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Remarks on Donaldson’s symplectic submanifolds
Emmanuel Giroux

∗

In [Do1], S. Donaldson proved the following:

Theorem 0 (Donaldson). Let V be a closed manifold and ω a symplectic
form on V with integral periods. Then, for every sufficiently large positive
integer k, there exists a symplectic submanifold W of codimension 2 in (V, ω)
whose homology class is Poincaré dual to k[ω] and whose inclusion into V is
an (n− 1)-connected map, where n := 1

2 dimR V .

We recall that a continuous map Y → X between topological spaces is
m-connected if it induces a bijection πjY → πjX for 0 ≤ j ≤ m − 1, and a
surjection πmY → πmX (see [FR], for instance).

This result highlights analogies between symplectic geometry and Kähler
geometry which were quite unexpected at the time, and actually the ideas and
the methods introduced by Donaldson in [Do1, Do2] provide a new insight
into both fields. When V is a complex projective manifold and ω a Kähler form
with integral periods, the above theorem is a classical result that follows from
the works of Bertini, Kodaira and Lefschetz. In this case, W ⊂ V is a complex
hypersurface obtained as a transversal hyperplane section V ∩H of V , where
V is holomorphically embedded into a projective space CP

m and H ⊂ CP
m

is a hyperplane. As a consequence, V − W ⊂ CP
m − H � C

m is a smooth
affine variety and, in particular, a Stein manifold of finite type. Moreover,
ω�V−W = d dCφ for some exhausting function φ : V − W → R having no
critical points near W . Explicitly, φ := − 1

2kπ log |s| where s is the restriction
to V ⊂ CP

m of the complex linear function (a holomorphic section of O(1))
defining H. (Note that the operator dC here is given by dCφ(v) := −dφ(iv) for
any tangent vector v.)

Our main purpose in this paper is to show that any closed integral sym-
plectic manifold has a very similar structure:

Theorem 1 (Stein Complements). Let V be a closed manifold and ω a sym-
plectic form on V with integral periods. Then, for every sufficiently large
positive integer k, there exist:
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• a symplectic submanifold W of codimension 2 in (V, ω) whose homology
class is Poincaré dual to k[ω], and

• a complex structure J on V − W such that ω�V−W = d dJφ for some
exhausting function φ : V −W → R having no critical points near W ;
in particular, (V −W,J) is a Stein manifold of finite type.

Of course, the difference with the Kähler case is that, in general, the com-
plex structure J (which depends on k) does not extend over the submanifold
W . To make the above statement less mysterious, we need to recall a few
pieces of terminology.

A Liouville domain is a domain1 F endowed with a Liouville form, namely,
a 1-form λ with the following properties:

• dλ is a symplectic form on F , and
• λ induces a contact form on K := ∂W orienting K as the boundary of

(F, dλ); equivalently, the Liouville vector field λ−→ given by λ−→ � dλ = λ
points transversely outwards along K.

A Liouville domain (F, λ) is a Weinstein domain if the Liouville field λ−→ is
gradientlike for some Morse function φ : F → R, meaning that

λ−→ · φ ≥ c | λ−→|2,

where the norm is computed with respect to any auxiliary metric and c is a
positive number depending on that metric. (Obviously, the function φ can be
further adjusted to be constant on ∂F .)

Not every Liouville domain is a Weinstein domain. In fact, no restric-
tion is known for the topology of a Liouville domain while the topology of
a Weinstein domain is strongly constrained. More explicitly, the topology of
a Liouville domain (F, λ) is largely concentrated in its skeleton (also called
core, or spine), namely the union Sk(F, λ) of all the orbits of λ−→ which do
not exit through ∂F . Indeed, the whole domain retracts into an arbitrary
small neighborhood of Sk(F, λ). Due to the dilation properties of λ−→ (its flow
expands λ exponentially), the closed subset Sk(F, λ) ⊂ F has measure zero
(for the volume form (dλ)n, where n := 1

2 dimF ), but for instance there are
Liouville domains (F, λ) for which Sk(F, λ) is a stratified subset of codimen-
sion 1 [Mc, Ge, MNW]. In contrast, if (F, λ) is a Weinstein domain, Sk(F, λ)
consists of the stable submanifolds of the critical points of the Lyapunov func-
tion φ. Then the same dilation properties as above force these submanifolds
to be isotropic for dλ, and so the critical indices of φ cannot exceed n. In

1In this text, the word domain means “compact manifold with boundary.”
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particular, the inclusion ∂F → F is an (n− 1)-connected map. Actually, the
main examples of Weinstein domains are Stein domains, i.e., sublevel sets of
exhausting C-convex2 functions, and the work of Cieliebak-Eliashberg [CE]
shows that Weinstein and Stein domains are essentially the same objects. As
for the relationships between Weinstein and Liouville domains, they remain
quite mysterious.

