinciding with the Artin component [63]) is given
by a two dimensional space which parameterizes smoothings admitting Stein
neighborhoods homeomorphic to the total space of the O(−3) bundle over P1,
hence again simply connected. So by the proof of Proposition 4.6 it follows
that C2/G has to be Gorenstein, so we have proved the claim.

When we use the rough bound A′(n) ≤ 1 the above result reduces to
Corollary 3.8. In general for practical applications of Theorem 5.2 it is im-
portant to understand A′(n) better. It is not unreasonable to expect the
following:
Conjecture 5.4. For all n,

A′(n) ≤ 2(1 − 1
n

)n.

One expects the equality only holds for the n dimensional Stenzel cone. Now
it is easy to see that Conjecture 1.2 implies Conjecture 5.4, and the first part
of Theorem 1.3 follows exactly from Theorem 5.2.

Volume of links of CY cones have been studied by Martelli-Sparks-Yau
in the context of AdS-CFT correspondence (see, e.g., [47]), where it is shown
that, CY cones are minimizers of the volume functional on the space of Reeb
vector fields. From a physics point of view, here we just remark that, in
dimension three, such volume densities are supposed to be inverses of quan-
tities related to central charges of certain dual superconformal field theory
(a-maximization).

As we have recalled in Section 2, thanks to the description of the volume
minimization in terms of the language of valuations [40] and their relation to
densities (still conjecturally in the irregular case), it is natural to formulate
a purely algebro-geometric conjecture analogous to the density gap above
described.
Conjecture 5.5 (ODP volume gap conjecture, algebraic version). Let (V, p)
be a non-smooth germ of a n-dimensional klt singularity. Then the infimum
of the normalized volume of valuations centered at p satisfies

inf
ν
v̂ol(ν) ≤ 2 (n− 1)n ,

with equality realized only by the ordinary double point singularity
∑n+1

i=1 x2
i =

0.
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Remark 5.6. 1. From discussions with Kento Fujita and Yuchen Liu, we
are informed that even the weaker inequality infν v̂ol(ν) ≤ nn is not
yet proved in complete generality. Notice from a metric point of view,
if (V, p) is a germ of a pointed rescaled Gromov-Hausdorff limit of KE
Fano manifolds, then by Proposition 2.2 this weaker inequality holds by
Bishop-Gromov volume comparison theorem. On the other hand, Con-
jecture 5.4 follows from Conjecture 5.5 if the equality case of Proposition
2.2 holds (which is known to be true when the metric tangent cone is
quasi-regular).

2. When n = 3, it is possible that such densities are always ≤ 1
2 except

the cases of A1 singularity, when it is equal to 16/27 or A2 singularity,
when it is equal to 125/243 (note that they are equal to 1/2 for any
other Ak singularity for k ≥ 3, corresponding to the expected jumping
picture for the metric tangent cone to the flat cone C×C2/Z2). In fact,
we do not know any other CY cones (even among known quasi-regular
or irregular ones) which have higher values of densities.

5.2. Del Pezzo of degree three (cubic hypersurfaces)

Now we prove part (2) of Theorem 1.3.
Let Z be a GH limit of smooth Kähler-Einstein cubic hypersurfaces in

dimension n ≥ 3. Since the volume is given by 3(n−1)n ≥ (1− 1
n)n(n+1)n, by

Theorem 5.2 we know Z has at worst Gorenstein canonical singularities and
KZ = Ln−1

Z for some ample line bundle LZ . Hence by Fujita’s classification
[29] Z must be a cubic hypersurface too. Notice also by [65] (or [50] for n ≤ 4)
a Fermat cubic hypersurface x3

0 + · · · + x3
n = 0 admits a Kähler-Einstein

metric so is K-stable. By the same discussion as in [54] this implies that the
CM line bundle over the GIT moduli is a positive multiple of the standard
polarization O(1), hence is ample. By [6] we know Z is K-polystable, so Z is
a GIT polystable cubic hypersurface. Now we argue as in [54] and conclude
that the GIT compactification agrees with KE compactification. This finishes
the proof of Theorem 1.3, (2).

