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Abstract: We prove that the Khovanov-Lee complex of an ori-
ented link, L, in a thickened annulus, A × I, has the structure
of a (Z ⊕ Z)–filtered complex whose filtered chain homotopy type
is an invariant of the isotopy class of L ⊂ (A × I). Using ideas of
Ozsváth-Stipsicz-Szabó [34] as reinterpreted by Livingston [30], we
use this structure to define a family of annular Rasmussen invari-
ants that yield information about annular and non-annular cobor-
disms. Focusing on the special case of annular links obtained as
braid closures, we use the behavior of the annular Rasmussen in-
variants to obtain a necessary condition for braid quasipositivity
and a sufficient condition for right-veeringness.

1. Introduction

In [26], Khovanov describes how to associate to any diagram of an oriented
link L ⊂ S3 a bigraded chain complex (C(L), ∂) whose homology is an invari-
ant of L.

In [28], Lee defines a deformation of Khovanov’s construction. Explicitly,
she constructs an endomorphism, Φ, of the Khovanov complex that anticom-
mutes with Khovanov’s differential ∂ and satisfies Φ2 = 0. The total homology
of the resulting bicomplex (C(L), ∂ + Φ) is also a link invariant, but an unin-
teresting one: it depends only on the number of components of L and their
pairwise linking numbers.

However (quoting [8]), this turns out to be very interesting! In [37], Ras-
mussen uses the structure of the Lee complex as a Z–filtered complex and its
behavior under the Lee chain maps induced by oriented link cobordisms to
define a knot invariant, s(K) ∈ 2Z,1 giving a lower bound on the 4–ball genus
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of K. Indeed, this lower bound is strong enough to yield a combinatorial proof
of the topological Milnor conjecture, first proved by Kronheimer-Mrowka [27]:
that the 4–ball genus of the (p, q) torus knot Tp,q is (p−1)(q−1)

2 , precisely what
is predicted by realizing Tp,q as the closure of a positive braid.

In a different direction, Asaeda-Przytycki-Sikora [1] and L. Roberts [38]
define a version of Khovanov homology for links L in a solid torus equipped
with an identification as a thickened annulus, A × I. This variant has come
to be known as the (sutured) annular Khovanov homology of L ⊂ A × I.
Imbedding A× I ⊂ S3 as the complement of a neighborhood of a standardly-
imbedded unknot, one can regard the Khovanov complex as a deformation of
the sutured annular Khovanov complex just as the Lee complex is a deforma-
tion of the Khovanov complex. Explicitly, one can decompose the Khovanov
differential of the complex associated to L ⊂ A × I ⊂ S3 as the sum of two
anti-commuting differentials:

∂ = ∂0 + ∂−

and thus endow the Khovanov complex with the structure of a Z–filtered com-
plex, a structure that has proven to be particularly well-suited for studying
braids and their conjugacy classes. It detects non-conjugate braids related by
exchange moves [21], detects the trivial braid conjugacy class [4], and distin-
guishes braid closures from other tangle closures [16].

The purpose of the present paper is to investigate how the algebraic struc-
ture of the Lee complex of an annular link L ⊂ A × I ⊂ S3 can be used to
extract topological information about the link. In particular, the Lee complex
of L ⊂ A×I is Z⊕Z–filtered. Choosing an orientation o on L and using ideas
of Ozsváth-Stipsicz-Szabó [34] as reinterpreted by Livingston [30], we can
then define a family of Rasmussen invariants, dt(L, o), one for each t ∈ [0, 2],
whose value at t = 0 essentially agrees with the Rasmussen invariant. This
family enjoys many of the structural features of the Heegaard-Floer Upsilon
invariant, but is invariant only up to isotopy in (A× I), not S3:

Theorem 1. Let L ⊂ (A× I) be an annular link, let o be an orientation on
L, and let t ∈ [0, 2].

(1) dt(L, o) is an oriented annular link invariant.
(2) d1−t(L, o) = d1+t(L, o) for all t ∈ [0, 1].
(3) d0(L, o) = d2(L, o) = s(L, o) − 1.
(4) Viewed as a function [0, 2] → R, dt(L, o) is piecewise linear.
(5) Suppose (L, o) and (L′, o′) are non-empty oriented annular links, and F

is an oriented cobordism from (L, o) to (L′, o′) for which each component
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of F has a boundary component in L. Then if F has a0 even-index
annular critical points, a1 odd-index annular critical points, and b0 even-
index non-annular critical points, then

dt(L, o) − dt(L′, o′) ≤ (a1 − a0) − b0(1 − t).

When (L, o) is the annular closure of a braid σ ∈ Bn equipped with its
braid-like orientation o↑ (see Subsection 3.2), we can say more. In particular,
the work of Hughes in [23] tells us that every link cobordism is isotopic to a
so-called braided cobordism (Definition 34), and this isotopy can be realized rel
boundary if the original links are already braided with respect to a common
axis. This has the following consequence for the annular Rasmussen invariants:
Corollary 2. If σ0 ∈ Bn0 and σ1 ∈ Bn1 are braids, and F is a braid-
orientable braided cobordism from σ̂0 to σ̂1 with a1 (annular) odd-index critical
points and b0 even-index (non-annular) critical points, and each component
of F has a component in σ0, then

dt(σ̂0) − dt(σ̂1) ≤ a1 − b0(1 − t).

Noting that a braided cobordism from a braid closure σ̂ to the empty link
must pass through a braided cobordism from σ̂ to the 1–braid closure 1̂1, the
above statement remains valid even when σ1 is the empty braid (in this case,
dt(σ̂1) = 0).

From the above we also obtain a bound on the so-called band rank of a
braid (conjugacy class) σ ∈ Bn (defined in [40] and denoted rkn(σ) there).
This is the smallest c ∈ Z≥0 for which σ can be expressed as a product of c
conjugates of elementary Artin generators (either positive or negative). That
is, letting σk denote the kth elementary Artin generator,

rkn(σ) := min

⎧⎨⎩c ∈ Z≥0

∣∣∣∣∣∣ σ =
c∏

j=1
ωjσ

±
ij

(ωj)−1 for some ωj , σij ∈ Bn.

⎫⎬⎭
Note that the absolute value of the writhe of σ is a lower bound for rkn(σ),
and the length of any word representing σ is an upper bound. We obtain:
Corollary 3. Let σ ∈ Bn. Then

maxt∈[0,2]

∣∣∣dt(σ̂) − dt(1̂n)
∣∣∣ ≤ rkn(σ).

Noting that dt(1̂n) = −|n(1 − t)|, this bound can be rewritten:

maxt∈[0,2] |dt(σ̂) + |n(1 − t)|| ≤ rkn(σ).
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We also obtain information about the positivity of σ̂, viewed as a mapping
class.

Explicitly, let Dn denote the unit disk in C, equipped with n distinct
marked points p1, . . . , pn. Let Δ := {p1, . . . , pn}. For convenience, we will
also mark a point ∗ ∈ ∂Dn. A braid σ is said to be quasipositive if it is
expressible as a product of conjugates of positive elementary Artin generators
(see Definition 42) and right-veering if it sends all admissible arcs from ∗
to Δ to the right (see Definition 44). Note that all quasipositive braids are
right-veering, but many right-veering braids are not quasipositive. The set of
non-quasipositive right-veering braids is of significant interest to contact and
symplectic geometers, and as yet poorly-understood (cf. [5, 36]).

As an application of Theorem 1, we obtain a necessary condition for a
braid to be quasipositive, and a sufficient condition for a braid to be right-
veering. In particular, we find that dt(σ̂, o↑) is piecewise linear, with slope
bounded above by n, the braid index of σ. Letting mt(σ̂) denote the (right-
hand) slope at t ∈ [0, 2) (see Part (4) of the detailed version of Theorem 1 in
Section 4), we find:

Theorem 4. If σ ∈ Bn is quasipositive, then mt(σ̂) = n for all t ∈ [0, 1).

Theorem 5. If mt(σ̂) = n for some t ∈ [0, 1), then σ is right-veering.

Our hope is that this will provide a new means of probing and organizing
the collection of right-veering non-quasipositive braids.

In Section 7, we provide an example of a braid whose non-quasipositivity
and right-veeringness are ensured by its annular Rasmussen invariant. We
also describe a number of other examples that give answers to some natural
questions one might ask about the effectiveness of the annular Rasmussen
invariant at detecting right-veeringness and quasipositivity.

All of our dt invariant computations were carried out using Mathematica
code written for us by Scott Morrison. His ideas and input were also instru-
mental at numerous points in the early stages of this project. At present we
have only used Morrison’s program to compute dt for braids whose length in
the standard Artin generators σ±1

i is at most 11. As a result, we have only a
few examples of braids σ ∈ Bn whose annular Rasmussen invariant has mul-
tiple slopes on the interval [0, 1). A partial explanation for lack of multiple
slope examples amongst small braids is the following quite strong constraint:

Theorem 6. Let σ ∈ Bn have writhe w.2 Then d1(σ̂, o↑) = w.
2Here (and throughout), we mean the writhe with respect to either braid-like

orientation. This is sometimes called the algebraic length or exponent sum of the
braid.
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One basic feature of the dt invariant which we do not understand is the
behaviour of dt under positive and negative stabilization. Note that, by part
(3) of Theorem 1, the values d0 and d2 are invariant under both positive and
negative stabilization; by Theorem 6, on the other hand, d1 increases by 1
under positive stabilization and decreases by 1 under negative stabilization.
We discuss this, along with the relationship to the question of the effective-
ness of transverse invariants obtained from Khovanov homology (cf. [35]) in
Section 6.

2. Algebraic preliminaries

Definition 7. Let I be a partially-ordered set. A descending I–filtration on a
chain complex C is the choice of a subcomplex Fi ⊆ C for each i ∈ I, satisfying
the property that if i ≤ i′ then Fi ⊇ Fi′.

A map f : C → C′ between two complexes with I–filtrations {Fi}i∈I and
{F ′

i}i∈I is said to be filtered if f(Fi) ⊆ F ′
i for all i ∈ I.

Definition 8. Two I–filtered chain complexes (C, ∂) and (C′, ∂′) are said to
be I–filtered chain homotopy equivalent if there exists a chain homotopy equiv-
alence between C and C′ for which all involved maps are filtered. Explicitly,
there exist filtered chain maps

f : C → C′ and g : C′ → C

and filtered chain homotopies

H : C → C′ and H ′ : C′ → C

for which

gf − 1C = H∂ + ∂H and fg − 1C′ = H ′∂′ + ∂′H ′.

The filtered complexes we consider will satisfy some additional desirable
properties.
Definition 9. A descending I–filtered complex {Fi}i∈I is said to be

• discrete if Fm/Fm′ is finite-dimensional for all m ≤ m′ and
• bounded if there exist some m,m′ ∈ I with Fm = 0 and Fm′ = C.

In what follows, whenever we mention an I–filtered complex, the reader
may assume I is either R or Z⊕Z. We shall regard Z⊕Z as a partially-ordered
set using the rule (a, b) ≤ (a′, b′) iff a ≤ a′ and b ≤ b′.

We can now make the following additional definition:
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Definition 10. A map f : C → C′ between two I–filtered complexes is said
to be filtered of degree j ∈ I if f(Fi) ⊆ Fi+j for all i ∈ I.

Very often, we obtain the structure of a (descending) I–filtration when the
underlying vector space of C is I–graded, and the differential, ∂, is monotonic
(non-negative) with respect to the grading. That is, ∂ decomposes as ∂ =∑

j≥0 ∂j , where ∂j is degree (j ≥ 0) ∈ I with respect to the I–grading on
the vector space underlying C. In this case, we will say that the I–filtration is
induced by an I–grading on C and we will call any graded basis for C a filtered
graded basis for the I–filtration. All of the filtered complexes considered in the
present work will come equipped with a distinguished filtered graded basis.

Remark 11. An I–filtered complex with a finite filtered graded basis is dis-
crete and bounded.

Definition 12. Let I be totally ordered, and suppose (C, ∂) is a discrete
descending I–filtered complex with the property that for every x �= 0 ∈ C the
set {i ∈ I | x ∈ Fi} has a maximal element. Then we will say C admits a
grading. If x �= 0, we will denote its filtration grading by

gr(x) := max{i ∈ I | x ∈ Fi}.

Remark 13. Let I be totally ordered. Not every discrete, bounded I–filtered
complex admits a grading. For example, let I = R, and consider a 1–dimen-
sional R–filtered complex with dim(Fk) = 1 for all k < 0, but dim(F0) =
0.

Remark 14. If the I–filtration on (C, ∂) is induced by an I–grading on C,
then C clearly admits a grading. Moreover, the grading of a homogeneous
element of C coincides with the definition given above.

Now let us focus on the case where C is a discrete, bounded R–filtered
complex admitting a grading. Then each nonzero homology class of H∗(C)
inherits a grading as follows (cf. [37, Sec. 3], [30, Defn. 5.1]).

