Self-dual Grassmannian, Wronski map, and representations of \mathfrak{gl}_N , \mathfrak{sp}_{2r} , \mathfrak{so}_{2r+1}

Kang Lu, E. Mukhin, and A. Varchenko

Dedicated to Yuri Ivanovich Manin on the occasion of his 80th birthday

Abstract: We define a \mathfrak{gl}_N -stratification of the Grassmannian of *N* planes Gr(*N,d*). The \mathfrak{gl}_N -stratification consists of strata Ω_Λ labeled by unordered sets $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(n)})$ of nonzero partitions with at most *N* parts, satisfying a condition depending on *d*, and such that $(\otimes_{i=1}^n V_{\lambda^{(i)}})^{s \cdot l} \neq 0$. Here $V_{\lambda^{(i)}}$ is the irreducible \mathfrak{gl}_N -module with highest weight $\lambda^{(i)}$. We show that the closure of a stratum Ω_{Λ} is the union of the strata Ω_{Ξ} , $\Xi = (\xi^{(1)}, \ldots, \xi^{(m)})$, such that there is a partition $\{I_1, \ldots, I_m\}$ of $\{1, 2, \ldots, n\}$ with $\text{Hom}_{\mathfrak{gl}_N}(V_{\xi^{(i)}}, \otimes_{j\in I_i} V_{\lambda^{(j)}}) \neq 0 \text{ for } i = 1, \ldots, m.$ The \mathfrak{gl}_N -stratification of the Grassmannian agrees with the Wronski map.

We introduce and study the new object: the self-dual Grassmannian s $\text{Gr}(N,d) \subset \text{Gr}(N,d)$. Our main result is a similar \mathfrak{g}_N stratification of the self-dual Grassmannian governed by representation theory of the Lie algebra $\mathfrak{g}_{2r+1} := \mathfrak{sp}_{2r}$ if $N = 2r+1$ and of the Lie algebra $\mathfrak{g}_{2r} := \mathfrak{so}_{2r+1}$ if $N = 2r$.

1. Introduction

The Grassmannian Gr(*N,d*) of *N*-dimensional subspaces of the complex *d*dimensional vector space has the standard stratification by Schubert cells Ω*^λ* labeled by partitions $\lambda = (d - N \geq \lambda_1 \geq \ldots \geq \lambda_N \geq 0)$. A Schubert cycle is the closure of a cell Ω_{λ} . It is well known that the Schubert cycle $\overline{\Omega}_{\lambda}$ is the union of the cells Ω_{ξ} such that the Young diagram of λ is inscribed into the Young diagram of *ξ*. This stratification depends on a choice of a full flag in the *d*-dimensional space.

In this paper we introduce a new stratification of $Gr(N, d)$ governed by representation theory of \mathfrak{gl}_N and called the \mathfrak{gl}_N *-stratification*, see Theorem [3.5.](#page-11-0) The \mathfrak{gl}_N -strata Ω_Λ are labeled by unordered sets $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(n)})$ of

Received 11 May 2017.

nonzero partitions $\lambda^{(i)} = (d - N \geq \lambda_1^{(i)} \geq \ldots \geq \lambda_N^{(i)} \geq 0)$ such that

(1.1)
$$
(\otimes_{i=1}^n V_{\lambda^{(i)}})^{\mathfrak{sl}_N} \neq 0, \qquad \sum_{i=1}^n \sum_{j=1}^N \lambda_j^{(i)} = N(d-N),
$$

where $V_{\lambda^{(i)}}$ is the irreducible \mathfrak{gl}_N -module with highest weight $\lambda^{(i)}$. We have dim $\Omega_{\Lambda} = n$. We call the closure of a stratum Ω_{Λ} in $\text{Gr}(N,d)$ a \mathfrak{gl}_N -cycle. The \mathfrak{gl}_N -cycle $\overline{\Omega}_{\Lambda}$ is an algebraic set in $\text{Gr}(N,d)$. We show that $\overline{\Omega}_{\Lambda}$ is the union of the strata $\Omega_{\Xi_1} \Xi = (\xi^{(1)}, \ldots, \xi^{(m)})$, such that there is a partition $\{I_1, \ldots, I_m\}$ of $\{1, 2, \ldots, n\}$ with $\text{Hom}_{\mathfrak{gl}_N}(V_{\xi^{(i)}}, \otimes_{j \in I_i} V_{\lambda^{(j)}}) \neq 0$ for $i = 1, \ldots, m$, see Theorem [3.8.](#page-11-1)

Thus we have a partial order on the set of sequences of partitions satis-fying [\(1.1\)](#page-1-0). Namely $\Lambda \geq \Xi$ if there is a partition $\{I_1, \ldots, I_m\}$ of $\{1, 2, \ldots, n\}$ with $\text{Hom}_{\mathfrak{gl}_N}(V_{\xi^{(i)}}, \otimes_{j\in I_i} V_{\lambda^{(j)}}) \neq 0$ for $i = 1, \ldots, m$. An example of the corre-sponding graph is given in Example [3.9.](#page-12-0) The \mathfrak{gl}_N -stratification can be viewed as the geometrization of this partial order.

Let us describe the construction of the strata in more detail. We identify the Grassmannian $Gr(N, d)$ with the Grassmannian of *N*-dimensional subspaces of the *d*-dimensional space $\mathbb{C}_d[x]$ of polynomials in *x* of degree less than *d*. In other words, we always assume that for $X \in Gr(N, d)$, we have $X \subset \mathbb{C}_d[x]$. Set $\mathbb{P}^1 = \mathbb{C} \cup \{\infty\}$. Then, for any $z \in \mathbb{P}^1$, we have the osculating flag $\mathcal{F}(z)$, see [\(3.3\)](#page-9-0), [\(3.4\)](#page-9-1). Denote the Schubert cells corresponding to $\mathcal{F}(z)$ by $\Omega_{\lambda}(\mathcal{F}(z))$. Then the stratum Ω_{Λ} consists of spaces $X \in \mathrm{Gr}(N,d)$ such that *X* belongs to the intersection of Schubert cells $\Omega_{\lambda^{(i)}}(\mathcal{F}(z_i))$ for some choice of distinct $z_i \in \mathbb{P}^1$:

$$
\Omega_{\mathbf{\Lambda}} = \bigcup_{\substack{z_1,\ldots,z_n \\ z_i \neq z_j}} \Big(\bigcap_{i=1}^n \Omega_{\lambda^{(i)}}(\mathcal{F}(z_i))\Big) \subset \mathrm{Gr}(N,d).
$$

A stratum Ω_{Λ} is a ramified covering over $(\mathbb{P}^1)^n$ without diagonals quotient by the free action of an appropriate symmetric group, see Proposition [3.4.](#page-11-2) The degree of the covering is $\dim(\otimes_{i=1}^n V_{\lambda^{(i)}})^{\mathfrak{sl}_N}$.

For example, if $N = 1$, then $\text{Gr}(1, d)$ is the $(d-1)$ -dimensional projective space of the vector space $\mathbb{C}_d[x]$. The strata $\Omega_{\mathbf{m}}$ are labeled by unordered sets $m = (m_1, \ldots, m_n)$ of positive integers such that $m_1 + \cdots + m_n = d-1$. A stra- $\tan \Omega_m$ consists of all polynomials $f(x)$ which have *n* distinct zeros of multiplicities m_1, \ldots, m_n . In this stratum we also include the polynomials of degree $d-1-m_i$ with $n-1$ distinct roots of multiplicities $m_1, \ldots, m_{i-1}, m_{i+1}, \ldots, m_n$. We interpret these polynomials as having a zero of multiplicity m_i at infinity. The stratum $\Omega_{(1,...,1)}$ is open in $\text{Gr}(1,d)$. The union of other strata is classically called the *swallowtail* and the \mathfrak{gl}_1 -stratification is the standard stratification of the swallowtail; see, for example, Section 2.5 of Part 1 of [\[AGV\]](#page-42-0).

The \mathfrak{gl}_N -stratification of $\text{Gr}(N,d)$ agrees with the Wronski map

$$
Wr: Gr(N, d) \to Gr(1, N(d - N) + 1)
$$

which sends an *N*-dimensional subspace of polynomials to its Wronskian $\det(d^{i-1}f_j/dx^{i-1})_{i,j=1}^N$, where $f_1(x), \ldots, f_N(x)$ is a basis of the subspace. For any \mathfrak{gl}_1 -stratum Ω_m of $\text{Gr}(1, N(d-N)+1)$, the preimage of Ω_m under the Wronski map is the union of \mathfrak{gl}_N -strata of $Gr(N, d)$ and the restriction of the Wronski map to each of those strata Ω_{Λ} is a ramified covering over Ω_{m} of degree $b(\Lambda)$ dim $(\otimes_{i=1}^n V_{\lambda^{(i)}})^{\mathfrak{sl}_N}$, where $b(\Lambda)$ is some combinatorial symmetry coefficient of Λ , see [\(3.9\)](#page-14-0).

The main goal of this paper is to develop a similar picture for the new object sGr(*N,d*) ⊂ Gr(*N,d*), called *self-dual Grassmannian*. Let *X* ∈ Gr(*N,d*) be an *N*-dimensional subspace of polynomials in *x*. Let *X*[∨] be the *N*-dimensional space of polynomials which are Wronski determinants of *N* −1 elements of *X*:

$$
X^{\vee} = \{ \det \left(d^{i-1} f_j / dx^{i-1} \right)_{i,j=1}^{N-1}, \ f_j(x) \in X \}.
$$

The space *X* is called *self-dual* if $X^{\vee} = g \cdot X$ for some polynomial $g(x)$, see [\[MV1\]](#page-43-0). We define $sGr(N,d)$ as the subset of $Gr(N,d)$ of all self-dual spaces. It is an algebraic set.

The main result of this paper is the stratification of $sGr(N,d)$ governed by representation theory of the Lie algebras $\mathfrak{g}_{2r+1} := \mathfrak{sp}_{2r}$ if $N = 2r + 1$ and $g_{2r} := \mathfrak{so}_{2r+1}$ if $N = 2r$. This stratification of $\mathrm{sGr}(N,d)$ is called the g*^N -stratification*, see Theorem [4.11.](#page-20-0)

The \mathfrak{g}_N -stratification of sGr(*N,d*) consists of \mathfrak{g}_N -strata s $\Omega_{\Lambda,k}$ labeled by unordered sets of dominant integral \mathfrak{g}_N -weights $\mathbf{\Lambda} = (\lambda^{(1)}, \ldots, \lambda^{(n)}),$ equipped with nonnegative integer labels $\mathbf{k} = (k_1, \ldots, k_n)$, such that $(\otimes_{i=1}^n V_{\lambda^{(i)}})^{\mathfrak{g}_N} \neq 0$ and satisfying a condition similar to the second equation in (1.1) ; see Section [4.3.](#page-18-0) Here $V_{\lambda^{(i)}}$ is the irreducible \mathfrak{g}_N -module with highest weight $\lambda^{(i)}$. Different liftings of an \mathfrak{sl}_N -weight to a \mathfrak{gl}_N -weight differ by a vector (k,\ldots,k) with integer *k*. Our label k_i is an analog of this parameter in the case of \mathfrak{g}_N .

A g_N -stratum s $\Omega_{\Lambda,k}$ is a ramified covering over $(\mathbb{P}^1)^n$ without diagonals quotient by the free action of an appropriate symmetric group. The degree of the covering is $\dim(\otimes_{i=1}^n V_{\lambda^{(i)}})^{\mathfrak{g}_N}$ and, in particular, $\dim \mathbf{s} \Omega_{\Lambda,k} = n$; see Proposition [4.9.](#page-19-0) We call the closure of a stratum $s\Omega_{\Lambda,k}$ in $sGr(N,d)$ a \mathfrak{g}_N *cycle*. The g_N -cycle s $\Omega_{\Lambda,k}$ is an algebraic set. We show that s $\Omega_{\Lambda,k}$ is the union of the strata $s\Omega_{\Xi,l}$, $\Xi = (\xi^{(1)}, \ldots, \xi^{(m)})$, such that there is a partition $\{I_1, \ldots, I_m\}$ of $\{1, 2, \ldots, n\}$ satisfying $\text{Hom}_{\mathfrak{g}_N}(V_{\xi^{(i)}}, \otimes_{j \in I_i} V_{\lambda^{(j)}}) \neq 0$ for $i =$ 1*,...,m*, and the appropriate matching of labels; see Theorem [4.13.](#page-21-0)

If $N = 2r$, there is exactly one stratum of top dimension $2(d - N)$ $\dim sGr(N, d)$. For example, the \mathfrak{so}_5 -stratification of $sGr(4, 6)$ consists of 9 strata of dimensions $4, 3, 3, 3, 2, 2, 2, 2, 1$, see the graph of adjacencies in Example [4.14.](#page-21-1) If $N = 2r + 1$, there are many strata of top dimension $d - N$ (except in the trivial cases of $d = 2r + 1$ and $d = 2r + 2$). For example, the \mathfrak{sp}_4 -stratification of $sGr(5,8)$ has four strata of dimension 3; see Section [4.7.](#page-25-0) In all cases we have exactly one one-dimensional stratum corresponding to $n = 1, \Lambda = (0), \text{ and } k = (d - N).$

Essentially, we obtain the g_N -stratification of $sGr(N, d)$ by restricting the \mathfrak{gl}_N -stratification of $\mathrm{Gr}(N,d)$ to $\mathrm{sGr}(N,d)$.

For $X \in \mathrm{SGr}(N,d)$, the multiplicity of every zero of the Wronskian of X is divisible by *r* if $N = 2r$ and by N if $N = 2r + 1$. We define the reduced Wronski map Wr : $sGr(N, d) \rightarrow Gr(1, 2(d - N) + 1)$ if $N = 2r$ and $Wr : sGr(N, d) \rightarrow Gr(1, d - N + 1)$ if $N = 2r + 1$ by sending X to the *r*-th root of its Wronskian if $N = 2r$ and to the *N*-th root if $N = 2r + 1$. The g_N -stratification of $sGr(N, d)$ agrees with the reduced Wronski map and swallowtail \mathfrak{gl}_1 -stratification of Gr $(1, 2(d-N)+1)$ or Gr $(1, d-N+1)$. For any \mathfrak{gl}_1 -stratum Ω_m the preimage of Ω_m under \overline{W} is the union of \mathfrak{g}_N -strata (see Proposition [4.17\)](#page-23-0) and the restriction of the reduced Wronski map to each of those strata $\Omega_{\Lambda,k}$ is a ramified covering over Ω_m ; see Proposition [4.18.](#page-23-1)

Our definition of the \mathfrak{gl}_N -stratification is motivated by the connection to the Gaudin model of type A; see Theorem [3.2.](#page-9-2) Similarly, our definition of the self-dual Grassmannian and of the g_N -stratification is motivated by the connection to the Gaudin models of types B and C; see Theorem [4.5.](#page-17-0)

It is interesting to study the geometry and topology of strata, cycles, and of self-dual Grassmannian; see Section [4.7.](#page-25-0)

The exposition of the material is as follows. In Section [2](#page-4-0) we introduce the \mathfrak{gl}_N Bethe algebra. In Section [3](#page-8-0) we describe the \mathfrak{gl}_N -stratification of $Gr(N, d)$. In Section [4](#page-14-1) we define the g_N -stratification of the self-dual Grassmannian $\operatorname{sGr}(N, d)$. In Section [5](#page-27-0) we recall the interrelations of the Lie algebras \mathfrak{sl}_N , \mathfrak{so}_{2r+1} , \mathfrak{sp}_{2r} . In Section [6](#page-31-0) we discuss g-opers and their relations to self-dual spaces. Section [7](#page-35-0) contains proofs of theorems formulated in Sections [3](#page-8-0) and [4.](#page-14-1) In Appendix A we describe the bijection between the self-dual spaces and the set of \mathfrak{gl}_N Bethe vectors fixed by the Dynkin diagram automorphism of \mathfrak{gl}_N .

