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Geometric formality and non-negative scalar curvature

D. KoTscHICK*

Abstract: We classify manifolds of small dimensions that admit
both, a Riemannian metric of non-negative scalar curvature, and
a — a priori different — metric for which all wedge products of har-
monic forms are harmonic. For manifolds whose first Betti numbers
are sufficiently large, this classification extends to higher dimen-
sions.

1. Introduction

A closed orientable manifold is called geometrically formal if it admits a Rie-
mannian metric for which all wedge products of harmonic forms are harmonic.
Such a metric is called a formal metric. This concept was introduced in [11]
as a Riemannian analogue, and sharpening, of formality in rational homotopy
theory. It has turned out to be a very strong property, so much so that, under
suitable assumptions, one can hope to classify geometrically formal manifolds,
and perhaps even all the formal metrics on them.

Harmonic forms with respect to formal metrics have constant lengths
and inner products. In conjunction with curvature conditions, this implies
classification results. For example, it follows from a result of Seaman [26]
that a four-manifold with a formal metric of positive sectional curvature must
have definite intersection form. This rules out S? x S?, showing that the Hopf
conjecture holds for formal metrics. This conclusion was recently rediscovered
by Bér [1], who set out to classify formal metrics of non-negative sectional
curvature on four-manifolds up to isometry.

In this paper we take a different approach, and look at geometrically
formal manifolds admitting some, possibly non-formal, Riemannian metric
of non-negative scalar curvature. In small dimensions we classify such mani-
folds topologically. This is possible because the existence of a metric of non-
negative scalar curvature is a strong condition in small dimensions due to the
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Gauss-Bonnet theorem (in dimension 2), the Thurston-Hamilton-Perelman
geometrization (in dimension 3), and Seiberg-Witten theory (in dimension 4).

Among closed orientable surfaces, only the sphere and torus are geomet-
rically formal. On the sphere all metrics are formal, whereas on the torus a
metric is formal if and only if it is flat; cf. [11]. Geometrically formal three-
manifolds were classified in [11, Section 4]. If one restricts to manifolds ad-
mitting a metric of non-negative scalar curvature, then there are very few
examples, as we will show in Section 3:

Theorem 1. Any geometrically formal closed oriented three-manifold admit-
ting a Riemannian metric of non-negative scalar curvature is diffeomorphic
to:

(1) a connected sum of spherical space forms,
(2) St x SZ% or
(3) a flat manifold.

Conversely, all these manifolds have Riemannian metrics which are simulta-
neously formal and of non-negative scalar curvature.

Let us emphasize once more that we do not assume at the outset that
there is a formal metric of non-negative scalar curvature - the formal metric
and the metric with non-negative scalar curvature are allowed to be distinct.
But the conclusion is that there is indeed a metric with both properties.

We can almost generalize this result to four dimensions:

Theorem 2. Any geometrically formal closed oriented four-manifold admit-
ting a (possibly non-formal) Riemannian metric of non-negative scalar cur-
vature is diffeomorphic to:

(1) a rational homology sphere,

(2) CP2%, S? x 5%, or one of the two S*-bundles over T?,

(3) a mapping torus M (p), where o: N — N is an orientation-preserving
self-diffeomorphism of a three-manifold admitting a metric of positive
scalar curvature and ¢* has no non-zero fized vector in H'(N;R), or

(4) a flat manifold.

In Subsection 2.2 below we describe the three-manifolds N appearing in
the third case explicitly.

Combining Theorem 2 with Freedman’s solution of the topological four-
dimensional Poincaré conjecture, we obtain:

Corollary 3. Let M be a simply connected geometrically formal closed ori-
ented four-manifold admitting a (possibly non-formal) metric of non-negative
scalar curvature. Then one of the following holds:
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(1) M is homeomorphic to S*, or
(2) M is diffeomorphic either to CP? or to S% x S2.