Definition 15. Let C be a finite-dimensional complex endowed with a dis-
crete, bounded, R–valued filtration {Fs}s∈R admitting a grading. If η �= 0 ∈
H∗(C), then

gr(η) := max[x]=η{gr(x) ∈ R}.

Remark 16. The fact that C is finite-dimensional ensures that for every
η �= 0 ∈ H∗(C), the set {gr(x) | [x] = η} is finite, hence has a maximum
value.
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We will have particular interest in families of R–filtrations obtained from
a fixed (Z ⊕ Z)–filtered complex equipped with a filtered graded basis.

Explicitly, let C be a (descending) (Z⊕Z)–filtered complex. Then for each
θ ∈ [0, π/2] we can endow C with the structure of an R–filtered complex by
projecting to the line �θ making angle θ with the positive x–axis in the plane
containing the lattice Z⊕Z. Explicitly, for fixed θ ∈ [0, π/2] and s ∈ R, define

Fθ(C)s :=
⋃

(a,b)·(cos θ,sin θ)≥s

F(C)(a,b).

If C is equipped with a filtered graded basis B, then this filtered graded
basis will descend via the same �θ–projection as above to give a filtered graded
basis for each R–filtration {Fθ(C)s}s∈R.

If C is discrete (resp., bounded) as a (Z ⊕ Z)–filtered complex, then the
resulting R–filtration will be discrete (resp., bounded).

In particular, if C is a discrete, bounded (Z ⊕ Z)–filtered complex with a
finite filtered graded basis, and η �= 0 ∈ H∗(C), then η has a well-defined grad-
ing with respect to each R–filtration associated to θ for θ ∈ [0, π/2] as above.
In the remainder of this section, we give one concrete way to understand these
gradings.

In Definitions 17 and 18 and Lemma 19, assume C is a discrete (Z ⊕
Z)–filtered complex with a filtered graded basis B. If x ∈ C is (Z ⊕ Z)–
homogeneous with grading (a, b), and θ ∈ [0, π/2], let grθ(x) = (a, b) · (cos θ,
sin θ), as above.

Definition 17. Let x ∈ C be a cycle. Then x is said to be supported on the
subset S ⊆ (Z⊕Z) if x can be decomposed into (Z⊕Z)–homogeneous terms,
the union of whose gradings is precisely the set S. That is, we can express:

x =
∑

(a,b)∈S
x(a,b)

with gr(x(a,b)) = (a, b), x(a,b) �= 0.

Definition 18. Let η �= 0 ∈ H∗(C). Define

S(η) := {S ⊆ Z ⊕ Z | ∃ x ∈ C with [x] = η and x supported on S.}

The following lemma is immediate from the definitions.

Lemma 19. Let η �= 0 ∈ H∗(C). Then

grθ(η) = maxS∈S(η){min(a,b)∈S{(a, b) · (cos θ, sin θ)}}
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Informally, we have a number of cycles in C representing η. Each such
cycle is supported on some subset S ⊆ Z ⊕ Z, and the collection, S(η), of all
such subsets is the information we need to compute grθ(η).

The reader may find the following analogy3 useful. We can view the pro-
cess of computing the grading of η as a race, judged by θ ∈ [0, π/2]. Each
S ∈ S(η) is a competing team; its “time” (θ–grading) is determined by its
“slowest” member (minimal θ–grading among (a, b) ∈ S). The θ–grading of η
is therefore the θ–grading of the “slowest” member of the “fastest” team.

We also note:

Lemma 20. If f : C → C′ is a (Z ⊕ Z)–filtered chain homotopy equivalence
between discrete, bounded (Z⊕Z)–filtered chain complexes C, C′, then for each
θ ∈ [0, π/2],

f : {Fθ(C)s}s∈R → {Fθ(C′)s}s∈R

is an R–filtered chain homotopy equivalence. Moreover, if C, C′ have finite
filtered, graded bases then for each η �= 0 ∈ H∗(C) and each θ ∈ [0, π/2], we
have

grθ(η) = grθ(f∗(η)).

Proof. Nearly immediate from the definitions.

3. Topological preliminaries

Let A be a closed, oriented annulus, I = [0, 1] the closed, oriented unit inter-
val. Via the identification

A× I = {(r, θ, z) r ∈ [1, 2], θ ∈ [0, 2π), z ∈ [0, 1]} ⊂ (S3 = R3 ∪∞),

any link, L ⊂ A × I, may naturally be viewed as a link in the complement
of a standardly imbedded unknot, (U = z–axis ∪ ∞) ⊂ S3. Such an annular
link L ⊂ A×I admits a diagram, P(L) ⊂ A, obtained by projecting a generic
isotopy class representative of L onto A× {1/2}.

For convenience, we shall view P(L) ⊂ A instead as a diagram on S2 −
{O,X}, where X (resp., O) are basepoints on S2 corresponding to the inner
(resp., outer) boundary circles of A. Note that if we forget the data of X, we
may view P(L) as a diagram on R2 = S2 − {O} of L, viewed as a link in S3.

We will focus particular attention in the present work on annular braid
closures. Precisely, let σ ∈ Bn be an n–strand braid. Then its annular closure

3which arose in a conversation with Charlie Frohman
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is the annular link obtained by regarding the classical closure, σ̂, of the braid
as a link in the complement of the braid axis, U = z–axis ∪ ∞. That is,
σ̂ ⊂ S3 −N(U) ∼ (A× I).

We will also be interested in oriented link cobordisms between oriented
links (L, o), (L′, o′) ⊂ (A× I) ⊂ S3: smoothly properly imbedded surfaces in
F ⊂ S3 × I with

∂F =
(
(L, o) ⊂ −S3 × {0}

)
�
(
(L, o) ⊂ S3 × {1}

)
,

considered up to isotopy rel boundary. Letting (U = z–axis ∪ ∞) ⊂ S3

as above, we will refer to F as an annular cobordism (cf. [15, Appx.]) if
F ∩ (U × I) = ∅.

In this case, in any annular movie (cf. [15, Appx.]) describing F , two
non-critical annular stills separated by a single elementary string interaction
differ by a Reidemeister move, birth, death, or saddle localized away from
{O,X}. Accordingly, we will say that a planar isotopy (resp., a Reidemeister
move, birth, death, or saddle) of an annular diagram P(L) of an annular link
L ⊆ A × I is annular if the local diagram describing the move is supported
in a disk contained in S2 − {O,X}. If the local diagram cannot be made
disjoint from {O,X}, the isotopy (resp., Reidemeister move, birth, death, or
saddle) is said to be non-annular. Note that by transversality, saddle moves
(odd-index critical points of F ) may always be assumed annular, but planar
isotopies, Reidemeister moves, births and deaths (even-index critical points)
need not be. In particular, an annular birth (resp., death) is the addition
(resp., deletion) of a trivial circle, and a non-annular birth (resp., death) is
the addition (resp., deletion) of a non-trivial circle.

3.1. Annular Khovanov-Lee complex

From the data of the diagram P(L) ⊂ S2 − {O,X} of an oriented annular
link L ⊂ A× I, we will use a construction of Khovanov [26], along with ideas
of Lee [28], Rasmussen [37], Asaeda-Przytycki-Sikora [1] and L. Roberts [38]
(see also [17, 15]) to define a (Z ⊕ Z)–filtered chain complex as follows.

Begin by temporarily forgetting the data of X and construct the stan-
dard Lee complex (C, ∂Lee), (using F = C coefficients) associated to P(L) as
described in [28].

That is, choose an ordering of the crossings of P(L) and form the so-
called cube of resolutions of P(L) as described in [26, Sec. 4.2]. This cube of
resolutions determines a finite-dimensional bigraded vector space

C =
⊕
i,j∈Z

Ci,j
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along with an endomorphism called the Lee differential, ∂Lee : C → C, which
splits as a sum of two bigrading-homogeneous maps, ∂ and Φ. The first of
these is the Khovanov differential, and the second is the Lee deformation.
Each is degree 1 with respect to the “i” (homological) grading, and their
“j” (quantum) degrees are 0 and 4, respectively [28]. Khovanov [26, Prop. 8]
proves that ∂2 = 0, and Lee [28, Sec. 4] proves that Φ satisfies:

• ∂Φ + Φ∂ = 0 and
• Φ2 = 0.

The homology of the complex (C, ∂) (resp., the complex (C, ∂ + Φ)) is an
invariant of L [26, Thm. 1] (resp., [28, Thm. 4.2]).

If we now remember the data of X, we obtain a third grading on the
vector space underlying the Khovanov-Lee complex, as follows. Recall that
there is a basis for C whose elements are in one-to-one correspondence with
oriented Kauffman states (complete resolutions) of P(L) (cf. [19, Sec. 4.2]).
That is, in the language of [6], we identify a “v+” (resp., a “v−”) marking on
a component of a Kauffman state with a counter-clockwise (resp., clockwise)
orientation on that component. We now obtain a third grading on the vector
space underlying the complex by defining the “k” grading of a basis element to
be the algebraic intersection number of the corresponding oriented Kauffman
state with any fixed oriented arc γ from X to O that misses all crossings of
P(L).

Lemma 21. The Lee differential decomposes into 4 grading-homogeneous
summands:

∂Lee = (∂0 + ∂−) + (Φ0 + Φ+)

whose (i, j, k) degrees are:

• deg(∂0) = (1, 0, 0)
• deg(∂−) = (1, 0,−2)
• deg(Φ0) = (1, 4, 0)
• deg(Φ+) = (1, 4, 2)

Proof. Lee proved that ∂ (resp., Φ) are degree (1, 0) (resp., degree (1, 4)) with
respect to the (i, j) gradings, so we need only verify that each of these endo-
morphisms splits into two pieces according to their k–gradings. The details
of the splitting of ∂ is given in the proof of [38, Lem. 1] (our “j” is Roberts’
“q” grading, and our “k” is his “f” grading).

To see that Φ also splits as claimed, recall (see [38, Sec. 2]) that component
circles of a Kauffman state are either trivial (intersect the arc γ from X to O
in an even number of points) or nontrivial (intersect γ in an odd number of
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points). Correspondingly, there are 3 types of merge/split saddle cobordisms
between pairs of components of a Kauffman state:

(1) trivial + trivial ←→ trivial (even + even = even)
(2) trivial + nontrivial ←→ nontrivial (even + odd = odd)
(3) nontrivial + nontrivial ←→ trivial (odd + odd = even)

Recall from [28, Sec. 4] that for a merge cobordism, Φ is 0 on all basis
elements except the one for which both merging circles are labeled v− (Lee’s
1 is our v+ and x is our v−); this generator is sent to the one where the
merged circle is marked with a v+ (and the markings on all other circles are
preserved). It follows that the k degree of this map in cases (1), (2), and (3)
above is 0, 2, and 2 respectively. We leave to the reader the (similarly routine)
check that the k degrees of the split cobordism components of Φ in cases (1),
(2), (3) are also 0, 2, and 2.

Corollary 22. The j and j − 2k gradings on C endow (C, ∂Lee) with the
structure of a (Z ⊕ Z)–filtered complex.

Proof. For each (a, b) ∈ Z ⊕ Z, define

Fa,b := SpanF{x ∈ C | gr(j,j−2k)(x) ≥ (a, b)}.

Lemma 21 tells us that ∂Lee is non-decreasing with respect to the j and
j − 2k gradings, so Fa,b is a subcomplex for each (a, b) ∈ (Z ⊕ Z). Moreover,
(a′, b′) ≥ (a, b) ∈ Z ⊕ Z implies Fa′,b′ ⊆ Fa,b, as desired.

Definition 23. Let x be a (j, k)–homogeneous basis element of C, and let
t ∈ [0, 2]. Define

jt(x) := j(x) − t · k(x).

Corollary 24. For every t ∈ [0, 2], the jt grading endows (C, ∂Lee) with the
structure of a (discrete, bounded) R–filtered complex equipped with a finite
filtered graded basis.

Proof. Lemma 21 implies that ∂Lee is non-decreasing with respect to the jt
grading for each t ∈ [0, 2]. It follows that for each a ∈ R, the subcomplexes

Fa := SpanF{x ∈ C | jt(x) ≥ a}

endow C with the structure of an R–filtered complex. The finiteness of the
distinguished filtered graded basis implies that the R–filtration is discrete and
bounded.



400 J. Elisenda Grigsby et al.

Remark 25. Note that the jt–grading, for t ∈ [0, 2], does not exactly agree
with the grθ–grading coming from projecting to a line �θ making an angle
θ ∈ [0, π/2] with the horizontal axis, as described in Section 2. However, we
have a bijective correspondence between values t ∈ [0, 2] and angles θ ∈ [0, π/2]
given by the function θ(t) = tan−1

(
t/2

1−t/2

)
, and for a gr(j0,j2)–homogeneous

element x ∈ C, we have

grjt(x) =
√

(1 − t/2)2 + (t/2)2 grθ(t)(x).

Moreover,
√

(1 − t/2)2 + (t/2)2 > 0 for all t ∈ [0, 2], which tells us that for
each t ∈ [0, 2] the R–filtration induced by grjt is just a positive rescaling of the
R–filtration induced by grθ(t). So although the R–filtrations are not precisely
the same they are closely related.