Acknowledgments

The authors thank V. Chari, A. Gabrielov, and L. Rybnikov for useful discussions. A.V. was supported in part by NSF grants DMS-1362924, DMS-1665239, and Simons Foundation grant #336826. E.M. was supported in part by Simons Foundation grant #353831.

2. Lie algebras

2.1. Lie algebra \mathfrak{gl}_N

Let e_{ij} , $i, j = 1, \ldots, N$, be the standard generators of the Lie algebra \mathfrak{gl}_N , satisfying the relations $[e_{ij}, e_{sk}] = \delta_{js}e_{ik} - \delta_{ik}e_{sj}$. We identify the Lie algebra \mathfrak{sl}_N with the subalgebra of \mathfrak{gl}_N generated by the elements $e_{ii} - e_{jj}$ and e_{ij} for $i \neq j, i, j = 1, \ldots, N.$

Let *M* be a \mathfrak{gl}_N -module. A vector $v \in M$ has weight $\lambda = (\lambda_1, \ldots, \lambda_N) \in$ \mathbb{C}^N if $e_{ii}v = \lambda_i v$ for $i = 1, \ldots, N$. A vector *v* is called *singular* if $e_{ij}v = 0$ for $1 \leqslant i < j \leqslant N$.

We denote by (M) ^{λ} the subspace of *M* of weight λ , by (M) ^{sing} the subspace of *M* of all singular vectors and by $(M)_{\lambda}^{\text{sing}}$ the subspace of *M* of all singular vectors of weight λ .

Denote by V_{λ} the irreducible \mathfrak{gl}_N -module with highest weight λ .

The \mathfrak{gl}_N -module $V_{(1,0,...,0)}$ is the standard N-dimensional vector representation of \mathfrak{gl}_N , which we denote by *L*.

A sequence of integers $\lambda = (\lambda_1, \ldots, \lambda_N)$ such that $\lambda_1 \geq \lambda_2 \geq \ldots \geq \lambda_N \geq$ 0 is called *a partition with at most N parts*. Set $|\lambda| = \sum_{i=1}^{N} \lambda_i$. Then it is said that λ is a partition of $|\lambda|$. The \mathfrak{gl}_N -module $L^{\otimes n}$ contains the module V_λ if and only if λ is a partition of *n* with at most *N* parts.

Let λ, μ be partitions with at most *N* parts. We write $\lambda \subseteq \mu$ if and only if $\lambda_i \leq \mu_i$ for $i = 1, \ldots, N$.

2.2. Simple Lie algebras

Let $\mathfrak g$ be a simple Lie algebra over $\mathbb C$ with Cartan matrix $A = (a_{i,j})_{i,j=1}^r$. Let $D = \text{diag}\{d_1, \ldots, d_r\}$ be the diagonal matrix with positive relatively prime integers *dⁱ* such that *DA* is symmetric.

Let $\mathfrak{h} \subset \mathfrak{g}$ be the Cartan subalgebra and let $\mathfrak{g} = \mathfrak{n}_- \oplus \mathfrak{h} \oplus \mathfrak{n}_+$ be the Cartan decomposition. Fix simple roots $\alpha_1, \ldots, \alpha_r$ in \mathfrak{h}^* . Let $\check{\alpha}_1, \ldots, \check{\alpha}_r \in \mathfrak{h}$ be the corresponding coroots. Fix a nondegenerate invariant bilinear form (*,*) in g such that $(\check{\alpha}_i, \check{\alpha}_j) = a_{i,j}/d_j$. The corresponding invariant bilinear form in \mathfrak{h}^* is given by $(\alpha_i, \alpha_j) = d_i a_{i,j}$. We have $\langle \lambda, \check{\alpha}_i \rangle = 2(\lambda, \alpha_i) / (\alpha_i, \alpha_i)$ for $\lambda \in \mathfrak{h}^*$. In particular, $\langle \alpha_j, \check{\alpha}_i \rangle = a_{i,j}$. Let $\omega_1, \ldots, \omega_r \in \mathfrak{h}^*$ be the fundamental weights, $\langle \omega_j, \check{\alpha}_i \rangle = \delta_{i,j}.$

Let $\mathcal{P} = {\lambda \in \mathfrak{h}^* | \langle \lambda, \check{\alpha}_i \rangle \in \mathbb{Z}, i = 1, \ldots, r}$ and $\mathcal{P}^+ = {\lambda \in \mathfrak{h}^* | \langle \lambda, \check{\alpha}_i \rangle \in \mathbb{Z}^+ | \langle \lambda, \check{\alpha}_i \rangle$ $\mathbb{Z}_{\geqslant 0}, i = 1, \ldots, r\}$ be the weight lattice and the cone of dominant integral weights.

For $\lambda \in \mathfrak{h}^*$, let V_{λ} be the irreducible g-module with highest weight λ . We denote $\langle \lambda, \check{\alpha}_i \rangle$ by λ_i and sometimes write $(\lambda_1, \lambda_2, \ldots, \lambda_r)$ for λ .

Let *M* be a g-module. Let $(M)^{sing} = \{v \in M \mid \mathfrak{n}_+v = 0\}$ be the subspace of singular vectors in *M*. For $\mu \in \mathfrak{h}^*$ let $(M)_{\mu} = \{v \in M \mid hv =$ $\mu(h)v$, for all $h \in \mathfrak{h}$ be the subspace of *M* of vectors of weight μ . Let $(M)_{\mu}^{\text{sing}} = (M)^{\text{sing}} \cap (M)_{\mu}$ be the subspace of singular vectors in *M* of weight μ .

Given a g-module M, denote by $(M)^{\mathfrak{g}}$ the subspace of g-invariants in M. The subspace $(M)^{\mathfrak{g}}$ is the multiplicity space of the trivial $\mathfrak{g}\text{-module in }M$. The following facts are well known. Let λ , μ be partitions with at most N parts, $\dim(V_{\lambda} \otimes V_{\mu})^{\mathfrak{sl}_N} = 1$ if $\lambda_i = k - \mu_{N+1-i}, i = 1, \ldots, N$, for some integer $k \geq \mu_1$ and 0 otherwise. Let λ , μ be g-weights, $\dim(V_\lambda \otimes V_\mu)$ ^g = $\delta_{\lambda,\mu}$ for $\mathfrak{g} = \mathfrak{so}_{2r+1}, \mathfrak{sp}_{2r}.$

For any Lie algebra \mathfrak{g} , denote by $\mathcal{U}(\mathfrak{g})$ the universal enveloping algebra of g.

2.3. Current algebra g[*t***]**

Let $\mathfrak{g}[t] = \mathfrak{g} \otimes \mathbb{C}[t]$ be the Lie algebra of g-valued polynomials with the pointwise commutator. We call it the *current algebra* of g. We identify the Lie algebra g with the subalgebra $g \otimes 1$ of constant polynomials in $g[t]$. Hence, any $g[t]$ -module has the canonical structure of a g-module. The standard generators of $\mathfrak{gl}_N[t]$ are $e_{ij} \otimes t^p$, $i, j = 1, \ldots, N$, $p \in \mathbb{Z}_{\geqslant 0}$. They satisfy the relations $[e_{ij} \otimes t^p, e_{sk} \otimes t^q] = \delta_{js}e_{ik} \otimes t^{p+q} - \delta_{ik}e_{sj} \otimes t^{p+q}$. It is convenient to collect elements of $\mathfrak{g}[t]$ in generating series of a formal variable *x*. For $g \in \mathfrak{g}$, set

(2.1)
$$
g(x) = \sum_{s=0}^{\infty} (g \otimes t^s) x^{-s-1}.
$$

For $\mathfrak{gl}_N[t]$ we have $(x_2 - x_1)[e_{ij}(x_1), e_{sk}(x_2)] = \delta_{js}(e_{ik}(x_1) - e_{ik}(x_2))$ – $\delta_{ik}(e_{sj}(x_1) - e_{sj}(x_2))$. For each $a \in \mathbb{C}$, there exists an automorphism τ_a of $\mathfrak{g}[t], \tau_a : g(x) \to g(x-a)$. Given a $\mathfrak{g}[t]$ -module M, we denote by $M(a)$ the pull-back of *M* through the automorphism τ_a . As g-modules, *M* and $M(a)$ are isomorphic by the identity map.

We have the evaluation homomorphism, ev : $\mathfrak{g}[t] \to \mathfrak{g}$, ev : $g(x) \to gx^{-1}$. Its restriction to the subalgebra $\mathfrak{g} \subset \mathfrak{g}[t]$ is the identity map. For any $\mathfrak{g}\text{-module}$ *M*, we denote by the same letter the $\mathfrak{g}[t]$ -module, obtained by pulling *M* back through the evaluation homomorphism. For each $a \in \mathbb{C}$, the $\mathfrak{g}[t]$ -module $M(a)$ is called an *evaluation module*.

For $\mathfrak{g} = \mathfrak{sl}_N$, \mathfrak{sp}_{2r} , \mathfrak{so}_{2r+1} , it is well known that finite-dimensional irreducible $\mathfrak{g}[t]$ -modules are tensor products of evaluation modules $V_{\lambda^{(1)}}(z_1) \otimes$ $\cdots \otimes V_{\lambda^{(n)}}(z_n)$ with dominant integral g-weights $\lambda^{(1)},\ldots,\lambda^{(n)}$ and distinct evaluation parameters z_1, \ldots, z_n .

2.4. Bethe algebra

Let S_l be the permutation group of the set $\{1,\ldots,l\}$. Given an $N \times N$ matrix *B* with possibly noncommuting entries b_{ij} , we define its *row determinant* to be

rdet
$$
B = \sum_{\sigma \in S_N} (-1)^{\sigma} b_{1\sigma(1)} b_{2\sigma(2)} \dots b_{N\sigma(N)}
$$
.

Define *the universal differential operator* $\mathcal{D}^{\mathcal{B}}$ by

(2.2)
$$
\mathcal{D}^{\mathcal{B}} = \mathrm{rdet}(\delta_{ij}\partial_x - e_{ji}(x))_{i,j=1}^N.
$$

It is a differential operator in variable *x*, whose coefficients are formal power series in x^{-1} with coefficients in $\mathcal{U}(\mathfrak{gl}_N[t]),$

(2.3)
$$
\mathcal{D}^{\mathcal{B}} = \partial_x^N + \sum_{i=1}^N B_i(x) \partial_x^{N-i},
$$

where

$$
B_i(x) = \sum_{j=i}^{\infty} B_{ij} x^{-j}
$$

and $B_{ij} \in \mathcal{U}(\mathfrak{gl}_N[t])$, $i = 1, \ldots, N$, $j \in \mathbb{Z}_{\geqslant i}$. We call the unital subalgebra of $\mathcal{U}(\mathfrak{gl}_N[t])$ generated by $B_{ij} \in \mathcal{U}(\mathfrak{gl}_N[t])$, $i = 1, \ldots, N$, $j \in \mathbb{Z}_{\geqslant i}$, the *Bethe algebra* of \mathfrak{gl}_N and denote it by \mathcal{B} .

The Bethe algebra β is commutative and commutes with the subalgebra $U(\mathfrak{gl}_N) \subset U(\mathfrak{gl}_N[t])$, see T. As a subalgebra of $U(\mathfrak{gl}_N[t])$, the algebra B acts on any $\mathfrak{gl}_N[t]$ -module M. Since B commutes with $\mathcal{U}(\mathfrak{gl}_N)$, it preserves the subspace of singular vectors $(M)^{sing}$ as well as weight subspaces of M. Therefore, the subspace $(M)_{\lambda}^{\text{sing}}$ is \mathcal{B} -invariant for any weight λ .

We denote $M(\infty)$ the \mathfrak{gl}_N -module M with the trivial action of the Bethe algebra B. More generally, for a $\mathfrak{gl}_N[t]$ -module M' , we denote by $M' \otimes M(\infty)$ the \mathfrak{gl}_N -module where we define the action of $\mathcal B$ so that it acts trivially on $M(\infty)$. Namely, the element $b \in \mathcal{B}$ acts on $M' \otimes M(\infty)$ by $b \otimes 1$.

Note that for $a \in \mathbb{C}$ and \mathfrak{gl}_N -module M, the action of $e_{ij}(x)$ on $M(a)$ is given by $e_{ij}/(x-a)$ on *M*. Therefore, the action of series $B_i(x)$ on the module $M' \otimes M(\infty)$ is the limit of the action of the series $B_i(x)$ on the module $M' \otimes M(z)$ as $z \to \infty$ in the sense of rational functions of *x*. However, such a limit of the action of coefficients B_{ij} on the module $M' \otimes M(z)$ as $z \to \infty$ does not exist.

Let $M = V_{\lambda}$ be an irreducible \mathfrak{gl}_N -module and let M' be an irreducible finite-dimensional $\mathfrak{gl}_N[t]$ -module. Let *c* be the value of the $\sum_{i=1}^N e_{ii}$ action on *M* .