Now we recall that in dimension 3 and 4 the GIT moduli space has been
extensively studied. GIT of cubic threefolds is done by Allcock [1]. We recall
the result

Theorem 5.7 ([1]). • A cubic threefold is GIT stable if and only if it has
only isolated singularities of type Ak, k ≤ 4.

• A cubic threefold is GIT polystable with non-discrete stabilizer if and
only if it is isomorphic to FΔ = x0x1x2 + x3

3 + x3
4 which has exactly
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three D4 singularities; or it is isomorphic to FA,B = Ax3
2 + x0x

2
3 +

x2
1x4 − x0x2x4 +Bx1x2x3 where at least one of A,B is non-zero, which

has at worst isolated A1 and A5 singularities when 4A �= B2, and which
has a transverse A1 singularity along a rational normal curve when
4A = B2(the chordal cubic).

In particular it is easy to see that a GIT polystable cubic in dimension 3
must have canonical singularities.

GIT of cubic fourfolds has been studied in detail by Laza in [39]. In
particular, it is known that a cubic fourfold with ADE singularities is GIT
stable, and singularities of a polystable cubic fourfold corresponding to a
generic point on the GIT quotient compactification are classified (see the
longer list of such possible singularities in Table 3 of [39]).

As far as we are aware, there is no explicit study of higher dimensional
GIT quotients of cubics hypersurfaces. However, our previous discussion leads
to some purely GIT questions that may be worth studying: as a direct conse-
quence of Theorem 1.3, (2), we notice that if Conjecture 5.4 holds, then the
GIT moduli agrees with KE moduli. However, by [21] every GH limit in the
KE moduli must have log terminal singularities, and if is again a cubic hy-
persurface then it must have Gorenstein canonical singularities. So a natural
question is:

Question 5.8. Is it true that a GIT polystable cubic in Pn has at worst
Gorenstein canonical singularities? In particular, does it always have normal
singularities?

This is intimately related to Conjecture 5.4. If the answer to this question
is negative, then it would mean Conjecture 5.4 is false.

We observe that even without assuming Conjecture 5.4 we have:

Proposition 5.9. A GH limit Z of smooth Kähler-Einstein cubic threefolds
has only Gorenstein canonical singularities, and K−1

Z = L2
Z for some Q-line

bundle LZ .

This follows from similar arguments as in the proof of Lemma 3.6 and
Proposition 4.6, using the fact that K−1

Xi
= L2

Xi
. If one can prove LZ is a

genuine line bundle, then it would follow from the classification of Fujita [29]
that Z must be a cubic hypersurface in P4 and hence the KE moduli agree
with GIT moduli. It would also be interesting to see if Fujita’s classification
can be extended to our setting.
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5.3. Other Fano manifolds

We expect that, in order to proceed further, an extension of the classification
of mildly singular smoothable Fano 3-folds with small Gorenstein index and
with bounds on invariant of the singularities given by differential geometric
considerations as above, would be useful for studying both moduli space of
Fano 3-folds and the existence of KE metrics on them. We should recall
that there is a classification of Gorenstein Fano 3-folds with assumptions on
decompositions of the anticanonical linear system by Mukai [49].

Our discussion gives the following picture regarding a-priori bounds on
the Gorenstein index of GH limits of KE Fano 3-folds:

Corollary 5.10. Assuming Conjecture 5.4, GH limits of smooth KE Fano 3-
folds whose volume is ≥ 20 are always Gorenstein with canonical singularities.
Without assuming Conjecture 5.4, the Gorenstein index of GH limits is at
most two as long as the volume is ≥ 22 and in this case the canonical divisor
is Gorenstein away from at most finitely many points.

Among the 105 deformation types of smooth Fano 3-folds, 75 have volume
bigger than or equal to 20, and four deformation classes have volume equal to
22.