Remark 26. It will be convenient to plot the distinguished filtered graded basis
elements of the annular Khovanov-Lee complex (C, ∂Lee) on the Z2 lattice in
R2 with axes labeled (j0, j2). Accordingly, we will often abuse notation and
refer to the jt– or k–grading of a lattice point (a, b) ∈ Z2 when we mean the
jt– or k–grading of a distinguished filtered graded basis element supported on
{(a, b)}. In particular for t ∈ [0, 2],

grjt(a, b) =
(

1 − t

2

)
a +

(
t

2

)
b,

and

grk(a, b) = a− b

2 .

We are now ready to define the annular Rasmussen invariants of an ori-
ented annular link.

Recall that if P(L) ⊆ S2−O ∼ R2 is a link diagram and o is an orientation
on L, then Lee [28, Sec. 4] (see also [37]) describes a canonical cycle so ∈
C(P(L)) whose homology class [so] ∈ HLee(L) is nonzero. Rasmussen used
the Z–filtration induced by the j grading on C to define a knot invariant
s(K) ∈ 2Z that is, essentially, the induced j grading of this nonzero homology
class:

s(K) := grj([so]) + 1 ∈ 2Z

Beliakova-Wehrli extended Rasmussen’s definition to oriented links [9]:

s(L, o) := grj([so]) + 1 ∈ Z.
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Remark 27. Beliakova-Wehrli’s oriented link invariant is insensitive to ori-
entation reversal. That is, if ō is the orientation reverse of o, then s(L, o) =
s(L, ō). Similarly, Rasmussen’s knot invariant s(K) does not depend on the
orientation of K.

If P(L) ⊆ S2 − {O,X} is an annular link diagram and o is an orientation
on L, we have a discrete R–filtration {F t(C(P(L))s}s∈R associated to each jt
grading, t ∈ [0, 2]. Accordingly, we define the annular Rasmussen invariants
as follows:

Definition 28. dt(L, o) := grjt([so]) ∈ R

There is also a natural involution Θ on (C, ∂Lee), previously described in
a slightly different context in [2, Prop.7.2, (3)] and [15, Lem. 2]):

Lemma 29. Let L ⊂ (A× I) ⊂ S3 be an annular link,

P(L) ⊂ (S2 − {O,X}) ⊂ (S2 − {O}) ∼ R2

a diagram for L, and

P ′(L) ⊂ (S2 − {X,O}) ⊂ (S2 − {X}) ∼ R2

the diagram obtained by exchanging the roles of O and X. The corresponding
map

Θ : (C(P(L)), ∂Lee) → (C(P ′(L)), ∂Lee)

is a chain isomorphism inducing an isomorphism

H∗(C(P(L), ∂Lee) ∼= H∗(C(P ′(L)), ∂Lee).

Proof. Note that on generators of C, the map Θ exchanges v± markings on
nontrivial circles and preserves markings on trivial circles of each Kauffman
state. See the proof of [15, Lem. 2]. The fact that Θ is a chain map on (C, ∂Lee)
follows from [15, Lem. 3]. Since Θ2 = 1, it is a chain isomorphism.

3.2. Annular braid closures, Plamenevskaya’s invariant, and the
sl2 action

As previously mentioned, the annular Rasmussen invariants are particularly
well-suited to studying annular braid closures equipped with their braid-like
orientations. Explicitly, let σ ∈ Bn be an n–strand braid and σ̂ ⊂ A × I its
annular closure. The braid-like orientation, o↑, of σ̂ is the one whose strands



402 J. Elisenda Grigsby et al.

all wind positively around the braid axis. Its diagram winds counterclockwise
about X in S2 − {O,X}.

When L is an annular braid closure, the canonical Lee classes associated to
the braid-like orientation o↑ and its reverse o↓ have nice descriptions in terms
of Plamenevskaya’s class [35] and an sl2 action on the annular Khovanov-Lee
complex [15, Sec. 4]. For the convenience of the reader, we briefly recall the
relevant constructions here. In what follows, let C denote the (i, j, k)–graded
vector space underlying the annular Khovanov-Lee complex associated to an
oriented annular link. All relevant background and standard notation on the
representation theory of the Lie algebra sl2 can be found in [15, Sec. 2].

As in [15, Sec. 4], let

• V := SpanC{v+, v−} denote the defining representation of sl2, with
gr(j,k)(v±) = (±1,±1),

• V ∗ := SpanC{v+, v−} its dual (where v± := v∗∓), with gr(j,k)(v±) =
(±1,±1), and

• W := SpanC{w+, w−} be the trivial two-dimensional representation,
with gr(j,k)(w±) = (±1, 0)

Now let K ⊂ S2−{O,X} be a Kauffman state (complete resolution) in the
cube of resolutions of a diagram of L ⊂ (A×I), and suppose K has �n nontriv-
ial circles and �t trivial circles. Choose any ordering C1, . . . , C�n , C�n+1, . . . ,
C�n+�t of the circles so all of the nontrivial circles are listed first. For i ∈
{1, . . . , �n} let X(Ci) ∈ {0, . . . �n − 1} denote the number of nontrivial circles
of K lying in the same component of S2 − Ci as X and define

ε(Ci) := (−1)X(Ci).

Then we assign to the Kauffman state K the sl2 representation:⎛⎝ ⊗
ε(Ci)=1

V

⎞⎠⊗

⎛⎝ ⊗
ε(Ci)=−1

V ∗

⎞⎠⊗
(

�t⊗
s=1

W

)
,

with (i, j)–grading shifts as described in [26], [6]. In [15] it is shown that the sl2
action on C commutes with a particular summand of the Lee differential and
hence can be used to endow the annular Khovanov homology of an annular
link the structure of an sl2 representation.

Now suppose L is the (oriented) annular braid closure of a braid σ ∈ Bn.
Then it is implicit in [35] (see also [18], [16, Prop. 2.5]) that the graded vector
space underlying the Khovanov-Lee complex has a unique sl2 irrep of highest
weight n and, hence (since the “k” grading on C coincides with the sl2 weight
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space grading) there is a unique generator of C whose “k” grading is −n.
This is the lowest-weight vector in the unique (n+1)–dimensional irreducible
subrepresentation of C. It is the distinguished basis element corresponding
to marking each of the circles in the all-braidlike resolution of σ̂ (i.e., the
oriented resolution for the braid-like orientation) with a v−. This is the class
Plamenevskaya denotes by ψ̃(σ̂) in [35]. We will denote it by v−.
Remark 30. Plamenevskaya shows that v− is a cycle in the Khovanov com-
plex (C, ∂), and (up to multiplication by ±1) its associated homology class
[v−] ∈ Kh(σ̂) = H∗(C, ∂) is an invariant of the transverse isotopy class of σ̂.
Note that v− is not a cycle in the Lee complex (C, ∂ + Φ).

The canonical Lee classes associated to the two braid-like orientations
have nice descriptions in terms of the Plamenevskaya class and the sl2–module
structure. In the following, recall that e(k) := ek

k! is the so-called k–th divided
power of e ∈ sl2:
Proposition 31. Let σ ∈ Bn, and let σ̂ be its an annular braid closure. If n
is even,

so↑(σ̂) =
n∑

k=0
e(k)v−

so↓(σ̂) =
n∑

k=0
(−1)ke(k)v−

If n is odd, the identifications of so↑ and so↓ with the summations on the right
are reversed.
Proof. By definition (cf. [28, Sec. 4] and [37, Sec. 2.4]), we see that so↑(σ̂) is
the cycle in the Lee complex where the outermost circle in the all-braidlike
resolution has been marked with a b, and the remaining circles are marked
alternatingly with a’s and b’s from outermost to innermost. We now compare
this description with the definition of the sl2 action on C as a tensor product
representation of copies of the defining representation V and its dual V ∗,
where circles are marked alternatingly with V and V ∗ from innermost to
outermost. Indeed, recalling that

• a = v− + v+ and b = v− − v+ and
• in the defining representation V , e(v−) = v+, while in its dual V ∗,
e(v−) = −v+

we see that if n is even, we have

so↑(σ̂) = (v− + ev−) ⊗ (v− + ev−) ⊗ . . .⊗ (v− + ev−)
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while if n is odd, we have

so↑(σ̂) = (v− − ev−) ⊗ (v− − ev−) ⊗ . . .⊗ (v− − ev−),

where in the above, the tensor product factors from left to right correspond
to markings of circles from innermost to outermost.

We now need a small bit of notation. Suppose S is a k–element subset of
{1, . . . , n}, and V1 ⊗ . . .⊗ Vn is an n–factor tensor product representation of
sl2. Then we will denote by ES the map that sends a decomposable vector
v1 ⊗ . . .⊗ vn to the decomposable vector w1 ⊗ . . .⊗ wn, where

wi =
{

evi if i ∈ S
vi if i �∈ S.

When n is even, we then see that

so↑(σ̂) =
n∑

k=0

∑
S⊆{1,...,n},

|S|=k

ES(v−),

and when n is odd, we have

so↑(σ̂) =
n∑

k=0
(−1)k

∑
S⊆{1,...,n},

|S|=k

ES(v−).

But it follows from the definition of the tensor product representation and
the fact that e2(v−) = 0 (resp., e2(v−) = 0) in V (resp., V ∗) that

ek(v−) = k!
∑

S⊆{1,...,n},
|S|=k

ES(v−),

which tells us that when n is even (resp., odd), we have so↑ =
∑n

k=0 e
(k)(v−)

(resp., so↑ =
∑n

k=0(−1)ke(k)(v−).)
Since so↓ is obtained from so↑ by replacing all a markings with b and vice

versa, the desired conclusion follows.

4. Proof of main theorem

We are now ready to state and prove a detailed version of our main theorem.
Theorem 1. Let L ⊂ (A × I) be an annular link with wrapping number ω,
let o be an orientation on L, and let t ∈ [0, 2].
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(1) dt(L, o) is an oriented annular link invariant.
(2) d1−t(L, o) = d1+t(L, o) for all t ∈ [0, 1].
(3) d0(L, o) = d2(L, o) = s(L, o) − 1.
(4) Viewed as a function [0, 2] → R, dt(L, o) is piecewise linear. Moreover,

letting

mt(L, o) := limε→0+
dt+ε(L, o) − dt(L, o)

ε

denote the (right-limit) slope at t, we have mt(L, o) ∈ {−ω,−ω +
2, . . . , ω − 2, ω} for all t ∈ [0, 2).

(5) Suppose (L, o) and (L′, o′) are non-empty oriented annular links, and F
is an oriented cobordism from (L, o) to (L′, o′) for which each component
of F has a boundary component in L. Then if F has a0 even-index
annular critical points, a1 odd-index annular critical points, and b0 even-
index non-annular critical points, then

dt(L, o) − dt(L′, o′) ≤ (a1 − a0) − b0(1 − t).

(6) Suppose (L, o), (L′, o′), and F are as in (5) above, and suppose that in
addition each component of F has a boundary component in L′. Then

|dt(L, o) − dt(L′, o′)| ≤ (a1 − a0) − b0(1 − t).

The following proposition will be crucial to the proof of our main theorem.
See the beginning of Section 3 for a discussion of annular and non-annular
elementary string interactions and [28], [37] for a description of the chain maps
on the Lee complex associated to each of these elementary string interactions.

Proposition 32. For t ∈ [0, 2], the filtered jt degree of the Lee chain map
associated to

(1) an annular elementary saddle cobordism (odd index critical point) is
−1,

(2) an annular birth/death (even index critical point) is 1,
(3) a non-annular birth/death (even index critical point) is 1 − t, and
(4) an annular Reidemeister move (product cobordism) is 0.

Proof of Proposition 32. (1) Recall ([28], [37, Sec. 2.4]) that the Lee chain
map associated to a saddle cobordism agrees with the split/merge map
involved in the definition of the Lee differential. (The only difference is
that the +1 j–grading shift for each successive (co)homological grading
in the Lee complex ensures that the Lee differential has filtered degree 0,
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not −1.) We can now appeal to Lemma 21: depending on the configura-
tion of the splitting/merging circles, the jt degree of the associated map
is −1 (resp., −1 + 2t, 3, or 3− 2t) for configurations contributing to ∂0
(resp., to ∂−,Φ0, or Φ+). Since each of these degrees is bounded below
by −1 on the interval t ∈ [0, 2], we conclude that a saddle cobordism
map has filtered degree −1.

(2) The Lee chain map associated to a cup is the map ι from [28] (ι′ from
[37]), and the map associated to a cap is the map ε from [28] (ε′ from
[37]). If the cup/cap is annular, the (j, k) degree of the map is (1, 0),
hence the jt degree is 1, as desired.

(3) If the cup/cap is non-annular, the (j, k) degree of the map is (1, 1),
hence the jt degree is 1 − t, as desired.