The standard metrics on S, on CP?, and on S? x S? are all formal and
of constant positive Ricci curvature. Thus the Corollary is sharp modulo the
four-dimensional smooth Poincaré conjecture. Of course any metric on a fake
5% would be formal, but there would not necessarily be one with non-negative
scalar curvature.

Theorem 2 is not optimal, since there are homology four-spheres with-
out metrics of non-negative scalar curvature, see Example 13 in Section 4
below. Furthermore, it is not clear whether all the manifolds in the third
case really have metrics of non-negative scalar curvature. To obtain an essen-
tially sharp result we strengthen the non-negativity of the scalar curvature to
non-negativity of the Ricci curvature:

Theorem 4. Any geometrically formal closed oriented four-manifold admit-
ting a (possibly non-formal) Riemannian metric of non-negative Ricci curva-
ture is diffeomorphic to:

(1) a rational homology sphere with finite fundamental group,

(2) CP?, 8% x 82, or one of the two S*-bundles over T?,

(3) a mapping torus M(yp), where ¢ is an orientation-preserving isometry
of a spherical space form or of RP3*#RP? with their standard metrics',
or

(4) a flat manifold.

Conversely, all these manifolds are geometrically formal. Fxcept in the first
case they all admit formal metrics with non-negative sectional curvature.

This will be proved in Section 4 after the proof of Theorem 2. The im-
provement stems only from the assumption that Ric > 0, and has nothing to
do with geometric formality. The point is that on a manifold with Ric > 0 all
harmonic one-forms are parallel by the Bochner formula, and therefore one
obtains structure results reducing to problems in lower dimensions as soon
as the first Betti number is positive. Since we work in dimension four, the
required results in lower dimensions are known. See Corollary 15 for a char-
acterization of non-negatively curved four-manifolds with positive first Betti
number that may be of independent interest.

Theorem 4 can be compared with Béar [1, Theorem A], where a similar
result is obtained under the stronger assumption that M carries a Riemannian
metric that is simultaneously formal and of non-negative sectional curvature.

LA standard metric on RP3#RP? is one that is induced by realizing RP3#R P3
as an isometric quotient of S2 x R; cf. Theorem 7 below.



440 D. Kotschick

In the final section we extend Theorem 2 to n-manifolds with b; > n — 2
for all n.

2. Preliminaries
2.1. Geometric formality

We recall the results about geometrically formal manifolds proved in [11] that
we shall need here.

First of all, harmonic forms with respect to a formal metric have constant
lengths and constant inner products. Therefore, if M is a geometrically formal
closed oriented n-manifold, then its Betti numbers are bounded as follows:
br(M) < bp(T™), and similarly by (M) < by (T*) if n = 4i. Further, by (M) #
n — 1, and if by (M) = n, then M is diffeomorphic to 7" and every formal
metric is flat. As soon as by (M) > 0, the Euler characteristic of M vanishes.

On a four-manifold every self-dual harmonic two-form with respect to a
formal metric is symplectic inducing the given orientation, and every anti-
self-dual harmonic two-form is symplectic inducing the opposite orientation.
This implies that a geometrically formal four-manifold with b, (M) = 0 must
have b3 (M) € {0, 1}; compare [11, Subsection 5.3].

2.2. Positive scalar curvature on three-manifolds

Here we specify the manifolds appearing as fibers in the mapping tori of case
(3) in Theorem 2.

As explained in [13, Section 2], the following is a combination of results
of Schoen—Yau [22], Gromov-Lawson [6] and Perelman [18, 19], interpreted
in the context of the Kneser—Milnor prime decomposition of three-manifolds:

Theorem 5. For a closed oriented connected three-manifold M the following
conditions are equivalent:

(1) M is rationally inessential,

(2) M has no aspherical summand M; in its prime decomposition,

(3) M is a connected sum of copies of S* x S% and of spherical space forms,
(4) M admits a metric of positive scalar curvature.

A manifold is rationally inessential if its fundamental class maps to zero
in H,(Bm(M);Q) under the classifying map of its universal covering.