Returning to our closed integral symplectic manifold (V, ω), we will call
hyperplane section of degree k in (V, ω) any submanifold W of codimension 2
in V whose homology class is Poincaré dual to k[ω]. A preliminary remark is
that the complement of a symplectic hyperplane section W of arbitrary degree
in (V, ω) is isomorphic to the interior of a Liouville domain (cf. Proposition 5).
There is no general evidence that the Liouville domains obtained in this way
have peculiar topological properties, but this may happen under additional
assumptions on (V, ω). Revisiting a construction due to Auroux [Au1], we
will illustrate this by discussing the case of symplectic hyperplane sections in
tori (see Propositions 9 and 10). As for the symplectic hyperplane sections
provided by Donaldson’s construction, we have (see [Gi, Proposition 11]):

Theorem 2 (Weinstein Complements). Let V be a closed manifold and ω a
symplectic form on V with integral periods. Then, for every sufficiently large
positive integer k, there exist a Weinstein domain (F, λ) and a map q : F → V
with the following properties:

• q(∂F ) is a symplectic hyperplane section W of degree k in (V, ω) and
∂F is the normal circle bundle of W projecting to W by q;

• q�F−∂F : F − ∂F → V −W is a diffeomorphism, with q∗ω = dλ.

Theorem 1 is then a corollary of Theorem 2 and the results of [CE].
Remark 3 (About Headings of Theorems). The proofs of Theorems 1 and
2 are variants of Donaldson’s proof of Theorem 0. In particular, with the
terminology used by Auroux in [Au2], the symplectic hyperplane sections
they produce are the zero sets of “asymptotically holomorphic and uniformly
transverse sections” of certain prequantization line bundles. It then follows
from Auroux’s uniqueness theorem [Au2, Theorem 2] that, for every suffi-
ciently large integer k, these various symplectic hyperplane sections lie in the
same Hamiltonian isotopy class. Thus, Theorems 1 and 2 can essentially be
rephrased by saying that the symplectic hyperplane sections given by Don-
aldson’s construction have Stein, resp. Weinstein, complements.

2We use the term C-convex — or J-convex, if we want to refer to a specific
complex structure J — to mean “strictly plurisubharmonic.”
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In [Bi], Biran adopted a very fruitful new viewpoint on the decomposition
of a complex projective manifold V described at the beginning of this paper.
Instead of regarding V as decomposed into a complex hyperplane section W
and the affine variety V −W , he considered V as consisting of the skeleton of
V −W (this Stein manifold can be compactified to a Weinstein domain) and
its complement. His key observation is that the latter is a simple symplectic
object that he calls a “standard symplectic disk bundle” over W (see the
discussion preceding Corollary 8 for a precise definition). As a byproduct of
Theorem 2, we can extend Theorem 1.A of [Bi] as follows:
Corollary 4 (Generalization of Biran’s Decomposition). Let V be a closed
manifold and ω a symplectic form on V with integral periods. Then, for every
sufficiently large positive integer k, there exists an isotropic skeleton Δ ⊂ V
whose complement V − Δ has the structure of a standard symplectic disk
bundle of area 1/k over a symplectic manifold W .

Actually, one can take for Δ the skeleton of any Weinstein domain as
in Theorem 2. We refer the reader to [Bi] for applications of Corollary 4 to
intersection problems.

A. Symplectic hyperplane sections and Liouville domains

We begin with a simple observation:
Proposition 5 (Liouville Complements). Let V be a closed manifold, ω a
symplectic form on V with integral periods and W ⊂ V a symplectic hyper-
plane section of degree k. Then there exists a Liouville domain (F, λ) and a
map q : F → V with the following properties:

• q(∂F ) = W is the symplectic hyperplane section, ∂F is the normal
circle bundle of W projecting to W by q, and −2kπiλ defines a unitary
connection on ∂F with curvature form −2kπiω�W ;

• q�F−∂F : F − ∂F → V −W is a diffeomorphism, and q∗ω = dλ.

A Liouville domain as above will be called a Liouville compactification of
V −W .
Remark 6 (Liouville Domains and Symplectic Hyperplane Sections). Con-
versely, take a Liouville domain (F, λ) whose boundary ∂F has the structure
of a principal circle bundle over a manifold W , and assume that −2kπiλ, for
some positive integer k, induces a (unitary) connection form on ∂F . Then
the quotient V of F by the equivalence relation which collapses every fiber of
∂F → W to a point is an integral symplectic manifold in which W sits as a
symplectic hyperplane section of degree k (see the definition of a “standard
symplectic disk bundle” below).
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Proof. Let L → V be a Hermitian line bundle whose Chern class is a lift of
k[ω], and denote by P ⊂ L the unit circle bundle with projection p : P → V .
By standard obstruction theory, L has a section s whose zero set equals W
and is cut out transversely. Then u = s/|s| is a section of P over V −W , and
the set

F = u(V −W ) ∪ p−1(W ) = Clos
(
u(V −W )

)
⊂ P

is a smooth compact submanifold of P with boundary K := p−1(W ), which
can be viewed as the result of a “real oriented blowup” of V along W .

Fix a unitary connection ∇ on L with curvature form −2kπiω. On the
principal U1-bundle P , the connection ∇ is given by a 1-form −2kπiα where
α is a real contact form such that dα = p∗ω. Thus, the 1-form λ induced by
α on F restricts to a contact form on K, and satisfies

u∗dλ = u∗dα = u∗(p∗ω) = (p ◦ u)∗ω = ω.

Therefore, (F, λ) is essentially the required Liouville domain, except that dλ
degenerates along K = ∂F (the kernel of dα is spanned by the vector field
generating the U1-action, and hence is tangent to K). Lemma 7 below explains
how to solve this problem by attaching the boundary differently.