Here we recall that the volume of a Fano 3-fold is always even, and as
long as the volume is bigger than 32 we have mostly rigid examples.

Interesting examples include the case of Iskovskikh-Mukai-Umemura Fano
3-folds of degree 22 and Picard rank one, since arguments along these lines
can solve the problem of understanding which smooth ones are KE, even “far
away” from the special KE Mukai-Umemura 3-fold. Here it would be interest-
ing to show that all GH limits are still given by intersections of three sections
of the tautological vector bundle over the Grassmanian as the smooth ones do.
Then (see discussion in [60]), it seems very plausible that one can consider a
GIT picture similar to the previous case of degree four del Pezzos to conclude.

Another example (with much smaller anticanonical volume) we like to
briefly discuss is the case of quartic hypersurfaces in CP4. By very recent
work of Fujita [26], it is known that all smooth quartics admit KE metrics.
However, by classification of smooth Fano 3-folds, it is known that quartic
hypersurfaces do not form a complete family, since they can be deformed to
the “hyperelliptic” Fanos given by double covers of a smooth quadric in P4

ramified over a smooth divisor of degree eight obtained as intersection with
a quartic. In such situation, it is also known that all such Fanos admit KE
metrics [4]. Thus the GH moduli compactification is not equal to the GIT
quotient of quartics, since we need (at least) to blow-up such GIT quotient
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at the non-reduced double conic, similarly to the case of degree 2 del Pezzo
considered in [54]. We think that a concrete algebro-geometric analysis of
such situation, by trying to explicitly construct a compactification made only
by Q-Fano varieties, is indeed very interesting.

Similarly, moduli of del Pezzos of low degree and of other Fano 3-folds
could be possibly analyzed by considering GIT gluings coming from certain
hypersurfaces in weighted projective spaces. In general, it is clearly very in-
teresting to investigate precisely which Fano 3-folds are known to have a
non-empty KE moduli spaces.

Appendix by Yuji Odaka, Cristiano Spotti & Song Sun

Theorem 3.4 of [54] cannot be applied directly to conclude that a K-polystable
double complete intersection of quadrics, that is a del Pezzo surface of degree
four, is GIT-polystable. This was overlooked in [54, Theorem 4.2] and Lemma
4.8 of this paper at the time of writing. In this appendix we provide a fix to
this problem.

Let us explain the issue first. The Grassmannian S = Gr(2, Sym2Cn+1)
parametrizes the space of all complete intersections of two quadrics in Pn for
n ≥ 4. To apply Theorem 3.4 in [54] we need to make the CM line bundle
well-defined over S which is not the case since there is a special locus Σ in
S parametrizing subschemes of Pn which contain some hypersurfaces, hence
violating the hypothesis of Theorem 3.4 of [54].

First, the following easy lemma identifies the non-equidimensional locus
Σ ⊆ S of the family.

Lemma A.1. A quadric intersection parameterized by S is not of (pure)
codimension 2, if and only if it is isomorphic to {x0x1 = x0x2 = 0} or to
{x2

0 = x0x1 = 0} via a (projective) linear transformation. Here, x0, · · · , xn is
a homogeneous coordinate system of Pn.

Proof. Let F,G form a basis of the 2-plane in H0(Pn,O(2)). If F = 0 is
irreducible then G must be not divided by F and thus F = G = 0 is of
codimension 2. If F = 0 is reducible, it must split into two hyperplanes, say
F = x0y. If F = G = 0 is still (n− 1)-dimensional, then G = 0 must contain
one of the two hyperplanes, say x0 = 0. Then the other factor of G is of degree
one and G = x0w after a linear transformation, thus proving the lemma.