2.3. Strongly scalar-flat manifolds

A closed manifold admitting Riemannian metrics of non-negative and not
identically zero scalar curvature also has metrics with positive scalar curva-
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ture. There are also manifolds which admit scalar-flat metrics, but do not ad-
mit any metrics of positive scalar curvature. Such manifolds are called strongly
scalar-flat. The simplest examples are tori and other flat manifolds [6].

It is known that scalar-flat metrics on strongly scalar-flat manifolds are in
fact Ricci-flat, compare for example [2]. In dimension three this implies that
they are flat.

In dimension 4, the only known Ricci-flat manifolds are strongly scalar-
flat. They are flat manifolds and finite quotients of K3 surfaces with Calabi—
Yau metrics. The isometric quotients of K3 surfaces were classified by
Hitchin [10], who showed that the possible covering groups are Zg and Zs X Zs,
both of which do actually occur.

The following result is due to J. Wehrheim and myself, see the Appendix
to [12]:

Theorem 6. If a closed symplectic four-manifold M admits a Ricci-flat met-
ric g, then (M, g) is isometric to a finite quotient of T* or K3 with a flat,
respectively Calabi—Yau metric.

Thus, among symplectic manifolds, there can be no other strongly scalar-
flat examples.

3. Three-manifolds

First we want to prove Theorem 1.
According to [11, Section 4], a closed orientable three-manifold M is ge-
ometrically formal if and only if it is one of the following:

(1) any rational homology sphere,

(2) a mapping torus M = M(y) of a surface diffeomorphism ¢: ¥ — %
with by (M) =1, or

(3) the three-torus T3.

We now go through this list using Theorem 5. In the first case every metric
is formal, and there is one with positive scalar curvature if and only if M is
a connected sum of spherical space forms. In the second case a psc metric
can only exist if the fiber ¥ is S2, for otherwise M would be aspherical. But
every orientation-preserving diffeomorphism ¢ of S? is isotopic to the identity,
and so M is diffeomorphic to to S' x S2. The product metric is formal with
positive scalar curvature. There is no psc metric on 7.

Finally, a strongly scalar-flat three-manifold must be flat; cf. Subsec-
tion 2.3 above. Conversely, flat metrics are formal and trivially of non-negative
scalar curvature. This completes the proof of Theorem 1.
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Note that flat manifolds appear in all three cases above, according to
whether the first Betti number is 0, 1 or 3. In the second case the fiber X is
T? if M is flat.

We can compare Theorem 1 with the classification of three-manifolds of
non-negative Ricci curvature due to Hamilton [9]:

Theorem 7. A closed oriented three-manifold admits a Riemannian metric
of non-negative Ricci curvature if and only if it is diffeomorphic to:

(1) a spherical space form,
(2) S' x S? or RP3#RP3, or
(3) a flat manifold.

Hamilton [9] proved that the Ricci flow deforms any metric of non-negative
Ricci curvature to one of the model geometries S3, S? x R or R3. Therefore,
one only has to check the classification of their closed oriented quotients;
compare [25].

Hamilton’s theorem shows that in dimension three all manifolds with
non-negative Ricci curvature are in fact geometrically formal. Indeed, their
standard locally homogeneous metrics are formal.

In the case of positive first Betti number, the classifications in Theorems 1
and 7 coincide. This is no coincidence, since for non-negative Ricci curvature
harmonic one-forms are parallel by Bochner’s argument, and dictate the clas-
sification without even using the Ricci flow; compare [1]. In the geometrically
formal case harmonic one-forms may not be parallel, but they are of constant
length. This, together with Gauss—Bonnet applied to the fibers of fibrations
over S!, leads to the same conclusion as with parallel one-forms.