Now recall that the symplectization of a contact manifold (K, ξ) is the
symplectic submanifold SK of T ∗K consisting of the non-zero covectors
βx ∈ T ∗

xK, x ∈ K, whose cooriented kernel is ξx (all contact structures
are cooriented in this paper). This is an R>0-principal bundle over K whose
sections are the global Pfaff equations of ξ. Thus, any such contact form α
determines a splitting

SK =
{
sαx ∈ T ∗K : (s, x) ∈ R>0 ×K

}
� R>0 ×K.

We denote by Kα ⊂ SK the graph of α, and by SK<α (resp. SK≤α) the
subset of SK given by the condition s < 1 (resp. s ≤ 1).
Lemma 7 (Boundary Degenerations of Liouville Domains). Let F be a do-
main and λ a 1-form on F which is a positive contact form on K := ∂F and
whose differential dλ is a symplectic form on F −K but may degenerate along
K. Then the singular foliation spanned by λ−→ in F −K extends to a foliation
of F transverse to K and, denoting by U the open collar consisting of all
orbits which exit through K, there exists a unique smooth homeomorphism

h = hλ : U → SK≤α

such that:
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• h is the identity on K ∼= Kα and induces a diffeomorphism between
U −K and SK<α;

• λ�U = h∗λξ where λξ is the canonical 1-form on SK.

Furthermore, the singularities of h are exactly the points of K where dλ de-
generates and, in particular, the points where the 2n-form (dλ)n vanishes
transversely (with n := 1

2 dimF ) correspond to folds.
As a result, one can change (F, λ) to a genuine Liouville domain just by

gluing F −K with SK≤α along U −K ∼= SK<α.

Proof. Let μ be an arbitrary positive volume form on F and consider the
function v := (dλ)n/μ. We shall show that the vector field ν given by ν �μ =
nλ ∧ (dλ)n−1 has the following properties:

• ν is non-singular along K and points transversely outwards;
• ν = v λ−→ at every point where dλ is non-degenerate;
• the flow ft of ν is defined for all t ≤ 0 and the diffeomorphism

f : R− ×K → U, (t, x) �→ ft(x),

satisfies f∗λ = ewα where w(t, x) =
∫ t
0 v(fs(x)) ds.

The first two properties show that ν generates a foliation transverse to K
which extends the foliation spanned by λ−→. The third property implies that
the map h : U → SK≤α defined by

h ◦ f(t, x) = ew(t,x)αx

is a smooth homeomorphism with the desired behavior. Moreover, h is unique
since the identity is the only homeomorphism of SK≤α which fixes Kα point-
wise and induces a diffeomorphism of SK<α preserving λξ.

The contact property of λ means that λ ∧ (dλ)n−1 induces a positive
volume form on K, so ν is non-singular along K and points transversely
outwards. Next, at any point where dλ is symplectic,

λ−→ � dλn = v λ−→ � μ = nλ ∧ (dλ)n−1 = ν � μ,

so ν = v λ−→. In particular, ν � dλ = vλ and this equality holds everywhere on
F by continuity.

To compute the form f∗λ, note that it vanishes on ∂t, t ∈ R−, because
Df(∂t) = ν and ν � λ = 0. Thus f∗λ at a point (t, x) is just (the pullback of)
f∗
t λ at point x. Furthermore, f∗

t λ satisfies the linear differential equation

d
dtf

∗
t λ = f∗

t (ν · λ) = f∗
t (ν � dλ) = f∗

t (vλ) = (v ◦ ft) f∗
t λ.
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Since f∗
0λ = α, we obtain

f∗
t λ = exp

(∫ t

0
(v ◦ fs) ds

)
α,

as claimed.

We now briefly describe the notion of standard symplectic disk bundle, re-
ferring to [Bi, Subsection 2.1] for a more detailed discussion. The most relevant
approach here is as follows. Consider a closed integral symplectic manifold
(W,ωW ) and denote by p : K → W a principal U1-bundle whose Chern/Euler
class is an integral lift of [ωW ]. Fix any connection 1-form −2πiα on K such
that dα = p∗ωW . Then α is a contact form on K and the quotient of the
manifold SK≤α that we obtain by collapsing each circle fiber in K = Kα

to a point has the structure of an open disk bundle U over W : the smooth
structure of the disk fibers is defined by polar coordinates (r, θ), where dθ is
the form induced by α and 1− r is the symplectization coordinate. Moreover,
the manifold U inherits a symplectic form ωU from SK whose restriction to
the zero section W is ωW , and each fiber of the map U → W is a symplectic
disk of area 1 (by Stokes’ theorem). The symplectic manifold (U, ωU ) is what
Biran calls a standard symplectic disk bundle of area 1 over W (see [Bi, Re-
marks 2.1]). For convenience, when the periods of ωW are integer multiples
of some integer k ≥ 1, we also call standard symplectic disk bundle of area
1/k the integral symplectic manifold (U, 1

kωU ). Thus, the area of a standard
symplectic disk bundle is, by definition, of the form 1/k, and it determines
the Chern class of the disk bundle.

Given a Liouville domain (F, λ) with boundary K := ∂F , the manifold
F − Sk(F, λ), equipped with the 1-form λ, is isomorphic to SK≤λ�K with its
canonical 1-form. Thus, as a consequence of Proposition 5, we have:

Corollary 8 (Standard Disk Bundles in Symplectic Manifolds). Let V be a
closed manifold, ω a symplectic form on V with integral periods, W a sym-
plectic hyperplane section of degree k and (F, λ) a Liouville compactification
of V −W . Then the complement of Sk(F, λ) in (V, ω) has full measure and
is a standard symplectic disk bundle of area 1/k.