Thus Σ is the PGL(n+1;C) orbits of the points in S corresponding to the
subschemes {x0x1 = x0x2 = 0} and {x2

0 = x0x1 = 0}. The CM line bundle
λCM is well-defined over S′ = S \ Σ. Since S is smooth and the codimension
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of Σ is at least 2, we know λCM extends to a line bundle on the whole S
and λCM � O(a) for some integer a since Pic(S) � Z. Being PGL(n + 1;C)
connected without non-trivial characters, it follows that this isomorphism can
be taken to equivariant. Moreover, we know a > 0 since in the context of [54]
and of this paper, S contains at least one K-polystable point. It follows that if
we consider a degeneration within S′, then the sign of the Donaldson-Futaki
invariant agrees with the sign of the GIT weight. In order to fix the issue is
then sufficient to check the following.
Proposition A.2. • Suppose an element P ∈ S′ is GIT unstable, then

there is a one-parameter subgroup λ(t) such that the corresponding limit
P0 = limt→0 λ(t).P has negative GIT weight and is contained in S′.

• If an element P ∈ S′ is GIT semistable but not GIT polystable, then
then there is a one-parameter subgroup λ(t) such that the corresponding
limit P0 is GIT polystable hence is contained in S′.

Corollary A.3. If the associated quadric intersection to a point P ∈ S′

is K-semistable (resp., K-polystable), then P is GIT semistable (resp., GIT
polystable).
Proof. This follows from the proposition and the comparison of K-stability
and GIT-stability using the CM line bundle as in Theorem 3.4 in [54].

Proof of proposition A.2. For the second item, we know by standard GIT
that for such P , there is a one-parameter subgroup λ(t) such that P0 is GIT
polystable. Since the GIT unstability of Σ easily follows from its definition
by the vanishing of the discriminant Δ(P ) (cf., also [5, Proposition 3.1]), P0
must be contained in S′. So we just need to prove the first item of Proposition
A.2.

An element in S is the same as a pencil of quadrics, and we can define its
discriminant Δ(P ), which is a binary form of degree n + 1. For terminology
and background see [5] and [34]. We divide the proof into a few cases:

Case r0 �= 0 in the canonical form of [34, pag. 289]. This is an easier
case, since P has non-finite isotropy group and one can explicitly write down
a destabilizing one parameter subgroup that fixes P with negative GIT weight
(since we have the freedom to choose weight for the last r0 variables).

Non degenerate case. First suppose Δ(P ) is not identically zero, i.e. P
is non-degenerate.

Then due to a classical result of Weierstrass and C. Segre, one can put P
into a canonical form (c.f. [5]), so that P = λA+μB, where A and B are block
diagonal, each block being of the form A = diag(Pi), B = diag(Qi) as in [5].
We recall the following (for a self-contained proof see the end of this note).
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Proposition A.4 (cf., [67, §4(a)], [46, Theorem 6.1], [5, Theorem 3.1(a)]).
If P is non-degenerate and unstable, then Δ(P ) has a root of multiplicity

(A.2) d >
n + 1

2 .

Thus, changing (λ, μ) by an element in SL(2;C), we may assume this
muliple root is (1 : 0). Denote by μd1 , · · · , μdr (d1 ≥ d2 ≥ · · · dr) the elemen-
tary divisors of the pencil at this root. Then we have the first r blocks of the
form

P1j =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1
0 · · · 0 1 0
· · · · · · · · · · · · · · ·
0 1 0 · · · 0
1 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

Q1j =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 0
0 · · · 0 0 1
· · · · · · · · · · · · · · ·
0 0 1 · · · 0
0 1 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

where for each j ∈ {1, · · · , r}, Q1j and P1j are both dj × dj square matrices,
and d =

∑
j dj . Let all the other elementary divisors of the pencil be of the

form (λ − aαμ)eα , α = 1, · · · , k. Write e =
∑

α eα, then we have d > e and
d + e = n + 1. The rest of blocks are of the form:

Pα =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 aα
0 · · · 0 aα 1
· · · · · · · · · · · · · · ·
0 aα 1 · · · 0
aα 1 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