(4) The Lee chain maps associated to Reidemeister moves–each of which
induces an isomorphism on Lee homology–are given in [28] and [37,
Sec. 6]. If the Reidemeister move is annular, then none of the local
diagrams contain either basepoint X or O. Noting that each of these
maps is therefore a linear combination of compositions of the annular
cobordism maps described in parts (1) and (2) above (cf. [7, Proof of
Thm. 1]), it is then straightforward to check in each case that the filtered
jt degree of each of the annular Reidemeister maps is 0. As an example,
consider the map ρ′1 described in [37, Sec. 6]. If the RI move is annular,
the circle on the RHS of [37, Fig. 6] is trivial, and hence the lowest
degree term with respect to the jt grading is always 0. Note that there
are higher order terms of degree 4− 2t and 2t when the arc in the local
diagram on the LHS belongs to a nontrivial circle, and there is a higher
order term of degree 4 when the arc belongs to a trivial circle, but in
both cases the lowest degree term is 0.

Proof of Theorem 1. (1) Two diagrams representing isotopic (oriented) an-
nular links will be related by a finite sequence of annular isotopies and
annular Reidemeister moves: that is, isotopies and Reidemeister moves
of the diagram that never cross either of the marked points X, O. By
Lemma 20, it will therefore suffice to show that the chain maps on the
Lee complex associated to each annular Reidemeister move induces a
Z ⊕ Z–filtered chain homotopy equivalence.
In [7, Proof of Thm. 1], Bar-Natan explicitly defines chain maps and
chain homotopies yielding homotopy equivalences associated to each
Reidemeister move of the formal complexes associated to links over
the category Cob3/l(∅). These yield chain homotopy equivalences of the
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corresponding Lee complexes, by viewing Bar-Natan’s maps as mor-
phisms in the category Cob1(∅) described in [8, Sec. 2] and then apply-
ing the functor Hom(∅,−). Moreover, after applying the functor, the
chain maps agree with those defined by Lee [28] (see also [37, Sec. 6]).
We already confirmed in Proposition 32, part (4), that these chain maps
are, indeed, degree 0 with respect to the jt grading, for t = 0, 2.
It therefore remains to verify that each of the chain homotopies Bar-
Natan defines in this way has filtered degree 0 with respect to the jt
grading, for t = 0, 2. Just as in the proof of Proposition 32, the relevant
observation here is that if a Reidemeister move is annular, then none
of the local diagrams in [7, Figs. 5,6,7] contain either basepoint X or
O. This will insure that the lowest degree term of each chain homotopy
with respect to the jt grading is 0.
For example the chain homotopies associated to the annular Reidemeis-
ter II move, pictured in [7, Fig. 7], are scalar multiples of the maps ι′

and ε′, respectively. They therefore have j degree 0 (once we account
for the +1 j–grading shifts in the successive homological gradings of
the complex) and k degree 0 (because the X and O basepoints are not
present in the local diagram).
Note that Bar-Natan’s proof of the homotopy equivalence of complexes
related by a Reidemeister III move is slightly indirect, but again each
of the maps involved in [7, Lem. 4.4, 4.5] have filtered jt degree 0 for
t = 0, 2 when the Reidemeister III move is annular, since the basepoints
O and X are absent from the local diagrams.

(2) The involution Θ described in Lemma 29 induces a Z/2Z symmetry
on CLee that exchanges the roles of the j1−t and j1+t gradings for all
t ∈ [0, 1]. That is, for each distinguished filtered graded basis element
x ∈ CLee, Θ(x) is also a distinguished filtered graded basis element,
and grj1−t

(Θ(x)) = grj1+t
(x) for all t ∈ [0, 1]. This fact follows from

(the proof of) [15, Lem. 2], noting (cf. [15, Rmk. 2]) that the j′ grading
there matches our j1 grading.4 Moreover, from the definitions of Θ and
the canonical Lee generator so associated to an orientation o one readily
verifies that Θ(so) = ±so.
It follows that if η ∈ CLee(L, o) (resp., Θ(η)) is a cycle in CLee(L, o) rep-
resenting [so] and realizing its j1−t grading (that is, j1−t(η) = j1−t[so]),
then Θ(η) ∈ CLee(L, o) (resp., η) also represents ±[so] and realizes its
j1+t grading. So d1−t(L, o) = d1+t(L, o) for all t ∈ [0, 1], as desired.

4Indeed, recalling that CLee is an sl2 representation, the Z/2Z symmetry on CLee

is a manifestation of the symmetry in sl2 coming from exchanging the roles of e
and f . See [15, Lem. 5].
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(3) Let (L, o) ⊂ A×I ⊂ S3 be an oriented link. By definition (cf. [37, Defn.
3.4], [9, Sec. 6]),

s(L, o) = 1
2
(
grj [s(L, o) − s(L, o)] + grj [s(L, o) + s(L, o)]

)
.

Moreover, we know:

•
∣∣∣grj [s(L, o) − s(L, o)] − grj [s(L, o) + s(L, o)]

∣∣∣ = 2 and

• grj [s(L, o)] = grj [s(L, o)] = min
{
grj [s(L, o)−s(L, o)], grj [s(L, o)+

s(L, o)]
}
.

So d0(L, o) = s(L, o)− 1, as desired. It follows from part (2) above that
d2(L, o) = s(L, o) − 1 as well.

(4) Note that CLee has a distinguished finite basis B that is homogeneous
with respect to the (j, k) gradings, hence with respect to the (j0, j2)
gradings. Moreover, since the Lee differential is monotonic
(non-decreasing) with respect to the (j0, j2)–grading, B is a filtered
graded basis for an induced Z ⊕ Z–filtration on CLee. As in Section
2 we can therefore plot the generators of CLee on Z ⊕ Z ⊂ R2, with
axes labeled (j0, j2) and consider, for the canonical Lee class [so] �= 0 ∈
H∗(CLee), the set S([so]) of subsets of S ⊂ Z⊕ Z for which there exists
a representative of [so] supported on S (see Defns. 17, 18). Since B is
finite, S(η) is necessarily finite for each η �= 0 ∈ H∗(CLee).
Exactly as in Lemma 19,5 we see that for each η �= 0 ∈ H∗(CLee) and
each t ∈ [0, 2],

grjt(η) = max
S∈S(η)

{
min

(a,b)∈S

{
a− t

(
a− b

2

)}}
.

Now fix η �= 0 ∈ H∗(CLee) and consider the behavior of grjt(η) as
t ∈ [0, 2] varies. For each (a, b) ∈ Z⊕Z, the function a−t

(
a−b
2

)
is linear

in t. Moreover, each S ∈ S(η) contains finitely many (a, b) ∈ Z ⊕ Z, so
the function min(a,b)∈S{a− t

(
a−b
2

)
} is piecewise linear in t ∈ [0, 2] with

finitely many discontinuities. Finally, there are finitely many S ∈ S(η),
so the function maxS∈S(η)

{
min(a,b)∈S

{
a− t

(
a−b
2

)}}
is also piecewise

linear with finitely many discontinuities. This proves the first part of
the statement.

5Note that we have plotted x ∈ B on the (j0, j2) lattice, so if x ∈ B is associated
to lattice point (a, b) ∈ Z ⊕ Z, then grj(x) = a and grk(x) = a−b

2 .
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To prove the second part of the statement, we note that by the discus-
sion above, mt(L, o) is always equal to −a−b

2 for some (a, b) ∈ S, S ∈
S([so]). But any chain x ∈ CLee supported in lattice point (a, b) ∈ Z2

has grk(x) = a−b
2 . Moreover, for a link L with wrapping number ω, the

k–gradings of distinguished basis elements of CLee(L, o) lie in the set
{−ω,−ω + 2, . . . , ω − 2, ω} (cf. [19, Sec. 4.2]). This proves the second
statement.

(5) Suppose F is an orientable cobordism from (L, o) to (L′, o′) for which
each component of F has a boundary component in (L, o). Then F has
no closed components, and the orientation on F is uniquely determined
by the orientation o on L. Hence, by [37, Prop. 4.1], the map φF on
Lee homology induced by F sends [so] to a nonzero multiple of [so′ ].
Now fix t ∈ [0, 2] and let x ∈ CLee(L) be a cycle representing [so] for
which grjt(x) = grjt [so]. Perturb F slightly so it is Morse, with a0 even-
index annular critical points, a1 odd-index annular critical points, and
b0 even-index non-annular critical points.6 By Proposition 32, we then
have

grjt(φF (x)) = dt(L, o) + a0 − a1 + b0(1 − t),

so since [φF (x)] = c[so′ ] for c �= 0, we have grjt(φF (x)) ≤ grjt [so′ ] =
dt(L′, o′), so

dt(L, o) − dt(L′, o′) ≤ (a1 − a0) − b0(1 − t).

(6) Apply part (5) to the cobordism from (L′, o′) to (L, o) obtained by
running F in reverse. Since the parity of the index of the critical points
doesn’t change, we get the other inequality:

dt(L′, o′) − dt(L, o) ≤ (a1 − a0) − b0(1 − t).

Remark 33. Implicit in the proof of part (4) of Theorem 1 is the observation
that mt(L, o) is −1 times the k–grading of a lattice point (a, b) that determines
the jt grading of [so]. That is,

mt(L, o) = −a− b

2

for a lattice point (a, b) satisfying grjt(a, b) = grjt [so]. Moreover, (a, b) ∈ S
for some S ∈ S([so]), and grjt(a, b) is minimum among all lattice points in S.

6Note that by transversality all odd-index critical points are necessarily annular.
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As we will have particular interest in annular and non-annular cobordisms
between annular braid closures, we recall the following definition, made by
Hughes, generalizing a notion due to Kamada [24] and Viro [42] (see also
Rudolph [40]).

Definition 34. [23] A braided cobordism is a smoothly, properly embedded
surface

F ⊂ S3 × [0, 1]

on which the projection pr2 : S3 × [0, 1] → [0, 1] restricts as a Morse function
with each regular level set F ∩ (S3 × {t}) a closed braid in S3 × {t}.

Remark 35. As noted in [23, Sec. 2.2], a singular still of a movie presenta-
tion of a braided cobordism F will change the diagram by one of:

(1) Addition or deletion of a single loop around X disjoint from the rest of
the diagram,

(2) Addition or deletion of a single crossing between adjacent strands in the
braid diagram,

(3) A single braid-like Reidemeister move of type II or III.

Definition 36. We will say that a braided cobordism F from σ̂0 = F ∩ (S3 ×
{0}) to σ̂1 = F ∩ (S3 × {1}) is braid-orientable if it admits an orientation
compatible with the braid-like orientations of σ̂0 and σ̂1.

Corollary 2. (1) If σ0 ∈ Bn0 and σ1 ∈ Bn1 are braids (n0 ∈ Z+, n1 ∈
Z≥0), and F is a braid-orientable braided cobordism from σ̂0 to σ̂1 with
a1 odd-index (annular) critical points and b0 even-index (non-annular)
critical points, and each component of F has a component in σ0, then

dt(σ̂0) − dt(σ̂1) ≤ a1 − b0(1 − t).

(2) If σ0, σ1 are as above, and in addition each component of F has a com-
ponent in σ1, then

|dt(σ̂0) − dt(σ̂1)| ≤ a1 − b0(1 − t).

Note that Hughes has proved in [23] that every link cobordism between
braid closures is isotopic rel boundary to a braided cobordism.

In [40], Rudolph studies oriented ribbon-immersed surfaces in S3 bounded
by braids realizable as products of bands. Recall that algebraically a band is
a conjugate of an elementary Artin generator, and a band presentation of a
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braid σ is an explicit decomposition:

σ =
c∏

j=1
ωjσ

±
ij

(ωj)−1.

The nomenclature is justified by Rudolph’s observation that if σ ∈ Bn can
be written as a product of c bands, then the closure of σ bounds an obvious
ribbon-immersed surface in S3 with one disk (0–handle) for each strand of
the braid and one band (1–handle) for each term in the product. There is
then an obvious push-in to B4 of this surface that is ribbon–i.e., Morse with
respect to the radial function with no critical points of index 2.

Recall (see [40]) that the band rank of a braid (conjugacy class) σ ∈ Bn,
denoted rkn(σ) is the smallest c ∈ Z≥0 for which σ can be expressed as a
product of c conjugates of elementary Artin generators (either positive or
negative). That is, letting σk denote the kth elementary Artin generator,

rkn(σ) := min
{
c ∈ Z≥0

∣∣∣∣∣ σ =
c∏

j=1
ωjσ

±
ij

(ωj)−1 for some ωj , σij ∈ Bn.
}

We obtain:
Corollary 3. Let σ ∈ Bn. Then

maxt∈[0,2]

∣∣∣dt(σ̂) − dt(1̂n)
∣∣∣ ≤ rkn(σ).

Noting that dt(1̂n) = −|n(1 − t)|, this bound can be rewritten:

maxt∈[0,2] |dt(σ̂) + |n(1 − t)|| ≤ rkn(σ).