4. Four-manifolds

In this section we prove the main results, Theorems 2 and 4. The first step is
the following:

Theorem 8. Let M be a geometrically formal closed oriented four-manifold
admitting some Riemannian metric of positive scalar curvature. Then one of
the following holds:

(1) M is a rational homology sphere,

(2) M s diffeomorphic either to CP?, to S? x S2%, or to one of the two
S?-bundles over T?, or

(3) M is a mapping torus M(yp), where ¢o: N — N is an orientation-
preserving self-diffeomorphism of a three-manifold admitting a metric
of positive scalar curvature and ¢* has no non-zero fived vector in

HY(N;R).
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Proof. Recall from Subsection 2.1 above that geometric formality gives strong
a priori bounds on the Betti numbers, and that it implies that M is symplectic
(for a suitable orientation) as soon as bo(M) # 0. So we will start with this
case.

If b(M) > 0, then M is a closed symplectic four-manifold admitting a
psc metric. Such manifolds were classified by Liu [15] and Ohta—Ono [17], who
showed that they are rational or ruled. Given the Betti number bounds from
geometric formality, this means that M is diffeomorphic either to CP? or to
an S%-bundle over S? or T2. For both bases there are precisely two bundles
up to diffeomorphism of the total space. One of these bundles can be ruled
out:

Lemma 9. The non-trivial S%-bundle over S? is not geometrically formal.

Proof. To have a convenient basis for the cohomology, we identify the non-
trivial S2-bundle over S? with M = CP2#CP2, and let H and E be the two
generators coming from the connected summands. Then H? = 1, E? = —1,
and H - F = 0. If M were geometrically formal, then every cohomology class
with positive square would be represented by a symplectic form, namely the
harmonic representative with respect to a formal Riemannian metric. This
applies in particular to H. Now the only class with square —1 is F, with
which H pairs trivially. Thus, for the symplectic form in the cohomology
class H there can be no symplectic (—1)-sphere, meaning that the symplectic
structure is minimal. This contradicts the result of Lalonde-McDuff [14] to
the effect that any symplectic form on M is symplectomorphic to a standard
Kéhler form, all of which are symplectically non-minimal. Thus M cannot be
geometrically formal. O

If bo(M) = 0, then either M is a rational homology sphere, or by (M) # 0.
In the latter case the Euler characteristic must vanish since harmonic one-
forms with respect to formal metrics are of constant length. The equation

0= (M) = 2 — 2by (M) + by(M) = 2 — 2by (M)

gives by (M) = 1. In this case M is a mapping torus M () for some orientation-
preserving diffeomorphism ¢ of a closed three-manifold N, cf. [11, Theo-
rem 7]. Since by (M) = 1, it follows that ¢* has no non-zero invariant vector
in H'(N;R). It remains to show that N admits a metric of positive scalar
curvature.

The total space M of the mapping torus admits a psc metric by as-
sumption. The Schoen—Yau argument [23] therefore implies that there is an
embedded hypersurface i: S < M in the homology class of the fiber N with
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S admitting a metric of positive scalar curvature. Let f: M — S! be the
projection of the mapping torus. Then (f o4)* is trivial on H'(S';Z), and
so is null-homotopic. By the homotopy-lifting property of f, this means that
7 is homotopic to a map into a single fiber S — N. This map has degree
one since S represents the same homology class as N. Since S has psc, it is
rationally inessential, and so N must also be rationally inessential. Thus N
has psc; compare Theorem 5.

This completes the proof of Theorem 8. O

Remark 10. The attentive reader will have noticed the emphasis on symplec-
tic minimality in the proof of Lemma 9. Of course the manifold CP?#CP?
carries the holomorphically minimal Kéhler structures defined by higher odd
Hirzebruch surfaces. Although these are holomorphically minimal, they are
not symplectically minimal. The relation between the two notions of mini-
mality was clarified in [8].

With Theorem 8 in hand, we will complete the proof of Theorem 2 by
looking at strongly scalar-flat manifolds.

Theorem 11. Let M be a strongly scalar-flat geometrically formal closed
ortented four-manifold. Then one of the following holds:

(1) M is a rational homology sphere with finite fundamental group, or
(2) M is diffeomorphic to a flat manifold.