Qα =

⎡
⎢⎢⎢⎢⎢⎣

0 0 · · · 0 1
0 · · · 0 1 0
· · · · · · · · · · · · · · ·
0 1 0 · · · 0
1 0 0 · · · 0

⎤
⎥⎥⎥⎥⎥⎦

where for α ∈ {1, · · · , k}, Pα and Qα are both eα × eα square matrices, and
aα non necessarily distinct.
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Now we choose a diagonal one parameter subgroup λ(t) ⊂ SL(n + 1;C)
such that the weights on the blocks corresponding to P1j and Q1j (j =
1, · · · , r) are given by

wj,s = ηj + 2
(
s− 1 + dj

2

)
, s = 1, · · · dj

and the weights on the blocks corresponding to Pα and Qα (α = 1, · · · , k)
are given by

wα,s = ξα − 2
(
s− 1 + eα

2

)
, s = 1, · · · , eα

We choose ηj and eα to satisfy the following constraints

(A.3) ηj = c ∀ j,

(A.4) ξα = c + 1 ∀ α,

(A.5)
( ∑

1≤j≤k

dj
)
c +

(∑
α

eα
)
(c + 1) = 0,

for a uniform constant c, which does not depend on j nor α. Equation (A.5)
makes sure that λ(t) ⊂ SL(n+ 1;C), while Equation (A.3), (A.4) imply that
the limit as t → 0 of the pencil λ(t).P is still non-degenerate and is given by
similar form to the above, except with aα = 0 for all α = 1, · · · , k. In particu-
lar, the limit limt→0 λ(t).P is not in Σ. These constraints uniquely determine
c hence all the weights. Then the corresponding GIT weight is −(4ξα − 2) =
−(4c + 2), which is negative because of (A.3), (A.4), (A.5), and (A.2).

Purely degenerate case r0 = 0 and A = B = 0. In this case, we use
the canonical form in [34, pag. 289]. We also have k blocks of quadratic forms
of the form

P = 2(x0x1 + · · · + x2ra−2x2ra−1)

Q = 2(x1x2 + · · · + x2ra−1x2ra).
Since we assume the pencil is not in Σ, ra �= 1. First we treat the case k = 1.
To destabilize we choose weights wi, i = 0, · · · 2r1 to satisfy

w2i = ζ + i, i = 0, · · · , r1 − 1
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w2i+1 = ξ − i, i = 0, · · · , r1 − 1

w2r1 = −r1(ζ + ξ)
Then P is homogeneous under the one parameter subgroup with weight ζ+ξ,
and Q is homogeneous with weight ζ + ξ + 1 except the last term has weight
ξ − r1 + 1 + w2r1 . If we further choose ζ, ξ, w2r1 so that

1. 2(ζ + ξ) + 1 > 0,
2. w2r = −r1(ζ + ξ) > ζ + r1,

then we get the limit of Q is by at worst making the last term of it disap-
pear. On the other hand, the GIT weight is −(2(ζ + ξ) + 1) < 0. So we get a
good de-stabilizer. We finally confirm that the above conditions (1), (2) are
satisfiable, e.g., set ξ := −ζ + const with ζ � 0.

For general k case we just make sure that ζj + ξj do not depend on j, and
satisfy the above constraints (1), (2). Then we will get the same conclusion.

Mixed general case r0 = 0, but A,B �= 0. Following [34, pag. 289], we
have

• the purely degenerate blocks of size 2ra + 1 for i = a, · · · , k,
• non-degenerate blocks (corresponding to elementary divisors) P1,1, · · · ,
P1,j , · · · at root ∞ = [1 : 0] of size dj(j = 1, · · · ) and

• non-degenerate blocks (corresponding to elementary divisors) Qα with
roots at finite numbers (i.e., other than ∞) of size eα (α = 1, · · · ).

We put weights rational wi on non-degenerate variables xi for i ≥ ∑k
a=1(2ra+

1) following the previous construction (A.3), (A.4), with some rational number
constant c to be fixed later. Note that unlike in the non-degenerate situation,
unstability does not necessarily implies

∑
dj >

∑
eα. Denote the total sum

of the temporary weights
∑n+1

i=
∑k

a=1(2ra+1)+1
wi as kW for some constant W .