Corollary 4 follows readily from Theorem 2 and Corollary 8.

In the remainder of this section, we make a couple of remarks on the
topology of symplectic hyperplane sections in tori. We begin with an obser-
vation of Auroux [Au1, Au4] which shows that the Liouville domains given
by Proposition 5 need not be Weinstein domains:
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Proposition 9 (Auroux). In the standard symplectic torus of dimension
4, there exist disconnected symplectic hyperplane sections of arbitrarily large
even degrees.

In particular, the complements of these symplectic hyperplane sections
have Liouville compactifications which are not Weinstein domains.

Interestingly enough, Auroux’s argument can be “reversed” in higher di-
mensions to prove the following:

Proposition 10 (Connectedness in Higher Dimensional Tori). In the stan-
dard symplectic torus of dimension 2n ≥ 6, every symplectic hyperplane sec-
tion is connected.

Proofs of Propositions 10 and 9. The main underlying remark is that, if a
closed integral symplectic manifold (V, ω) of dimension 2n contains a discon-
nected symplectic hyperplane section W = W1 � W2, then the cohomology
class w Poincaré dual to [W ] = [W1] + [W2] splits as the sum w1 + w2 of
two non-zero integral classes which satisfy w1 �w2 = 0 and wi �wn−1 > 0,
i ∈ {1, 2}. It follows that wn = wn

1 + wn
2 , so at least one of the summands

wn
1 , wn

2 is non-zero (and positive). We assume below that wn
1 > 0.

If V = T
2n = R

2n/Z2n, its cohomology algebra can be identified with
the exterior algebra of R2n. In this identification, w1 and w2 become exterior
2-forms ω1 and ω2, and the hypothesis that wn

1 > 0 means that ω1 is a linear
symplectic form. But then, by a classical result of Lefschetz, multiplication
by ω1 defines a map

∧2
R

2n → ∧4
R

2n which is injective for n ≥ 3. Since
ω1 ∧ ω2 = 0, we get to the conclusion that ω2 = 0, which contradicts our
assumption that w1 and w2 are non-zero. This proves Proposition 10.

To prove Proposition 9 (following Auroux [Au1, Au4]), we first notice
that the symplectic form ω := dx1 ∧ dx2 + dx3 ∧ dx4 on T

4 = R
4/Z4 can be

written as ω = 1
2(ω1 + ω2) where ω1, ω2 are positive linear symplectic forms

with integral periods whose product ω1 ∧ ω2 is zero. For instance, one can
take

ω1 := dx1 ∧ (dx2 − dx3) + (dx3 + dx2) ∧ dx4,

ω2 := dx1 ∧ (dx2 + dx3) + (dx3 − dx2) ∧ dx4.

Next, we observe that the homology classes Poincaré dual to [ω1] and [ω2]
are represented by the following immersed oriented submanifolds Ŵ1(a) and
Ŵ2(b), respectively, for any a, b ∈ T

4:

Ŵ1(a) := {x ∈ T
4 : x1 − a1 = x2 − x3 − a2 = 0}

∪ {x ∈ T
4 : x3 + x2 − a3 = x4 − a4 = 0},
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Ŵ2(b) := {x ∈ T
4 : x1 − b1 = x2 + x3 − b3 = 0}

∪ {x ∈ T
4 : x3 − x2 + b2 = x4 − b4 = 0}.

(The ordered set of equations given for each piece determines the orienta-
tion.) Each cycle Ŵ1(a) consists of two linear tori which are both symplectic
for ω1 and Lagrangian for ω2, and which intersect positively (in exactly two
points). Thus, Ŵ1(a) is an immersed symplectic submanifold in (T4, ω) with
positive transverse double points. By an embedded surgery localized near
each double point (see below), Ŵ1(a) can be desingularized to an embedded
and homologous symplectic surface W1(a) in (T4, ω). Similarly, Ŵ2(b) can be
desingularized to an embedded symplectic surface W2(b) in (T4, ω). Moreover,
since Ŵ1(a) and Ŵ2(b) are disjoint for a �= b, so are W1(a) and W2(b). There-
fore, if a �= b, the union W := W1(a) ∪ W2(b) is a disconnected symplectic
submanifold of (T4, ω) whose homology class is Poincaré dual to 2[ω]; in other
words, W is a symplectic hyperplane section of degree 2.

To obtain a symplectic hyperplane section of degree 2k, we just replace
each linear torus involved in the definition of Ŵ1(a) and Ŵ2(b) by k parallel
copies.

To complete the argument, we explain how to desingularize the transverse
double points in the construction. To keep formulas simple, we reset our
notations. We consider in C

2, with coordinates (z1, z2) where zj = xj + iyj ,
the complex curve Ŵ := {z1z2 = 0} (namely, the two coordinate axes, which
intersect transversely at 0) and the two positive symplectic forms

ω1 := dx1 ∧ dy1 + dx2 ∧ dy2 and ω2 := dx1 ∧ dx2 − dy1 ∧ dy2.