Proof. Since M is strongly scalar-flat, it is Ricci-flat; cf. Subsection 2.3.

As before, if by(M) > 0, then M is symplectic. In this case Theorem 6
tells us that M is flat, or a quotient of a K3 surface. In the latter case, the
quotient is by a group of order 1, 2 or 4 by Hitchin’s result [10]. Now a K3
surface and a Zs quotient of it have second Betti numbers that violate the
bound imposed by geometric formality. A quotient by a group of order 4 has
second Betti number 4 < by(T*), so this does not rule out such a quotient.
However, the signature of the quotient is —4, and so b, of this quotient is too
large for it to be geometrically formal. Thus a geometrically formal Ricci-flat
manifold with positive second Betti number is flat.

If by(M) = 0, then either by (M) = 1, or M is a rational homology sphere.
If by (M) =1, then M is an Einstein manifold with zero Euler characteristic,
and so the Gauss-Bonnet formula shows that M is flat; see for example [10].
Finally, if M is a rational homology sphere, then its Euler characteristic is
positive, and so the fundamental group is finite by the following well-known
lemma, which completes the proof of the theorem. O

Lemma 12. For a closed oriented four-manifold M with Ric > 0 the follow-
ing are equivalent:
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(1) the Euler characteristic x(M) vanishes,
(2) the first Betti number by(M) does not vanish, and
(3) the fundamental group m (M) is infinite.

Proof. This is due to Cheeger—Gromoll [3, Corollary 9.4]? and Yau [28, Corol-
lary 2].

It is clear that each statement implies the one below it. However, the last
one implies the first via the Cheeger—Gromoll splitting theorem, cf. [4], as
follows. If the fundamental group is infinite, then the universal covering of
M is non-compact, and so contains a line that splits off isometrically. This
implies that M has a finite covering that splits off a circle as a direct factor
(diffeomorphically, not necessarily isometrically), and so has vanishing Euler
characteristic. Thus (M) = 0 by multiplicativity in coverings. O

Theorems 8 and 11 together imply Theorem 2 stated in the introduction.
We now show by example that not all of the manifolds listed in that theorem
admit positive scalar curvature.

Example 13. Examples of aspherical four-manifolds that are rational, respec-
tively integral, homology spheres have been constructed by Luo [16], respec-
tively Ratcliffe-Tschantz [20]. According to Schoen—Yau [24], no aspherical
four-manifold allows a psc metric. The examples of [20] are spin and non-
positively curved. Therefore the existence of psc metrics on them is excluded
by the Gromov-Lawson [6, 7] enlargeability obstruction. Theorem 11 implies
that these manifolds are not strongly scalar-flat either, since they have infi-
nite fundamental groups. Thus they do not admit any metrics of non-negative
scalar curvature.

We saw that in dimension three all manifolds with metrics of non-negative
Ricci curvature are geometrically formal. This is no longer true in dimension
four. We have already seen the example of the K3 surface, which is Ricci-
flat but not geometrically formal. Among the del Pezzo surfaces there are
also examples of manifolds with constant positive Ricci curvature which are
not geometrically formal because their second Betti numbers are too large. If
we consider four-manifolds with positive first Betti number, then there is an
extension of Hamilton’s Theorem 7, inspired by the discussion of Bér [1]:

Proposition 14. Let M be a closed oriented four-manifold with by (M) > 0. If
M admits a metric of non-negative Ricci curvature, then M is diffeomorphic
to:

2In [3] non-negative sectional curvature is assumed. By [4] the argument extends
to Ric > 0.
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(1) an S?-bundle over T?,

(2) a mapping torus M (), where ¢ is an orientation-preserving isometry
of a spherical space form or of RP3#RP3 with their standard metrics,
or

(3) a flat manifold.

Conversely, all these manifolds admit metrics with non-negative sectional cur-
vature.

By Lemma 12, the assumption by (M) > 0 is equivalent to w1 (M) being
infinite, since we are assuming Ric > 0.

