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Abstract: We study Kummer varieties attached to 2-coverings
of abelian varieties of arbitrary dimension. Over a number field
we show that the subgroup of odd order elements of the Brauer
group does not obstruct the Hasse principle. Sufficient conditions
for the triviality of the Brauer group are given, which allow us
to give an example of a Kummer K3 surface of geometric Picard
rank 17 over the rationals with trivial Brauer group. We establish
the non-emptyness of the Brauer–Manin set of everywhere locally
soluble Kummer varieties attached to 2-coverings of products of
hyperelliptic Jacobians with large Galois action on 2-torsion.

1. Introduction

In [12, 13] Yu.I. Manin introduced what is now called the Brauer–Manin
obstruction. To an element of the Brauer–Grothendieck group of a variety
X over a number field k he attached a global reciprocity condition on the
adelic points of X which is satisfied when an adelic point comes from a k-
point. In this paper we study the Brauer–Manin obstruction on Kummer
varieties, which are higher-dimensional generalisations of classical Kummer
K3 surfaces.

Over complex numbers, Kummer varieties in dimension greater than 2
were introduced in 1890 by W. Wirtinger [31]. Their topological and geometric
properties were studied by A. Andreotti, E. Spanier and K. Ueno, see [27],
[28], [29].

Over non-closed fields, Kummer varieties come not only from the quo-
tients of abelian varieties by the antipodal involution, but also from the
quotients of certain torsors. More precisely, let A be an abelian variety of
dimension g ≥ 2 over a field k of characteristic not equal to 2. Let Y be a
k-torsor for A whose class in H1(k,A) has order at most 2. Classically such
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torsors are referred to as 2-coverings of A. Kummer varieties considered in
this paper are minimal desingularisations of the quotient Y/ι by the invo-
lution ι : Y → Y induced by the antipodal involution [−1] : A → A. In
the case g = 2 we obtain Kummer surfaces, a particular kind of K3 surface.
Due to their intimate relation to abelian varieties, Kummer surfaces are a
popular testing ground for conjectures on the geometry and arithmetic of K3
surfaces. Rational points and Brauer groups of Kummer surfaces were studied
in [23, 25, 8, 6, 2, 30].

Rational points on Kummer varieties of higher dimension feature in the
work of D. Holmes and R. Pannekoek [7]. Their result concerns an abelian
variety A over a number field k: if the set of k-points of the Kummer variety
X attached to An is dense in the Brauer–Manin set of X, then there is
a quadratic twist of A over k of rank at least n. More recently, a Hasse
principle for Kummer varieties, that are sufficiently general in an appropriate
arithmetic sense, was established conditionally on the finiteness of relevant
Shafarevich–Tate groups by Y. Harpaz and one of the present authors [6].
Somewhat surprisingly, the Brauer group does not show up in that statement.

Our aim in this paper is twofold. In Section 2 we establish geometric prop-
erties of Kummer varieties analogous to similar properties of Kummer sur-
faces. We show, among other things, that the geometric Picard group Pic(X)
is a finitely generated free abelian group (Corollary 2.4). In the characteris-
tic zero case we describe a natural isomorphism of Galois modules between
the geometric Brauer group of a Kummer variety and the geometric Brauer
group of the corresponding abelian variety (Proposition 2.7). From our pre-
vious result [24] we then deduce the finiteness of the quotient of Br(X) by
Br0(X) = Im[Br(k) → Br(X)] when k is finitely generated over Q; see Corol-
lary 2.8. Note, however, that the canonical class of a Kummer variety of
dimension g ≥ 3 is represented by an effective divisor (Proposition 2.6), thus
higher-dimensional Kummer varieties are not Calabi–Yau. Yonatan Harpaz
asked if this could be relevant for the tension which exists, in the light of
the result of Holmes and Pannekoek, between the heuristics for the ranks of
elliptic curves over Q [18] and the conjecture that Q-points of K3 surfaces are
dense in the Brauer–Manin set [22, p. 77], [24, p. 484].

The main goal of this paper is to study the Brauer group and the Brauer–
Manin obstruction on Kummer varieties. We prove the following general re-
sult.

Theorem 3.3 Let A be an abelian variety of dimension > 1 over a number
field k. Let X be the Kummer variety attached to a 2-covering of A such
that X(Ak) �= ∅. Then X(Ak)Br(X)odd �= ∅, where Br(X)odd ⊂ Br(X) is the
subgroup of elements of odd order.
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In Theorem 4.3 we give sufficient conditions on an abelian variety A which
guarantee that the 2-torsion subgroup of Br(X) is contained in the algebraic
Brauer group Br1(X) = Ker[Br(X) → Br(X)] and, moreover, Br1(X) =
Br0(X). The conditions of Theorem 4.3 are satisfied for the Kummer variety
X attached to a 2-covering of the Jacobian of the hyperelliptic curve y2 =
f(x), where f(x) ∈ k[x] is a separable polynomial of odd degree d ≥ 5
whose Galois group is the symmetric or alternating group on d letters. See
Theorem 5.1, where we also treat products of Jacobians assuming that the
splitting fields of the corresponding polynomials are linearly disjoint over k.
This implies the following

Corollary 5.2 Let k be a number field. Let A be the product of Jacobians of
elliptic or hyperelliptic curves y2 = fi(x), where fi(x) ∈ k[x] is a separable
polynomial of odd degree mi ≥ 3 whose Galois group is the symmetric group
on d letters. Assume that dim(A) > 1 and the splitting fields of the fi(x) are
linearly disjoint over k. If the Kummer variety X attached to a 2-covering of
A is everywhere locally soluble, then X(Ak)Br �= ∅.

This explains the absence of the Brauer group from the statements of the
Hasse principle for K3 surfaces in Theorems A and B of [6].

As a by-product of our calculations, we use a result of L. Dieulefait [3]
to construct a Kummer K3 surface over Q of geometric Picard rank 17 with
trivial Brauer group; see the examples at the end of the paper. Previously
known K3 surfaces with this property have geometric Picard rank 18, 19 and
20, see [25, 9, 8].

The first named author was partially supported by a grant EP/M020266/1
from EPSRC. The work on this paper started when he was visiting the Penn-
sylvania State University and continued when he was at the Institute for Ad-
vanced Study in Princeton, where he was supported by The Charles Simonyi
Endowment. He is grateful to both institutions. The second named author was
partially supported by a grant from the Simons Foundation (grant 246625 to
Yuri Zarkhin). A part of this work was done while he was a visitor at the
Max-Planck-Institut für Mathematik in Bonn, whose hospitality and support
are gratefully acknowledged. We would like to thank Yonatan Harpaz for ex-
tremely helpful comments and Samir Siksek for directing us to the paper [3].
We are grateful to Tatiana Bandman and the referees for their comments.

2. Kummer varieties and Kummer lattices

Let k be a field of characteristic different from 2 with an algebraic closure k̄
and the Galois group Γ = Gal(k̄/k) := Aut(k̄/k). For a variety X over k we
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write X = X ×k k̄. Let A be an abelian variety over k of dimension g ≥ 2.
We write At for the dual abelian variety of A.

Let T be a k-torsor for the group k-scheme A[2]. We define the attached
2-covering of A as the quotient Y = (A×k T )/A[2] by the diagonal action of
A[2]. The first projection defines a morphism f : Y → A which is a torsor for
A[2] such that T = f−1(0). The natural action of A on Y makes Y a k-torsor
for A. In particular, there is an isomorphism of varieties Y ∼= A. Alternatively,
Y is the twisted form of A defined by a 1-cocycle with coefficients in A[2]
representing the class of T in H1(k,A[2]), where A[2] acts on A by translations.

We have an exact sequence of Γ-modules

(1) 0 −→ At(k̄) −→ Pic(Y ) −→ NS (Y ) −→ 0.

The abelian groups NS (Y ) and NS (A) are isomorphic. In fact, NS (Y ) and
NS (A) are also isomorphic as Γ-modules because translations by the elements
of A(k̄) act trivially on NS (A), see [16].

The antipodal involution ιA = [−1] : A → A induces an involution ιY :
Y → Y . It acts on Pic0(Y ) = At(k̄) as [−1], which implies that

H0(〈ιY 〉, At(k̄)) = At[2], H1(〈ιY 〉, At(k̄)) = 0,

where we used the divisibility of At(k̄). Taking the invariants of the action of
ιY on the terms of (1) we obtain an exact sequence of Γ-modules

(2) 0 −→ At[2] −→ Pic(Y )ιY −→ NS (Y ) −→ 0.

Let σ : Y ′ → Y be the blowing-up of the 22g-point closed subscheme
T ⊂ Y . The involution ιY : Y → Y preserves T and so gives rise to an
involution ιY ′ : Y ′ → Y ′.

Definition 2.1. The Kummer variety attached to a 2-covering Y of an
abelian vareity A is the quotient X = Y ′/ιY ′ .

By definition dim(X) = g ≥ 2. The fixed point set of ιY ′ is the ex-
ceptional divisor E = σ−1(T ), which is a smooth divisor in Y ′. A standard
local calculation shows that X is smooth. Thus the natural surjective mor-
phism π : Y ′ → X is a double covering whose branch locus is E. The divisor
E = σ−1(T ) is the disjoint union of 22g copies of Pg−1

k̄
. Let D = π(E) ⊂ X.