The immersed surface Ŵ is symplectic for ω1 but Lagrangian for ω2. The
desingularization trick consists in replacing Ŵ by an embedded surface of the
form

W :=
{
z1z2 = ε2 χ

(
|z1/ε|2

)
χ
(
|z2/ε|2

)}
,

where ε is a positive number and χ : R → [0, 1] a smooth function with
compact support equal to 1 over [0, 1]. A direct calculation shows that, if
ε is sufficiently small, the smooth surface W is still symplectic for ω1 and
Lagrangian for ω2. Hence, it is symplectic with respect to ω1 + ω2.

B. Symplectic hyperplane sections and Weinstein domains

This section is devoted to the proof of Theorem 2, and we will assume that the
reader is familiar with the techniques introduced by Donaldson in [Do1, Do2]
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and further developed by Auroux, notably in [Au2, Au3]. Actually, the proof
of Theorem 2 is a variation on Donaldson’s proof of Theorem 0 and we will
only explain the extra arguments we need (a sketch of proof can already be
found in [Gi]). We recall the setting:

• V is a closed manifold, ω a symplectic form on V with integral periods,
J an ω-compatible almost complex structure and g the metric given by
g(., .) := ω(., J.);

• L → V is a Hermitian line bundle whose Chern class is a lift of [ω] and
∇ is a unitary connection on L with curvature form −2πiω;

• ∇′,∇′′ are the J-linear and J-antilinear components of ∇, respectively;
• Lk, for any integer k, is the k-th tensor power of L endowed with the

connection induced by ∇, which we still write ∇ = ∇′ +∇′′ and whose
curvature form is −2kπiω;

• gk, for k ≥ 1, is the rescaled metric gk := kg.

In [Do1], each symplectic hyperplane section of Theorem 0 is obtained as the
zero set W := {sk = 0} of a section sk : V → Lk, where the sections sk,
k � 0, satisfy the following properties (that we formulate using Auroux’s
terminology [Au2]):

• The sections sk : V → Lk are asymptotically holomorphic. This means
that there is a positive constant R such that, for every k, at every point
of V and for 0 ≤ j ≤ 2,3

|sk| ≤ R, |∇j+1sk|gk ≤ R and |∇j∇′′sk|gk ≤ Rk−1/2.

Note that the derivatives ∇j+1sk and ∇j∇′′sk with j > 0 involve both
the connection ∇ on Lk and the Levi-Civita connection of the metric
gk (or g).

• The sections sk : V → Lk are uniformly transverse (to 0). This means
that there is a positive constant η such that, for every sufficiently large
integer k,

|∇sk(x)|gk ≥ η at every point x where |sk(x)| ≤ η.

A key point here is that any section sk : V → Lk satisfying the above estimates
with k > 4R2/η2 automatically also satisfies |∇′′sk| < |∇′sk| at every point
of W = {sk = 0}, and this inequality guarantees that W is a symplectic
submanifold. To prove Theorem 2, we will need a similar inequality all over V :

3Given any positive integer r, we can actually impose similar bounds for 0 ≤ j ≤
r; we can even take r = ∞ provided R is allowed to depend on j. The value r = 2
is the minimum we need to prove Donaldson’s theorem and our results.
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Definition 11 (Quasiholomorphic Sections). Let κ ∈ [0, 1). We will say that
a section sk : V → Lk is κ-quasiholomorphic if |∇′′sk| ≤ κ |∇′sk| at every
point of V .

The geometric significance of this notion is the following:
Lemma 12 (Quasiholomorphic Sections and Symplectic Convexity). Let W
be the zero set of a κ-quasiholomorphic section s : V → Lk, κ ∈ [0, 1). Then
the function

φ := − 1
2π log |s| : V −W → R

admits a Liouville pseudogradient, namely the vector field λ−→ where −2kπiλ
is the 1-form defining ∇ in the trivialization s/|s| on V −W .

As a consequence, if s vanishes transversely and if φ := − log |s| is a
Morse function, then W is a symplectic hyperplane section and the Liouville
compactification of V −W (see Proposition 5) is a Weinstein domain.

Proof. Setting r := |s| and using the definition of λ, we can write (twice) the
partial covariant derivatives of s over V −W in the form

2∇′s = dr − 2πJ∗λr − i J∗(dr − 2πJ∗λr),
2∇′′s = dr + 2πJ∗λr + i J∗(dr + 2πJ∗λr),

so

|∇′s| = 1
2 |dr − 2πJ∗λr|,

|∇′′s| = 1
2 |dr + 2πJ∗λr|.

Since s is κ-quasiholomorphic, we have |∇′′s| ≤ κ |∇′s| and we obtain (after
dividing by 2πr):

|λ + J∗dφ| ≤ κ |λ− J∗dφ|.
Now the derivative of φ along the Liouville field λ−→ is equal to the inner
product gk(λ, dJφ). Thus, for κ ∈ [0, 1), the above inequality implies that

λ−→ · φ ≥ 1
2
1 − κ2

1 + κ2

(
|λ|2gk + |dφ|2gk

)
.

This shows that λ−→ is a pseudogradient of φ.

With this lemma in mind, it suffices to show:
Proposition 13 (Construction of Quasiholomorphic Sections). Let s0

k be
asymptotically holomorphic and uniformly transverse sections V → Lk, and
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let κ be any number in (0, 1). Then there exist κ-quasiholomorphic sections
sk : V → Lk such that, for every sufficiently large integer k:

• the section sk vanishes transversely and the symplectic hyperplane sec-
tion W := {sk = 0} is Hamiltonian isotopic to W 0 := {s0

k = 0};
• the function − log |sk| : V −W → R is a Morse function.