Lemma 2.1. *We have an isomorphism of vector spaces:*

$$
\pi: (M' \otimes V_\lambda)^{\mathfrak{sl}_N} \to (M')_{\bar{\lambda}}^{\text{sing}}, \text{ where } \bar{\lambda}_i = \frac{c + |\lambda|}{N} - \lambda_{N+1-i},
$$

given by the projection to a lowest weight vector in V_λ *. The map* π *is an isomorphism of* \mathcal{B} *-modules* $(M' \otimes V_{\lambda}(\infty))^{s \mathfrak{l}_N} \to (M')_{\overline{\lambda}}^{\text{sing}}$ *.* □

Consider $\mathbb{P}^1 := \mathbb{C} \cup \{\infty\}$. Set

$$
\mathring{\mathbb{P}}_n := \{ \mathbf{z} = (z_1, \dots, z_n) \in (\mathbb{P}^1)^n \mid z_i \neq z_j \text{ for } 1 \leq i < j \leq n \},\
$$
\n
$$
\mathbb{R} \mathring{\mathbb{P}}_n := \{ \mathbf{z} = (z_1, \dots, z_n) \in \mathring{\mathbb{P}}_n \mid z_i \in \mathbb{R} \text{ or } z_i = \infty, \text{ for } 1 \leq i \leq n \}.
$$

We are interested in the action of the Bethe algebra $\mathcal B$ on the tensor product $\bigotimes_{s=1}^{n} V_{\lambda^{(s)}}(z_s)$, where $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(n)})$ is a sequence of partitions with at most N parts and $\boldsymbol{z} = (z_1, \ldots, z_n) \in \mathring{\mathbb{P}}_n$. By Lemma [2.1,](#page-7-0) it is sufficient to consider spaces of invariants $(\bigotimes_{s=1}^{n} V_{\lambda^{(s)}}(z_s))^{\mathfrak{sl}_N}$. For brevity, we write $V_{\mathbf{\Lambda}, \mathbf{z}}$ for the B-module $\bigotimes_{s=1}^{n} V_{\lambda^{(s)}}(z_s)$ and V_{Λ} for the \mathfrak{gl}_N -module $\bigotimes_{s=1}^{n} V_{\lambda^{(s)}}$.

Let $v \in V_{\Lambda, z}$ be a common eigenvector of the Bethe algebra $\mathcal{B}, B_i(x)v =$ $h_i(x)v, i = 1, \ldots, N$. Then we call the scalar differential operator

$$
\mathcal{D}_v = \partial_x^N + \sum_{i=1}^N h_i(x)\partial_x^{N-i}
$$

the *differential operator associated with the eigenvector v.*

3. The gl*^N* **-stratification of Grassmannian**

Let *N*, $d \in \mathbb{Z}_{>0}$ such that $N \leq d$.

3.1. Schubert cells

Let $\mathbb{C}_d[x]$ be the space of polynomials in x with complex coefficients of degree less than *d*. We have dim $\mathbb{C}_d[x] = d$. Let $\mathrm{Gr}(N,d)$ be the Grassmannian of all *N*-dimensional subspaces in $\mathbb{C}_d[x]$. The Grassmannian $\text{Gr}(N,d)$ is a smooth projective complex variety of dimension $N(d - N)$.

Let $\mathbb{R}_d[x] \subset \mathbb{C}_d[x]$ be the space of polynomials in x with real coefficients of degree less than *d*. Let $\mathrm{Gr}^{\mathbb{R}}(N,d) \subset \mathrm{Gr}(N,d)$ be the set of subspaces which have a basis consisting of polynomials with real coefficients. For $X \in \mathrm{Gr}(N,d)$ we have $X \in \mathrm{Gr}^{\mathbb{R}}(N,d)$ if and only if $\dim_{\mathbb{R}}(X \cap \mathbb{R}_d[x]) = N$. We call such points *X real*.

For a full flag $\mathcal{F} = \{0 \subset F_1 \subset F_2 \subset \cdots \subset F_d = \mathbb{C}_d[x]\}$ and a partition $\lambda = (\lambda_1, \ldots, \lambda_N)$ such that $\lambda_1 \leq d - N$, the Schubert cell $\Omega_\lambda(\mathcal{F}) \subset \text{Gr}(N, d)$ is given by

$$
\Omega_{\lambda}(\mathcal{F}) = \{ X \in \text{Gr}(N, d) \mid \dim(X \cap F_{d-j-\lambda_{N-j}}) = N - j, \dim(X \cap F_{d-j-\lambda_{N-j}-1}) = N - j - 1 \}.
$$

We have codim $\Omega_{\lambda}(\mathcal{F}) = |\lambda|$.

The Schubert cell decomposition associated to a full flag \mathcal{F} , see for example $\left[\text{GH} \right]$, is given by

(3.1)
$$
\operatorname{Gr}(N,d) = \bigsqcup_{\lambda, \ \lambda_1 \leq d-N} \Omega_{\lambda}(\mathcal{F}).
$$

The Schubert cycle $\overline{\Omega}_{\lambda}(\mathcal{F})$ is the closure of a Schubert cell $\Omega_{\lambda}(\mathcal{F})$ in the Grassmannian $Gr(N, d)$. Schubert cycles are algebraic sets with very rich geometry and topology. It is well known that Schubert cycle $\Omega_{\lambda}(\mathcal{F})$ is described by the formula

(3.2)
$$
\overline{\Omega}_{\lambda}(\mathcal{F}) = \bigsqcup_{\substack{\lambda \subseteq \mu, \\ \mu_1 \leq d-N}} \Omega_{\mu}(\mathcal{F}).
$$

Given a partition $\lambda = (\lambda_1, \ldots, \lambda_N)$ such that $\lambda_1 \leq d - N$, introduce a new partition

$$
\bar{\lambda} = (d - N - \lambda_N, d - N - \lambda_{N-1}, \dots, d - N - \lambda_1).
$$

We have $|\lambda| + |\bar{\lambda}| = N(d-N)$.

Let $\mathcal{F}(\infty)$ be the full flag given by

(3.3)
$$
\mathcal{F}(\infty) = \{0 \subset \mathbb{C}_1[x] \subset \mathbb{C}_2[x] \subset \cdots \subset \mathbb{C}_d[x]\}.
$$

The subspace X is a point of $\Omega_{\lambda}(\mathcal{F}(\infty))$ if and only if for every $i =$ 1,..., *N*, it contains a polynomial of degree $\lambda_i + N - i$.

For $z \in \mathbb{C}$, consider the full flag

$$
(3.4) \qquad \mathcal{F}(z) = \{0 \subset (x-z)^{d-1} \mathbb{C}_1[x] \subset (x-z)^{d-2} \mathbb{C}_2[x] \subset \cdots \subset \mathbb{C}_d[x]\}.
$$

The subspace *X* is a point of $\Omega_{\lambda}(\mathcal{F}(z))$ if and only if for every $i = 1, ..., N$, it contains a polynomial with a root at *z* of order $\lambda_i + N - i$.

A point $z \in \mathbb{C}$ is called a *base point* for a subspace $X \subset \mathbb{C}_d[x]$ if $g(z) = 0$ for every $g \in X$.

3.2. Intersection of Schubert cells

Let $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(n)})$ be a sequence of partitions with at most *N* parts and $z = (z_1, \ldots, z_n) \in \mathbb{P}_n$. Set $|\Lambda| = \sum_{s=1}^n |\lambda^{(s)}|$.

The following lemma is elementary.

Lemma 3.1. *If* dim $(V_{\Lambda})^{\mathfrak{sl}_N} > 0$, then $|\Lambda|$ *is divisible by N. Suppose further* $|\mathbf{\Lambda}| = N(d - N)$, then $\lambda_1^{(s)} \leq d - N$ for $s = 1, ..., n$.

Assuming $|\mathbf{\Lambda}| = N(d-N)$, denote by $\Omega_{\mathbf{\Lambda},\mathbf{z}}$ the intersection of the Schubert cells:

(3.5)
$$
\Omega_{\Lambda, z} = \bigcap_{s=1}^{n} \Omega_{\lambda^{(s)}}(\mathcal{F}(z_s)).
$$

Note that due to our assumption, $\Omega_{\Lambda, z}$ is a finite subset of $\text{Gr}(N, d)$. Note also that $\Omega_{\Lambda, z}$ is non-empty if and only if $\dim(V_{\Lambda})^{s l_N} > 0$.

Theorem 3.2. *Suppose* dim $(V_{\Lambda})^{5\ell_N} > 0$ *. Let* $v \in (V_{\Lambda,z})^{5\ell_N}$ *be an eigenvector of the Bethe algebra B. Then* Ker $\mathcal{D}_v \in \Omega_{\Lambda, z}$ *. Moreover, the assignment* κ : $v \mapsto \text{Ker } \mathcal{D}_v$ *is a bijective correspondence between the set of eigenvectors of the Bethe algebra in* $(V_{\Lambda,z})^{s\mathfrak{l}_N}$ *(considered up to multiplication by nonzero scalars)* and the set $\Omega_{\Lambda, z}$ *.*

Proof. The first statement is Theorem 4.1 in [\[MTV3\]](#page-43-2) and the second statement is Theorem 6.1 in [\[MTV4\]](#page-43-3).□

We also have the following lemma, see for example [\[MTV1\]](#page-43-4).

Lemma 3.3. Let z be a generic point in \mathbb{P}_n . Then the action of the Bethe *algebra* \mathcal{B} *on* $(V_{\Lambda,z})^{\mathfrak{sl}_N}$ *is diagonalizable. In particular, this statement holds for any sequence* $\mathbf{z} \in \mathbb{R} \mathbb{P}_n$ *.* \Box

3.3. The \mathfrak{gl}_N -stratification of $\mathrm{Gr}(N,d)$

The following definition plays an important role in what follows.

Define a partial order \geqslant on the set of sequences of partitions with at most *N* parts as follows. Let $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(n)}), \, \Xi = (\xi^{(1)}, \ldots, \xi^{(m)})$ be two sequences of partitions with at most *N* parts. We say that $\Lambda \geq \Xi$ if and only if there exists a partition $\{I_1, \ldots, I_m\}$ of the set $\{1, 2, \ldots, n\}$ such that

$$
\operatorname{Hom}_{\mathfrak{gl}_N}(V_{\xi^{(i)}},\bigotimes_{j\in I_i}V_{\lambda^{(j)}})\neq 0, \quad i=1,\ldots,m.
$$

Note that Λ and Ξ are comparable only if $|\Lambda| = |\Xi|$.

We say that $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(n)})$ is *nontrivial* if and only if $(V_{\Lambda})^{sI_N} \neq 0$ and $|\lambda^{(s)}| > 0$, $s = 1, \ldots, n$. The sequence **Λ** will be called *d*-*nontrivial* if **Λ** is nontrivial and $|\mathbf{\Lambda}| = N(d - N)$.

Suppose Ξ is *d*-nontrivial. If $\Lambda \geq \Xi$ and $|\lambda^{(s)}| > 0$ for all $s = 1, \ldots, n$, then Λ is also *d*-nontrivial.

Recall that $\Omega_{\Lambda, z}$ is the intersection of Schubert cells for each given z , see [\(3.5\)](#page-9-3), define Ω_{Λ} by the formula

(3.6)
$$
\Omega_{\Lambda} := \bigcup_{\mathbf{z} \in \mathring{\mathbb{P}}_n} \Omega_{\Lambda, \mathbf{z}} \subset \text{Gr}(N, d).
$$

By definition, Ω_{Λ} does not depend on the order of $\lambda^{(s)}$ in the sequence Λ = $(\lambda^{(1)}, \ldots, \lambda^{(n)})$. Note that Ω_{Λ} is a constructible subset of the Grassmannian Gr(*N,d*) in Zariski topology. We call Ω_{Λ} with a *d*-nontrivial Λ a \mathfrak{gl}_N -stratum of $\mathrm{Gr}(N,d)$.

Let $\mu^{(1)}, \ldots, \mu^{(a)}$ be the list of all distinct partitions in **Λ**. Let n_i be the number of occurrences of $\mu^{(i)}$ in Λ , $i = 1, \ldots, a$, then $\sum_{i=1}^{a} n_i = n$. Denote $n = (n_1, \ldots, n_a)$. We shall write Λ in the following order: $\lambda^{(i)} = \mu^{(j)}$ for $\sum_{s=1}^{j-1} n_s + 1 \leqslant i \leqslant \sum_{s=1}^{j} n_s, j = 1, \ldots, a.$

Let S_{n,n_i} be the subgroup of the symmetric group S_n permuting $\{n_1 +$ $\cdots + n_{i-1} + 1, \ldots, n_1 + \cdots + n_i$, $i = 1, \ldots, a$. Then the group $S_n = S_{n; n_1} \times$ $S_{n;n_2} \times \cdots \times S_{n;n_a}$ acts freely on \mathbb{P}_n and on $\mathbb{R}^{\mathbb{P}}_{n}$. Denote by \mathbb{P}_n/S_n and $\mathbb{R}\mathbb{P}_n/S_n$ the sets of orbits.

Proposition 3.4. *Suppose* $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(n)})$ *is d-nontrivial. The stratum* Ω_{Λ} *is a ramified covering of* \mathbb{P}_n / S_n *. Moreover, the degree of the covering is equal to* dim($V_{\mathbf{\Lambda}}$)st^{*N*} *. In particular,* dim $\Omega_{\mathbf{\Lambda}} = n$ *. Over* $\mathbb{R}^p n / S_n$ *, this covering is unramified of the same degree, moreover all points in fibers are real.*

Proof. The statement follows from Theorem [3.2,](#page-9-2) Lemma [3.3,](#page-10-0) and Theorem 1.1 of [\[MTV3\]](#page-43-2). 口

Clearly, we have the following theorem.

Theorem 3.5. *We have*

(3.7)
$$
\operatorname{Gr}(N, d) = \bigsqcup_{d\text{-nontrivial }\Lambda} \Omega_{\Lambda}.
$$

Next, for a *d*-nontrivial Λ , we call the closure of Ω_{Λ} inside $\text{Gr}(N,d)$, a \mathfrak{gl}_N *-cycle*. The \mathfrak{gl}_N -cycle Ω_Λ is an algebraic set. We describe the \mathfrak{gl}_N -cycles as unions of \mathfrak{gl}_N -strata.

Let $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(n)})$ and $\Xi = (\xi^{(1)}, \ldots, \xi^{(n-1)})$ be such that $\Xi \leq \Lambda$. We call Ω_{Ξ} a *simple degeneration* of Ω_{Λ} if and only if both Λ and Ξ are *d*nontrivial. In view of Theorem [3.2,](#page-9-2) taking a simple degeneration is equivalent to making two coordinates of *z* collide.

Theorem 3.6. *If* Ω_{Ξ} *is a simple degeneration of* Ω_{Λ} *, then* Ω_{Ξ} *is contained in the* \mathfrak{gl}_N *-cycle* $\overline{\Omega}_{\Lambda}$ *.*

Theorem [3.6](#page-11-3) is proved in Section [7.1.](#page-35-1)

Suppose $\mathbf{\Theta} = (\theta^{(1)}, \dots, \theta^{(l)})$ is *d*-nontrivial and $\mathbf{\Lambda} \geq \mathbf{\Theta}$. Then, it is clear that Ω_{Θ} is obtained from Ω_{Λ} by a sequence of simple degenerations. We call $Ω$ **Θ** a *degeneration* of $Ω$ **Λ**.