Let us now pause and describe some known facts about Kummer varieties
over k = C. Spanier showed that these varieties are simply connected [27,
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Thm. 1]. He also showed that their integral cohomology groups are torsion-
free, and computed the Betti numbers [27, Thm. 2]:

b0 = b2g = 1, b2i+1 = 0, b2i =
(

2g
2i

)
+ 22g, where 0 < i < n.

The canonical class of X was calculated by K. Ueno:

KX = g − 2
2 [D],

see [29, Lemma 16.11.1] or Proposition 2.6 below. Since KX ≥ 0, a theorem
of K. Ueno [28, Prop. 3], [29, Thm. 16.2] says that the Kodaira dimension of
X is 0.

We now return to the assumption that k is an arbitrary field of charac-
teristic different from 2.

Lemma 2.2. The subgroup of Pic(X) generated by the classes of the irre-
ducible components of D is a free abelian group of rank 22g whose generators
canonically correspond to the k̄-points of T .

Proof. Let Ei, for i = 1, . . . , 22g, be the irreducible components of E ⊂
Y

′. Choose a line Li
∼= P1

k̄
in each Ei. We define Di = π(Ei) ⊂ X, where

i = 1, . . . , 22g. The restriction of π to Ei is an isomorphism Ei → Di.
For i �= j we have Di ∩ Dj = ∅, hence ([Di].[π(Lj)])X = 0. The normal

bundle N to Ei
∼= P

g−1
k̄

in Y
′ is O(−1). By the standard formula [4, Prop.

2.6 (c)] for each i = 1, . . . , 22g we have

([Ei].[Li])Y ′ = (c1(N).[Li])Ei = (O(−1).[Li])Pg−1
k̄

= −1.

Since π∗[Di] = 2[Ei], by the projection formula we have

([Di].[π(Li)])X = (π∗[Di].[Li])Y ′ = −2.

Thus no non-trivial linear combination of the classes [Di] is zero in
Pic(X). �

We write Z[T ] ⊂ Pic(X) for the subgroup described in Lemma 2.2. For
x ∈ T (k̄) we denote the corresponding generator of Z[T ] by ex. Define Π as
the saturation of Z[T ] in Pic(X):

Π = {x ∈ Pic(X)|nx ∈ Z[T ] for some non-zero n ∈ Z}.
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For g = 2 Nikulin proved in [17, §1] that Π is a lattice in Q[T ] = Z[T ] ⊗ Q

generated by Z[T ] and the vectors 1
2
∑

x∈H ex, where H is a subset of T (k̄) 

A[2](k̄) given by L(x) = c for some L ∈ Hom(A[2],F2) and c ∈ F2. (This set of
generators does not depend on the choice of an isomorphism T (k̄) 
 A[2](k̄)
of k̄-torsors for A[2].) We generalise this result to g ≥ 2. In doing so we
show that Pic(X) is torsion-free for any g ≥ 2, see Proposition 2.3 below. In
particular, Π is also torsion-free, so Π can be called the Kummer lattice.

Write Y0 = Y \ T and X0 = π(σ−1(Y0)). Then Y0 is the complement to a
finite set in a smooth, proper and geometrically integral variety of dimension
at least 2, so we have

(3) k̄[Y0] = k̄, Pic(Y 0) = Pic(Y ), Br(Y 0) = Br(Y ),

where the last property follows from [5, Cor. 6.2, p. 136].
The involution ιY acts on Y0 without fixed points, hence π : Y0 → X0 =

Y0/ιY is a torsor for Z/2. There is a Hochschild–Serre spectral sequence [14,
Thm. III.2.20]

(4) Hp(Z/2,Hq
ét(Y 0,Gm)) ⇒ Hp+q

ét (X0,Gm).

Using (3) we deduce an exact sequence

(5) 0 −→ Z/2 −→ Pic(X0)
σ∗π∗
−→ Pic(Y )ιY −→ 0,

where the last zero is due to the fact that H2(Z/2, k̄∗) = k̄∗/k̄∗2 = 0 as
char(k) �= 2. Using the fact that NS (Y ) ∼= NS (A) is torsion-free, we deduce
from (5) and (2) a commutative diagram of Γ-modules with exact rows and
columns

(6)

0 0
↑ ↑

NS (Y ) = NS (Y )
↑ ↑

0 −→ Z/2 −→ Pic(X0) −→ Pic(Y )ιY −→ 0
|| ↑ ↑

0 −→ Z/2 −→ Pic(X0)tors −→ At[2] −→ 0
↑ ↑
0 0
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Since X is smooth, the natural restriction map Pic(X) → Pic(X0) is surjec-
tive; thus Pic(X0) = Pic(X)/Z[T ]. This implies Pic(X0)tors = Π/Z[T ], so we
obtain a commutative diagram of Γ-modules with exact rows and columns

(7)

0 0
↑ ↑

NS (Y ) = NS (Y )
↑ ↑

0 −→ Z[T ] −→ Pic(X) −→ Pic(X0) −→ 0
|| ↑ ↑

0 −→ Z[T ] −→ Π −→ Pic(X0)tors −→ 0
↑ ↑
0 0

For future reference we write the middle column of (7) as an exact sequence
of Γ-modules

(8) 0 −→ Π −→ Pic(X) σ∗π∗
−→ NS (Y ) −→ 0.

Proposition 2.3. Let X be a Kummer variety over a field of characteristic
different from 2. Then the abelian group Pic(X) is torsion-free. There is an
isomorphism of abelian groups Pic(X0)tors ∼= At[2] ⊕ Z/2.

Proof. The statements concern varieties over k̄, so we can assume that
X is attached to the trivial 2-covering Y = A. The translations by points of
order 2 commute with the antipodal involution [−1] : A → A. This implies
that the finite commutative group k-scheme G = A[2] ×k Z/2 acts on A so
that the elements of A[2] act as translations and the generator of Z/2 acts
as [−1]. It is easy to see that G acts freely on A1 = A \ A[4] with quotient
A1/G = X0. Hence the quotient morphism f : A1 → X0 is a torsor for G.
Since g ≥ 2, we have k̄[A1] = k̄ and Pic(A1) = Pic(A). The Cartier dual Ĝ
is isomorphic to At[2] × Z/2, so the exact sequence [21, (2.5), p. 17] gives
an injective map At[2] ⊕ Z/2 ↪→ Pic(X0). The bottom exact sequence of (6)
shows that the cardinality of At[2]⊕Z/2 equals the cardinality of Pic(X0)tors,
so we obtain an isomorphism of abelian groups At[2] ⊕ Z/2−̃→Pic(X0)tors.

Since Z[T ] is torsion-free, the natural map Pic(X) → Pic(X0) induces an
injective map of torsion subgroups. In particular, a non-zero torsion element of
Pic(X) is annihilated by 2 and corresponds to a connected unramified double
covering of X. A double covering of X is uniquely determined by its restriction
to X0. Therefore, it is enough to show that any connected unramified double
covering of X0 is a restriction of a ramified double covering of X. By the
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previous paragraph any such covering of X0 is of the form A1/H, where
H ⊂ G is a subgroup of index 2.

If H = A[2], then A1/A[2] = A \ A[2] = A0. Write σ : A′ → A for
the blowing-up of A[2] in A. Then the unramified double covering A0 → X0
extends to the double covering A

′ → X ramified exactly in the exceptional
locus σ−1(A[2]).

If H �= A[2], then there is a non-zero φ ∈ Hom(A[2],Z/2) = At[2] such
that H is the kernel of the homomorphism A[2] ⊕ Z/2 → Z/2 given by
(x, y) �→ φ(x) or by (x, y) �→ φ(x) + y. Define Aφ = A/Ker(φ). Choose
a ∈ A[2](k̄) such that φ(a) �= 0. Then A1/H is the quotient of Aφ with
Aφ[2] and [2]−1(φ(a)) removed, by the involution x �→ −x in the first case
and x �→ φ(a) − x in the second case. It follows that the unramified double
covering A1/H → X0 is the restriction of the double covering of X rami-
fied in σ−1(A[2] \ Ker(φ)) in the first case and in σ−1(Ker(φ)) in the second
case. �

Corollary 2.4. Any Kummer variety X of dimension g ≥ 2 over a field k of
characteristic not equal to 2 satisfies the following properties:

(i) Pic0(X) = 0;
(ii) Pic(X) = NS (X) is torsion-free of rank 22g + rk(NS (A));
(iii) H1

ét(X,Z�) = 0 for any prime � �= char(k);
(iv) H2

ét(X,Z�) is torsion-free for any prime � �= char(k).

Proof. Since Pic(X) is torsion-free, we immediately obtain (i) and
Pic(X) = NS (X). From diagram (7) we see that the rank of this group is
22g +rk(NS (Y )) = 22g +rk(NS (A)). The Kummer sequence gives well-known
isomorphisms

H1
ét(X,μ�n) = Pic(X)[�n] = 0, n ≥ 1,

which imply (iii), by passing to the limit in n. The Kummer sequence also im-
plies the well-known fact that the torsion subgroup of H2

ét(X,Z�(1)) coincides
with the torsion subgroup of NS (X) ⊗Z Z�. This gives (iv). �

Corollary 2.5. The Galois cohomology group H1(k,Pic(X)) is finite. The
kernel of the natural map H1(k,Pic(X)) → H1(k,NS (Y )) is annihilated by 2.
If the order of the finite group H1(k,NS (A)) is a power of 2, in particular,
if NS (A) is a trivial Γ-module, then every element of odd order in Br1(X) is
contained in Br0(X).