The quasiholomorphic sections sk will not be asymptotically holomorphic
anymore (see below). The main step in the proof is the next Lemma which
provides asymptotically holomorphic sections of Lk satisfying an additional
uniform transversality condition.

We recall that, given a positive number η, a Riemannian manifold M and
a Hermitian vector bundle E → M endowed with a unitary connection ∇,
a section σ : M → E is η-transverse (to 0) if, at every point x ∈ M with
|σ(x)| ≤ η, the linear map ∇σ(x) : TxM → Ex is surjective and has a right
inverse whose operator norm does not exceed 1/η. If the real rank of E equals
the dimension of M , it is equivalent to require that |∇σ(x) · v| ≥ η |v| for all
vectors v ∈ TxM .

In what follows, we consider sections σk : V → E ⊗ Lk, where E → V
is a fixed Hermitian bundle (the bundle of J-linear complex-valued 1-forms
on V ) and k runs over all sufficiently large integers, and we say that such
sections are uniformly transverse if they are η-transverse for some positive η
independent of k, where the amount of transversality is measured with the
metric gk.

Lemma 14 (Extra Uniform Transversality Condition). Let s0
k be asymp-

totically holomorphic and uniformly transverse sections V → Lk. For large
integers k, the sections s0

k are homotopic, through asymptotically holomor-
phic and uniformly transverse sections, to sections s1

k : V → Lk whose partial
covariant derivatives ∇′sk are uniformly transverse.

Proof of Lemma 14. The proof follows step by step the path opened by Don-
aldson in [Do1]. We just explain here how to obtain uniform local transver-
sality for sections of the form ∇′sk. The globalization process elaborated by
Donaldson in [Do1] then applies readily to provide the desired sections s1

k. The
sections s1

k will be asymptotically holomorphic by construction. Moreover,
given any δ > 0, we can arrange that all the differences s1

k − s0
k are bounded

by δ in C1-norm. For δ smaller than the uniform transversality modulus of
the sections s0

k, it follows that, for every t ∈ [0, 1], the sections (1− t)s0
k + ts1

k

are still asymptotically holomorphic and uniformly transverse.
To achieve uniform local transversality, we essentially need to show that

the derivatives ∇′s0
k are represented (in Darboux coordinates independent
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of k and in balls of fixed gk-radius) by maps which (on smaller balls) are
approximated within ε in C1-norm by polynomial maps of degree bounded by
C log(1/ε), where C is a positive constant (independent of k).

We work in complex Darboux coordinates (z1, . . . , zn) centered on a point
a (meaning that ω = i

2
∑n

1 dzj∧dzj), and we use the trivialization of Lk given
by parallel translation along rays. We denote by J0 the standard complex
structure in the coordinates and by ∇′

0,∇′′
0 (resp. d′, d′′) the J0-linear and

J0-antilinear components of ∇ (resp. of the usual differential d). Thus we
have

∇′s0
k −∇′

0s
0
k = − i

2∇s0
k ◦ (J − J0)

where the right-hand side, measured with the metric gk on a ball of fixed
radius, is bounded by O(k−1/2) in C1-norm. Hence it suffices to make the
partial covariant derivatives ∇′

0sk uniformly transverse to 0, and for this we
can use the connection of the flat metric rather than that of gk. Note that
there is a little subtlety here: we want ∇′sk to be transverse to 0 as a section
of T ′V ⊗Lk (T ′V denoting the bundle of J-linear forms in T ∗V ⊗C), but ∇′sk
and ∇′

0sk are not sections of the same bundle. To derive the transversality
of ∇′sk from that of ∇′

0sk, we observe that transversality between spaces of
equal dimensions is a dilation property for all non-zero vectors (under the
differential) and this property is stable under C1-small perturbations.

Let sa,k be the Gaussian section of Lk centered on a and cut off at gk-
distance O(k1/6) of a. Since we work in a ball of given radius in the metric
gk, for k sufficiently large,

sa,k(z) = exp(−π|z|2/2).

There are two obvious bases in the space of J0-linear forms, one consisting of
the forms dzjsa,k and one consisting of the forms ∇′

0(zjsa,k). They are related
by

∇′
0(zisa,k) = dzisa,k + zi∇′

0sa,k

=

⎛⎝dzi − πzi
∑
j

zjdzj

⎞⎠ sa,k

=
∑
j

Φij(z) dzjsa,k

where the entries of the matrix

Φ(z) =
(
Φij(z)

)
=

(
δij − πzizj

)
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are (real) polynomials independent of k.
We now represent ∇′

0s
0
k by the map h = (h1, . . . , hn) (with values in C

n)
defined by

∇′
0s

0
k =

∑
j

hj∇′
0(zjsa,k).

If w = (w1, . . . , wn) is a δ-transverse value of h (meaning that h − w is η-
transverse to 0) then the section

∇′
0

⎛⎝s0
k −

∑
j

wjzjsa,k

⎞⎠ =
∑
j

(hj − wj)∇′
0(zjsa,k)

is η′-transverse to 0 for some η′ which is a definite fraction of η. On the other
hand, considering the function f = s0

k/sa,k, we have

∇′
0s

0
k = d′f sa,k + f ∇′

0sa,k

=
(
d′f − πf

∑
i

zidzi

)
sa,k

=
∑
i

(∂zif − πfzi)dzisa,k.