Corollary 3.7. *If* Ω_{Θ} *is a degeneration of* Ω_{Λ} *, then* Ω_{Θ} *is contained in the* \mathfrak{gl}_N *-cycle* Ω_Λ . □

Theorem 3.8. *For d-nontrivial* **Λ***, we have*

(3.8)
$$
\overline{\Omega}_{\Lambda} = \bigsqcup_{\substack{\Xi \leq \Lambda, \\ d\text{-nontrivial } \Xi}} \Omega_{\Xi}.
$$

Theorem [3.8](#page-11-1) is proved in Section [7.1.](#page-35-1)

Theorems [3.5](#page-11-0) and [3.8](#page-11-1) imply that the subsets Ω_{Λ} with *d*-nontrivial Λ give a stratification of $\text{Gr}(N,d)$. We call it the \mathfrak{gl}_N -stratification of $\text{Gr}(N,d)$.

 \Box

Example 3.9. We give an example of the \mathfrak{gl}_2 -stratification for $\text{Gr}(2, 4)$ in the following picture. In the picture, we simply write Λ for Ω_{Λ} . We also write tuples of numbers with bold font for 4-nontrivial tuples of partitions, solid arrows for simple degenerations between 4-nontrivial tuples of partitions. The dashed arrows go between comparable sequences where the set Ω**^Ξ** corresponding to the smaller sequence is empty.

In particular, $\Omega_{((1,0),(1,0),(1,0),(1,0))}$ is dense in Gr(2*,* 4).

Remark 3.10. In general, for $\text{Gr}(N, d)$, let $\epsilon_1 = (1, 0, \ldots, 0)$ and let

$$
\Lambda = (\underbrace{\epsilon_1, \epsilon_1, \dots, \epsilon_1}_{N(d-N)}).
$$

Then Λ is *d*-nontrivial, and Ω_{Λ} is dense in $\text{Gr}(N,d)$. Clearly, Ω_{Λ} consists of spaces of polynomials whose Wronskian (see Section [3.4\)](#page-12-1) has only simple roots.

Remark 3.11. The group of affine translations acts on $\mathbb{C}_d[x]$ by changes of variable. Namely, for $a \in \mathbb{C}^*, b \in \mathbb{C}$, we have a map sending $f(x) \mapsto f(ax+b)$ for all $f(x) \in \mathbb{C}_d[x]$. This group action preserves the Grassmannian $\text{Gr}(N,d)$ and the strata Ω_{Λ} .

3.4. The case of *N* **= 1 and the Wronski map**

We show that the decomposition in Theorems [3.5](#page-11-0) and [3.8](#page-11-1) respects the Wronski map.

304 Kang Lu et al.

From now on, we use the convention that $x - z_s$ is considered as the constant function 1 if $z_s = \infty$.

Consider the Grassmannian of lines $\text{Gr}(1, \tilde{d})$. By Theorem [3.5,](#page-11-0) the decomposition of $\text{Gr}(1, \tilde{d})$ is parameterized by unordered sequences of positive integers $\boldsymbol{m} = (m_1, \ldots, m_n)$ such that $|\boldsymbol{m}| = \tilde{d} - 1$.

Let $\mathbf{z} = (z_1, \ldots, z_n) \in \mathring{\mathbb{P}}_n$. We have $\mathbb{C} f \in \Omega_{m, \mathbf{z}}$ if and only if

$$
f(x) = a \prod_{s=1}^{n} (x - z_s)^{m_s}, \quad a \neq 0.
$$

In other words, the stratum Ω_{m} of the \mathfrak{gl}_{1} -stratification [\(3.7\)](#page-11-4) of $\text{Gr}(1, \tilde{d})$ consists of all points in $\text{Gr}(1, \tilde{d})$ whose representative polynomials have *n* distinct roots (one of them can be ∞) of multiplicities m_1, \ldots, m_n .

Therefore the \mathfrak{gl}_1 -stratification is exactly the celebrated swallowtail stratification.

For
$$
g_1(x), \ldots, g_l(x) \in \mathbb{C}[x]
$$
, denote by $Wr(g_1(x), \ldots, g_l(x))$ the *Wronskian*,

$$
Wr(g_1(x), \ldots, g_l(x)) = \det(d^{i-1}g_j/dx^{i-1})_{i,j=1}^l.
$$

Let $X \in \mathrm{Gr}(N,d)$. The Wronskians of two bases of X differ by a multiplication by a nonzero number. We call the monic polynomial representing the Wronskian the *Wronskian* of X and denote it by $Wr(X)$. It is clear that $\deg_x \text{Wr}(X) \leqslant N(d-N).$

The *Wronski* map

$$
Wr: Gr(N, d) \to Gr(1, N(d - N) + 1)
$$

is sending $X \in \mathrm{Gr}(N,d)$ to $\mathbb{C} \mathrm{Wr}(X)$.

The Wronski map is a finite algebraic map; see, for example, Propositions 3.1 and 4.2 in [\[MTV5\]](#page-43-5), of degree dim $(L^{\otimes N(d-N)})^{sI_n}$, which is explicitly given by

$$
(N(d-N))! \frac{0! \ 1! \ 2! \dots (d-N-1)!}{N! \ (N+1)! \ (N+2)! \dots (d-1)!},
$$

see $|S|$.

Let $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(n)})$ be *d*-nontrivial and $\boldsymbol{z} = (z_1, \ldots, z_n) \in \mathring{P}_n$. If $X \in \Omega_{\Lambda, z}$, then one has

$$
Wr(X) = \prod_{s=1}^{n} (x - z_s)^{|\lambda^{(s)}|}.
$$

Set $\tilde{d} = N(d - N) + 1$. Therefore, we have the following proposition.

Proposition 3.12. *The preimage of the stratum* $\Omega_{\mathbf{m}}$ *of* $\text{Gr}(1, N(d-N)+1)$ *under the Wronski map is a union of all d-nontrivial strata* Ω_{Λ} *of* $\text{Gr}(N,d)$ *such that* $|\lambda^{(s)}| = m_s, s = 1, ..., n$ *.* □

Let $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(n)})$ be an unordered sequence of partitions with at most *N* parts. Let *a* be the number of distinct partitions in Λ . We can assume that $\lambda^{(1)}, \ldots, \lambda^{(a)}$ are all distinct and let n_1, \ldots, n_a be their multiplicities in Λ , $n_1 + \cdots + n_a = n$. Define the *symmetry coefficient* of Λ as the product of multinomial coefficients:

(3.9)
$$
b(\Lambda) = \prod_{i} \frac{\left(\sum_{s=1,\dots,a,\ |\lambda^{(s)}|=i} n_s\right)!}{\prod_{s=1,\dots,a,\ |\lambda^{(s)}|=i} (n_s)!}.
$$

Proposition 3.13. Let $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(n)})$ be *d*-nontrivial. Then the Wron*ski* map $Wr|_{\Omega_{\Lambda}} : \Omega_{\Lambda} \to \Omega_{m}$ *is a ramified covering of degree* $b(\Lambda)$ dim $(V_{\Lambda})^{s}$ ^{[N}.

Proof. The statement follows from Theorem [3.2,](#page-9-2) Lemma [3.3,](#page-10-0) and Proposition [3.12.](#page-14-2) □

In other words, the \mathfrak{gl}_N -stratification of $Gr(N, d)$ given by Theorems [3.5](#page-11-0) and [3.8,](#page-11-1) is adjacent to the swallowtail \mathfrak{gl}_1 -stratification of $\text{Gr}(1, N(d-N)+1)$ and the Wronski map.

4. The g*^N* **-stratification of self-dual Grassmannian**

It is convenient to use the notation: $\mathfrak{g}_{2r+1} = \mathfrak{sp}_{2r}$, and $\mathfrak{g}_{2r} = \mathfrak{so}_{2r+1}$, $r \geq 2$. We also set $\mathfrak{g}_3 = \mathfrak{sl}_2$. The case of $\mathfrak{g}_3 = \mathfrak{sl}_2$ is discussed in detail in Section [4.6.](#page-24-0)

4.1. Self-dual spaces

Let $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(n)})$ be a tuple of partitions with at most *N* parts such that $|\mathbf{\Lambda}| = N(d-N)$ and let $\mathbf{z} = (z_1, \ldots, z_n) \in \mathbb{P}_n$.

Define a tuple of polynomials $\mathbf{T} = (T_1, \ldots, T_N)$ by

(4.1)
$$
T_i(x) = \prod_{s=1}^n (x - z_s)^{\lambda_i^{(s)} - \lambda_{i+1}^{(s)}}, \quad i = 1, ..., N,
$$

where $\lambda_{N+1}^{(s)} = 0$. We say that **T** is *associated with* Λ *, z*.

Let $X \in \Omega_{\Lambda, z}$ and $g_1, \ldots, g_i \in X$. Define the *divided Wronskian* Wr[†] with *respect to* Λ *, z* by

$$
\text{Wr}^{\dagger}(g_1, \dots, g_i) = \text{Wr}(g_1, \dots, g_i) \prod_{j=1}^i T_{N+1-j}^{j-i-1}, \quad i = 1, \dots, N.
$$

Note that $Wr^{\dagger}(g_1, \ldots, g_i)$ is a polynomial in *x*.

Given $X \in \text{Gr}(N,d)$, define the *dual space* X^{\dagger} of X by

$$
X^{\dagger} = \{ \text{Wr}^{\dagger}(g_1, \ldots, g_{N-1}) \mid g_i \in X, \ i = 1, \ldots, N-1 \}.
$$

Lemma 4.1. *If* $X \in \Omega_{\Lambda, z}$ *, then* $X^{\dagger} \in \Omega_{\tilde{\Lambda}, z} \subset \text{Gr}(N, \tilde{d})$ *, where*

$$
\tilde{d} = \sum_{s=1}^{n} \lambda_1^{(s)} - d + 2N,
$$

 $\tilde{\mathbf{A}} = (\tilde{\lambda}^{(1)}, \dots, \tilde{\lambda}^{(n)})$ *is a sequence of partitions with at most N parts such that*

$$
\tilde{\lambda}_i^{(s)} = \lambda_1^{(s)} - \lambda_{N+1-i}^{(s)}, \quad i = 1, ..., N, \quad s = 1, ..., n.
$$

Note that we always have $\tilde{\lambda}_N^{(s)} = 0$ for every $s = 1, \ldots, n$, hence X^{\dagger} has no base points.

Given a space of polynomials *X* and a rational function *g* in *x*, denote by $q \cdot X$ the space of rational functions of the form $q \cdot f$ with $f \in X$.

A self-dual space is called a *pure self-dual space* if $X = X^{\dagger}$. A space of polynomials *X* is called *self-dual* if $X = q \cdot X^{\dagger}$ for some polynomial $q \in \mathbb{C}[x]$. In particular, if $X \in \Omega_{\Lambda, z}$ is self-dual, then $X = T_N \cdot X^{\dagger}$, where T_N is defined in (4.1) . Note also, that if *X* is self-dual then $q \cdot X$ is also self-dual.

It is obvious that every point in $\text{Gr}(2, d)$ is a self-dual space.

Let $sGr(N,d)$ be the set of all self-dual spaces in $Gr(N,d)$. We call $sGr(N, d)$ the *self-dual Grassmannian*. The self-dual Grassmannian $sGr(N, d)$ is an algebraic subset of Gr(*N,d*).

Let $\Omega_{\Lambda, z}$ be the finite set defined in [\(3.5\)](#page-9-3) and Ω_{Λ} the set defined in [\(3.6\)](#page-10-1). Denote by $s\Omega_{\Lambda,z}$ the set of all self-dual spaces in $\Omega_{\Lambda,z}$ and by $s\Omega_{\Lambda}$ the set of all self-dual spaces in Ω_{Λ} :

$$
s\Omega_{\Lambda,z} = \Omega_{\Lambda,z} \bigcap s\text{Gr}(N,d) \quad \text{and} \quad s\Omega_{\Lambda} = \Omega_{\Lambda} \bigcap s\text{Gr}(N,d).
$$

We call the sets $s\Omega_{\Lambda}$ \mathfrak{g}_N *-strata* of the self-dual Grassmannian. A stratum $s\Omega_{\Lambda}$ does not depend on the order of the set of partitions **Λ**. Note that each sΩ**^Λ** is a constructible subset of the Grassmannian $Gr(N, d)$ in Zariski topology.

A partition λ with at most *N* parts is called *N*-symmetric if $\lambda_i - \lambda_{i+1} =$ $\lambda_{N-i} - \lambda_{N-i+1}, i = 1, \ldots, N-1$. If the stratum s Ω_{Λ} is nonempty, then all partitions $\lambda^{(s)}$ are *N*-symmetric; see also Lemma [4.4](#page-17-1) below.

The self-dual Grassmannian is related to the Gaudin model in types B and C, see [\[MV1\]](#page-43-0) and Theorem [4.5](#page-17-0) below. We show that $sGr(N, d)$ also has a remarkable stratification structure similar to the \mathfrak{gl}_N -stratification of $\mathrm{Gr}(N,d)$, governed by representation theory of g_N ; see Theorems [4.11](#page-20-0) and [4.13.](#page-21-0)

Remark 4.2. The self-dual Grassmannian also has a stratification induced from the usual Schubert cell decomposition (3.1) , (3.2) . For $z \in \mathbb{P}^1$, and an *N*symmetric partition λ with $\lambda_1 \leq d-N$, set $s\Omega_\lambda(\mathcal{F}(z)) = \Omega_\lambda(\mathcal{F}(z)) \cap s\mathrm{Gr}(N,d)$. Then it is easy to see that

$$
sGr(N, d) = \bigsqcup_{\substack{N-\text{symmetric } \mu, \\ \mu_1 \leq d-N}} s\Omega_{\mu}(\mathcal{F}(z)) \text{ and }
$$

$$
\overline{s\Omega}_{\lambda}(\mathcal{F}(z)) = \bigsqcup_{\substack{N-\text{symmetric } \mu, \\ \mu_1 \leq d-N, \ \lambda \subseteq \mu}} s\Omega_{\mu}(\mathcal{F}(z)).
$$

4.2. Bethe algebras of types B and C and self-dual Grassmannian

The Bethe algebra β (the algebra of higher Gaudin Hamiltonians) for a simple Lie algebras g were described in [\[FFR\]](#page-42-2). The Bethe algebra β is a commutative subalgebra of $\mathcal{U}(\mathfrak{g}|t|)$ which commutes with the subalgebra $\mathcal{U}(\mathfrak{g}) \subset \mathcal{U}(\mathfrak{g}|t|)$. An explicit set of generators of the Bethe algebra in Lie algebras of types B, C, and D was given in [\[M\]](#page-43-7). Such a description in the case of \mathfrak{gl}_N is given above in Section [2.4.](#page-6-0) For the case of \mathfrak{g}_N we only need the following fact.

Recall our notation $g(x)$ for the current of $g \in \mathfrak{g}$, see [\(2.1\)](#page-5-0).