Proof. The finiteness of H1(k,Pic(X)) follows from the first statement of
Proposition 2.3.
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The second statement of Proposition 2.3 implies that H1(k,Pic(X0)tors) is
annihilated by 2. Since Z[T ] is a permutation Γ-module we have H1(k,Z[T ]) =
0. By diagram (7) this implies that H1(k,Π) is a subgroup of H1(k,Pic(X0)tors)
and so is also annihilated by 2. This proves the second statement.

Recall that NS (Y ) and NS (A) are isomorphic as Γ-modules, so
H1(k,NS (Y )) = H1(k,NS (A)). When the order of this group is a power
of 2, the order of H1(k,Pic(X)) is also a power of 2. The last statement is
now immediate from the well known inclusion of the quotient Br1(X)/Br0(X)
into H1(k,Pic(X)). �

We define Π1 ⊂ Π as the kernel of the composed surjective map

Pic(X) −→ Pic(X0) −→ Pic(Y )ιY .

Then Z[T ] is a subgroup of Π1 of index 2. It is easy to see that Π1 is generated
by Z[T ] and 1

2
∑

x∈T (k̄) ex. We thus have a canonical filtration

Z[T ] ⊂ Π1 ⊂ Π ⊂ Pic(X)

with successive factors Z/2, At[2], NS (Y ) = NS (A). This filtration is re-
spected by the action of A[2] on Y and X, as well as by the action of the
Galois group Γ.

We summarise our discussion in the form of the following commutative
diagram with exact rows and columns, where all arrows are group homomor-
phisms which respect the actions of Γ and A[2]:

(9)

0 0
↓ ↓

Π1 = Π1
↓ ↓

0 −→ Π −→ Pic(X) σ∗π∗
−→ NS (Y ) −→ 0

↓ ↓ ||
0 −→ At[2] −→ Pic(Y )ιY −→ NS (Y ) −→ 0

↓ ↓ ↓
0 0 0

Remark 1 It is clear that Z[T ] is a permutation Γ-module. Now consider
the particular case when T is a trivial torsor, i.e. T ∼= A[2] as k-torsors. The
action of Γ on the set A[2] fixes 0. It follows that not just Z[A[2]] but also Π1
is a permutation Γ-module. Indeed, Π1 has a Γ-stable Z-basis consisting of
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ex for x ∈ A[2] \ {0} and 1
2
∑

x∈A[2] ex. Note, however, that this basis is not
A[2]-stable.

The following proposition shows that the canonical class of a Kummer
variety of dimension g ≥ 3 is represented by an effective divisor, so such
varieties are not Calabi–Yau. In the case char(k) = 0, this was proved in [29,
Lemma 16.11.1].

Proposition 2.6. We have KX = g−2
2 [D] = g−2

2
∑

x∈T (k̄) ex.

Proof. The natural map π∗ : Pic(X) → Pic(Y ′) is injective. Indeed, its
kernel is contained in Π1, by the exactness of the middle column of (9). In
the notation of the proof of Lemma 2.2 we have π∗[Di] = 2[Ei], hence π∗ is
injective on Π1. Since KY = 0, the standard formulae give K

Y
′ = (g−1)

∑
[Ei]

and K
Y

′ = π∗KX +
∑

[Ei]. Now our statement follows from the injectivity of
π∗ : Pic(X) → Pic(Y ′). �
Proposition 2.7. Assume that the characteristic of k is zero. Then the mor-
phisms π : Y ′ → X and σ : Y ′ → Y induce isomorphisms of Γ-modules

Br(X)−̃→Br(Y ′)←̃−Br(Y ) ∼= Br(A).

Proof The last isomorphism is due to the fact that Y is the twist of A by
a 1-cocycle with coefficients in A[2], but the induced action of A[2] on Br(A)
is trivial. In fact, the whole group A(k̄) acts trivially on the finite group
Br(A)[n] for every integer n, because any homomorphism from the divisible
group A(k̄) to the finite group Aut(Br(A)[n]) is trivial.

The middle isomorphism is a consequence of the birational invariance of
the Brauer group of a smooth and projective variety over a field of character-
istic zero.

The natural map π∗ : Br(X) → Br(Y ′) is a map of Γ-modules. To prove
that it is an isomorphism we can work over an algebraically closed field of
characteristic zero and so assume that Y = A. We remark that Grothendieck’s
exact sequence [5, Cor. 6.2, p. 137] gives an exact sequence

0 −→ Br(X) −→ Br(X0) −→
⊕

H1(Pg−1
k̄

,Q/Z),

where the terms in the direct sum are numbered by the 22g points of A[2](k̄).
We have H1(Pg−1

k̄
,Z/n) = 0 for any positive integer n, so the natural map

Br(X)−̃→Br(X0) is an isomorphism. By (3) there is a natural isomorphism
Br(A)−̃→Br(A0).
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We analyse the map π∗ : Br(X0) → Br(A0) using the spectral sequence
(4). We have already seen that H2(Z/2, k̄∗) = 0. We have a natural iso-
morphism Pic(A0) = Pic(A) and we claim that H1(Z/2,Pic(A)) = 0. In
view of the exact sequence (1) it is enough to prove that H1(Z/2, At) =
H1(Z/2,NS (A)) = 0. The torsion-free group NS (A) is contained in the
group H2

ét(A,Z�(1)) for any prime �. The involution [−1] acts trivially on
H2

ét(A,Z�(1)) and hence on NS (A). It follows that H1(Z/2,NS (A)) = 0. On
the other hand, [−1] acts on Pic0(A) ∼= At(k̄) as [−1], hence H1(Z/2, At) = 0.
The spectral sequence (4) now gives an injective map Br(X) ↪→ Br(A).

By the well known Grothendieck’s computation [5, §8] we have Br(A) ∼=
(Q/Z)b2−ρ, where b2 = g(2g − 1) is the dimension of H2

ét(A,Q�(1)) and
ρ = rk(NS (A)). To complete the proof it is enough to show that the corank of
the divisible part of Br(X) is g(2g− 1)− ρ. (Indeed, any injective homomor-
phism (Q/Z)r → (Q/Z)r is an isomorphism.) By Corollary 2.4 (ii) Pic(X) is
torsion-free of rank ρ + 22g. Thus it remains to show that the dimension of
H2

ét(X,Q�(1)) is g(2g − 1) + 22g for any prime �. The Gysin sequence gives
an exact sequence

0 −→ (Q�)2
2g −→ H2

ét(X,Q�(1)) −→ H2
ét(X0,Q�(1)) −→ 0.

The spectral sequence Hp(Z/2,Hq
ét(A0,Q�)) ⇒ Hp+q

ét (X0,Q�) degenerates be-
cause each Hq

ét(A0,Q�) is a vector space over a field of characteristic 0. We
obtain

Hn
ét(X0,Q�) = Hn

ét(A0,Q�)[−1]∗

for all n ≥ 0. In particular, the dimension of H2
ét(X0,Q�(1)) is g(2g − 1), as

required. �
Corollary 2.8. Let k be a field finitely generated over Q. Let X be the Kum-
mer variety attached to a 2-covering of an abelian variety. Then the groups
Br(X)/Br0(X) and Br(X)Γ are finite.

Proof. By the spectral sequence Hp(k,Hq
ét(X,Gm)) ⇒ Hp+q

ét (X,Gm) and
Corollary 2.5 the finiteness of Br(X)Γ implies the finiteness of Br(X)/Br0(X).
By Proposition 2.7 this follows from the finiteness of Br(A)Γ which is estab-
lished in [24]. �

Remark 2 Assume that char(k) = 0. The commutative diagram

Br(X) −̃→ Br(Y )
↑ ↑

Br(X) σ∗π∗
−→ Br(Y )



348 Alexei N. Skorobogatov and Yuri G. Zarhin

identifies Br(X)/Br1(X) with a subgroup of Br(Y )/Br1(Y ).

3. When the Hasse principle is unobstructed

Let n be an odd integer and let k be a field of characteristic coprime to 2n.
Let Λ be a Γ-module such that nΛ = 0.

If A be an abelian variety over k, then [−1] acts on Hq
ét(A,Λ) by (−1)q,

where q ≥ 0. Hence for a 2-covering Y of A the involution ιY acts on Hq
ét(Y ,Λ)

by (−1)q.
For m ≥ 0 let Hm

ét(Y,Λ)+ be the ιY -invariant subgroup of Hm
ét(Y,Λ). Let

Hm
ét(Y,Λ)− be the ιY -anti-invariant subgroup, i.e. the group of elements on

which ιY acts by −1. Since n is odd, we can write

(10) Hm
ét(Y,Λ) = Hm

ét(Y,Λ)+ ⊕ Hm
ét(Y,Λ)−.

Proposition 3.1. Let Y be a 2-covering of an abelian variety A. Then we
have a canonical decomposition of abelian groups

H2
ét(Y,Λ) = H2(k,Λ) ⊕ H1(k,H1

ét(Y ,Λ)) ⊕ H2
ét(Y ,Λ)Γ

compatible with the natural action of the involution ιY on H2
ét(Y,Λ), so that

H2
ét(Y,Λ)+ = H2(k,Λ) ⊕ H2

ét(Y ,Λ)Γ and H2
ét(Y,Λ)− = H1(k,H1(Y ,Λ)).