In other words, if we denote by u = (u1, . . . , un) the map given by

ui := ∂zif − πzif, 1 ≤ i ≤ n,

we get
h(z) = Φ(z)−1u(z).

Since the function f is approximately holomorphic and the entries of the
matrix Φ−1 are analytic functions independent of k, the map h admits the
required polynomial approximations (see [Do1] for more details).

Remark (Cheaper Approach). The above argument appeals (implicitly) to
the quantitative version of Sard’s theorem given in [Do2, Section 5] or, more
accurately, to its real version proved in [Mo1, Section 6]. This is a great result
but its proof is difficult and quite technical. One could modify our argument
to appeal, instead, to the trick proposed by Auroux in [Au3]. This would
definitely make the complete proof of Theorem 2 technically much simpler,
but it would make our exposition here more intricate.
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Proof of Proposition 13. First observe that, since the sections s0
k and s1

k are
homotopic through asymptotically holomorphic and uniformly transverse sec-
tions, their zero sets W 0 := {s0

k = 0} and W 1 := {s1
k = 0} are Hamiltonian

isotopic. We will now construct κ-quasiholomorphic sections sk by modifying
the sections s1

k away from their zero sets. Hence, though asymptotic holo-
morphicity will not be preserved in this process, the symplectic hyperplane
sections W := {sk = 0} = W 1 and W 0 will remain Hamiltonian isotopic for
every large integer k.

Consider the sets Γk ⊃ Δk defined by

Γk = {x ∈ V : |∇′′s1
k(x)| ≥ κ |∇′s1

k(x)|},
Δk = {x ∈ V : ∇′s1

k(x) = 0},

where the sections s1
k : V → Lk are those given by Lemma 14.

Since s1
k vanishes η-transversely, Γk avoids a tube of fixed gk-radius (in-

dependent of k) about W 1 := {s1
k = 0}. Moreover, since ∇′s1

k vanishes δ-
transversely, Δk is a discrete (hence finite) set and:

Lemma 15 (Location of Bad Points). For every sufficiently small positive
number ρ and every sufficiently large integer k ≥ k(ρ), the balls Bk(a, ρ),
a ∈ Δk, are disjoint and cover Γk.

To see this, recall that the sections s1
k are asymptotically holomorphic,

and so
|∇′s1

k(x)|gk ≤ κ |∇′′s1
k(x)|gk ≤ κRk−1/2

at every point x ∈ Γk. Since ∇′s1
k is δ-transverse to 0, the above estimate

implies that

|∇∇′s1
k(x) · v|gk ≥ δ |v|gk provided κRk−1/2 ≤ δ.

Then, as in [Do2, Lemma 8 and Proposition 9], Lemma 15 is a consequence
of the following simple fact:

Lemma 16 (Inverse Function Theorem). Let φ : Dn → R
n be a map C2-

bounded by c and such that

|dφ(0) · v| ≥ δ |v| for all vectors v.

If |φ(0)| ≤ δρ/2 for some ρ ≤ δ/c, the equation φ(x) = 0 has a unique solution
x in the ball of radius ρ about 0.
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To prove Lemma 15, we apply Lemma 16 to the map representing ∇′s1
k in

the complex Darboux coordinates centered on a point a of Γk. At this point,

|∇′s1
k(a)| ≤ κ−1|∇′′s1

k(a)| ≤ Rκ−1k−1/2

so the hypotheses of Lemma 16 are fulfilled once k is sufficiently large.

To complete the proof of the proposition, we will modify s1
k near each

point a ∈ Δk (see [Do2, Lemma 10 and the subsequent discussion]). Again,
we work in the complex Darboux coordinates centered on a. For any ρ > 0,
fix a cutoff function β = βρ such that β(z) = 1 for |z| ≤ ρ/2, β(z) = 0 for
|z| ≥ ρ, and |dβ(z)| ≤ 3/ρ for all z. Write s1

k = fsa,k and denote by f0 the
complex polynomial of degree 2 given by

f0(z) = f(0) + 1
2

∑
ij

∂2
zizjf(0)zizj .

We then consider the sections sk defined in the coordinates (z1, . . . , zn) by

sk :=
(
βf0 + (1 − β)f

)
sa,k.

Before comparing the derivatives ∇′sk and ∇′′sk, let us compare the deriva-
tives ∇′

0sk and ∇′′
0sk. As we already noticed, the closeness of ∇′s1

k and ∇′
0s

1
k

guarantees that the latter derivative is η/2-transverse to 0 on the ball of
radius ρ for k sufficiently large. On the other hand, the identities

d′′f(0) = ∇′′
0s

1
k(0),

dd′′f(0) = ∇0∇′′
0s

1
k(0)

(where ∇0 denotes the connection associated to the flat metric) show that
|d′′f(0)| and |dd′′f(0)| are bounded by Ck−1/2. Therefore, if k is sufficiently
large, the partial derivative ∇′

0(f0sa,k) is so close to ∇′
0s

1
k that it is η/4-

transverse to 0. Furthermore, f0sa,k is a holomorphic section. Thus, on the
ball of radius ρ/2 (where β = 1), we have

∇′′
0sk(z) = 0 and |∇′

0sk(z)| ≥
η

4 |z|.