Imitating Case 5.3, but with doubled weights, we also put weights wi ∈ Q on
the variables xi(i = 0, 1, · · · , 2r1) on the first degenerate block as

w2i = 2(ζ1 + i)(i = 0, · · · , r1 − 1)(A.6)
w2i+1 = 2(ξ1 − i)(i = 0, · · · , r1 − 1),(A.7)
w2r1 = −2r1c−W,(A.8)

with ξ1 = −ζ1 + c, ζ1 � 0 as before, and do the same for other degenerate
blocks of each size ra for a = 2, · · · , k. (A.8) is designed to make the whole
one parameter subgroup satisfy SL condition. Since the weights w′s are ra-
tional numbers in general, we normalize them by multiplying to the exponent
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a sufficiently divisible positive integer constant m, so that they all become
integers. As before, the weights are chosen so that the limit limt→0 λ(t).P is
not in Σ, and the GIT weight is equal −m(2c+ (2c+ 2)) = −2m(2c+ 1) < 0
for a suitable choice of c.

Remark A.5. • For del Pezzo surfaces in dimension two note that Bishop-
Gromov estimate already implies that KE orbifolds must have at worse
A1-singularities. Further simplifications can also be given in higher di-
mensions by showing first, using L2-embeddings similarly to [46], that
GH limits must be simultaneously diagonalized. However, we decided to
present above a more elementary proof that does not make use of further
information about GH limits.

• Issues similar to the one considered in such note appear also for more
general complete intersections, which would then need a more carefully
check of GIT unstability to apply the comparison of K-stability and GIT-
stability using the CM line bundle. Along the lines of conjectures in
this paper, it would be interesting to know for a specific GIT moduli
problem, whether one can always find an equidimensional destabilizer
for an equidimensional unstable point, and more generally what is the
best geometric property satisfied by the destabilizers of an unstable point.

Proof. of proposition A.4. As in [5] we set

V := H0(Pn,O(2)) = Sym2(Cn+1),
Sn+1 := {(A,B) ∈ V ⊕ V | rank(〈A,B〉) ⊂ V = 2}.

Sn+1 is a principle GL(2)-bundle over the Grassmanian S. Let us define S̃ as
the geometric SL(2)-quotient of Sn+1, so that S̃ → S is a principle (C∗/±1)-
bundle. Since (C∗/ ± 1) � C∗, it corresponds to a line bundle over S (note
also that Pic(S) � Z.)

We consider the discriminant map d : V ⊕ V → H0(P1,O(n + 1)), which
is clearly SL(n+1)×GL(2)-equivariant. (The SL(n+1)-action on the target
H0(P1,O(n+1)) is trivial.) As in [46, Proposition 6.2], take a SL(2)-invariant
regular function f on H0(P1,O(n + 1)). Then

f̃ := f ◦ d : V ⊕ V → C

is also SL(n + 1) × SL(2)-invariant. Hence, by the universality of geometric
quotient it descends to a regular function f̄ on S̃.

Now suppose (A,B) ∈ V ⊕ V satisfies the conditions that d(A,B) �= 0
and that [d(A,B)] ∈ P(H0(P1,O(n + 1))) is GIT-semistable. Then there is
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a SL(2)-invariant function f on H0(P1,O(n + 1)) which does not vanish at
[d(A,B)]. Then, obviously f̄(A,B) �= 0. By decomposing f̄ into the finite
homogeneous eigenvectors with respect to the given (C∗/± 1)-action, we get
a regular function g which is a non-vanishing eigenvector with respect to the
(C∗/ ± 1)-action, i.e., corresponding to the element of H0(S, L⊗l) where L
is the ample generator of Pic(S) and l some positive integer. Thus 〈A,B〉 is
semistable by the definition of semistability.
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