Proof. If rkn(σ) = c, there is an obvious braided cobordism from σ̂ to 1̂n with
c odd-index critical points. This is the cobordism whose movie performs the
oriented resolution at each of the elementary Artin generators anchoring each
of the c bands of σ. It is oriented compatibly with the braid-like orientations
of σ̂ and 1̂n, and every component of the cobordism has boundary in both σ̂
and 1̂n. Appealing to Corollary 2 we then obtain∣∣∣dt(σ̂) − dt(1̂n)

∣∣∣ ≤ rkn(σ)

for each t ∈ [0, 2], hence

maxt∈[0,2] |dt(σ̂) + |n(1 − t)|| ≤ rkn(σ),

as desired.
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Remark 37. Note that when the maximum value of the distance of dt(σ̂)
occurs at t = 0, 1, 2, then the above bound on band rank mostly follows from
previously known results. In particular, we know that the absolute value of the
writhe of σ is a lower bound for rkn(σ). The fact that d1(σ̂) agrees with the
writhe of σ̂ then gives the bound at t = 1. By work of Rasmussen [37] and
Beliakova-Wehrli [9] we know that if o is an orientation on a link L and χ(L)
is the maximal Euler characteristic among all smoothly imbedded orientable
surfaces S ⊂ B4

• bounded by L,
• oriented compatibly with the orientation o, and
• for which every connected component of S has a boundary in L,

then s(L, o) − 1 ≤ −χ(L). Then by Rudolph’s construction of a ribbon-
imbedded surface of Euler characteristic n − c when σ ∈ Bn is written as
the product of c bands we obtain the bound d0(σ̂) = s(σ̂) − 1 ≤ −n + c.

We close this section by noting that in [40, Sec. 3] Rudolph proves the
amazing fact that if S is a ribbon-immersed orientable surface in S3, then it is
isotopic to a banded, braided surface of Euler characteristic n− c constructed
as above (from the closure of an n–strand braid realized as the product of c
bands). Rudolph’s result has the following interesting corollary:

Corollary 38. [40] If K ⊂ S3 is ribbon (i.e., it bounds a smoothly imbedded
disk in B4, Morse, with no maxima) then for some n ∈ N there exists a braid
σ ∈ Bn with K = σ̂ and rkn(σ) = n− 1.

Rudolph’s result suggests that if one has a braid conjugacy class invari-
ant (like ours) yielding a lower bound on band rank, along with a concrete
understanding of how the invariant changes under Markov stabilization and
destabilization, then one may be able to extract from it an effective ribbon
obstruction.

5. Properties of annular Rasmussen invariant and
applications

In this section, we will focus our attention on annular braid closures. In par-
ticular, we use properties of the annular Rasmussen invariants dt(σ̂, o↑), which
we shall abbreviate to dt(σ̂), to study braids as mapping classes. We begin
with a few definitions.

Let Dn denote the standard closed unit disk in C equipped with a set, Δ =
{p1, . . . , pn}, of n distinct marked points in Dn \ ∂Dn which for convenience
we assume to be arranged in increasing order of index from left to right on
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the real axis. We will denote by σi the standard positive elementary Artin
generator of Bn. Subject to the identification of Bn with π0(Diff+(Dn)), the
mapping class group of Dn, σi is the positive (counterclockwise) half-twist
about a regular neighborhood of the subarc of the real axis joining pi to pi+1.
Definition 39. We will say that γ : [0, 1] → Dn is an admissible arc from
γ(0) to γ(1) if it satisfies

(1) γ is a smooth imbedding transverse to ∂Dn,
(2) γ(0) ∈ {−1, p1, . . . , pn} and γ(1) ∈ {−1, p1, . . . , pn} \ {γ(0)},
(3) γ(t) ∈ Dn \ (∂Dn ∪ {p1, . . . , pn}) for all t ∈ (0, 1), and
(4) dγ

dt �= 0 for all t ∈ [0, 1].

We will often abuse notation and use γ to refer to the image of γ in Dn.
We also note that via its identification with the mapping class group of Dn,
Bn acts on the set of isotopy classes of admissible arcs. If γ represents an
isotopy class of admissible arcs, we will denote the image of γ under σ by
(γ)σ.
Definition 40. Two admissible arcs γ, γ′ are said to be pulled tight if they
satisfy one of:

• γ = γ′, or
• γ and γ′ intersect transversely, and if t1, t2, t

′
1, t

′
2 ∈ [0, 1] satisfy the

property that γ([t1, t2]) ∪ γ′([t′1, t′2]) bounds an imbedded disk A ⊂ Dn,
then A ∩ {p1, . . . , pn} �= ∅ (i.e., γ and γ′ are transverse and form no
empty bigons).

Note that if γ, γ′ are admissible arcs, there exist admissible arcs δ, δ′

isotopic to γ, γ′, resp., such that δ, δ′ are pulled tight (cf. [12, Chp. 10]).
Definition 41. Let γ, γ′ be two admissible arcs in Dn from γ(0) = γ′(0).
We say γ is right of γ′ if, when pulled tight via isotopy, either γ = γ′ or
the orientation induced by the tangent vectors dγ

dt t=0,
dγ′

dt t=0 agrees with the
standard orientation on D ⊂ C.
Definition 42. [39] A braid σ ∈ Bn is said to be quasipositive if

σ =
c∏

j=1
wjσijw

−1
j

for some choice of braid words w1, . . . , wc.
Remark 43. A quasipositive braid is one that is expressible as a product of
positive half-twists about regular neighborhoods of arbitrary admissible arcs in
Dn connecting pairs of points in Δ.
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Definition 44. [20, 4] A braid σ is said to be right-veering if, for each ad-
missible arc γ from −1 ∈ C to Δ, (γ)σ is right of γ when pulled tight.

Remark 45. Every quasipositive (QP) braid is right-veering (RV). This can
be seen directly, but also follows immediately from [35, Cor. 1] and [4, Prop.
3.10]. It is immediate from the definitions that the set of quasipositive braids
forms a monoid in the braid group, as does the set of right-veering braids (cf.
[14]). Moreover, Orevkov has proved that membership in the set of quasiposi-
tive braids is a transverse invariant [31]. On the other hand, membership in
the set of right-veering braids is not a transverse invariant. Indeed, it is shown
in [35] (see also [20]) that any braid is conjugate to one with a right-veering
positive stabilization.

The following lemma, relating the jt gradings of canonical Lee homology
classes associated to opposite orientations of the same link, will be important
for our applications.

Lemma 46. Let (L, o) ⊂ A × I be an oriented annular link. Then for all
t ∈ [0, 2],

dt(L, o) = dt(L, o) = min{grjt [x] | [x] ∈ SpanF{[so], [so]}}.

Proof. As proved in [37, Lem. 3.5, Cor. 3.6], the Lee complex of a link splits
into two subcomplexes according to the remainder of the j–grading mod 4,
and the classes s+ = so − so and s− = so + so lie in different subcomplexes.
An argument analogous to the one Rasmussen uses to prove that smin =
s([so]) = s([so]) will then tell us that for each t ∈ [0, 2], one of s± has minimum
jt grading among all classes in SpanF{[so], [so]} (the other has maximum jt
grading), and grjt [so], grjt [so] both agree with this minimum.

Explicitly, if L ⊆ A × I is an annular link of � components, recall that
the wrapping number, ω, is defined to be the minimum geometric intersection
number of L with a meridional disk of A × I, where this minimum is taken
among all isotopy class representatives of L.

We can now define two subcomplexes of the annular Khovanov-Lee com-
plex, which coincide with those Rasmussen defines.

First, let

Le := {(a, b) ∈ Z2 | a ≡ � mod 4 and b ≡ � + 2ω mod 4},
Lo := (2, 2) + Le.

Note that Le ∩ Lo = ∅.
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Now plot the annular Khovanov-Lee complex on the Z2 lattice according
to (j0, j2) gradings of its distinguished basis (see Remark 26) and note that
since

• the j0 grading of a distinguished basis element agrees mod 2 with � (cf.
[28], [37]) and

• the j0 − j2 = 2k grading of a distinguished basis element agrees mod 4
with 2n (cf. [38]),

the Khovanov-Lee complex is supported in Le∪Lo. Moreover, the fact (Lemma
21) that the Lee differential preserves both the j0 and j2 gradings mod 4 tells
us that the annular Khovanov-Lee complex splits as a direct sum of the two
subcomplexes Ce and Co supported on Le and Lo, respectively.

Indeed, by forgetting the j2 grading, we see that Ce and Co coincide with
the subcomplexes Rasmussen defines in [37, Lemma 3.5]. In particular, s+ is
contained in one of the two subcomplexes, and s− is contained in the other.

But now notice that the fact that Le and Lo are disjoint ensures that their
projections to any line of irrational slope must also be disjoint. This tells us
that for any t �∈ Q,

grjt [s+] �= grjt [s−].
This in turn implies that for any t �∈ Q,

grjt [so] = grjt [so] = min{grjt [s+], grjt [s−]}.

By continuity of dt with respect to t, the result follows for all rational t
as well. That is, for all t ∈ [0, 2],

dt(L, o) = dt(L, o) = min{grjt [x] | [x] ∈ SpanF{[so], [so]},

as desired.

Lemma 47. Let σ ∈ Bn have writhe w. Then

−n|1 − t| + w ≤ dt(σ̂)

for all t ∈ [0, 2].

Proof. When t ∈ [0, 1], we calculate grjt(so↑(σ̂)) = (−n + w) − t(−n), so

grjt(so↑(σ̂)) = −n(1 − t) + w ≤ grjt([so↑(σ̂)]) = dt(σ̂),

as desired. The extension of the bound to t ∈ [1, 2] follows from Theorem 1,
part (2).
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Remark 48. Lemma 47 recovers the Plamenevskaya-Shumakovitch
“s–Bennequin inequality” ([35, Prop. 4], [41, Lemma 1.C.]) when t = 0. That
is:

sl(σ̂) ≤ s(σ̂) − 1
where sl(σ̂) = −n + w is the self-linking number of the transverse link repre-
sented by σ̂. See Section 6.

The “s–Bennequin bound” is sharp for quasipositive braid closures (im-
plicit in [35, Rmk. 2], explicit in [41, Prop. 1.F.]). Indeed, this argument can
be extended to show:

Theorem 4. If σ is a quasipositive braid of index n and writhe w ≥ 0, we
have

dt(σ̂) = −n|1 − t| + w

for all t ∈ [0, 2].

Proof. Lemma 47 gives us the lower bound

−n|1 − t| + w ≤ dt(σ̂).

To obtain the upper bound, note that if σ̂ is quasipositive, there is an oriented
(annular) cobordism F from σ̂ to 1̂n obtained by performing an orientable
saddle cobordism near each quasipositive generator of σ as in [35, Fig. 7], and
each component of this cobordism has a boundary on σ̂. An easy computation
using the crossingless diagram for 1̂n tells us that dt(1̂n) = −n|1− t|, so part
(5) of Theorem 1 tells us:

dt(σ̂) ≤ −n|1 − t| + w,

as desired.

Theorem 4 above provides an obstruction to a braid conjugacy class being
quasipositive. Unfortunately, Theorem 6 tells us that this obstruction is no
more sensitive than the one coming from the sharpness of the s–Bennequin
bound.

Theorem 6. Let σ ∈ Bn have writhe w. Then d1(σ̂) = w.

Proof. Let D be a diagram of an annular braid closure σ̂ ⊆ A × I and let C
denote the graded vector space underlying the Lee complex. Following [28]
and [37], we note that the vector space, C, is generated by resolutions of D
whose circles are labeled by a or b, where a = v− + v+ and b = v− − v+.
Indeed the set of a/b markings of resolutions of D forms a basis for C.7 For
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the purposes of this proof, let us denote the set of these generators by S. We
will consider a partition of S into three subsets:

• S1 = {so↑}
• S2 = {x ∈ (S \ S1) | x is a labeling of the braid-like resolution of D}
• S3 = S \ (S1 ∪ S2)

Recall that the braid-like resolution of D is the oriented resolution for the
braid-like orientation, o↑. Corresponding to this partition of S, there is a direct
sum decomposition of C into subspaces: C = V1⊕V2⊕V3 with Vi = Span(Si).

Let

p : C → V1 ⊕ V2

q : V1 ⊕ V2 → V1

denote the projection maps. Note that p and q satisfy the following properties.

(1) With respect to the j1–grading on C, p is a grading-preserving map of
graded vector spaces.

(2) q ◦ p is a chain map.
(3) (q ◦ p)(so↑) = so↑ .

We can now prove the following claims.

Claim 49. If z ∈ C is a cycle satisfying [z] = [so↑ ], then p(z) �= 0 ∈ C.

Proof. Let z be a cycle representing [so↑ ]. Then we can write

z = so↑ + ∂Lee(x)

for some x ∈ C, and hence

(q ◦ p)(z) = (q ◦ p)(so↑) + (q ◦ p)(∂Leex) = so↑ + ∂Lee(q ◦ p)(x)

by properties 2 and 3. Thus [(q ◦ p)(z)] = [so↑ ], and since [so↑ ] is nonzero, this
shows that (q ◦ p)(z) and hence p(z) is nonzero.