Hence, on that same ball,

|∇′′sk(z)| ≤ Ck−1/2|z| and |∇′
0sk(z)| ≥

(η
4 − Ck−1/2

)
|z|.



Remarks on Donaldson’s symplectic submanifolds 385

In the annular region ρ/2 ≤ |z| ≤ ρ, the calculations above imply that

|f(z) − f0(z)| ≤ C(ρ3 + ρk−1/2)

and, since the gradient of β is bounded by 3/ρ, the same arguments as in
[Do2] give the desired inequalities when ρ is sufficiently small.

It remains to show that the function φ := − log |sk| : V −W → R (where
W := {sk = 0}) is a Morse function. Since sk is κ-quasiholomorphic with
κ < 1, the critical points of φ are the zeros of ∇′sk, namely the points of
Δk. It then follows from the properties of sk in Bk(a, ρ/2), a ∈ Δk, that ∇sk
vanishes transversely at a, so the critical points of φ are non-degenerate.

C. Symplectic hyperplane sections and Stein domains

Here we derive Theorem 1 from Theorem 2. The main ingredient we will use
is a special case (a domain is a cobordism with empty bottom boundary) of
[CE, Theorem 13.5]:

Theorem 17 (Cieliebak-Eliashberg). Let (F, λ) be a Weinstein domain and
φ0 a function on F with pseudogradient λ−→ and regular level set ∂F = {φ0 =
0}. Then there exist a complex structure J and a path of 1-forms λt on F
(t ∈ [0, 1]) with the following properties:

• all forms dλt are symplectic on F , and λ0 = λ;
• all Liouville vector fields λt−→ are pseudogradients of φ0;
• λ1 = dJ(u◦φ0) for some convex increasing function u : R≤0 → R≤0 with
u(0) = 0.

In particular, (F, J) is a Stein domain and u ◦ φ is a J-convex function.
To complete the proof of Theorem 1, we actually need a variant of the

above result, namely:

Corollary 18 (Weinstein and Stein Domains). Let (F, λ) be a Weinstein
domain. Then there exist a complex structure J on F and a J-convex Morse
function φ : F → R≤0, with regular level set ∂F = {φ = 0}, such that dλ =
d dJφ.

Proof. Pick an arbitrary function φ0 on F with pseudogradient λ−→ and regular
level set ∂F = {φ0 = 0}. Consider the complex structure J and the path
of 1-forms λt (along with the function u) given by Theorem 17. Since the
Liouville vector fields λt−→ are all pseudogradients of φ0, each form λt induces a
contact form αt on ∂F . Using Gray’s stability theorem and a suitable isotopy
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extension, we can arrange that the forms λt have the same kernel along ∂F ,
i.e. λt = vtλ0 on ∂F for some function vt : ∂F → R>0.

Assume temporarily that vt = 1 for all t. Then Moser’s argument provides
an isotopy ht of F relative to ∂F such that h0 = id and h∗

tdλt = dλ. Then the
complex structure h∗

1J and the function h∗
1(u◦φ0) have the desired properties.

Therefore it suffices to modify the forms λt so that they coincide on (or
along) ∂F and still satisfy the conditions of Theorem 17. It is easy to find
positive functions wt on F such that wt = 1/vt on ∂F and λt−→ · logwt > −1.
Then the forms λ̃t := wtλt agree along ∂F and satisfy the first two conditions
of Theorem 17, but λ̃1 and dJ(u ◦ φ0) are not equal. Set φ1 = u ◦ φ0 and note
that

λ̃1 = w1λ1 = w1d
Jφ1.

Lemma 19 below provides a function φ such that λ̃1 = dJφ, which completes
the proof of the corollary.

Lemma 19 (Rescaling of J-Convex Functions). Let F be a domain, J a
complex structure on F and φ1 : F → R a J-convex Morse function on F
with regular level set ∂F = {φ1 = 0}. For every positive function w on ∂F ,
there exists a J-convex Morse function φ : F → R equivalent to φ1 such that
dJφ = w dJφ1 along ∂F .

By “equivalent”, we mean that φ = u ◦ φ1 ◦ h, where u : R → R is an
increasing function while h is a diffeomorphism of F .

Proof. First extend w to a positive function on F and define φ2 := (w+cφ1)φ1,
where c is a positive constant. Then ∂F is a regular component of the zero-
level set of φ2, and dJφ2 = w dJφ1 at every point of ∂F . Moreover,

d dJφ2 = (w + cφ1) d dJφ1 + φ1 d d
J(w + cφ1)

+ dw ∧ dJφ1 + dφ1 ∧ dJw + 2c dφ1 ∧ dJφ1,

so φ2 is J-convex near ∂F for any sufficiently large constant c. We henceforth
fix such a c. Then there exists a number δ > 0 such that dφ2 is positive on
the Liouville field dJφ1−−→ in the collar {−δ ≤ φ1 ≤ 0} (indeed, dφ2 = w dφ1 at
every point of ∂F ). Now set

φ3 = aφ1 + b with b := 1
2 sup{φ2(x) : φ(x) = −δ}, a <

b

δ
.

Clearly, φ3 is J-convex and we obtain the desired function φ by smoothing
the function max(φ1, φ2) (see [CE, Chapter 2] for details on the relevant
smoothing technique).
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