Proof. The proof proceeds by the so-called Calabi construction of flat man-
ifolds with positive first Betti number. It was observed by Yau [28] and
Fischer-Wolf [5] that this works more generally, under the assumption of
non-negative Ricci curvature.

Fix a metric g on M with Ric > 0. By the Bochner argument, all har-
monic one-forms with respect to g are parallel. Therefore the Albanese map
an: M — TUM) defined by integration of harmonic forms is a submersion
defining a smooth fiber bundle. Moreover, the metric g is a local product
metric for the orthogonal direct sum decomposition V @ H, where H are the
tangents to the orbits of the R ()_action generated by the vector fields dual
to the harmonic one-forms, and V are the tangents to the fibers of the Al-
banese map. In particular the metric g is flat on A, and all the fibers of the
Albanese carry the same induced metric. Moreover, the induced metric on
the fibers again has Ric > 0.

As in the flat, or in the geometrically formal, cases, non-negative Ricci
curvature implies that b;(M™) # n — 1. The reason is that if there are n — 1
linearly independent parallel one-forms, then the Hodge star of their wedge
product is also a parallel one-form, and is linearly independent of the other
n — 1 forms. This means that by (M™) > n — 1 implies by (M") = n.

Our four-manifold M therefore has by (M) € {1, 2, 4}. If the first Betti
number is maximal, then the Albanese is an isometry, and (M, g) is a flat T4;
cf. [11, Theorem 7]. If by (M) = 2, then the fiber of the Albanese is S or T?.
In the latter case the induced metric on 72 must be flat by Gauss-Bonnet,
and so M itself is flat.

Finally, if b (M) = 1, then the fiber of the Albanese is one of the three-
manifolds in Hamilton’s Theorem 7. If the fiber is flat, then g is flat. Moreover,
the fiber cannot be S? x S! since this has the property that every orientation-
preserving self-diffeomorphism is isotopic to the identity, and so the mapping
torus would be diffeomorphic to S? x T2, contradicting the assumption that
bi(M) = 1.
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We have now proved the first part of the proposition, except for the
restriction on the monodromy of the mapping tori in case (2). We know
that the fibers of the mapping tori are as claimed, and that the monodromy
preserves some metric with non-negative Ricci curvature on the fiber. By
Hamilton’s proof [9] of Theorem 7, the Ricci flow deforms any such metric on
a fiber to a standard metric. As the Ricci flow preserves the isometries, the
monodromy will also be an isometry for a standard metric on the fiber.

Conversely, these mapping tori have standard metrics of non-negative
sectional curvature modelled on S® x R respectively S? x R? according to
whether the fiber is a space form with geometry S2, or is RP3#RP? with
geometry S% x R. For the manifolds in (1) and (3) the converse direction is
clear, with the exception of the non-trivial S2-bundle over T72.

The non-trivial S2-bundle over 7?2 is a global isometric quotient of S? x R?
as follows; cf. Ue [27, p. 167]. Identify S? with C U {co}, and let the two
generators of Z2 act on S% by z + —z and z + 1/z, and on R? by linearly
independent translations. The resulting S?-bundle over T? has a section of
odd self-intersection, and so is non-spin. This means that it is the non-trivial
bundle. 0

This proof gives the following characterization of non-negatively curved
four-manifolds with positive first Betti number in terms of Thurston geome-
tries:

Corollary 15. For a closed oriented four-manifold M with by(M) > 0 the
following are equivalent:

(1) M admits a metric of non-negative sectional curvature,
(2) M admits a metric of non-negative Ricci curvature,
(3) M admits one of the Thurston geometries S* x R?, 5% x R or R%.

We now have all the ingredients to prove Theorem 4.

Proof of Theorem 4. Let M be a geometrically formal manifold admitting
some, possibly non-formal, metric with Ric > 0. Such a metric of course
has non-negative scalar curvature, so we are in the situation of Theorem 2.
However, the assumption Ric > 0 allows (1) and (3) to be improved.