Proof. Let m ≥ 1. The morphisms Y → Spec(k) and Y → Y induce the
ιY -equivariant maps

αm : Hm(k,Λ) −→ Hm
ét(Y,Λ), βm : Hm

ét(Y,Λ) −→ Hm
ét(Y ,Λ)Γ, βmαm = 0.

Since ιY acts trivially on Hm(k,Λ) and on H2
ét(Y ,Λ), we have

Im(αm) ⊂ Hm
ét(Y,Λ)+, H2

ét(Y,Λ)− ⊂ Ker(β2).

We claim that it is enough to show that

αm : Hm(k,Λ) → Hm
ét(Y,Λ)+ has a retraction, for every m ≥ 0;

β2 : H2
ét(Y,Λ)+ → H2

ét(Y ,Λ)Γ has a section.

Indeed, if this is true, then Hm(k,Λ) is a direct summand of Hm
ét(Y,Λ)+ for

m ≥ 0. Moreover, H2
ét(Y ,Λ)Γ is a direct summand of H2

ét(Y,Λ)+, so that

H2
ét(Y,Λ) = H2(k,Λ) ⊕ Ker(β2)/Im(α2) ⊕ H2

ét(Y ,Λ)Γ.
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Note that the maps αm and βm are the canonical maps in the spectral se-
quence

(11) Hp(k,Hq
ét(Y ,Λ)) ⇒ Hp+q

ét (Y,Λ).

From (11) we obtain the exact sequence

0 −→ Ker(β2)/Im(α2) −→ H1(k,H1(Y ,Λ)) −→ Ker(α3) = 0.

Since ιY acts on H1(Y ,Λ) by −1 and the Galois group Γ commutes with ιY ,
we get

Ker(β2)/Im(α2) = H1(k,H1(Y ,Λ)) ⊂ H2
ét(Y,Λ)−.

Now the claim follows from (10).
Let us construct a retraction of αm. Recall that T is a 0-dimensional

subscheme of Y , and so we have a restriction map Hm
ét(Y,Λ) → Hm

ét(T,Λ).
Write T as a disjoint union of closed points

T =
r⊔

i=1
Spec(ki),

where each ki is a finite field extension of k. Then Hm
ét(T,Λ) is the direct sum

of the Galois cohomology groups Hm(ki,Λ) for i = 1, . . . , r. The composi-
tion of the restriction map Hm(k,Λ) → Hm(ki,Λ) and the corestriction map
Hm(ki,Λ) → Hm(k,Λ) is the multiplication by [ki : k]. The direct sum of
these corestriction maps is a map Hm

ét(T,Λ) → Hm(k,Λ) whose composition
with the natural restriction map Hm(k,Λ) → Hm

ét(T,Λ) is the multiplication
by |T (k̄)| = 22g. Since n is odd, there is an integer r such that 22gr ≡ 1 mod n.
Thus the composition

(12) Hm
ét(Y,Λ) −→ Hm

ét(T,Λ) −→ Hm(k,Λ) [r]−→ Hm(k,Λ)

is a retraction of αm. Since T ⊂ Y is the fixed point set of ιY , this retraction
is ιY -equivariant.

Let us construct a section of β2. The translations by the points of A(k̄)
act trivially on Hq

ét(A,Λ) for any q ≥ 0, so we have canonical isomorphisms
of Γ-modules

(13) H2
ét(Y ,Λ) = H2

ét(A,Λ) = Hom(∧2A[n],Λ).

Since [Y ] ∈ H1(k,A)[2] and n is odd, the multiplication by n on A defines a
morphism [n] : Y → Y which is a torsor with structure group A[n]. We denote
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this torsor by Tn. The class of this torsor is an element [Tn] ∈ H1
ét(Y,A[n]).

Using cup-product we obtain a class

∧2[Tn] ∈ H2
ét(Y,∧2A[n]).

The isomorphisms (13) give rise to a pairing

H2
ét(Y,∧2A[n]) × H2

ét(Y ,Λ)Γ −→ H2
ét(Y,Λ).

Let s : H2
ét(Y ,Λ)Γ → H2

ét(Y,Λ) be the map defined by pairing with the class
∧2[Tn]. As n is an odd integer, the same proof as in [25, Prop. 2.2] (where
we treated the case Y = A) shows that s is a section of the natural map
H2

ét(Y,Λ) → H2
ét(Y ,Λ)Γ.

Since [−1] · [n] = [−n] = [n] · [−1] we see that ι∗Y [Tn] = [T−n], and the
torsor T−n is obtained from Tn by applying the automorphism [−1] to the
structure group A[n]. Hence ι∗Y [Tn] = −[Tn]. It follows that ι∗Y (∧2[Tn]) =
∧2[Tn]. We conclude that s is ιY -equivariant, and so is a section of the map
β2 : H2

ét(Y,Λ)+ → H2
ét(Y ,Λ)Γ. �

Remark 3 The restriction of the morphism [n] : Y → Y to T has a section
given by the identity map T −̃→T . Thus the restriction of Tn to T is trivial.
It follows that s(H2

ét(Y ,Λ)Γ) is contained in the kernel of the restriction map
H2

ét(Y,Λ) → H2
ét(T,Λ).

Recall that the Kummer variety X attached to Y is defined as follows.
Let σ : Y ′ → Y be the blowing-up of T in Y . Then π : Y ′ → X is the double
cover which is the quotient by a natural involution on Y ′ compatible with ιY .
We note that the same variety X can also be obtained from any quadratic
twist of Y . More precisely, let F be an étale k-algebra of dimension 2, i.e.
k ⊕ k or a quadratic extension of k. We denote by AF the quadratic twist of
the abelian variety A by F , defined as the quotient of A ×k Spec(F ) by the
simultaneous action of Z/2 such that the generator of Z/2 acts on A as [−1]
and on Spec(F ) as c ∈ Gal(F/k), c �= 0. (In the case of F = k⊕ k the action
of c permutes the factors of Spec(F ), so that AF = A in this case.) We define
YF similarly, replacing [−1] with ιY . Since [−1] commutes with translations
by the elements of A[2], we have a morphism YF → YF /A[2] = AF , which
is a 2-covering of AF defined by the same k-torsor T for A[2] = AF [2]. The
blowing-up σF : Y ′

F → YF of the closed subscheme T ⊂ YF has an involution
compatible with ιYF . It gives rise to the double covering πF : Y ′

F → X.
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Let YF 0 = YF \ T . We have a commutative diagram

(14)
H2

ét(X,Λ)
π∗
F−→ H2

ét(Y ′
F ,Λ) σF∗−→ H2

ét(YF ,Λ)
↓ ↓ ||

H2
ét(X0,Λ)

π∗
F−→ H2

ét(YF 0,Λ) = H2
ét(YF 0,Λ)

The restriction map H2
ét(YF ,Λ)−̃→H2

ét(YF 0,Λ) is an isomorphism by the pu-
rity of étale cohomology [14, Remark VI.5.4 (b)] as codimY (T ) ≥ 2. The map
σF∗ is the composition of the restriction to the open set YF 0 ⊂ Y ′

F and the
inverse of H2

ét(YF ,Λ)−̃→H2
ét(YF 0,Λ). In particular, the composition

H2
ét(YF ,Λ)

σ∗
F−→ H2

ét(Y ′
F ,Λ) σF∗−→ H2

ét(YF ,Λ)

is the identity map.
For the sake of completeness we note that the Hochschild–Serre spectral

sequence [14, Thm. III.2.20]

Hp(Z/2,Hq
ét(YF 0,Λ)) ⇒ Hp+q

ét (X0,Λ)

gives canonical isomorphisms

Hp
ét(X0,Λ)−̃→Hp

ét(YF 0,Λ)+.

Indeed, Hp(Z/2,Hq
ét(YF 0,Λ)) = 0 for p ≥ 1, since 2 and n are coprime.

Proposition 3.2. Let X be the Kummer variety attached to a 2-covering Y
of an abelian variety of dimension at least 2. Let n ≥ 1 be an odd integer.
For any x ∈ H2

ét(X,μn) there exists an a0 ∈ H2(k, μn) such that for any étale
k-algebra F of dimension 2 we have

σF∗π
∗
F (x) − a0 ∈ s(H2

ét(Y F , μn)Γ),

where s is the section of the natural map H2
ét(YF , μn) → H2

ét(Y F , μn)Γ con-
structed in the proof of Proposition 3.1.

Proof. Since σF∗π
∗
F (x) is ιYF -invariant, by Proposition 3.1 we have

σF∗π
∗
F (x) = a0 + s(a) for some a0 ∈ H2(k, μn) and a ∈ H2

ét(Y F , μn)Γ. We
need to show that a0 does not depend on F . Recall that

X \X0 ∼= Y ′
F \ YF 0 = P

g−1
T = P

g−1
k ×k T,
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and the natural morphism Y ′
F \YF 0 → YF \YF 0 = T is the structure morphism

P
g−1
T → T . We have a commutative diagram, where the vertical arrows are

the natural restriction maps

(15) H2
ét(X,μn)

π∗
F

τ1

H2
ét(Y ′

F , μn)

τ2

H2
ét(YF , μn)

σ∗
F

τ3

H2
ét(P

g−1
T , μn) id H2

ét(P
g−1
T , μn)

ρ∗
H2

ét(T, μn)

A choice of a k-point in P
g−1
k defines a section ρ of the structure morphism

P
g−1
T → T , and we denote by ρ∗ the induced map H2

ét(P
g−1
T , μn) → H2

ét(T, μn).
Recall from (12) that a0 is obtained by applying to τ3σF∗π

∗
F (x) the core-

striction map H2
ét(T, μn) → H2(k, μn) followed by the multiplication by r.