Proposition 4.3 ([\[FFR,](#page-42-2) [M\]](#page-43-7)). Let $N > 3$. There exist elements $F_{ij} \in \mathfrak{g}_N$, $i, j = 1, \ldots, N$ *, and polynomials* $G_s(x)$ *in* $d^k F_{ij}(x)/dx^k$ *, s* = 1*,...,N, k* = $0, \ldots, N$ *, such that the Bethe algebra of* \mathfrak{g}_N *is generated by coefficients of* $G_s(x)$ *considered as formal power series in* x^{-1} *.* \Box

Similar to the \mathfrak{gl}_N case, for a collection of dominant integral \mathfrak{g}_N -weights $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(n)})$ and $\mathbf{z} = (z_1, \ldots, z_n) \in \mathring{P}_n$, we set $V_{\Lambda, \mathbf{z}} = \bigotimes_{s=1}^n V_{\lambda^{(s)}}(z_s)$, considered as a B-module. Namely, if $z \in \mathbb{C}^n$, then $V_{\Lambda,z}$ is a tensor product of evaluation $\mathfrak{g}_N[t]$ -modules and therefore a B-module. If, say, $z_n = \infty$, then B acts trivially on $V_{\lambda^{(n)}}(\infty)$. More precisely, in this case, $b \in \mathcal{B}$ acts by $b \otimes 1$ where the first factor acts on $\bigotimes_{s=1}^{n-1} V_{\lambda^{(s)}}(z_s)$ and 1 acts on $V_{\lambda^{(n)}}(\infty)$.

We also denote V_{Λ} the module $V_{\Lambda, z}$ considered as a \mathfrak{g}_N -module.

Let μ be a dominant integral \mathfrak{g}_N -weight and $k \in \mathbb{Z}_{\geqslant 0}$. Define an *N*symmetric partition $\mu_{A,k}$ with at most *N* parts by the rule: $(\mu_{A,k})_N = k$

and

(4.2)
$$
(\mu_{A,k})_i - (\mu_{A,k})_{i+1} = \begin{cases} \langle \mu, \check{\alpha}_i \rangle, & \text{if } 1 \leq i \leq \left[\frac{N}{2}\right], \\ \langle \mu, \check{\alpha}_{N-i} \rangle, & \text{if } \left[\frac{N}{2}\right] < i \leq N - 1. \end{cases}
$$

We call $\mu_{A,k}$ the partition *associated with weight* μ *and integer* k .

Let $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(n)})$ be a sequence of dominant integral \mathfrak{g}_N -weights and let $\mathbf{k} = (k_1, \ldots, k_n)$ be an *n*-tuple of nonnegative integers. Then denote $\Lambda_{A,k} = (\lambda_{A,k_1}^{(1)}, \ldots, \lambda_{A,k_n}^{(n)})$ the sequence of partitions associated with $\lambda^{(s)}$ and $k_s, s = 1, \ldots, n.$

We use notation $\mu_A = \mu_{A,0}$ and $\Lambda_A = \Lambda_{A,(0,\ldots,0)}$.

Lemma 4.4. *If* Ξ *is a d-nontrivial sequence of partitions with at most* N *parts and* $s\Omega_{\Xi}$ *is nonempty, then* Ξ *has the form* $\Xi = \Lambda_{A,k}$ *for a sequence of dominant integral* \mathfrak{g}_N *-weights* $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(n)})$ *and an n-tuple* **k** *of nonnegative integers. The pair* (Λ, \mathbf{k}) *is uniquely determined by* Ξ *. Moreover, if* $N = 2r$ *, then* $\sum_{s=1}^{n} \langle \lambda^{(s)}, \check{\alpha}_r \rangle$ *is even.*

Proof. The first statement follows from Lemma [4.1.](#page-15-0) If $N = 2r$ is even, the second statement follows from the equality

$$
N(d-N) = |\Xi| = \sum_{s=1}^{n} r\left(2\sum_{i=1}^{r-1} \langle \lambda^{(s)}, \check{\alpha}_i \rangle + \langle \lambda^{(s)}, \check{\alpha}_r \rangle\right) + N \sum_{s=1}^{n} k_s.
$$

Therefore the strata are effectively parameterized by sequences of dominant integral \mathfrak{g}_N -weights and tuples of nonnegative integers. In what follows we write $\mathrm{s}\Omega_{\mathbf{\Lambda},\mathbf{k}}$ for $\mathrm{s}\Omega_{\mathbf{\Lambda}_{A,\mathbf{k}}}$ and $\mathrm{s}\Omega_{\mathbf{\Lambda},\mathbf{k},\mathbf{z}}$ for $\mathrm{s}\Omega_{\mathbf{\Lambda}_{A,\mathbf{k}},\mathbf{z}}$.

Define a formal differential operator

$$
\mathcal{D}^{\mathcal{B}} = \partial_x^N + \sum_{i=1}^N G_i(x) \partial_x^{N-i}.
$$

For a B-eigenvector $v \in V_{\Lambda,z}$, $G_i(x)v = h_i(x)v$, we denote $\mathcal{D}_v = \partial_x^N +$ $\sum_{i=1}^{N} h_i(x) \partial_x^{N-i}$ the corresponding scalar differential operator.

Theorem 4.5. *Let* $N > 3$ *.*

There exists a choice of generators $G_i(x)$ *of the* \mathfrak{g}_N *Bethe algebra* \mathcal{B} *(see Proposition* [4.3\)](#page-16-0), such that for any sequence of dominant integral \mathfrak{g}_N -weights $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(n)})$, any $z \in \mathbb{P}_n$, and any B-eigenvector $v \in (V_{\Lambda, z})^{\mathfrak{g}_N}$, *we have* Ker $((T_1 \ldots T_N)^{1/2} \cdot \mathcal{D}_v \cdot (T_1 \ldots T_N)^{-1/2}) \in s\Omega_{\Lambda_A,z}$ *, where* $T =$ (T_1, \ldots, T_N) *is associated with* Λ_A, z *.*

Moreover, if $|\mathbf{\Lambda}_A| = N(d - N)$ *, then this defines a bijection between the joint eigenvalues of* \mathcal{B} *on* $(V_{\Lambda,z})^{\mathfrak{g}_N}$ *and* $s\Omega_{\Lambda_A,z} \subset Gr(N,d)$ *.*

Proof. Theorem [4.5](#page-17-0) is deduced from [\[R\]](#page-43-8) in Section [7.2.](#page-36-0)

The second part of the theorem also holds for $N = 3$; see Section [4.6.](#page-24-0)

Remark 4.6. In particular, Theorem [4.5](#page-17-0) implies that if dim $(V_{\mathbf{\Lambda}})^{\mathfrak{g}_N} > 0$, then dim $(V_{\Lambda_{A,k}})^{5\ell_N} > 0$. This statement also follows from Lemma [A.2](#page-38-0) given in the Appendix.

We also have the following lemma from [\[R\]](#page-43-8).

Lemma 4.7. Let *z* be a generic point in \mathbb{P}_n . Then the action of the \mathfrak{g}_N Bethe *algebra on* $(V_{\Lambda,z})^{\mathfrak{g}_N}$ *is diagonalizable and has simple spectrum. In particular, this statement holds for any sequence* $\mathbf{z} \in \mathbb{R} \mathbb{P}_n$ *.* \Box

4.3. Properties of the strata

We describe simple properties of the strata $\Omega_{\Lambda,k}$.

Given Λ, k, z , define Λ, k, \tilde{z} by removing all zero components, that is the ones with both $\lambda^{(s)} = 0$ and $k_s = 0$. Then $s\Omega_{\tilde{\Lambda}, \tilde{k}, \tilde{z}} = s\Omega_{\Lambda, k, z}$ and $s\Omega_{\tilde{\Lambda}, \tilde{k}} =$ $S\Omega_{\Lambda,k}$. Also, by Remark [4.6,](#page-18-1) if $(V_{\Lambda})^{\mathfrak{g}_N} \neq 0$, then $\dim(V_{\Lambda_{A,k}})^{\mathfrak{sl}_N} > 0$, thus $|\mathbf{\Lambda}_{A,k}|$ is divisible by N.

We say that (Λ, \mathbf{k}) is *d*-*nontrivial* if and only if $(V_{\Lambda})^{\mathfrak{g}_N} \neq 0$, $|\lambda_{A,k_s}^{(s)}| > 0$, $s = 1, \ldots, n$, and $|\mathbf{\Lambda}_{A,k}| = N(d-N)$.

If (Λ, \mathbf{k}) is *d*-nontrivial then the corresponding stratum s $\Omega_{\Lambda, \mathbf{k}} \subset \mathrm{sGr}(N, d)$ is nonempty, see Proposition [4.9](#page-19-0) below.

Note that $|\mathbf{\Lambda}_{A,k}| = |\mathbf{\Lambda}_A| + N|\mathbf{k}|$, where $|\mathbf{k}| = k_1 + \cdots + k_n$. In particular, if $({\bf\Lambda},{\bf 0})$ is *d*-nontrivial then $({\bf\Lambda},{\bf k})$ is $(d+|{\bf k}|)$ -nontrivial. Further, there exists a bijection between $\Omega_{\Lambda_A, z}$ in Gr(*N,d*) and $\Omega_{\Lambda_A, k, z}$ in Gr(*N,d* + |**k**|) given by

(4.3)
$$
\Omega_{\Lambda_A, z} \to \Omega_{\Lambda_A, k, z}, \quad X \mapsto \prod_{s=1}^n (x - z_s)^{k_s} \cdot X.
$$

Moreover, [\(4.3\)](#page-18-2) restricts to a bijection of $s\Omega_{\Lambda_A,z}$ in $sGr(N,d)$ and $s\Omega_{\Lambda_A,k,z}$ in $sGr(N, d+|\mathbf{k}|).$

If (Λ, \mathbf{k}) is *d*-nontrivial then $\Lambda_{A, \mathbf{k}}$ is *d*-nontrivial. The converse is not true.

 \Box

Example 4.8. For this example we write the highest weights in terms of fundamental weights, e.g. $(1,0,0,1) = \omega_1 + \omega_4$. We also use \mathfrak{sl}_N -modules instead of \mathfrak{gl}_N -modules, since the spaces of invariants are the same.

For $N = 4$ and $\mathfrak{g}_4 = \mathfrak{so}_5$ of type B_2 , we have

 $\dim(V_{(2,0)} \otimes V_{(1,0)} \otimes V_{(2,0)})^{\mathfrak{g}_4} = 0$ and $\dim(V_{(2,0,2)} \otimes V_{(1,0,1)} \otimes V_{(2,0,2)})^{\mathfrak{sl}_4} = 2.$

Let $\Lambda = ((2,0), (1,0), (2,0))$. Then Λ_A is 9-nontrivial, but $(\Lambda, (0,0,0))$ is not. Similarly, for $N = 5$ and $\mathfrak{g}_5 = \mathfrak{sp}_4$ of type C_2 , we have

 $\dim(V_{(1,0)} \otimes V_{(0,1)} \otimes V_{(0,1)})^{\mathfrak{g}_5} = 0$ and $\dim(V_{(1,0,0,1)} \otimes V_{(0,1,1,0)} \otimes V_{(0,1,1,0)})^{\mathfrak{sl}_5} = 2.$

Let $\Lambda = ((1,0), (0,1), (1,0))$. Then Λ_A is 8-nontrivial, but $(\Lambda, (0,0,0))$ is not.

Let $\mu^{(1)}, \ldots, \mu^{(a)}$ be all distinct partitions in $\Lambda_{A,k}$. Let n_i be the number of occurrences of $\mu^{(i)}$ in $\Lambda_{A,k}$, then $\sum_{i=1}^{a} n_i = n$. Denote $\boldsymbol{n} = (n_1, \ldots, n_a)$, we shall write $\Lambda_{A,k}$ in the following order: $\lambda_{A,k_i}^{(i)} = \mu^{(j)}$ for $\sum_{s=1}^{j-1} n_s + 1 \leqslant i \leqslant i$ $\sum_{s=1}^{j} n_s, j = 1, \ldots, a.$

Proposition 4.9. *Suppose* (A, k) *is d-nontrivial. The set* $s\Omega_{A,k}$ *is a ramified covering of* $\tilde{\mathbb{P}}_n/S_n$ *. Moreover, the degree of the covering is equal to* dim $(V_\Lambda)^{\mathfrak{g}_N}$ *. In particular,* dim $s\Omega_{\Lambda,k} = n$ *. Over* $\mathbb{R}\mathbb{P}_n/S_n$ *, this covering is unramified of the same degree, moreover all points in fibers are real.*

Proof. The proposition follows from Theorem [4.5,](#page-17-0) Lemma [4.7,](#page-18-3) and Theorem 1.1 of [\[MTV3\]](#page-43-2). \Box

We find strata $s\Omega_{\Lambda,k} \subset s\mathrm{Gr}(N,d)$ of the largest dimension.

Lemma 4.10. *If* $N = 2r$ *, then the d-nontrivial stratum* $s\Omega_{\Lambda,k} \subset s\text{Gr}(N,d)$ *with the largest dimension has* $(\lambda^{(s)}, k_s) = (\omega_r, 0), s = 1, \ldots, 2(d - N)$ *. In particular, the dimension of this stratum is* $2(d - N)$ *.*

If $N = 2r + 1$ *, the d-nontrivial strata* $s\Omega_{\Lambda,k} \subset s\text{Gr}(N,d)$ *with the largest dimension have* $(\lambda^{(s)}, k_s)$ *equal to either* $(\omega_{j_s}, 0)$ *with some* $j_s \in \{1, ..., r\}$ *, or to* $(0,1)$ *, for* $s = 1, \ldots, d - N$ *. Each such stratum is either empty or has dimension d* − *N. There is at least one nonempty stratum of this dimension, and if* $d > N + 1$ *then more than one.*

Proof. By Proposition [4.9,](#page-19-0) we are going to find the maximal *n* such that (Λ, \mathbf{k}) is *d*-nontrivial, where $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(n)})$ is a sequence of dominant integral \mathfrak{g}_N -weights and $\mathbf{k} = (k_1, \ldots, k_n)$ is an *n*-tuple of nonnegative integers. Since $\Lambda_{A,k}$ is *d*-nontrivial, it follows that $\lambda^{(s)} \neq 0$ or $\lambda^{(s)} = 0$ and $k_s > 0$, for all $s = 1, \ldots, n$.

Suppose $N = 2r$. If $\lambda^{(s)} \neq 0$, we have

$$
|\lambda_{A,k_s}^{(s)}| \geqslant |\lambda_{A,0}^{(s)}| = r\Big(2\sum_{i=1}^{r-1} \langle \lambda^{(s)}, \check{\alpha}_i \rangle + \langle \lambda^{(s)}, \check{\alpha}_r \rangle \Big) \geqslant r.
$$

If $k_s > 0$, then $|\lambda_{A,k_s}^{(s)}| \geq 2rk_s \geq 2r$. Therefore, it follows that

$$
rn \leqslant \sum_{s=1}^{n} |\lambda_{A,k_s}^{(s)}| = |\mathbf{\Lambda}_{A,k}| = (d-N)N.
$$

Hence $n \leqslant 2(d-N)$.