Claim 50. d1(σ̂) ≤ w.

Proof. Let z be a representative of [so↑ ] for which grj1(z) = grj1 [s↑]. Then p(z)
is nonzero by Claim 49, and since all elements in V1 ⊕V2 have gr(j1) = w, we

7This is not a filtered graded basis for the (Z ⊕ Z)–filtered complex (C, ∂Lee),
but it is a basis.
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have grj1(p(z)) = w. Since p is graded as a map of j1–graded vector spaces,
this implies8

d1(σ̂) = grj1(z) ≤ grj1(p(z)) = w.

On the other hand,

d1(σ̂) = grj1 [so↑ ] ≥ grj1(so↑) = w,

so
d1(σ̂) = w,

as desired.

Corollary 51. If σ ∈ Bn has writhe w, then

dt(σ̂) = −n|1 − t| + w iff sl(σ̂) = s(σ̂) − 1.

Proof. Recalling that sl(σ̂) = −n + w, the forward implication follows from
setting t = 0 and applying part (3) of Theorem 1. The reverse implication
follows from Theorem 6 and part (4) of Theorem 1. In particular, dt(σ̂) is
piecewise linear, and mt(σ̂) ≤ n for all t ∈ [0, 2]. But if d0(σ̂) = −n + w, and
d1(σ̂) = w, then mt(σ̂) = n for all t ∈ [0, 1]. Part (2) of Theorem 1 completes
the argument.

We also have a sufficient condition for a braid conjugacy class to be right-
veering, given by the following.

Theorem 4. Let σ ∈ Bn. If mt0(σ̂) = n for some t0 ∈ [0, 1), then σ is
right-veering.

Proof. We will prove the contrapositive: that if σ is not right-veering, then
mt0(σ̂) < n for all t0 ∈ [0, 1).

If σ is not right-veering, then [22, Cor. 16] tells us that κ(σ̂) = 2. Recall
from [22, Defn. 1] that

κ(σ̂) := n + min{c | ψ(σ̂) = 0 ∈ H∗(Fc)},

where here ψ(σ̂) ∈ Kh(σ̂) is Plamenevskaya’s invariant, and Fc is the sub-
complex of the Khovanov complex generated by distinguished basis elements
whose k–grading is at most c. That is, letting CKh denote the graded vector

8From the point of view of the “racing team” analogy from the end of Section 2,
this implication is clear: If the speed of a team is equal to the speed of its slowest
member, then you will never reduce the speed of the team by removing a member.
(Unless you remove the last member of the team.)
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space underlying the Khovanov complex associated to (an annular diagram
for) σ̂ ⊆ A× I:

Fc := SpanF{x ∈ CKh | grk(x) ≤ c}.
Now consider the Lee complex CLee(σ̂), plotted on the (j0, j2) lattice. It

is helpful to note that in the plane spanned by this lattice:

• vertical lines have constant j grading,
• slope 1 lines (i.e., those along which grj0−grj2 is constant) have constant
k grading, and

• slope −1 lines (i.e., those along which grj0 + grj2 is constant) have
constant j1 grading.

Plamenevskaya’s cycle v− has j grading −n+w and k grading −n, hence
is supported in lattice point (−n + w, n + w). Moreover, v− is the unique
distinguished basis element whose k grading is −n, so the lattice point con-
taining v− is the only lattice point (a, b) ∈ Z2 containing a distinguished basis
element and satisfying grk(a, b) = −a−b

2 = n.
Now suppose (aiming for a contradiction) that mt0 = n for some t0 ∈

[0, 1). Then by the above observation there exists some cycle ξ ∈ CLee satis-
fying:

• [ξ] = [so↑ ] ∈ H∗(CLee),
• ξ = cv−+ξ′ for some c �= 0, with ξ′ supported in Z2\{(−n+w, n+w)},

and
• grjt0 (ξ) = grjt0 ([so↑ ]).

But we also know that κ(σ̂) = 2; i.e., there exists a chain θ in CKh = CLee,
the graded vector space underlying the annular Lee complex, satisfying:

• (∂0 + ∂−)(θ) = v− and
• grk(θ) ≤ −n + 2

Moreover, since

• degk(∂0) = 0,
• deg(j,k)(∂−) = (0,−2), and
• F−n is 1–dimensional, generated by v−,

we know that θ is supported in (j0, j2) lattice point (−n+w, n+w− 4), and
∂0(θ) = 0.

Recall (see the proof of part (4) of Theorem 1) that mt0(σ̂) = n implies
that

min
(a,b)∈supp(ξ)

{grjt0 (a, b)} = grjt0 (v−),
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and we calculate that

grjt0 (v−) = (−n + w)
(

1 − t0
2

)
+ (n + w)

(
t0
2

)
.

There are now two possibilities:

(1) There exists (a′, b′) ∈ supp(ξ′) for which

grjt0 (a
′, b′) = grjt0 (v−) = (−n + w)

(
1 − t0

2

)
+ (n + w)

(
t0
2

)
.

(2) There does not exist such an (a′, b′) ∈ supp(ξ′), which implies that

a′
(

1 − t0
2

)
+ b′

(
t0
2

)
> (−n + w)

(
1 − t0

2

)
+ (n + w)

(
t0
2

)
for all (a′, b′) ∈ supp(ξ′).

In Case (1), there exists δ > 0 for which grjt(a′, b′) < grjt(−n+w, n+w)
for all t ∈ (t0, t0 + δ), which tells us that grjt(ξ) �= grjt(v−) for t ∈ (t0, t0 + δ),
contradicting the assumption that

mt0(σ̂) = mt0(−n + w, n + w) = n.

In Case (2), consider ξ′′ := ξ − (∂ + Φ)(cθ), which satisfies [ξ′′] = [ξ] =
[so↑ ] ∈ H∗(CLee, ∂Lee). Recalling the degrees of ∂−,Φ0, and Φ+ (Lemma 21),
let

S := supp(ξ′′) ⊆ supp(ξ′) ∪ {(−n + w + 4, n + w − 4), (−n + w + 4, n + w)}.

One now easily verifies (cf. Figure 1) that

grjt0 (ξ
′′) = min

(a,b)∈S

{
a

(
1 − t0

2

)
+ b

(
t0
2

)}
is strictly greater than grjt0 (v−), contradicting the assumption that grjt0 (ξ) =
grjt0 [so↑ ].

On the other hand, the possible subsets of [0, 1) upon which mt(σ̂) = n
is severely constrained by Theorem 6:

Proposition 52. Let σ ∈ Bn have writhe w. If mt0(σ̂) = n for some t0 ∈
[0, 1), then mt(σ̂) = n for all t ∈ [t0, 1).
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Figure 1: If σ ∈ Bn has writhe w and κ(σ̂) = 2, there exists θ ∈ CLee(σ̂) with
grj0(θ) = grj0(v−) = −n + w and grk(θ) = −n + 2 with ∂(θ) = ∂−(θ) = v−.
But this implies that for each t ∈ [0, 1), the jt–grading of a class ξ representing
[so↑ ] with nontrivial projection to Span{v−} can be improved by subtracting
an appropriate multiple of (∂ + Φ)(θ). In the language of the “racing team”
analogy of Section 2, the team members Φ0(θ) and Φ+(θ) are “faster” than
∂−(θ), regardless of which jt is the judge. So a team can always be improved
by replacing ∂−(θ) = v− by Φ0(θ) and Φ+(θ).

Proof. As in the proof of Theorem 5, we observe that there is a unique dis-
tinguished basis vector, v−, with k–grading −n. In view of Remark 33, this
implies that if mt0(σ̂) = n, then

jt0([so↑(σ̂)]) = jt0(v−) = (−n + w) + nt0.

But Theorem 6, combined with the fact (part (4) of Theorem 1) that mt(σ̂) ≤
n for all t ∈ [0, 2] then implies that mt(σ̂) = n for all t ∈ [t0, 1), as desired.

The annular Rasmussen invariants are additive under horizontal compo-
sition:
Proposition 53. Let (L, o), (L′, o′) ⊂ A× I, and let (L, o)� (L′, o′) ⊂ A× I
denote their annular composition, as in Figure 2. Then for all t ∈ [0, 2],

dt((L, o) � (L′, o′)) = dt(L, o) + dt(L′, o′).
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Figure 2: A diagram of the annular composition of two links L,L′ ⊂ A × I
is formed by identifying the inner boundary of the annulus containing (a di-
agram of) L (in blue) with the outer boundary of the annulus containing
(a diagram of) L′ (in red).

Proof. As Z ⊕ Z–filtered complexes,

CLee(L� L′) = CLee(L) ⊗ CLee(L′).

Moreover, so�o′ is so ⊗ so′ (resp., so ⊗ so′) when the wrapping number, ω, of
L is even (resp., odd). Appealing to Lemma 46, this implies (cf. [34, Prop.
1.8] and [30, Thm. 7.2]) that for each t ∈ [0, 2], jt[so�o′ ] = jt[so] + jt[so′ ], as
desired.

Corollary 54. Let (L, o), (L′, o′) ⊂ A× I. Then for all t ∈ [0, 2],

mt((L, o) � (L′, o′)) = mt(L, o) + mt(L′, o′).

Proposition 55. Let σ ∈ Bn, and suppose σ± ∈ Bn+1 is obtained from σ
by either a positive or negative Markov stabilization. Then for all t ∈ [0, 1],

dt(σ̂) − t ≤ dt(σ̂±) ≤ dt(σ̂) + t.

Proof. Consider the obvious oriented annular cobordism from σ̂± to σ̂ � 1̂1
(the horizontal composition of σ̂ with the trivial 1–braid closure) with a single
odd-index critical point that resolves the extra ± crossing. By [37, Prop. 4.1],
we see that the associated chain map on the Lee complex sends so↑(σ̂±) to
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so↑(σ̂�1̂1). By Proposition 32, this map is filtered of degree −1 for all t ∈ [0, 1].
Therefore,

dt(σ̂+) − 1 ≤ dt(σ̂ � 1̂1).

Proposition 53 and Theorem 4 then tell us dt(σ̂ � 1̂1) = dt(σ̂) + (−1 + t),
which gives us one of the two desired inequalities:

dt(σ̂±) ≤ dt(σ̂) + t.

To obtain the other inequality, consider the quasi-isomorphism

ρ′1 : CLee(σ̂) → CLee(σ̂+)

appearing in [37, Sec. 6]. We have ρ′1(so↑(σ̂)) = so↑(σ̂+). Moreover, we com-
pute that the filtered degree of ρ′1 with respect to the jt–grading is −t (as
usual, there are higher order terms: they are of degree 4 − t, 4 − 3t, and t).
This tells us that

dt(σ̂) − t ≤ dt(σ̂+).

A similar argument using the R1 map associated to the negative stabilization
tells us

dt(σ̂) − t ≤ dt(σ̂−)

as well.

6. Transverse invariants and annular Khovanov-Lee
homology

In this section we study what annular Khovanov-Lee theory can tell us about
transverse isotopy classes of transverse links with respect to the standard
tight contact structure ξst on S3 (cf. [13] for a survey of this topic). We have
transverse versions of the classical Alexander and Markov theorems that allow
us to study transverse links via closed braids:

Theorem 56. [10] Every transverse link L ⊂ (S3, ξst) is transversely isotopic
to a closed braid.

Theorem 57. [32, 43] Two closed braids are transversely isotopic iff they
are related by a finite sequence of closed braid isotopies (braid isotopies and
conjugations) and positive stabilizations and destabilizations.

Recall that the self-linking number is a classical invariant of a transverse
link T ⊂ S3 obtained by choosing a trivialization given by a nonzero vector
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field of ξ over Σ, a Seifert surface bounded by T , and computing the linking
number with T of the associated push-off, T ′ (cf. [13, Sec. 2.6.3]). When T is
represented by a closed braid σ ∈ Bn with writhe w, we have:

sl(σ̂) = −n + w.

The following set was defined in [14]:
Definition 58. S := {Braids σ | sl(σ̂) = s(σ̂) − 1}

Informally, this is the set of braids for which the s-Bennequin bound is
sharp. Since s(σ̂) is a link invariant, and sl(σ̂) is a transverse link invariant,
it follows that membership in S is an invariant of the transverse isotopy class
of σ̂. It is proven in [14] that S is a monoid. That is, 1n ∈ S ∩ Bn, and if
σ, σ′ ∈ S ∩Bn, then so is their product: σσ′ ∈ S ∩Bn.