Let y = σ∗
FσF∗π

∗
F (x)−π∗

F (x) ∈ H2
ét(Y ′

F , μn). We claim that for any closed
point i : Spec(K) ↪→ Y ′

F we have

i∗(y) = 0 ∈ H2(K,μn).

Indeed, σF∗σ
∗
F = id implies that σF∗(y) = 0 and hence y goes to 0 under

the restriction map H2
ét(Y ′

F , μn) → H2
ét(YF 0, μn). The natural injective map

of étale sheaves μn → Gm gives rise to the canonical maps H2
ét(Y ′

F , μn) →
Br(Y ′

F ) and H2
ét(YF 0, μn) → Br(YF 0). By Grothendieck’s purity theorem for

the Brauer group [5, III, §6] the natural restriction map Br(Y ′
F ) → Br(YF 0)

is injective. Hence the image of y in Br(Y ′
F ) is zero. On the other hand, the

map H2(K,μn) → Br(K) is injective by Hilbert’s Theorem 90. This implies
i∗(y) = 0.

In particular, we have ρ∗τ2(y) = 0, hence ρ∗τ2π
∗
F (x) = ρ∗τ2σ

∗
FσF∗π

∗
F (x).

The commutativity of the right hand square of (15) and the fact that ρ is a
section of the structure morphism P

g−1
T → T imply that ρ∗τ2σ∗

F = τ3. Hence
ρ∗τ2π

∗
F (x) = τ3σF∗π

∗
F (x). By the commutativity of the left hand square of

(15) we have τ2π
∗
F (x) = τ1(x). Hence ρ∗τ2π

∗
F (x) = ρ∗τ1(x), which does not

depend on F . We conclude that τ3σF∗π
∗
F (x), and hence also a0, do not depend

on F . �

Now let k be a number field. We write Ak for the ring of adèles of k. If X
is a proper variety over k we have X(Ak) =

∏
X(kv), where v ranges over all

places of k. The Brauer–Manin pairing X(Ak) × Br(X) → Q/Z is given by
the sum of local invariants of class field theory, see [21, §5.2]. For a subgroup
B ⊂ Br(X) we denote by X(Ak)B ⊂ X(Ak) the orthogonal complement to
B under this pairing.
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Theorem 3.3. Let A be an abelian variety of dimension g ≥ 2 over a number
field k. Let X be the Kummer variety attached to a 2-covering of A such
that X(Ak) �= ∅. Then X(Ak)Br(X)odd �= ∅, where Br(X)odd ⊂ Br(X) is the
subgroup of elements of odd order.

Proof. By Corollary 2.8 the group Br(X)/Br0(X) is finite. It follows that
Br(X)odd is generated by finitely many elements modulo Br(X)odd ∩Br0(X).
Hence there is an odd integer n such that the images of Br(X)odd and
Br(X)[n] in Br(X)/Br0(X) are equal. Since the sum of local invariants of
an element of Br0(X) is always zero, this implies that X(Ak)Br(X)odd =
X(Ak)Br(X)[n].

We have the natural maps

H2
ét(X,Gm) π∗

−→ H2
ét(Y ′,Gm) σ∗−→ H2

ét(Y,Gm).

Here σ∗ is the composition of the restriction to the open set Y0 ⊂ Y ′ and the
inverse of the restriction H2

ét(Y,Gm)−̃→H2
ét(Y0,Gm), which is an isomorphism

by Grothendieck’s purity theorem for the Brauer group [5, III, Cor. 6.2] as
codimY (T ) ≥ 2. These maps are compatible with the similar maps (14) with
finite coefficients Λ = μn. Now the Kummer sequences for X and Y give rise
to the commutative diagram

H2
ét(Y, μn) Br(Y )[n] 0

H2
ét(X,μn)

σ∗π∗

Br(X)[n]

σ∗π∗

0

The same considerations apply if we replace Y by any quadratic twist YF .
Take any A ∈ Br(X)[n] and lift it to some x ∈ H2

ét(X,μn). By the
commutativity of the previous diagram σF∗π

∗
F (A) ∈ Br(YF )[n] comes from

σF∗π
∗
F (x) ∈ H2

ét(YF , μn). By Proposition 3.2 there is a0 ∈ H2(k, μn) such that
σF∗π

∗
F (x) − a0 ∈ s(H2

ét(Y F , μn)Γ).
Now we can complete the proof of the theorem. Let (Pv) ∈ X(Ak). For

each v there is a class αv ∈ H1(kv, μ2) = k∗v/k
∗2
v such that Pv lifts to a kv-point

on the quadratic twist Y ′
kv(√αv), which is a variety defined over kv. By weak

approximation in k we can assume that αv comes from H1(k, μ2) = k∗/k∗2,
and hence assume that Y ′

kv(√αv)
∼= Y ′

F ×k kv for some étale k-algebra F of
dimension 2.

It follows that Y ′
F (kv) �= ∅ and hence YF (kv) �= ∅. Since YF is smooth,

the non-empty set YF (kv) is Zariski dense in YF . Thus there is a kv-point
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Rv ∈ YF (kv) such that the point Mv = [n]Rv ∈ YF (kv) is contained in the
open subset YF 0. The specialisation of Tn at Mv contains a kv-point, hence
is a trivial torsor. It follows that the specialisation of the class ∧2[Tn] ∈
H2(YF ,∧2A[n]) at Mv is zero. By the construction of the section s in the
proof of Proposition 3.1 we obtain that s(a) ∈ H2(YF , μn) evaluated at Mv

is zero for any a. Therefore, σF∗π
∗
F (x) evaluated at Mv is the image of a0 in

H2(kv, μn), and hence σF∗π
∗
F (A)(Mv) ∈ Br(kv) comes from a global element

a0 ∈ H2(k, μn) = Br(k)[n].
Since Mv ∈ YF 0(kv) there exists a unique point M ′

v ∈ Y ′
F (kv) such that

σF (M ′
v) = Mv. Let Qv = πF (M ′

v) ∈ X(kv). By the projection formula we
have A(Qv) = σF∗π

∗
F (A)(Mv). Since this is the image of a0 ∈ Br(k) under

the restriction map to Br(kv), the sum of local invariants of A evaluated
at the adelic point (Qv) ∈ X(Ak) is zero. Thus (Qv) ∈ X(Ak)Br(X)[n] =
X(Ak)Br(X)odd . �

4. Kummer varieties attached to products of abelian
varieties

For an abelian group G we denote by G{�} the �-primary subgroup of G.
Proposition 4.1. Let k be a field and let � be a prime different from the
characteristic of k. Let A1, . . . , An be principally polarised abelian varieties
over k such that the fields k(Ai[�]) are pairwise linearly disjoint over k, where
i = 1, . . . , n. Assume that each Γ-module Ai[�] is simple, and, moreover, if
dim(Ai) > 1, then it is absolutely simple. For any 2-covering Y of A =∏n

i=1 Ai we have Br(Y ){�} ⊂ Br1(Y ), in particular, Br(A){�} ⊂ Br1(A). If
char(k) = 0 and dim(A) ≥ 2, for the Kummer variety X attached to Y we
have Br(X){�} ⊂ Br1(X).

Proof. Let m be a positive integer. The Kummer sequences for Y and Y
give a commutative diagram of abelian groups with exact rows

(16)
0 → (NS (Y )/�m)Γ → H2(Y , μ�m)Γ → Br(Y )[�m]Γ

↑ ↑ ↑
0 → Pic(Y )/�m → H2(Y, μ�m) → Br(Y )[�m] → 0

If (NS (Y )/�m)Γ → H2(Y , μ�m)Γ is an isomorphism, then H2(Y , μ�m)Γ →
Br(Y )[�m]Γ is the zero map. In this case from the commutativity of the right
hand square of (16) and the surjectivity of H2(Y, μ�m) → Br(Y )[�m] we see
that Br(Y )[�m] → Br(Y )[�m]Γ is the zero map. This shows that Br(Y )[�m] is
contained in Br1(Y ) for any m, hence Br(Y ){�} ⊂ Br1(Y ). In the particular
case Y = A we get Br(A){�} ⊂ Br1(A).
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The variety Y is obtained by twisting A by a cocycle with coefficients
in A[2] acting on A by translations. The argument used in the proof of
Proposition 2.7 shows that the divisible group A(k̄), which contains A[2],
acts trivially on the finite group H2(A, μ�m). Since NS (Y ) is canonically iso-
morphic to NS (A) as a Γ-module, we have an isomorphism of Γ-modules
NS (Y )/�m ∼= NS (A)/�m compatible with the cycle class map to H2(Y , μ�m) ∼=
H2(A, μ�m). Thus the injective map (NS (Y )/�m)Γ → H2(Y , μ�m)Γ is the same
as (NS (A)/�m)Γ → H2(A, μ�m)Γ. It remains to show that this last map is an
isomorphism.