If we set $\lambda^{(s)} = w_r$ and $k_s = 0$ for all $s = 1, \ldots, 2(d - N)$. Then (Λ, k) is *d*-nontrivial since

$$
\dim (V_{\omega_r} \otimes V_{\omega_r})^{\mathfrak{so}_{2r+1}} = 1.
$$

Now let us consider $N = 2r + 1$, $r \ge 1$. Similarly, if $\lambda^{(s)} \ne 0$, we have

$$
|\lambda_{A,k_s}^{(s)}| \ge |\lambda_{A,0}^{(s)}| = (2r+1) \sum_{i=1}^r \langle \lambda^{(s)}, \check{\alpha}_i \rangle \ge 2r+1.
$$

If $k_s > 0$, then $|\lambda_{A,k_s}^{(s)}| \geqslant (2r+1)k_s \geqslant 2r+1$. It follows that

$$
(2r+1)n \leqslant \sum_{s=1}^{n} |\lambda_{A,k_s}^{(s)}| = |\mathbf{\Lambda}_{A,k}| = (d-N)N.
$$

Hence $n \leq d-N$. Clearly, the equality is achieved only for the (Λ, k) described in the statement of the lemma. Note that if $(\lambda^{(s)}, k_s) = (0, 1)$ for all $s =$ $1, \ldots, d-N$, then $(Λ, k)$ is *d*-nontrivial and therefore nonempty. If $d > N+1$ we also have *d*-nontrivial tuples parameterized by $i = 1, \ldots, r$, such that $(\lambda^{(s)}, k_s) = (0, 1), s = 3, \ldots, d - N, \text{ and } (\lambda^{(s)}, k_s) = (\omega_i, 0), s = 1, 2.$ \Box

4.4. The g*^N* **-stratification of self-dual Grassmannian**

The following theorem follows directly from Theorems [3.5](#page-11-0) and [4.5.](#page-17-0)

Theorem 4.11. *We have*

(4.4)
$$
\mathrm{sGr}(N,d) = \bigsqcup_{d\text{-nontrivial }(\Lambda,\mathbf{k})} \mathrm{s}\Omega_{\Lambda,\mathbf{k}}.
$$

 \Box

Next, for a *d*-nontrivial (Λ, \mathbf{k}) , we call the closure of $\Omega_{\Lambda, \mathbf{k}}$ inside $\mathrm{sGr}(N, \mathbf{k})$ *d*), a \mathfrak{g}_N *-cycle*. The \mathfrak{g}_N -cycles $\overline{\mathrm{sQ}}_{\Lambda,k}$ are algebraic sets in $\mathrm{sGr}(N,d)$ and therefore in $Gr(N, d)$. We describe \mathfrak{g}_N -cycles as unions of \mathfrak{g}_N -strata similar to [\(3.8\)](#page-11-5).

Define a partial order \geq on the set of pairs $\{(\Lambda, k)\}\$ as follows. Let $\Lambda =$ $(\lambda^{(1)}, \ldots, \lambda^{(n)}), \Xi = (\xi^{(1)}, \ldots, \xi^{(m)})$ be two sequences of dominant integral \mathfrak{g}_N weights. Let $\mathbf{k} = (k_1, \ldots, k_n)$, $\mathbf{l} = (l_1, \ldots, l_m)$ be two tuples of nonnegative integers. We say that $(\Lambda, k) \geqslant (\Xi, l)$ if and only if there exists a partition $\{I_1, \ldots, I_m\}$ of $\{1, 2, \ldots, n\}$ such that

Hom<sub>$$
\mathfrak{g}_N(V_{\xi^{(i)}}, \bigotimes_{j \in I_i} V_{\lambda^{(j)}}) \neq 0, \qquad |\xi_{A,l_i}^{(i)}| = \sum_{j \in I_i} |\lambda_{A,k_j}^{(j)}|,
$$</sub>

for $i = 1, ..., m$.

If $(\Lambda, \mathbf{k}) \geq (\Xi, \mathbf{l})$ are *d*-nontrivial, we call $\mathrm{s}\Omega_{\Xi, \mathbf{l}}$ a *degeneration* of $\mathrm{s}\Omega_{\Lambda, \mathbf{k}}$. If we suppose further that $m = n - 1$, we call $s\Omega_{\mathbf{\Xi},l}$ a *simple degeneration* of $S\Omega_{\Lambda,k}$.

Theorem 4.12. *If* $s\Omega_{\Xi,l}$ *is a degeneration of* $s\Omega_{\Lambda,k}$ *, then* $s\Omega_{\Xi,l}$ *is contained in the* \mathfrak{g}_N *-cycle* $\overline{\mathrm{sQ}}_{\Lambda,k}$ *.*

Theorem [4.12](#page-21-2) is proved in Section [7.2.](#page-36-0)

Theorem 4.13. For *d*-nontrivial (Λ, \mathbf{k}) , we have

(4.5)
$$
\overline{\mathbf{s}\Omega}_{\mathbf{\Lambda},\mathbf{k}} = \bigsqcup_{\substack{(\Xi,\mathbf{l}) \leqslant (\mathbf{\Lambda},\mathbf{k}),\\d\text{-nontrivial }(\Xi,\mathbf{l})}} \mathbf{s}\Omega_{\Xi,\mathbf{l}}.
$$

Theorem [4.13](#page-21-0) is proved in Section [7.2.](#page-36-0)

Theorems [4.11](#page-20-0) and [4.13](#page-21-0) imply that the subsets $\mathbf{s}\Omega_{\Lambda,k}$ with *d*-nontrivial $({\bf\Lambda},{\bf k})$ give a stratification of sGr (N,d) , similar to the ${\frak g}{\frak l}_N$ -stratification of $Gr(N, d)$; see [\(3.7\)](#page-11-4) and [\(3.8\)](#page-11-5). We call it the \mathfrak{g}_N -stratification of $SGr(N, d)$.

Example 4.14. The following picture gives an example for \mathfrak{so}_5 -stratification of sGr(4, 6). In the following picture, we write $((\lambda^{(1)})_{k_1}, \ldots, (\lambda^{(n)})_{k_n})$ for $s\Omega_{\Lambda,k}$. We also simply write $\lambda^{(s)}$ for $(\lambda^{(s)})_0$. For instance, $((0,1)_1,(0,1))$ represents $s\Omega_{\Lambda,k}$ where $\Lambda = ((0,1),(0,1))$ and $\mathbf{k} = (1,0)$. The solid arrows represent simple degenerations. Unlike the picture in Example [3.9](#page-12-0) we do not include here the pairs of sequences which are not 6-nontrivial, as there are too many of them.

In particular, the stratum $s\Omega_{((0,1),(0,1),(0,1),(0,1))}$ is dense in $sGr(4,6)$.

Proposition 4.15. *If* $N = 2r$ *is even, then the stratum* $s\Omega_{\Lambda,k}$ *with* $(\lambda^{(s)}, k_s) =$ $(\omega_r, 0)$ *, where* $s = 1, \ldots, 2(d - N)$ *, is dense in* sGr(*N,d*)*.*

Proof. For $N = 2r$, one has the \mathfrak{g}_N -module decomposition

(4.6)
$$
V_{\omega_r} \otimes V_{\omega_r} = V_{2\omega_r} \oplus V_{\omega_1} \oplus \cdots \oplus V_{\omega_{r-1}} \oplus V_{(0,\ldots,0)}.
$$

It is clear that (Λ, k) is *d*-nontrivial. It also follows from (4.6) that if (Ξ, l) is *d*-nontrivial then $(\Lambda, k) \geqslant (\Xi, l)$. The proposition follows from Theorems [4.11](#page-20-0) and [4.13.](#page-21-0) \Box

Remark 4.16. The group of affine translations, see Remark [3.11,](#page-12-2) preserves the self-dual Grassmannian sGr(N , d) and the strata s $\Omega_{\Lambda,k}$.

4.5. The g_N -stratification of $sGr(N, d)$ and the Wronski map

Let $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(n)})$ be a sequence of dominant integral \mathfrak{g}_N -weights and let $\mathbf{k} = (k_1, \ldots, k_n)$ be an *n*-tuple of nonnegative integers. Let $\mathbf{z} = (z_1, \ldots, z_n) \in \mathbb{P}_n$.

Recall that $\lambda_i^{(s)} = \langle \lambda^{(s)}, \check{\alpha}_i \rangle$. If $X \in s\Omega_{\Lambda,k,z}$, one has

$$
\text{Wr}(X) = \begin{cases} \left(\prod_{s=1}^{n} (x - z_s)^{\lambda_1^{(s)} + \dots + \lambda_r^{(s)} + k_s}\right)^N, & \text{if } N = 2r + 1;\\ \left(\prod_{s=1}^{n} (x - z_s)^{2\lambda_1^{(s)} + \dots + 2\lambda_{r-1}^{(s)} + \lambda_r^{(s)} + 2k_s}\right)^r, & \text{if } N = 2r. \end{cases}
$$

We define the *reduced Wronski map* \overline{Wr} as follows. If $N = 2r + 1$, the reduced Wronski map

$$
\overline{\text{Wr}} : \text{sGr}(N, d) \to \text{Gr}(1, d - N + 1)
$$

is sending $X \in \mathrm{sGr}(N,d)$ to $\mathbb{C}(\mathrm{Wr}(X))^{1/N}$. If $N = 2r$, the reduced Wronski map

$$
\overline{\text{Wr}} : \text{sGr}(N, d) \to \text{Gr}(1, 2(d - N) + 1)
$$

is sending $X \in \mathrm{sGr}(N,d)$ to $\mathbb{C}(\mathrm{Wr}(X))^{1/r}$.

The reduced Wronski map is also a finite map.

For $N = 2r$, the degree of the reduced Wronski map is given by $\dim(V_{\omega_r}^{\otimes 2(d-N)})^{\mathfrak{g}_N}$. This dimension is given by, see [\[KLP\]](#page-42-3),

$$
(4.7) \ \ (N-1)!! \prod_{1 \leq i < j \leq r} \left((j-i)(N-i-j+1) \right) \prod_{k=0}^{r-1} \frac{(2(d-N+k))!}{(d-k-1)!(d-N+k)!}.
$$

Let $\tilde{d} = d - N + 1$ if $N = 2r + 1$ and $\tilde{d} = 2(d - N) + 1$ if $N = 2r$. Let $m = (m_1, \ldots, m_n)$ be an unordered sequence of positive integers such that $|\mathbf{m}| = \tilde{d} - 1.$

Similar to Section [3.4,](#page-12-1) we have the following proposition.

Proposition 4.17. *The preimage of the stratum* $\Omega_{\boldsymbol{m}}$ *of* $\text{Gr}(1, \tilde{d})$ *under the reduced Wronski map is a union of all strata* $\Omega_{\Lambda,k}$ *of* $\mathrm{sGr}(N,d)$ *such that* $|\lambda_{A,k_s}^{(s)}| = Nm_s$, $s = 1, ..., n$, if *N* is odd and such that $|\lambda_{A,k_s}^{(s)}| = rm_s$, $s =$ $1, \ldots, n$ *, if* $N = 2r$ *is even.*

Let $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(n)})$ be an unordered sequence of dominant integral \mathfrak{g}_N -weights and $\mathbf{k} = (k_1, \ldots, k_n)$ a sequence of nonnegative integers. Let a be the number of distinct pairs in the set $\{(\lambda^{(s)}, k_s), s = 1, \ldots, n\}$. We can assume that $(\lambda^{(1)}, k_1), \ldots, (\lambda^{(a)}, k_a)$ are all distinct, and let n_1, \ldots, n_a be their multiplicities, $n_1 + \cdots + n_a = n$.

Consider the unordered set of integers $\boldsymbol{m} = (m_1, \ldots, m_n)$, where $Nm_s =$ $|\lambda_{A,k_s}^{(s)}|$ if *N* is odd or $rm_s = |\lambda_{A,k_s}^{(s)}|$ if $N = 2r$ is even. Consider the stratum $\Omega_{\mathbf{m}}$ in $\text{Gr}(1, \tilde{d})$, corresponding to polynomials with *n* distinct roots of multiplicities m_1, \ldots, m_n .

Proposition 4.18. *Let* (Λ, \mathbf{k}) *be d-nontrivial. Then the reduced Wronski map* $\overline{\text{Wr}}|_{\text{s}\Omega_{\Lambda,k}} : \text{s}\Omega_{\Lambda,k} \to \Omega_m$ is a ramified covering of degree $b(\Lambda_{A,k}) \dim(V_{\Lambda})^{\mathfrak{g}_N}$, *where* $b(\Lambda_{A,k})$ *is given by* [\(3.9\)](#page-14-0)*.*

Proof. The statement follows from Theorem [4.5,](#page-17-0) Lemma [4.7,](#page-18-3) and Proposition [4.17.](#page-23-0) □

In other words, the g_N -stratification of $sGr(N, d)$ given by Theorems [4.11](#page-20-0) and [4.13,](#page-21-0) is adjacent to the swallowtail \mathfrak{gl}_1 -stratification of $\text{Gr}(1, \tilde{d})$ and the reduced Wronski map.

4.6. Self-dual Grassmannian for $N = 3$

Let $N=3$ and $\mathfrak{g}_3=\mathfrak{sl}_2$. We identify the dominant integral \mathfrak{sl}_2 -weights with nonnegative integers. Let $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(n)}, \lambda)$ be a sequence of nonnegative integers and $\boldsymbol{z} = (z_1, \ldots, z_n, \infty) \in \mathbb{P}_{n+1}$.

Choose *d* large enough so that $k := d - 3 - \sum_{s=1}^{n} \lambda^{(s)} - \lambda \geq 0$. Let $\mathbf{k} = (0, \ldots, 0, k)$. Then $\Lambda_{A,k}$ has coordinates

$$
\lambda_A^{(s)} = (2\lambda^{(s)}, \lambda^{(s)}, 0), \quad s = 1, \dots, n,
$$

$$
\lambda_{A,k} = \left(d - 3 - \sum_{s=1}^n \lambda^{(s)} + \lambda, d - 3 - \sum_{s=1}^n \lambda^{(s)}, d - 3 - \sum_{s=1}^n \lambda^{(s)} - \lambda\right).
$$

Note that we always have $|\Lambda_{A,k}| = 3(d-3)$ and spaces of polynomials in $\Omega_{\Lambda,k,z}$ are pure self-dual spaces.