In Definition 59 we define a family of subsets of Bn using the annu-
lar Rasmussen invariants. We show directly that each of these subsets is a
monoid and that membership in each of the subsets is a transverse invari-
ant. Unfortunately, we also show that each of these subsets agrees with the
monoid S, so these transverse invariants all fail to be effective. Recall that a
transverse invariant f is said to be effective if there exists at least one link
L and transverse representatives TL, T

′
L of L satisfying sl(TL) = sl(T ′

L) and
f(TL) �= f(T ′

L).
Definition 59. Let t0 ∈ [0, 1). Define

Mt0 := {Braids σ | mt(σ̂) is maximal for all t ∈ [0, t0).}

Part (4) of Theorem 1 tells us that n is the maximal possible slope among
slopes of dt(σ̂) when σ ∈ Bn. Accordingly, we define:
Definition 60. Let t0 ∈ [0, 1). Define

Mn
t0 := Mt0 ∩Bn = {σ ∈ Bn | mt(σ̂) = n for all t ∈ [0, t0).}

We have the following:
Theorem 61. Let t0 ∈ [0, 1):

(1) Membership in Mt0 is a transverse invariant
(2) Mn

t0 is a monoid for each n ∈ Z+

(3) Mt0 = S
Of course, part (3) of Theorem 61, combined with the results of [14], imply

parts (1) and (2), but it will be instructive to prove each of the statements
directly, as the lemmas involved in the proof may be of independent interest.
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Lemma 62. Let t0 ∈ [0, 1). Let σ ∈ Bn have writhe w, and suppose that
σ′ ∈ Bn is obtained from σ by inserting a single positive crossing. If σ ∈ Mt0 ,
then σ′ ∈ Mt0 .

Proof. Since σ ∈ Mt0 , we know that for each t ∈ [0, t0) we have

dt(σ̂) = jt(v−(σ̂)) = (−n + w) + nt.

But applying Theorem 1 to the Euler characteristic −1 annular cobordism
σ̂′ → σ̂ that resolves the single extra positive crossing tells us:

dt(σ̂′) − 1 ≤ dt(σ̂) = (−n + w) + nt,

and hence:
dt(σ̂′) = jt[s↑(σ̂′)] ≤ −n + (w + 1) + nt.

But jt(s↑(σ̂′)) = −n + (w + 1) + nt. So

−n + (w + 1) + nt ≤ dt(σ̂′),

hence mt(σ̂′) = n for all t ∈ [0, t0), and σ′ ∈ Mt0 , as desired.

Lemma 63. Let t0 ∈ [0, 1). Let σ ∈ Bn, and suppose that σ+ ∈ Bn+1 is
obtained from σ by performing a positive stabilization. If σ+ ∈ Mt0 , then
σ ∈ Mt0 .

Proof. Since σ+ ∈ Mt0 , we know that dt(σ̂+) = (s(σ̂+)− 1) + (n+ 1)t for all
t ∈ [0, t0). Proposition 55 tells us dt(σ̂+) ≤ dt(σ̂) + t for all t ∈ [0, 2], so

(s(σ̂+) − 1) + (n + 1)t ≤ dt(σ̂) + t

for all t ∈ [0, t0). But Theorem 1 tells us that mt(σ̂) ≤ n for all t ∈ [0, 2], and
s(σ̂+) = s(σ̂) (since it is an oriented link invariant), so

dt(σ̂) ≤ (s(σ̂) − 1) + nt,

hence σ ∈ Mt0 , as desired.

Lemma 64. Let t0 ∈ [0, 1). Let σ ∈ Bn and σ′ ∈ Bn′, and let (σ � σ′) ∈
Bn+n′ denote their horizontal composition. If σ, σ′ ∈ Mt0 , then σ�σ′ ∈ Mt0 .

Proof. This follows immediately from Corollary 54.
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Proof of Theorem 61. (1) Theorem 1, Part (1) tells us that membership
in Mt0 is preserved under closed braid isotopies (annular R2 and R3
moves). Lemmas 62 and 64 imply that membership in Mt0 is pre-
served under positive stabilization, and Lemma 63 implies that member-
ship in Mt0 is preserved under positive destabilization. Since Theorem
57 tells us two braid closures represent transversely isotopic links iff
they are related by a sequence of closed braid isotopies and positive
de/stabilization, membership in Mt0 is a transverse invariant for each
t0 ∈ [0, 1), as desired.

(2) This follows from [14, Thm. 7.1], combined with part (1) above, and
Lemmas 62 and 64.

(3) We begin by showing that M0 = S.
Let σ ∈ Bn have writhe w, and suppose m0(σ̂) = n. This implies that
the lattice point (a, b) determining grj0 [so↑ ] satisfies grk(a, b) = −n =
a−b
2 . But because CLee(σ̂) has a unique irreducible sl2 subrepresentation

of highest weight n, and this representation is supported in j1–grading
w, the only lattice point containing a distinguished filtered graded basis
element with this k–grading is (a, b) = (−n + w, n + w). So

grj0 [so] = −n + w = sl(σ̂),

so sl(σ̂) = grj0 [so] = d0(σ̂) = s(σ̂) − 1. Hence M0 ⊆ S.
To see the reverse inclusion, suppose that sl(σ̂) = s(σ̂) − 1. Then the
lattice point (a, b) determining grj0 [so↑ ] satisfies grj0(a, b) = a = −n +
w. But note that grj0(so) = grj0(v−) = −n + w as well. Moreover,
since v− has minimal k–grading (hence maximal j2–grading) among all
distinguished filtered graded basis elements with j0–grading −n + w,
we have

grjt(so) = (−n + w)
(

1 − t

2

)
+ (n + w)

(
t

2

)
≥ a

(
1 − t

2

)
+ b

(
t

2

)
for all t > 0. This implies that there exists some ε > 0 for which
grjt [so] = (−n + w) + nt for all t < ε. In particular, m0(σ̂) = n. Hence,
S ⊆ M0, as desired.
The fact that Mt0 = S for all t0 ∈ [0, 1) now follows from Proposition
52.

Remark 65. There are a number of other closely-related subsets of the braid
group we might define in the hopes of constructing effective transverse invari-
ants. For example, if we define:

M′
t0 := {Braids σ | mt(σ̂) = n for all t ∈ [t0, 1)},
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we might ask whether membership in M′
t0 is a transverse invariant. Indeed,

Lemma 64 and the proof of Lemma 62 carry through verbatim to show that
membership in M′

t0 is preserved under positive stabilization, but we are unable
to show using the argument in the proof of Lemma 63 that membership in M′

t0

is preserved under positive destabilization. We therefore also do not know
whether M′

t0 is a monoid for t0 �= 0.

There is another monoid of interest, described in [5] and [14]. This is the
monoid of braids for which Plamenevskaya’s invariant is nonzero:

Definition 66.
Ψ := {Braids σ | ψ(σ̂) �= 0}

In the course of the proof of Theorem 5, we referenced a related subset of
the braid group, studied by Hubbard-Saltz [22]:

Definition 67.
κ := {Braids σ | κ(σ̂) > 2}

By definition, Plamenevskaya’s invariant is nonzero if κ(σ̂) = ∞.
It is shown in [5, Thm. 1.2] that S ⊆ Ψ. Combining this and other known

results (cf. [35], [5], [14], [22], [36]) with the results of this paper, we see:

QP � (S = M′
0) ⊆ . . . ⊆ M′

t ⊆ . . . ⊆ M′
1−ε ⊆ κ ⊆ RV

and
S ⊆ Ψ ⊆ κ.

This leads naturally to the following questions, relevant to the (still open)
question of whether Plamenevskaya’s transverse invariant is effective (cf. [29]).

Question 68. Is Ψ ⊆ S?

It is shown in [5, Thm. 1.2] that the above inclusion holds among braids
representing any K̃h–thin knot type.

Remark 69. If Ψ ⊆ S for all n ∈ Z+, then Plamenevskaya’s invariant
Ψ is ineffective. This follows since we already know S ⊆ Ψ, so the reverse
inclusion would imply that ψ(σ̂) �= 0 iff sl(σ̂) = s(σ̂) − 1. In particular, the
value of ψ(σ̂) would be determined by sl(σ̂). On the other hand, it is possible
for Plamenevskaya’s invariant Ψ to be ineffective but Ψ �= S.

Question 70. Is Ψ ⊆ M′
t0 for some t0 ∈ [0, 1)? For all t0 ∈ [0, 1)? How

about the reverse inclusion(s)?
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Remark 71. If the answer to Question 68 is yes, then Ψ ⊆ M′
t0 for all

t0 ∈ [0, 1).

Question 72. Is κ ⊆ M′
t0 for some t ∈ [0, 1)?

Remark 73. It is shown in [22, Sec. 4.1] that κ �= Ψ, so it is not possible
for κ ⊆ (M′

0 = S).

7. Examples

In this section we give some example computations of the dt invariant for some
small braids. Almost all of these computations produce tent-shaped dt profiles;
that is, in almost all examples we have computed, dt is a linear function of t
with constant slope m on the interval t ∈ [0, 1), and hence a linear function
of t with constant slope −m on the interval t ∈ [1, 2). However, we have not
yet computed dt for braids with more than 11 crossings, and it is distinctly
possible that the prevalence of tent-shaped profiles is a feature of considering
only small braids. In the figures below, the numbers on the figures are the
values of the dt invariant at endpoints t = 0, 2 and at the midpoint t = 1.
The (green) value d1 is the writhe of the braid (Theorem 6).

7.1. dt detects neither quasipositivity nor the trivial braid

The closure of the 3-braid σ−5
1 σ2σ

3
1σ2 is isotopic to the mirror of the the knot

10125, which is one of the smallest (in crossing number) examples of a non-
quasipositive knot whose Rassmussen invariant is equal to the self-linking
number plus 1. The profile dt of σ−5

1 σ2σ
3
1σ2 is drawn below.

• σ−5
1 σ2σ

3
1σ2:
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Note that this example has exactly the same profile as the dt invariant of the
trivial 3-braid. Since the slope of the above profile is maximal on the interval
[0, 1), we see that σ−5

1 σ2σ
3
1σ2 is right-veering (this was previously known–cf.

[5] and [36, Prop. 3.2]). The mirror of 10125 is one of only three knots with
at most 10 crossings that are not quasipositive but which have a transverse
representative whose self-linking number plus 1 equals its Rasmussen invari-
ant. The other two are 10130 and 10141; all three were studied in [5, Sec. 7].
Note that by Corollary 51, each of these examples will also have tent-shaped
dt profiles, with maximal slope on the interval t ∈ [0, 1).

7.2. dt does not detect right-veeringness

The family of right-veering 3–braids

βk := (σ1σ2)3σ−k
2 (k ≥ 1)

plays a key role in the proof of [36, Thm. 4.1]. We are grateful to J. Baldwin
for pointing out the following to us:

(1) When k = 1, . . . 4, βk is quasipositive (this can be seen directly);
(2) When k = 5, ψ(β̂k) = 0 ([3]);
(3) Since β5 can be obtained from any other braid in this family by adding

positive crossings, it follows from [35, Thm. 4] that ψ(β̂k) = 0 for all
k > 5 as well.

The dt profiles of the first few non-quasipositive braids βk are pictured
below.

• (σ1σ2)3σ−5
2 is the top tent (in blue), and (σ1σ2)3σ−6

2 is the middle tent
(in red), and (σ1σ2)3σ−7

2 is the bottom tent (in orange):
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7.3. 4-strand examples

The graph below shows the dt profile of a pair of 4-braids that are not in the
monoid

S := {Braids σ | sl(σ̂) = s(σ̂) − 1}.

Note that since S = M0 (Theorem 61, part (3)), only braids σ �∈ S can have
interesting dt profiles in the interval [0, 1).

• σ1σ1σ2σ
−1
1 σ−1

3 σ2σ
−1
3 and σ1σ

−1
2 σ1σ

−1
2 σ3σ

−1
2 σ3:

Despite the fact that the above two braids have the same dt profile, the
Khovanov homology groups of their closures are not isomorphic. In particular,
these two braids are not conjugate in the braid group.

7.4. Transversely non-isotopic closed braid representatives of the
knot 10132

It was shown in [33, Sec. 3.1] that the knot 10132 is transversely non-simple.
That is, it has two transversely non-isotopic closed braid representatives (re-
lated by a so-called negative flype) with the same self-linking number. This
knot was studied further by Khandhawit-Ng in [25], who produced an infi-
nite family of knots with the same property. In [22, Prop. 3], Hubbard-Saltz
used their invariant κ to distinguish the conjugacy classes of the transversely
non-isotopic closed braid representatives.

The dt invariant of the braid A(0, 0) := σ3σ
−2
2 σ2

3σ2σ
−1
3 σ−1

1 σ2σ
2
1 (notation

from [25] and [22]) is given below.



Annular Khovanov-Lee homology, braids, and cobordisms 431

The profile drawn above is based on the computations of dt at values
t = k

24 , k = 1, . . . , 24, along with the symmetry d1−t = d1+t for t ∈ [0, 1].
Thus it is a priori possible (though we think it unlikely) that there are further
points of non-differentiability in the profile that we have not computed. In
general, it would be interesting to know a bound – in terms of combinatorial
statistics of a braid σ – on the denominator n such that dt(σ) has points of
non-differentiability at t = m

n .
The points of non-differentiability in the t-interval (0, 2) above are t ∈

{1/2, 2/3, 1, 4/3, 3/2}. The corresponding dt values, as indicated on the graph,
are

d1/2 = d3/2 = 2, d2/3 = d4/3 = 5/3, and d1 = 3.