We have canonical isomorphisms of Γ-modules

∧2
Z/�m(⊕n

i=1Ai[�m]) = (⊕n
i=1 ∧2

Z/�m Ai[�m]) ⊕ (⊕i<j(Ai[�m] ⊗Z/�m Aj [�m]))

and

Hom(Ai[�m] ⊗Z/�m Aj [�m], μ�m) = Hom(Ai[�m],Hom(Aj [�m], μ�m)).

Since each Ai is principally polarised, the Γ-modules Hom(Aj [�m], μ�m) =
At

j [�m] and Aj [�m] are isomorphic. Hence the Γ-module

(17) H2(A, μ�m) = ∧2
Z/�mH1(A,Z/�m)(1) = Hom(∧2

Z/�mA[�m], μ�m)

is isomorphic to the Γ-module

(18)
n⊕

i=1
Hom(∧2

Z/�m(Ai[�m]), μ�m) ⊕
⊕
i<j

Hom(Ai[�m], Aj [�m]).

For i �= j the Γ-modules Ai[�] and Aj [�] are simple and non-isomorphic,
hence HomΓ(Ai[�], Aj [�]) = 0. We claim that HomΓ(Ai[�m], Aj [�m]) = 0 for
any m ≥ 1 when i �= j. For m > 1 the exact sequence of Γ-modules

0 −→ Ai[�] −→ Ai[�m] [�]−→ Ai[�m−1] −→ 0,

gives rise to an exact sequence of Z/�m-modules

0 −→ HomΓ(Ai[�m−1], Aj [�m]) −→ HomΓ(Ai[�m], Aj [�m])
−→ HomΓ(Ai[�], Aj [�m]).

It is clear that

HomΓ(Ai[�m−1], Aj [�m]) = HomΓ(Ai[�m−1], Aj [�m−1]),
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and
HomΓ(Ai[�], Aj [�m]) = HomΓ(Ai[�], Aj [�]).

We obtain an exact sequence

0 → HomΓ(Ai[�m−1], Aj [�m−1]) → HomΓ(Ai[�m], Aj [�m])
→ HomΓ(Ai[�], Aj [�]).(19)

The induction assumption now implies HomΓ(Ai[�m], Aj [�m]) = 0 when i �= j.
If dim(Ai) = 1, then Hom(∧2

Z/�m(Ai[�m]), μ�m) is the trivial Γ-module
Z/�m.

Now assume dim(Ai) > 1. Since the Γ-modules Hom(Ai[�m], μ�m) and
Ai[�m] are isomorphic, the Γ-module Hom(∧2

Z/�mAi[�m], μ�m) is a submod-
ule of End(Ai[�m]). Since the Γ-module Ai[�] is absolutely simple, we have
EndΓ(Ai[�]) = F� · Id. We claim that EndΓ(Ai[�m]) = Z/�m · Id for any m ≥ 1.
We argue by induction in m and assume that

EndΓ(Ai[�m−1]) = Z/�m−1 · Id.

In particular, the order of EndΓ(Ai[�m−1]) equals �m−1. The exact sequence
(19) in the case i = j implies that the order of EndΓ(Ai[�m]) divides �m−1 ·� =
�m. However, EndΓ(Ai[�m]) contains the subgroup Z/�m · Id of order �m. This
implies that EndΓ(Ai[�m]) = Z/�m · Id, which proves our claim.

From (17) and (18) we now conclude that H2(A, μ�m)Γ ⊂ (Z/�m)n.
The principal polarisation of each Ai defines a non-zero class in NS (Ai)Γ.

It is well known that the Γ-module ⊕n
i=1NS (Ai) is a direct summand of

NS (A); see, e.g. [26, Prop. 1.7]. Hence NS (A) contains the trivial Γ-module
Zn as a full sublattice. Thus (NS (A)/�m)Γ contains a subgroup isomorphic
to (Z/�m)n. It follows that the map (NS (A)/�m)Γ → H2(A, μ�m)Γ is an iso-
morphism for any m ≥ 1.

We have proved that Br(Y ){�} ⊂ Br1(Y ). An equivalent statement is
that the natural map Br(Y ){�} → Br(Y ) is zero. In the characteristic zero
case Remark 2 in Section 2 implies that the natural map Br(X){�} → Br(X)
is zero. Equivalently, Br(X){�} ⊂ Br1(X). �

Under additional assumptions we can prove a bit more.

Proposition 4.2. Let k be a field of characteristic 0. Let � be a prime.
Let A1, . . . , An be principally polarised abelian varieties over k satisfying the
following conditions.

(a) The fields k(Ai[�]), where i = 1, . . . , n, are linearly disjoint over k.
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(b) The Γ-module Ai[�] is absolutely simple for each i = 1, . . . , n.
(c) NS (Ai) ∼= Z for each i = 1, . . . , n.
(d) For each i = 1, . . . , n the group Gal(k(Ai[�])/k) contains a subgroup Hi

such that Hi has no normal subgroup of index �, the Hi-module Ai[�] is simple,
and, moreover, the Hi-module Ai[�] is absolutely simple if dim(Ai) > 1.

Let A =
∏n

i=1 Ai. Then Br(A)[�]Γ = 0. When dim(A) ≥ 2, for the Kum-
mer variety X attached to a 2-covering of A we have Br(X)[�]Γ = 0.

Proof. We claim that NS (A) ∼= ⊕n
i=1NS (Ai). It is well known that this is

equivalent to the condition Hom(Ai, Aj) = 0 for all i �= j, see, e.g. [26, Prop.
1.7]. In view of (a) and (b) this condition holds by [33, Thm. 2.1]. Now (c)
implies that NS (A) is isomorphic to the trivial Γ-module Zn.

The properties Br(A)[�]Γ = 0 and Br(X)[�]Γ = 0 can be proved over
any extension k′ of k contained in k̄. Let k′ be the compositum of k(Ai[�])Hi

for i = 1, . . . , n, and let H =
∏n

i=1 Hi. Then Gal(k′(A[�])/k′) = H and the
fields k′(Ai[�]) are linearly disjoint over k′. By assumption (d) each Ai[�] is
a simple Gal(k̄/k′)-module and is absolutely simple whenever dim(Ai) > 1.
Thus the assumptions of Proposition 4.1 are satisfied for the abelian vari-
eties A1, . . . , An over k′. In the rest of the proof we write k for k′ and Γ for
Gal(k̄/k′).

The Kummer sequence gives an exact sequence of Γ-modules

(20) 0 −→ NS (A)/� −→ H2(A, μ�) −→ Br(A)[�] −→ 0.

In view of (17), Γ acts on the terms of (20) via its quotient H. In particular,
Br(A)[�]Γ = Br(A)[�]H . We obtain an exact sequence of cohomology groups
of H:

(21) 0 → (NS (A)/�)H → H2(A, μ�)H → Br(A)[�]H → H1(H,NS (A)/�).

The proof of Proposition 4.1 shows that the second arrow in (21) is an iso-
morphism. Since NS (A)/� is the trivial H-module (F�)n, we have

H1(H,NS (A)/�) = Hom(H, (F�)n) = 0,

because by assumption H has no normal subgroup of index �. We conclude
that Br(A)[�]Γ = Br(A)[�]H = 0. The second claim follows from Proposition
2.7. �

Note that the condition that H has no normal subgroup of index � cannot
be removed. See the remark on [25, p. 20] for an example of an abelian surface
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A for which a Galois-invariant element in Br(A)[2] does not come from a
Galois-invariant element of H2(A, μ2). (In this example H = GL(2,F2) = S3,
the symmetric group on three letters.)

Here is one of the main results of this paper.

Theorem 4.3. Let k be a field of characteristic zero. Let A1, . . . , An be prin-
cipally polarised abelian varieties over k such that for i = 1, . . . , n we have
NS (Ai) ∼= Z, the Γ-modules Ai[2] are absolutely simple, the fields k(Ai[2]) are
linearly disjoint over k, and H1(Gi, Ai[2]) = 0, where Gi = Gal(k(Ai[2])/k).
Let A =

∏n
i=1 Ai. If g = dim(A) ≥ 2, then for the Kummer variety X at-

tached to any 2-covering of A we have the following isomorphisms of abelian
groups:

(i) Pic(X) ∼= Z22g+n;
(ii) Br(X){2} = Br1(X){2};
(iii) Br1(X) = Br0(X).

Proof. Let Y be the 2-covering of A to which X is attached. It is clear
that Y =

∏n
i=1 Yi, where Yi is a 2-covering of Ai for i = 1, . . . , n. Using the

principal polarisation of Ai we identify Ai with its dual abelian variety At
i.