Theorem 4.19. *There exists a bijection between the common eigenvectors in* $(V_{\Lambda,z})^{s_{12}}$ *of the* \mathfrak{gl}_2 *Bethe algebra* B *and* $s\Omega_{\Lambda,k,z}$ *.*

Proof. Let $X \in s\Omega_{\Lambda,k,z}$, and let $T = (T_1(x), T_2(x), T_3(x))$ be associated with $\Lambda_{A,k}, z$, then

$$
T_1(x) = T_2(x) = \prod_{s=1}^{n} (x - z_s)^{\lambda^{(s)}}.
$$

Following Section 6 of [\[MV1\]](#page-43-0), let $u = (u_1, u_2, u_3)$ be a Witt basis of X, one has

$$
Wr(u_1, u_2) = T_1 u_1, \quad Wr(u_1, u_3) = T_1 u_2, \quad Wr(u_2, u_3) = T_1 u_3.
$$

Let $y(x, c) = u_1 + cu_2 + \frac{c^2}{2}u_3$, it follows from Lemma 6.15 of [\[MV1\]](#page-43-0) that

$$
\text{Wr}\Big(y(x,c), \frac{\partial y}{\partial c}(x,c)\Big) = T_1 y(x,c).
$$

Since *X* has no base points, there must exist $c' \in \mathbb{C}$ such that $y(x, c')$ and $T_1(x)$ do not have common roots. It follows from Lemma 6.16 of [\[MV1\]](#page-43-0) that

316 Kang Lu et al.

 $y(x, c') = p^2$ and $y(x, c) = (p + (c - c')q)^2$ for suitable polynomials $p(x), q(x)$ satisfying $Wr(p,q)=2T_1$. In particular, ${p^2, pq, q^2}$ is a basis of *X*. Without loss of generality, we can assume that $\deg p < \deg q$. Then

$$
\deg p = \frac{1}{2} \left(\sum_{s=1}^{n} \lambda^{(s)} - \lambda \right), \quad \deg q = \frac{1}{2} \left(\sum_{s=1}^{n} \lambda^{(s)} + \lambda \right) + 1.
$$

Since *X* has no base points, *p* and *q* do not have common roots. Combining with the equality $Wr(p,q)=2T_1$, one has that the space spanned by p and q has singular points at z_1, \ldots, z_n and ∞ only. Moreover, the exponents at z_s , $s = 1, \ldots, n$, are equal to $0, \lambda^{(s)} + 1$, and the exponents at ∞ are equal to − deg *p,* − deg *q*.

By Theorem [3.2,](#page-9-2) the space span $\{p, q\}$ corresponds to a common eigenvector of the \mathfrak{gl}_2 Bethe subalgebra in the subspace $\left(\bigotimes_{s=1}^n V_{(\lambda^{(s)},0)}(z_s) \right)$ $V_{(d-2-\deg p,d-1-\deg q)}(\infty)$ ^{sl₂}.

Conversely, given a common eigenvector of the \mathfrak{gl}_2 Bethe algebra in $(V_{\Lambda,z})^{\mathfrak{sl}_2}$, by Theorem [3.2,](#page-9-2) it corresponds to a space \tilde{X} of polynomials in $Gr(2, d)$ without base points. Let $\{p, q\}$ be a basis of \tilde{X} , define a space of polynomials span $\{p^2, pq, q^2\}$ in Gr(3*, d*). It is easy to see that span $\{p^2, pq, q^2\} \in$
sQ_A_{*k*} is a pure self-dual space. $s\Omega_{\Lambda,k,z}$ is a pure self-dual space.

Let $X \in \text{Gr}(2,d)$, denote by X^2 the space spanned by f^2 for all polynomials $f \in X$. It is clear that $X^2 \in sGr(3, 2d - 1)$. Define

(4.8)
$$
\pi : \text{Gr}(2,d) \to \text{sGr}(3,2d-1)
$$

by sending *X* to X^2 . The map π is an injective algebraic map.

Corollary 4.20. *The map π defines a bijection between the subset of spaces of polynomials without base points in* Gr(2*, d*) *and the subset of pure self-dual* $spaces in sGr(3, 2d - 1).$ \Box

Note that not all self-dual spaces in $sGr(3, 2d-1)$ can be expressed as X^2 for some $X \in \text{Gr}(2,d)$ since the greatest common divisor of a self-dual space does not have to be a square of a polynomial.

4.7. Geometry and topology

It would be very interesting to determine the topology and geometry of the strata and cycles of $Gr(N, d)$ and of $sGr(N, d)$. In particular, it would be interesting to understand the geometry and topology of the self-dual Grassmannian $\mathrm{sGr}(N,d)$. Here are some simple examples of small dimension.

Of course, $sGr(N, N) = Gr(N, N)$ is just one point. Also, $sGr(2r+1, 2r+1)$ 2) is just \mathbb{P}^1 .

Consider sGr($2r$, $2r + 1$), $r \ge 1$. It has only two strata: s $\Omega_{(\omega_r,\omega_r),(0,0)}$ and $s\Omega_{(0),(1)}$. Moreover, the reduced Wronski map has degree 1 and defines a bijection: \overline{Wr} : $sGr(2r, 2r + 1) \rightarrow Gr(1, 3)$. In particular, the \mathfrak{so}_{2r+1} -stratification in this case is identified with the swallowtail \mathfrak{gl}_1 -stratification of quadratics. There are two strata: polynomials with two distinct roots and polynomials with one double root. Therefore, through the reduced Wronski map, the selfdual Grassmannian $sGr(2r, 2r + 1)$ can be identified with \mathbb{P}^2 with coordinates $(a_0 : a_1 : a_2)$ and the stratum s $\Omega_{(0),(1)}$ is a nonsingular curve of degree 2 given by the equation $a_1^2 - 4a_0a_2 = 0$.

Consider $sGr(2r + 1, 2r + 3), r \ge 1$. In this case, we have $r + 2$ strata: $s\Omega_{(\omega_i,\omega_i),(0,0)}, i=1,\ldots,r, s\Omega_{(0,0),(1,1)},$ and $s\Omega_{(0),(2)}$. The reduced Wronski map $\overline{\text{Wr}}$: $\text{sGr}(2r+1, 2r+3) \rightarrow \text{Gr}(1, 3)$ restricted to any strata again has degree 1. Therefore, through the reduced Wronski map, the self-dual Grassmannian $sGr(2r+1, 2r+3)$ can be identified with $r+1$ copies of \mathbb{P}^2 all intersecting in the same nonsingular degree 2 curve corresponding to the stratum $s\Omega_{(0),(2)}$. In particular, every 2-dimensional \mathfrak{sp}_{2r} -cycle is just \mathbb{P}^2 .

Consider $sGr(2r + 1, 2r + 4), r \ge 1$. We have dim $sGr(2r + 1, 2r + 4) = 3$. This is the last case when for all strata the coverings of Proposition [4.9](#page-19-0) have degree one. There are already many strata. For example, consider sGr(5*,* 8), that is $r = 2$. There are four strata of dimension 3 corresponding to the following sequences of \mathfrak{sp}_4 -weights and 3-tuples of nonnegative integers:

$$
\Lambda_1 = (\omega_1, \omega_1, 0), \quad \mathbf{k}_1 = (0, 0, 1); \qquad \Lambda_2 = (\omega_1, \omega_1, \omega_2), \quad \mathbf{k}_2 = (0, 0, 0);
$$

$$
\Lambda_3 = (\omega_2, \omega_2, 0), \quad \mathbf{k}_3 = (0, 0, 1); \qquad \Lambda_4 = (0, 0, 0), \quad \mathbf{k}_4 = (1, 1, 1).
$$

By the reduced Wronski map, the stratum Ω_{Λ_4, k_4} is identified with the subset of Gr(1*,* 4) represented by cubic polynomials without multiple roots and the cycle $\overline{\Omega}_{\Lambda_4,k_4}$ with $\text{Gr}(1,4) = \mathbb{P}^3$. The stratification of $\overline{\Omega}_{\Lambda_4,k_4}$ is just the swallowtail of cubic polynomials. However, for other three strata the reduced Wronski map has degree 3. Using instead the map in Proposition [4.9,](#page-19-0) we identify each of these strata with $\mathbb{P}_3/(\mathbb{Z}/2\mathbb{Z})$ or with the subset of $Gr(1,3) \times Gr(1,2)$ represented by a pair of polynomials (p_1, p_2) , such that $deg(p_1) \leq 2$, $deg(p_2) \leq 1$ and such that all three roots (including infinity) of p_1p_2 are distinct. Then the corresponding \mathfrak{sp}_4 -cycles $\overline{\Omega}_{\Lambda_i,k_i}$, $i=1,2,3$, are identified with $\text{Gr}(1,3) \times \text{Gr}(1,2) = \mathbb{P}^2 \times \mathbb{P}^1$.

A similar picture is observed for 3-dimensional strata in the case of $sGr(2r, 2r + 2)$. Consider, for example, $Gr(2, 4)$; see Example [3.9.](#page-12-0) Then the 4-dimensional stratum $\Omega_{(1,0),(1,0),(1,0),(1,0)}$ is dense and (relatively) complicated, as the corresponding covering in Proposition [3.4](#page-11-2) has degree 2. But for the 3-dimensional strata the degrees are 1. Therefore, $\Omega_{(2,0),(1,0),(1,0)}$ and $\Omega_{(1,1),(1,0),(1,0)}$ are identified with $\mathbb{P}_3/(\mathbb{Z}/2\mathbb{Z})$ and the corresponding cycles are just $\overrightarrow{Gr}(1,3) \times \overrightarrow{Gr}(1,2) = \mathbb{P}^2 \times \mathbb{P}^1$.

5. More notation

5.1. Lie algebras

Let g and h be as in Section [2.2.](#page-4-1) One has the Cartan decomposition $g = \mathfrak{n}_- \oplus$ $\mathfrak{h}\oplus\mathfrak{n}_+$. Introduce also the positive and negative Borel subalgebras $\mathfrak{b} = \mathfrak{h}\oplus\mathfrak{n}_+$ and $\mathfrak{b}_{-} = \mathfrak{h} \oplus \mathfrak{n}_{-}$.

Let $\mathscr G$ be a simple Lie group, $\mathscr B$ a Borel subgroup, and $\mathscr N = [\mathscr B, \mathscr B]$ its unipotent radical, with the corresponding Lie algebras $\mathfrak{n}_+ \subset \mathfrak{b} \subset \mathfrak{g}$. Let \mathscr{G} act on g by adjoint action.

Let $E_1, \ldots, E_r \in \mathfrak{n}_+, \check{\alpha}_1, \ldots, \check{\alpha}_r \in \mathfrak{h}, F_1, \ldots, F_r \in \mathfrak{n}_-$ be the Chevalley generators of **g**. Let p_{-1} be the regular nilpotent element $\sum_{i=1}^{r} F_i$. The set $p_{-1} + \mathfrak{b} = \{p_{-1} + b \mid b \in \mathfrak{b}\}\$ is invariant under conjugation by elements of N . Consider the quotient space $(p_{-1} + \mathfrak{b})/\mathcal{N}$ and denote the N-conjugacy class of $g \in p_{-1} + \mathfrak{b}$ by $[g]_{\mathfrak{a}}$.

Let $\check{\mathcal{P}} = {\{\check{\lambda} \in \mathfrak{h} | \langle \alpha_i, \check{\lambda} \rangle \in \mathbb{Z}, i = 1, \ldots, r\}}$ and $\check{\mathcal{P}}^+ = {\{\check{\lambda} \in \mathfrak{h} | \langle \alpha_i, \check{\lambda} \rangle \in \mathbb{Z}, i = 1, \dots, r\}}$ $\mathbb{Z}_{\geqslant 0}, i = 1, \ldots, r$ be the coweight lattice and the cone of dominant integral coweights. Let $\rho \in \mathfrak{h}^*$ and $\check{\rho} \in \mathfrak{h}$ be the Weyl vector and covector such that $\langle \rho, \check{\alpha}_i \rangle = 1$ and $\langle \alpha_i, \check{\rho} \rangle = 1, i = 1, \ldots, r$.

The Weyl group $W \subset \text{Aut}(\mathfrak{h}^*)$ is generated by simple reflections s_i , $i =$ 1*,...,r*,

$$
s_i(\lambda) = \lambda - \langle \lambda, \check{\alpha}_i \rangle \alpha_i, \quad \lambda \in \mathfrak{h}^*.
$$

The restriction of the bilinear form (\cdot, \cdot) to $\mathfrak h$ is nondegenerate and induces an **isomorphism** $\mathfrak{h} \cong \mathfrak{h}^*$. The action of W on \mathfrak{h} is given by $s_i(\check{\mu}) = \check{\mu} - \langle \alpha_i, \check{\mu} \rangle \check{\alpha}_i$ for $\check{\mu} \in \mathfrak{h}$. We use the notation

$$
w \cdot \lambda = w(\lambda + \rho) - \rho, \quad w \cdot \check{\lambda} = w(\check{\lambda} + \check{\rho}) - \check{\rho}, \quad w \in \mathcal{W}, \ \lambda \in \mathfrak{h}^*, \ \check{\lambda} \in \mathfrak{h},
$$

for the shifted action of the Weyl group on \mathfrak{h}^* and \mathfrak{h} , respectively.

Let ${}^t\mathfrak{g} = \mathfrak{g}({}^tA)$ be the Langlands dual Lie algebra of \mathfrak{g} , then ${}^t(\mathfrak{so}_{2r+1}) =$ \mathfrak{sp}_{2r} and ${}^t(\mathfrak{sp}_{2r}) = \mathfrak{so}_{2r+1}$. A system of simple roots of ${}^t\mathfrak{g}$ is $\check{\alpha}_1, \ldots, \check{\alpha}_r$ with the corresponding coroots $\alpha_1, \ldots, \alpha_r$. A coweight $\lambda \in \mathfrak{h}$ of \mathfrak{g} can be identified with a weight of *^t* g.

For a vector space X we denote by $\mathcal{M}(X)$ the space of X-valued meromorphic functions on \mathbb{P}^1 . For a group R we denote by $R(\mathcal{M})$ the group of *R*-valued meromorphic functions on \mathbb{P}^1 .

5.2. \mathfrak{sp}_{2r} as a subalgebra of \mathfrak{sl}_{2r}

Let v_1, \ldots, v_{2r} be a basis of \mathbb{C}^{2r} . Define a nondegenerate skew-symmetric form χ on \mathbb{C}^{2r} by

$$
\chi(v_i, v_j) = (-1)^{i+1} \delta_{i, 2r+1-j}, \quad i, j = 1, \dots, 2r.
$$

The special symplectic Lie algebra $\mathfrak{g} = \mathfrak{sp}_{2r}$ by definition consists of all endomorphisms *K* of \mathbb{C}^{2r} such that $\chi(Kv, v') + \chi(v, Kv') = 0$ for all $v, v' \in \mathbb{C}^{2r}$. This identifies \mathfrak{sp}_{2r} with a Lie subalgebra of \mathfrak{sl}_{2r} .