By Lemma 12, the fundamental group is finite as soon as the first Betti
number vanishes, equivalently as soon as the Euler characteristic does not
vanish. This explains the finiteness of the fundamental group in statement
(1). The improvement in case (3) follows from Proposition 14.

For the converse direction of the theorem, we need to prove that there
are indeed formal metrics on all these manifolds, and that they can be chosen
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to have non-negative sectional curvature unless the manifold is a rational
homology sphere. On a rational homology sphere all metrics are formal. In
case (2), CP?, S? x §% and S? x T? are symmetric spaces that have standard
metrics which are both formal and with non-negative sectional curvature. By
the proof of Proposition 14, the non-trivial S2-bundle over 7 has a standard
metric modelled on S? x R2. All the harmonic forms for this metric are in
fact parallel, showing that the metric is formal. The same argument applies
to flat manifolds. Finally, the mapping tori in case (3) also have the required
metrics by the proof of Proposition 14. O

5. Higher dimensions

The classification results we obtained in dimensions three and four have ex-
tensions to higher dimensions if we assume that the first Betti number is
large enough compared with the dimension. For geometrically formal mani-
folds, or manifolds of non-negative Ricci curvature, in dimension n we have
b1 (M) < n with equality only if M is diffcomorphic to 7™. In this case any
metric that is either formal or satisfies Ric > 0 must be flat. In all other cases
bl(M) <n-— 2.

Proposition 16. Let M be a closed oriented n-manifold with by (M) = n—2.
If M admits a metric of non-negative Ricci curvature, then M is geometrically
formal.

Moreover, M is diffeomorphic to either an S*-bundle over T" 2, or to a
flat manifold. In the first case M admits a metric of positive scalar curvature,
whereas in the second case it is strongly scalar-flat.

Proof. The proof is the same as that of Proposition 14. The fiber of the
Albanese map with respect to a metric g satisfying Ric > 0 is either S? or
T?. In the second case ¢ must be flat because the induced metric on 7% is flat
by Gauss—Bonnet. In the first case M admits a psc metric. O

By the results of [11], a geometrically formal n-manifold with by (M) =
n — 2 is a surface bundle

¥ — M — T2

with the property that the fundamental group of the base acts without non-
zero invariant vectors on H!(¥;R). (The second map is the Albanese of any
formal metric.) Already for n = 3, the genus of ¥ can be any natural number.
However, if we assume that M admits some, possibly non-formal, Riemannian
metric of non-negative scalar curvature, then 3 has to be a sphere or torus.
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Theorem 17. Let M be a geometrically formal closed oriented n-manifold
with by (M) =n — 2. If M admits a metric of non-negative scalar curvature,
then:

(1) either M is flat and X is a torus, or
(2) M is an S?-bundle over T" 2.

Proof. If M is strongly scalar-flat, then it admits a Ricci-flat metric. By the
previous proposition, this metric must be flat. It follows that ¥ is T°2.

It remains to show that M cannot admit a metric of positive scalar cur-
vature if the fiber 3 of the Albanese fibration is of positive genus. So assume
g(X) > 1. Then M is aspherical, and by the homotopy exact sequence of the
Albanese fibration its fundamental group fits into an extension of the form

1 —m(8) —m(M) —Z"? —1.

Since the strong Novikov conjecture holds for m1(X), it also holds for m (M),
see Rosenberg [21, Proposition 2.5]. It follows that the aspherical manifold M
cannot have positive scalar curvature, essentially by the results of Gromov—
Lawson [7], compare also Rosenberg [21, Theorem 3.5]. O

The results of this section should have extensions to n-manifolds with
b1 (M) = n — 3 since in dimension three we have a complete understanding
of manifolds with Ric > 0, and even with non-negative scalar curvature,
compare Sections 2 and 3 above. No such extension is possible for by (M) =
n — 4, because there are just too many four-manifolds with positive scalar
curvature, and maybe even with positive Ricci curvature.
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