By [33, Thm. 2.1] we have Hom(Ai, Aj) = 0 for any i �= j. A well known
consequence of this (see e.g., [26, Prop. 1.7]) gives canonical isomorphisms of
Γ-modules

(22) Pic(Y ) ∼=
n⊕

i=1
Pic(Y i), NS (Y ) ∼=

n⊕
i=1

NS (Y i) ∼= Zn,

where Γ acts trivially on Zn. Now (i) follows from the exact sequence (8).
Part (ii) follows from Proposition 4.1, so it remains to establish part (iii).
For each i = 1, . . . , n we have Yi = (Ai×kTi)/Ai[2], where Ti is a torsor for

Ai[2], so that Y = (A×k T )/A[2] with T =
∏n

i=1 Ti. Write Ki = k(Ai[2]) for
the field of definition of the 2-torsion subgroup of Ai so that Gi = Gal(Ki/k).
Let k(Ti) be the smallest subfield of k̄ over which all k̄-points of Ti are defined.
Then Γ acts on Ti(k̄) ∼= Ai[2] through Gal(k(Ti)/k).

If Ti is a trivial torsor, then Ti
∼= Ai[2] and Gal(k(Ti)/k) = Gi. If

Ti is a non-trivial torsor, in our assumptions [6, Prop. 3.6] gives us that
Gal(k(Ti)/k) = Ai[2] � Gi, where Ai[2] acts on itself by translations and Gi

acts on Ai[2] by linear transformations.
The following lemma is a version of [6, Prop. 3.12].

Lemma 4.4. In the assumptions of Theorem 4.3 the Galois extensions k(T1),
. . . , k(Tn) of k are linearly disjoint over k.
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Proof. Let m ≤ n be the cardinality of I ⊆ {1, . . . , n} such that Ti is
a non-trivial torsor if and only if i ∈ I. We proceed by double induction in
n ≥ 1 and m ≥ 0. The statement holds when n = 1 (trivially) or when m = 0
(by assumption). Suppose that n ≥ 2 and m ≥ 1 and the statement is proved
for (n,m−1) and for (n−1,m−1). Without loss of generality we can assume
that Tn is non-trivial. By inductive assumption for (n − 1,m − 1) the fields
k(Ti), i = 1, . . . , n− 1, are linearly disjoint over k. Let L be the compositum
of these fields, and let E = L ∩ k(Tn). Each field k(Ti) is Galois over k. To
check our statement it is enough to show that E = k. By [6, Cor. 3.9] the
fact that Tn is non-trivial implies that E ⊂ Kn or Kn ⊂ E. By inductive
assumption for (n,m− 1) we have L∩Kn = k. Thus E ⊂ Kn implies E = k.
On the other hand, Kn ⊂ E implies Kn = k, which is incompatible with our
assumption that An[2] is a simple Γ-module. �

Without loss of generality we can assume that Ti is non-trivial for i =
1, . . . ,m and Ti is trivial for i = m + 1, . . . , n. Lemma 4.4 implies that the
image of the action of Γ on T (k̄) =

∏n
i=1 Ti(k̄) is the direct product

P =
m∏
i=1

(Ai[2] �Gi) ×
n∏

i=m+1
Gi.

Write G =
∏n

i=1 Gi. If we define B =
∏m

i=1 Ai, then P = B[2] �G.
To prove the desired property Br1(X) = Br0(X) it is enough to prove

that H1(k,Pic(X)) = 0. The abelian groups in the exact sequence (8) are
torsion-free, hence

Pic(X) ⊂ Pic(X) ⊗Q ∼= Q[T ] ⊕ (NS (Y ) ⊗Q) ∼= Q[T ] ⊕Qn,

where Q[T ] is the vector space with basis T (k̄) and a natural action of Γ. It
follows that the image of the action of Γ on Pic(X) is P . Thus it is enough
to prove that

(23) H1(P,Pic(X)) = 0.

As an abelian group, Π1 is generated by Z[T ] and one half of the sum of
the canonical generators of Z[T ]. This gives an exact sequence of A[2] � G-
modules

(24) 0 −→ Z[T ] −→ Π1 −→ Z/2 −→ 0.

By Shapiro’s lemma H1(P,Z[T ]) = 0, because Z[T ] is a permutation P -
module. The cohomology exact sequences of (24) considered with respect
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to the action of P and G give rise to the following commutative diagram with
exact upper row, where the vertical arrows are given by restriction to the
subgroup G ⊂ P :

(25) 0 H1(P,Π1) Hom(P,Z/2)

0 = H1(G,Π1) Hom(G,Z/2)

Here H1(G,Π1) = 0, as Π1 is a permutation G-module, see Remark 1 in
Section 2. For i = 1, . . . ,m we see from [6, Lemma 3.2 (ii)] that any subgroup
of Ai[2] � Gi of index 2 has the form Ai[2] � H for a subgroup H ⊂ Gi

of index 2. Hence the right vertical arrow in (25) is an isomorphism. The
commutativity of (25) now implies that H1(P,Π1) = 0. The exact sequence
of the cohomology groups of P defined by the middle column of (9) shows
that to prove (23) it is enough to prove that H1(P,Pic(Y )ιY ) = 0.

In view of the decomposition (22), we must prove that for each i = 1, . . . , n
we have H1(P,Pic(Y i)ιY ) = 0. For Yi the exact sequence (2) takes the form

(26) 0 −→ At
i[2] −→ Pic(Y i)ιY −→ NS (Ai) −→ 0.

Since NS (Ai) ∼= Z we have H1(P,NS (Ai)) = 0.
We first consider the case when Ti is a trivial torsor. By assumption

H1(Gi, Ai[2]) = 0. We have Ai[2]Gi = 0, because Ai[2] is a simple Gi-module
with a non-trivial action of Gi. The restriction-inflation sequence for the nor-
mal subgroup Gi ⊂ P acting on Ai[2] shows that H1(P,Ai[2]) = 0, hence
H1(P,Pic(Y i)ιY ) = 0.

Now suppose that the torsor Ti is non-trivial. The Galois group Γ acts
on Ai[2] via its image Gi, hence so does Gal(k(Ti)/k) = Ai[2] � Gi. We
have H1(Ai[2] � Gi, Ai[2]) = F2, see [6, Prop. 3.6]. This group is naturally a
subgroup of H1(k,Ai[2]) and contains the class [Ti], because this class goes
to zero under the restriction map H1(k,Ai[2]) → H1(k(Ti), Ai[2]). Thus [Ti]
is the unique non-zero element of H1(Ai[2] �Gi, Ai[2]).

Using the fact that Ai[2]Gi = 0, the Hochschild–Serre spectral sequence
for the normal subgroup Ai[2] � Gi ⊂ P gives H1(P,Ai[2]) = F2. The same
argument as above shows that [Ti] is the unique non-zero element of this
group.

The principal polarisation λ ∈ NS (Ai)Γ = NS (Ai) gives rise to an
isomorphism ϕλ : Ai−̃→At

i which induces an isomorphism of Γ-modules
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ϕλ∗ : Ai[2]−̃→At
i[2]. Since the Γ-modules NS (Y i) and NS (Ai) are canoni-

cally isomorphic, we can think of λ as a generator of the trivial Γ-module
NS (Y i) ∼= Z.

Consider the exact sequence (26) as a sequence of P -modules. We claim
that the differential NS (Y i) → H1(P,At

i[2]) sends the principal polarisation
λ to ϕλ∗[Ti], so this differential is surjective. This implies that the first map
in the exact sequence

H1(P,At
i[2]) −→ H1(P,Pic(Y i)ι) −→ H1(P,Z) = 0

is zero, hence H1(P,Pic(Y i)ι) = 0.
To finish the proof of the theorem it remains to justify our claim. In the

particular case of a trivial 2-covering the exact sequence of Γ-modules (2)
takes the form

(27) 0 −→ At
i[2] −→ Pic(Ai)[−1]∗ −→ NS (Ai) −→ 0.

Following [19] we shall write cλ for the image of λ under the differential
NS (Ai)Γ → H1(k,At

i[2]) attached to (27). By [19, Lemma 3.6 (a)] we know
that cλ lies in the kernel of the restriction map H1(k,At

i[2]) → H1(Ki, A
t[2]).

We have Gi = Gal(Ki/k), so the restriction-inflation sequence shows that
cλ belongs to the subgroup H1(Gi, A

t
i[2]) ⊂ H1(k,At

i[2]). However, our as-
sumptions imply that this group is zero, hence cλ = 0. Thus λ is the image
of some Γ-invariant L ∈ Pic(Ai)[−1]∗ , hence (27) is a split exact sequence of
Γ-modules.

The exact sequence (26) is obtained by twisting the exact sequence (27)
by a 1-cocycle τ : Γ → Ai[2] representing [Ti] ∈ H1(k,Ai[2]). By the definition
of ϕλ the translation by x ∈ Ai(k̄) acts on Pic(Ai) by sending y ∈ Pic(Ai)
to y + ϕλ(x). Since Yi is the twist of Ai by τ with respect to the action of
Ai[2] by translations, we see that g ∈ Γ acts on L, understood as an element
of Pic(Y i), by sending it to L+ϕλ∗(τ(g)). By a standard explicit description
of the differential NS (Y i) → H1(k,At

i[2]) we see that λ goes to ϕλ∗[Ti], as
claimed. �

Remark 4 If k is finitely generated over Q, then Br(X)/Br0(X) is finite by
Corollary 2.8. The 2-primary subgroup of Br(X)/Br0(X) is the image of the
2-primary subgroup of Br(X), and hence Theorem 4.3 implies that the order
of Br(X)/Br0(X) is odd.