Knotinfo [11] tells us that the 4–ball genus of 10132 is 1 and its s invariant
is 2. Note that since the slope, mt, is maximal on a proper subset of the interval
[0, 1), the braid must be right-veering but not quasipositive. This was already
established by Hubbard-Saltz in [22], who computed that κ(A(0, 0)) = 4.
Note that κ �= 2 implies A(0, 0) is right-veering [22, Cor. 16], and κ �= ∞
implies that A(0, 0) is not quasipositive [35, Cor. 1]. Note also that the dt
profile for A(0, 0) shows that the braid classes M′

t are not all equal to each
other, as A(0, 0) ∈ M′ 2

3
but A(0, 0) /∈ M′

0.



432 J. Elisenda Grigsby et al.

Acknowledgements

The authors would like to thank John Baldwin, Peter Feller, Jen Hom, Diana
Hubbard, Adam Levine, and Olga Plamenevskaya for interesting conversa-
tions. We are especially grateful to Scott Morrison for both many helpful
conversations and for his generous computational assistance. The first author
thanks the BC and Brandeis students in her spring 2016 graduate class for
offering useful feedback on preliminary versions of this material, and all three
authors thank the anonymous referee for a careful reading and a number of
excellent suggestions.

References

[1] M. M. Asaeda, J. H. Przytycki, and A. S. Sikora. Categorification
of the Kauffman bracket skein module of I-bundles over surfaces. Algebr.
Geom. Topol., 4:1177–1210 (electronic), 2004. MR2113902

[2] D. Auroux, J. E. Grigsby, and S. M. Wehrli. Khovanov-Seidel
quiver algebras and bordered Floer homology. Selecta Math. (N.S.),
20(1):1–55, 2014. MR3147412

[3] J. A. Baldwin. Kh, Trans. Available from https://www2.bc.edu/
john-baldwin/trans.html.

[4] J. A. Baldwin and J. E. Grigsby. Categorified invariants
and the braid group. Proc. Amer. Math. Soc., 143(7):2801–2814,
2015. MR3336606

[5] J. A. Baldwin and O. Plamenevskaya. Khovanov homology, open
books, and tight contact structures. Adv. Math., 224(6):2544–2582,
2010. MR2652216

[6] D. Bar-Natan. On Khovanov’s categorification of the Jones polyno-
mial. Algebr. Geom. Topol., 2:337–370 (electronic), 2002. MR1917056

[7] D. Bar-Natan. Khovanov’s homology for tangles and cobordisms.
Geom. Topol., 9:1443–1499, 2005. MR2174270

[8] D. Bar-Natan and S. Morrison. The Karoubi envelope and Lee’s
degeneration of Khovanov homology. Algebr. Geom. Topol., 6:1459–1469,
2006. MR2253455

[9] A. Beliakova and S. M. Wehrli. Categorification of the colored
Jones polynomial and Rasmussen invariant of links. Canad. J. Math.,
60(6):1240–1266, 2008. MR2462446

http://www.ams.org/mathscinet-getitem?mr=2113902
http://www.ams.org/mathscinet-getitem?mr=3147412
https://www2.bc.edu/john-baldwin/trans.html
https://www2.bc.edu/john-baldwin/trans.html
http://www.ams.org/mathscinet-getitem?mr=3336606
http://www.ams.org/mathscinet-getitem?mr=2652216
http://www.ams.org/mathscinet-getitem?mr=1917056
http://www.ams.org/mathscinet-getitem?mr=2174270
http://www.ams.org/mathscinet-getitem?mr=2253455
http://www.ams.org/mathscinet-getitem?mr=2462446


Annular Khovanov-Lee homology, braids, and cobordisms 433

[10] D. Bennequin. Entrelacements et équations de Pfaff. In Third
Schnepfenried geometry conference, Vol. 1 (Schnepfenried, 1982), vol-
ume 107 of Astérisque, pages 87–161. Soc. Math. France, Paris,
1983. MR0753131

[11] J.C. Cha and C. Livingston. Knotinfo table of knot invariants, 2006.
Available from http://www.indiana.edu/~knotinfo/.

[12] P. Dehornoy, I. Dynnikov, D. Rolfsen, and B. Wiest. Ordering
braids, volume 148 of Mathematical Surveys and Monographs. American
Mathematical Society, Providence, RI, 2008. MR2463428

[13] J. Etnyre. Legendrian and transversal knots. In Handbook of knot the-
ory, pages 105–185. Elsevier B. V., Amsterdam, 2005. MR2179261

[14] J. Etnyre and J. Van Horn-Morris. Monoids in the mapping class
group. In Interactions between low-dimensional topology and mapping
class groups, volume 19 of Geom. Topol. Monogr., pages 319–365. Geom.
Topol. Publ., Coventry, 2015. MR3609913

[15] J. E. Grigsby, A.M. Licata, and S. M. Wehrli. Annu-
lar Khovanov homology and knotted Schur-Weyl representations.
math.GT/1505.04386, 2015.

[16] J. E. Grigsby and Y. Ni. Sutured Khovanov homology distin-
guishes braids from other tangles. Math. Res. Lett., 21(6):1263–1275,
2014. MR3335847

[17] J. E. Grigsby and S. M. Wehrli. Khovanov homology, sutured Floer
homology and annular links. Algebr. Geom. Topol., 10(4):2010–2039,
2010. MR2728482

[18] J. E. Grigsby and S. M. Wehrli. On the colored Jones polyno-
mial, sutured Floer homology, and knot Floer homology. Adv. Math.,
223(6):2114–2165, 2010. MR2601010

[19] J. E. Grigsby and S. M. Wehrli. On gradings in Khovanov homology
and sutured Floer homology. In Topology and geometry in dimension
three, volume 560 of Contemp. Math., pages 111–128. Amer. Math. Soc.,
Providence, RI, 2011. MR2866927

[20] K. Honda, W. H. Kazez, and G. Matić. Right-veering diffeomor-
phisms of compact surfaces with boundary. Invent. Math., 169(2):427–
449, 2007. MR2318562

http://www.ams.org/mathscinet-getitem?mr=0753131
http://www.indiana.edu/~knotinfo/
http://www.ams.org/mathscinet-getitem?mr=2463428
http://www.ams.org/mathscinet-getitem?mr=2179261
http://www.ams.org/mathscinet-getitem?mr=3609913
http://www.ams.org/mathscinet-getitem?mr=3335847
http://www.ams.org/mathscinet-getitem?mr=2728482
http://www.ams.org/mathscinet-getitem?mr=2601010
http://www.ams.org/mathscinet-getitem?mr=2866927
http://www.ams.org/mathscinet-getitem?mr=2318562


434 J. Elisenda Grigsby et al.

[21] D. Hubbard. On sutured Khovanov homology and axis-preserving
mutations. J. Knot Theory Ramifications, 26(4):1750017, 15,
2017. MR3632318

[22] D. Hubbard and A. Saltz. An annular refinement of the transverse
element in Khovanov homology. Algebr. Geom. Topol., 16(4):2305–2324,
2016. MR3546466

[23] M. C. Hughes. Braiding link cobordisms and non-ribbon surfaces. Al-
gebr. Geom. Topol., 15:3707–3729 (electronic), 2015. MR3450775

[24] S. Kamada. Alexander’s and Markov’s theorems in dimension four.
Bull. Amer. Math. Soc. (N.S.), 31(1):64–67, 1994. MR1254074

[25] T. Khandhawit and L. Ng. A family of transversely nonsimple knots.
Algebr. Geom. Topol., 10(1):293–314, 2010. MR2602837

[26] M. Khovanov. A categorification of the Jones polynomial. Duke Math.
J., 101(3):359–426, 2000. MR1740682

[27] P. B. Kronheimer and T. S. Mrowka. Gauge theory for embedded
surfaces. I. Topology, 32(4):773–826, 1993. MR1241873

[28] E. S. Lee. An endomorphism of the Khovanov invariant. Adv. Math.,
197(2):554–586, 2005. MR2173845

[29] R. Lipshitz, L. Ng, and S. Sarkar. On transverse invariants from
Khovanov homology. Quantum Topol., 6(3):475–513, 2015. MR3392962

[30] C. Livingston. Notes on the knot concordance invariant upsilon. Al-
gebr. Geom. Topol., 17(1):111–130, 2017. MR3604374

[31] S. Y. Orevkov. Markov moves for quasipositive braids. C. R. Acad.
Sci. Paris Sér. I Math., 331(7):557–562, 2000. MR1794098

[32] S. Y. Orevkov and V. V. Shevchishin. Markov theorem
for transversal links. J. Knot Theory Ramifications, 12(7):905–913,
2003. MR2017961

[33] P. Ozsváth, Z. Szabó, and D. Thurston. Legendrian knots,
transverse knots, and combinatorial Floer homology. 12:941–980,
2008. MR2403802

[34] P. S. Ozsváth, A. I. Stipsicz, and Z. Szabó. Concordance ho-
momorphisms from knot Floer homology. Adv. Math., 315:366–426,
2017. MR3667589

[35] O. Plamenevskaya. Transverse knots and Khovanov homology. Math.
Res. Lett., 13(4):571–586, 2006. MR2250492

http://www.ams.org/mathscinet-getitem?mr=3632318
http://www.ams.org/mathscinet-getitem?mr=3546466
http://www.ams.org/mathscinet-getitem?mr=3450775
http://www.ams.org/mathscinet-getitem?mr=1254074
http://www.ams.org/mathscinet-getitem?mr=2602837
http://www.ams.org/mathscinet-getitem?mr=1740682
http://www.ams.org/mathscinet-getitem?mr=1241873
http://www.ams.org/mathscinet-getitem?mr=2173845
http://www.ams.org/mathscinet-getitem?mr=3392962
http://www.ams.org/mathscinet-getitem?mr=3604374
http://www.ams.org/mathscinet-getitem?mr=1794098
http://www.ams.org/mathscinet-getitem?mr=2017961
http://www.ams.org/mathscinet-getitem?mr=2403802
http://www.ams.org/mathscinet-getitem?mr=3667589
http://www.ams.org/mathscinet-getitem?mr=2250492


Annular Khovanov-Lee homology, braids, and cobordisms 435

[36] O. Plamenevskaya. Transverse invariants and right-veering.
math.GT/1509.01732, 2015.

[37] J. Rasmussen. Khovanov homology and the slice genus. Invent. Math.,
182(2):419–447, 2010. MR2729272

[38] L. P. Roberts. On knot Floer homology in double branched covers.
Geom. Topol., 17(1):413–467, 2013. MR3035332

[39] L. Rudolph. Algebraic functions and closed braids. Topology,
22(2):191–202, 1983. MR0683760

[40] L. Rudolph. Braided surfaces and Seifert ribbons for closed braids.
Comment. Math. Helv., 58(1):1–37, 1983. MR0699004

[41] A. N. Shumakovitch. Rasmussen invariant, slice-Bennequin inequal-
ity, and sliceness of knots. J. Knot Theory Ramifications, 16(10):1403–
1412, 2007. MR2384833

[42] O.Y. Viro. Lecture, 1999. Osaka City University.

[43] N. C. Wrinkle. The Markov theorem for transverse knots. Pro-
Quest LLC, Ann Arbor, MI, 2002. Thesis (Ph.D.)–Columbia Univer-
sity. MR2703285

J. Elisenda Grigsby
Department of Mathematics
Boston College
522 Maloney Hall, MA 02467
Chestnut Hill
USA
E-mail: grigsbyj@bc.edu

Anthony M. Licata
Mathematical Sciences Institute
Australian National University
Canberra
Australia
E-mail: anthony.licata@anu.edu.au

http://www.ams.org/mathscinet-getitem?mr=2729272
http://www.ams.org/mathscinet-getitem?mr=3035332
http://www.ams.org/mathscinet-getitem?mr=0683760
http://www.ams.org/mathscinet-getitem?mr=0699004
http://www.ams.org/mathscinet-getitem?mr=2384833
http://www.ams.org/mathscinet-getitem?mr=2703285
mailto:grigsbyj@bc.edu
mailto:anthony.licata@anu.edu.au


436 J. Elisenda Grigsby et al.

Stephan M. Wehrli
Department of Mathematics
Syracuse University
215 Carnegie, NY 13244
Syracuse
USA
E-mail: smwehrli@syr.edu

mailto:smwehrli@syr.edu

	Introduction
	Algebraic preliminaries
	Topological preliminaries
	Annular Khovanov-Lee complex
	Annular braid closures, Plamenevskaya's invariant, and the sl2 action

	Proof of main theorem
	Properties of annular Rasmussen invariant and applications
	Transverse invariants and annular Khovanov-Lee homology
	Examples
	dt detects neither quasipositivity nor the trivial braid
	dt does not detect right-veeringness
	4-strand examples
	Transversely non-isotopic closed braid representatives of the knot 10132

	Acknowledgements
	References