Corollary 4.5. Let k be a number field and let X be a Kummer variety
satisfying the assumptions of Theorem 4.3. If X(Ak) �= ∅, then X(Ak)Br �= ∅.
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Proof. In view of Remark 4 this is a formal consequence of Theorems 3.3
and 4.3. �

This corollary explains the absence of the Brauer–Manin obstruction from
the statement of the (conditional) Hasse principle for Kummer varieties re-
cently established in [6, Thm. 2.2], once we impose the additional condition
NS (Ai) ∼= Z for i = 1, . . . , n. In the next section we give examples related to
hyperelliptic curves where this condition holds.

5. Kummer varieties attached to products of Jacobians of
hyperelliptic curves

In this section we consider the case when each factor of A =
∏n

i=1 Ai is the
Jacobian of a hyperelliptic curve given by a polynomial of odd degree ≥ 3
with a large Galois group. It will be convenient to include elliptic curves as
a particular case of hyperelliptic curves, so we shall adopt this terminology
here without further mention.

We write Sn for the symmetric group on n letters, and An ⊂ Sn for the
alternating group on n letters.

Theorem 5.1. Let k be a field of characteristic zero. Let A be the product
of Jacobians of the hyperelliptic curves y2 = fi(x), where fi(x) ∈ k[x] is a
separable polynomial of odd degree di ≥ 5 with Galois group Sdi or Adi , or
a separable polynomial of degree 3 with Galois group S3, for i = 1, . . . , n.
Assume that g =

∑n
i=1(di − 1)/2 ≥ 2 and the splitting fields of the polynomi-

als fi(x), i = 1, . . . , n, are linearly disjoint over k. Then the conclusions of
Theorem 4.3 hold for the Kummer variety X attached to any 2-covering of
the abelian variety A. Moreover, Br(X)[2]Γ = 0.

Proof. For i = 1, . . . , n let Ci be the smooth and projective curve given by
the equation y2 = fi(x) and let Ai be the Jacobian of Ci. Let A =

∏n
i=1 Ai,

and let Y be a 2-covering of A such that X is the Kummer variety attached
to Y .

Since Ai is canonically principally polarised, we have an isomorphism
Ai−̃→At

i. It is well known that NS (Ai) is isomorphic to the subgroup of
self-dual endomorphisms in End(Ai) = Hom(Ai, A

t
i). If deg(di) ≥ 5, by [32,

Thm. 2.1] we have End(Ai) ∼= Z, hence NS (Ai) ∼= Z. If deg(di) = 3, then we
obviously have NS (Ai) ∼= Z.

Let Wi ⊂ Ci be the subscheme given by fi(x) = 0. The double covering
Ci → P1

k is ramified precisely at the k̄-points of Wi ∪ {∞}. It is well known
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that the Γ-module Ai[2] is isomorphic to the zero sum subspace of the F2-
vector space with basis Wi(k̄), with the action of Γ defined by the natural
action of Γ on W (k̄). In particular, the splitting field of fi(x) is k(Ai[2]),
and the Galois group of fi(x) is Gi = Gal(k(Ai[2])/k). This implies that the
fields k(Ai[2]) are linearly disjoint over k. Since di is odd, the permutation
Gi-module Fdi

2 whose canonical generators are given by the k̄-points of W , is
the direct sum F2⊕Ai[2]. We note that for di ≥ 5 the standard representation
of Adi ⊂ Sp(di − 1,F2) in Fdi−1

2 is absolutely irreducible [15] (see also [32,
Lemma 5.2]). The same is true if we replace Adi by Sdi . If di = 3, then
the standard 2-dimensional representation of S3 is absolutely irreducible [15].
This implies that in all our cases EndGi(Ai[2]) = F2, cf. [32, Thm. 5.3]. We
conclude that the Γ-module Ai[2] is absolutely simple, for i = 1, . . . , n.

By Shapiro’s lemma we have H1(Adi ,F2[Adi/Adi−1]) = H1(Adi−1,F2) =
0 for di ≥ 5, because Adi−1 is generated by the elements of order 3, and so
contains no subgroup of index 2. Hence H1(Adi , Ai[2]) = 0. Similarly, we have
H1(Sdi ,F2[Sdi/Sdi−1]) = H1(Sdi−1,F2) = F2 for di ≥ 3, because Adi−1 is the
unique subgroup of Sdi−1 of index 2. This implies H1(Sdi , Ai[2]) = 0 (cf. [6,
Lemma 2.1]). Thus H1(Gi, Ai[2]) = 0 for all i = 1, . . . , n.

We have checked that all the assumptions of Theorem 4.3 are satisfied. In
particular, conditions (a), (b), (c) of Proposition 4.2 are satisfied. Condition
(d) is also satisfied if we take Hi = Adi for i = 1, . . . , n. Indeed, each Ai[2]
is a simple Adi-module for all odd di ≥ 3 and is absolutely simple if di ≥ 5.
Finally, Adi has no subgroup of index 2 as it is generated by the elements of
order 3. An application of Proposition 4.2 gives that Br(X)[2]Γ = 0. �
Corollary 5.2. Let k be a number field. Let A be the product of Jacobians
of the hyperelliptic curves y2 = fi(x), where fi(x) ∈ k[x] is a separable poly-
nomial of odd degree di ≥ 5 with Galois group Sdi or Adi , or of degree 3 with
Galois group S3, for i = 1, . . . , n. Assume that g =

∑n
i=1(di − 1)/2 ≥ 2 and

the splitting fields of the polynomials fi(x), i = 1, . . . , n, are linearly disjoint
over k. If the Kummer variety X attached to a 2-covering of A is everywhere
locally soluble, then X(Ak)Br �= ∅.

Proof. In view of Remark 4 at the end of Section 4 this is a formal con-
sequence of Theorems 3.3 and 5.1. �

Example 1 L. Dieulefait shows in [3, Thm. 5.8] that for k = Q and f(x) =
x5 − x + 1 the image of the Galois group Γ = Gal(Q/Q) in Aut(A[�]), where
A is the Jacobian of the hyperelliptic curve y2 = f(x), is GSp(4,F�) for each
prime � ≥ 3. (In [3] this result was conditional on the Serre conjectures [20],
which have been later proved by C. Khare and J.-P. Wintenberger [11].) A
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verification with magma gives that the Galois group of x5 − x + 1 is S5, so
Theorem 5.1 can be applied. Thus for the Kummer surface X attached to a
2-covering of A we have Br(X)[2]Γ = 0 and Br1(X) = Br0(X). On the other
hand, Proposition 4.2 can be applied for each prime � ≥ 3 with H = Sp(4,F�).
Indeed, for � ≥ 3 the group PSp(4,F�) is simple non-abelian [1, Thm. 5.2, p.
177] of order �4(�4 − 1)(�2 − 1)/2 > �, so H contains no normal subgroups
of index �. The tautological representation of Sp(4,F�) is well known to be
absolutely irreducible. We obtain that the Kummer surface X attached to
a 2-covering of A is a K3 surface of geometric Picard rank 17 such that
Br(X)Γ = 0. Hence Br(X) = Br0(X).

Example 2 R. Jones and J. Rouse consider the Jacobian A of the curve of
genus 2 given by y2 = f(x), where f(x) = 4x6 − 8x5 + 4x4 + 4x2 − 8x+ 5 is a
polynomial over Q with Galois group S6 and discriminant quadratic extension
Q(

√
−3 · 13 · 31), see [10, Example 6.4, pp. 787–788]. They show that the

image of Γ = Gal(Q/Q) in Aut(A[�]) is GSp(4,F�) for all primes �. For odd �
the only non-trivial isomorphic quotients of GSp(4,F2) ∼= S6 and GSp(4,F�)
are cyclic groups of order 2, namely S6/A6 and GSp(4,F�)/(F∗2

� · Sp(4,F�)),
respectively. By Goursat’s lemma a subgroup of S6 × GSp(4,F�) that maps
surjectively onto each factor is either the whole product or the inverse image
of the graph of the unique isomorphism

S6/A6 −̃→ GSp(4,F�)/(F∗2
� · Sp(4,F�)).

Hence such a subgroup contains A6 × Sp(4,F�). Let α be a root of f(x), and
let k = Q(α) or k = Q(α,

√
−3 · 13 · 31). Then the Galois group of f(x) over

k is S5 or A5, respectively, whereas Gal(k(A[�])/k) contains Sp(4,F�) for all
� ≥ 3. Now the same arguments as in Example 1 show that for the Kummer
surface X over k attached to a 2-covering of A we have Br(X)Γ = 0 and
Br1(X) = Br0(X), hence Br(X) = Br0(X).

Example 3 D. Zywina [35, Thm. 1.1] gives an example of a smooth plane
quartic curve over Q such that the image of Γ = Gal(Q/Q) on the torsion
points of its Jacobian A is the full group GSp(6, Ẑ). We have End(A) ∼= Z, as
follows from [34, Thm. 3, p. 577], where one takes X = A, G̃2 = GSp(6,F2)
and G = Sp(6,F2). This implies NS (A) ∼= Z. Let k ⊂ Q(A[2]) be such that
Gal(Q(A[2])/k) is S7 or A7 embedded into Sp(6,F2) in the usual way. We can
adapt the proof of Theorem 5.1 to this case and use Proposition 4.2 in the
same way as in Example 1. This shows that the Kummer threefold X over k
attached to a 2-covering of A has Br(X)Γ = 0 and Br1(X) = Br0(X), hence
Br(X) = Br0(X).
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