Denote E_{ij} the matrix with zero entries except 1 at the intersection of the *i*-th row and *j*-th column.

The Chevalley generators of $\mathfrak{g} = \mathfrak{sp}_{2r}$ are given by

$$
E_i = E_{i,i+1} + E_{2r-i,2r+1-i}, \quad F_i = E_{i+1,i} + E_{2r+1-i,2r-i}, \quad i = 1, ..., r-1,
$$

\n
$$
E_r = E_{r,r+1}, \qquad F_r = E_{r+1,r},
$$

\n
$$
\check{\alpha}_j = E_{jj} - E_{j+1,j+1} + E_{2r-j,2r-j} - E_{2r+1-j,2r+1-j}, \quad \check{\alpha}_r = E_{rr} - E_{r+1,r+1},
$$

\n
$$
j = 1, ..., r-1.
$$

Moreover, a coweight $\lambda \in \mathfrak{h}$ can be written as

(5.1)
$$
\check{\lambda} = \sum_{i=1}^r \left(\langle \alpha_i, \check{\lambda} \rangle + \dots + \langle \alpha_{r-1}, \check{\lambda} \rangle + \langle \alpha_r, \check{\lambda} \rangle / 2 \right) (E_{ii} - E_{2r+1-i, 2r+1-i}).
$$

In particular,

$$
\breve{\rho} = \sum_{i=1}^{r} \frac{2r - 2i + 1}{2} (E_{ii} - E_{2r+1-i, 2r+1-i}).
$$

For convenience, we denote the coefficient of E_{ii} in the right hand side of (5.1) by $(\lambda)_{ii}$, for $i = 1, ..., 2r$.

5.3. so_{$2r+1$} as a subalgebra of \mathfrak{sl}_{2r+1}

Let v_1, \ldots, v_{2r+1} be a basis of \mathbb{C}^{2r+1} . Define a nondegenerate symmetric form *χ* on \mathbb{C}^{2r+1} by

$$
\chi(v_i, v_j) = (-1)^{i+1} \delta_{i, 2r+2-j}, \quad i, j = 1, \dots, 2r+1.
$$

The special orthogonal Lie algebra $\mathfrak{g} = \mathfrak{so}_{2r+1}$ by definition consists of all endomorphisms *K* of \mathbb{C}^{2r+1} such that $\chi(Kv, v') + \chi(v, Kv') = 0$ for all $v, v' \in \mathbb{C}^{2r+1}$ \mathbb{C}^{2r+1} . This identifies \mathfrak{so}_{2r+1} with a Lie subalgebra of \mathfrak{sl}_{2r+1} .

Denote E_{ij} the matrix with zero entries except 1 at the intersection of the *i*-th row and *j*-th column.

The Chevalley generators of $\mathfrak{g} = \mathfrak{so}_{2r+1}$ are given by

$$
E_i = E_{i,i+1} + E_{2r+1-i,2r+2-i}, \quad F_i = E_{i+1,i} + E_{2r+2-i,2r+1-i},
$$

\n
$$
i = 1, ..., r,
$$

\n
$$
\check{\alpha}_j = E_{jj} - E_{j+1,j+1} + E_{2r+1-j,2r+1-j} - E_{2r+2-j,2r+2-j}, \quad j = 1, ..., r.
$$

Moreover, a coweight $\lambda \in \mathfrak{h}$ can be written as

(5.2)
$$
\check{\lambda} = \sum_{i=1}^r \left(\langle \alpha_i, \check{\lambda} \rangle + \dots + \langle \alpha_r, \check{\lambda} \rangle \right) (E_{ii} - E_{2r+2-i, 2r+2-i}).
$$

In particular,

$$
\check{\rho} = \sum_{i=1}^r (r+1-i)(E_{ii} - E_{2r+2-i,2r+2-i}).
$$

For convenience, we denote the coefficient of *Eii* in the right hand side of (5.2) by $(\lambda)_{ii}$, for $i = 1, \ldots, 2r + 1$.

5.4. Lemmas on spaces of polynomials

Let $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(n)}, \lambda)$ be a sequence of partitions with at most *N* parts such that $|\mathbf{\Lambda}| = N(d-N)$ and let $\mathbf{z} = (z_1, \ldots, z_n, \infty) \in \mathbb{P}_{n+1}$.

Given an *N*-dimensional space of polynomials X , denote by \mathcal{D}_X the monic scalar differential operator of order N with kernel X. The operator \mathcal{D}_X is a monodromy-free Fuchsian differential operator with rational coefficients.

Lemma 5.1. *A subspace* $X \subset \mathbb{C}_d[x]$ *is a point of* $\Omega_{\Lambda,z}$ *if and only if the operator* D_X *is Fuchsian, regular in* $\mathbb{C} \setminus \{z_1, \ldots, z_n\}$ *, the exponents at* z_s *,* $s = 1, \ldots, n$ *, being equal to* $\lambda_N^{(s)}$, $\lambda_{N-1}^{(s)} + 1, \ldots, \lambda_1^{(s)} + N - 1$ *, and the exponents* $at \infty$ *being equal to* $1 + \lambda_N - d$, $2 + \lambda_{N-1} - d$, ..., $N + \lambda_1 - d$.

Let $\mathbf{T} = (T_1, \ldots, T_N)$ be associated with $\mathbf{\Lambda}, \mathbf{z}$, see [\(4.1\)](#page-14-3). Let $\Gamma = \{u_1, \ldots, u_N\}$ u_N } be a basis of $X \in \Omega_{\Lambda, z}$, define a sequence of polynomials

(5.3)
$$
y_{N-i} = \text{Wr}^{\dagger}(u_1, \dots, u_i), \quad i = 1, \dots, N-1.
$$

Denote (y_1, \ldots, y_{N-1}) by y_Γ . We say that y_Γ is *constructed from the basis* Γ . **Lemma 5.2** ([\[MV1\]](#page-43-0)). *Suppose* $X \in \Omega_{\Lambda, z}$ *and let* $\Gamma = \{u_1, \ldots, u_N\}$ *be a basis of X.* If $y_{\Gamma} = (y_1, \ldots, y_{N-1})$ *is constructed from* Γ *, then*

$$
\mathcal{D}_X = \left(\partial_x - \ln'\left(\frac{T_1 \cdots T_N}{y_1}\right)\right) \left(\partial_x - \ln'\left(\frac{y_1 T_2 \cdots T_N}{y_2}\right)\right) \times \dots
$$

$$
\times \left(\partial_x - \ln'\left(\frac{y_{N-2} T_{N-1} T_N}{y_{N-1}}\right)\right) \left(\partial_x - \ln'(y_{N-1} T_N)\right).
$$

Let $\mathcal{D} = \partial_x^N + \sum_{i=1}^N h_i(x) \partial_x^{N-i}$ be a differential operator with meromorphic coefficients. The operator $\mathcal{D}^* = \partial_x^N + \sum_{i=1}^N (-1)^i \partial_x^{N-i} h_i(x)$ is called the *formal conjugate to* D.

Lemma 5.3. *Let* $X \in \Omega_{\Lambda, z}$ *and let* $\{u_1, \ldots, u_N\}$ *be a basis of* X *, then*

$$
\frac{\operatorname{Wr}(u_1, \ldots, \widehat{u_i}, \ldots, u_N)}{\operatorname{Wr}(u_1, \ldots, u_N)}, \quad i = 1, \ldots, N,
$$

form a basis of $\text{Ker}((\mathcal{D}_X)^*)$ *. The symbol* \widehat{u}_i *means that* u_i *is skipped. Moreover, given an arbitrary factorization of* \mathcal{D}_X *to linear factors,* $\mathcal{D}_X = (\partial_x + f_1)(\partial_x + f_2)$ $f_2) \ldots (\partial_x + f_N)$, we have $(D_X)^* = (\partial_x - f_N)(\partial_x - f_{N-1}) \ldots (\partial_x - f_1)$.

Proof. The first statement follows from Theorem 3.14 of [\[MTV2\]](#page-43-9). The second statement follows from the first statement and Lemma A.5 of [\[MV1\]](#page-43-0). □

Lemma 5.4. *Let* $X \in \Omega_{\Lambda, z}$ *. Then*

$$
\mathcal{D}_{X^{\dagger}} = (T_1 \cdots T_N) \cdot (\mathcal{D}_X)^* \cdot (T_1 \cdots T_N)^{-1}.
$$

Proof. The statement follows from Lemma [5.3](#page-30-0) and the definition of *X*†. \Box

Lemma 5.5. *Suppose* $X \in \Omega_{\Lambda, z}$ *is a pure self-dual space and z is an arbitrary complex number, then there exists a basis* $\Gamma = \{u_1, \ldots, u_N\}$ *of X such that for* $y_{\Gamma} = (y_1, \ldots, y_{N-1})$ *given by* [\(5.3\)](#page-30-1)*, we have* $y_i = y_{N-i}$ *and* $y_i(z) \neq 0$ *for* $every \ i = 1, \ldots, N - 1.$

Proof. The lemma follows from the proofs of Theorem 8.2 and Theorem 8.3 of [\[MV1\]](#page-43-0).口 322 Kang Lu et al.

6. g-oper

We fix *N*, $N \geq 4$, and set **g** to be the Langlands dual of \mathfrak{g}_N . Explicitly, $\mathfrak{g} = \mathfrak{sp}_{2r}$ if $N = 2r$ and $\mathfrak{g} = \mathfrak{so}_{2r+1}$ if $N = 2r + 1$.

6.1. Miura g-oper

Fix a global coordinate *x* on $\mathbb{C} \subset \mathbb{P}^1$. Consider the following subset of differential operators

$$
op_{\mathfrak{g}}(\mathbb{P}^1)=\{\partial_x+p_{-1}+\boldsymbol{v}\,\,|\,\,\boldsymbol{v}\in \mathcal{M}(\mathfrak{b})\}.
$$

This set is stable under the gauge action of the unipotent subgroup $\mathcal{N}(\mathcal{M}) \subset$ $\mathscr{G}(\mathcal{M})$. The space of **g**-*opers* is defined as the quotient space $Op_{\alpha}(\mathbb{P}^1) :=$ $\overline{\mathrm{op}}_{\mathfrak{a}}(\mathbb{P}^1)/\mathcal{N}(\mathcal{M})$. We denote by $[\nabla]$ the class of $\nabla \in \mathrm{op}_{\mathfrak{a}}(\mathbb{P}^1)$ in $\overline{\mathrm{Op}}_{\mathfrak{a}}(\mathbb{P}^1)$.

We say that $\nabla = \partial_x + p_{-1} + v \in \text{op}_{\mathfrak{a}}(\mathbb{P}^1)$ is *regular* at $z \in \mathbb{P}^1$ if v has no pole at *z*. A g-oper [∇] is said to be *regular* at *z* if there exists $f \in \mathcal{N}(\mathcal{M})$ such that $f^{-1} \cdot \nabla \cdot f$ is regular at *z*.

Let $\nabla = \partial_x + p_{-1} + v$ be a representative of a g-oper [∇]. Consider ∇ as a G-connection on the trivial principal bundle $p: \mathscr{G} \times \mathbb{P}^1 \to \mathbb{P}^1$. The connection has singularities at the set Sing $\subset \mathbb{C}$ where the function *v* has poles (and maybe at infinity). Parallel translations with respect to the connection define the monodromy representation $\pi_1(\mathbb{C} \setminus \text{Sing}) \to \mathscr{G}$. Its image is called the *monodromy group* of ∇ . If the monodromy group of one of the representatives of $[\nabla]$ is contained in the center of \mathscr{G} , we say that $[\nabla]$ is a *monodromy-free* g-oper.

A *Miura* g-*oper* is a differential operator of the form $\nabla = \partial_x + p_{-1} + v$, where $v \in \mathcal{M}(\mathfrak{h})$.

A g-oper $[\nabla]$ has *regular singularity* at $z \in \mathbb{P}^1 \setminus \{\infty\}$, if there exists a representative ∇ of $[\nabla]$ such that

$$
(x-z)^{\check{\rho}} \cdot \nabla \cdot (x-z)^{-\check{\rho}} = \partial_x + \frac{p_{-1} + \boldsymbol{w}}{x-z},
$$

where $w \in \mathcal{M}(\mathfrak{b})$ is regular at *z*. The residue of $[\nabla]$ at *z* is $[p_{-1} + w(z)]_{\mathfrak{a}}$. We denote the residue of $[\nabla]$ at *z* by res_{*z*} $[\nabla]$.

Similarly, a g-oper $[\nabla]$ has *regular singularity* at $\infty \in \mathbb{P}^1$, if there exists a representative ∇ of $[\nabla]$ such that

$$
x^{\check{\rho}}\cdot\nabla\cdot x^{-\check{\rho}}=\partial_x+\frac{p_{-1}+\tilde{\boldsymbol{w}}}{x},
$$

where $\tilde{\boldsymbol{w}} \in \mathcal{M}(\boldsymbol{\mathfrak{b}})$ is regular at ∞ . The residue of $[\nabla]$ at ∞ is $-[p_{-1}+\tilde{\boldsymbol{w}}(\infty)]_{\mathfrak{g}}$. We denote the residue of $[\nabla]$ at ∞ by res_{∞} $[\nabla]$.

Lemma 6.1. *For any* $\check{\lambda}, \check{\mu} \in \mathfrak{h}$ *, we have* $[p_{-1} - \check{\rho} - \check{\lambda}]_{\mathfrak{g}} = [p_{-1} - \check{\rho} - \check{\mu}]_{\mathfrak{g}}$ *if and only if there exists* $w \in \mathcal{W}$ *such that* $\check{\lambda} = w \cdot \check{\mu}$ *.*

Hence we can write $[\check{\lambda}]_{\mathcal{W}}$ for $[p_{-1} - \check{\rho} - \check{\lambda}]_{\mathfrak{g}}$. In particular, if $[\nabla]$ is regular at *z*, then $res_z[\nabla] = [0]_{\mathcal{W}}$.

Let $\check{\Lambda} = (\check{\lambda}^{(1)}, \ldots, \check{\lambda}^{(n)}, \check{\lambda})$ be a sequence of $n+1$ dominant integral gcoweights and let $\boldsymbol{z} = (z_1, \ldots, z_n, \infty) \in \mathring{\mathbb{P}}_{n+1}$. Let $\text{Op}_{\mathfrak{g}}(\mathbb{P}^1)_{\substack{\Lambda, \boldsymbol{z} \\ \Lambda, \boldsymbol{z}}}^{\text{RS}}$ denote the set of all g-opers with at most regular singularities at points z_s and ∞ whose residues are given by

$$
\operatorname{res}_{z_s}[\nabla] = [\check{\lambda}^{(s)}]_{\mathcal{W}}, \quad \operatorname{res}_{\infty}[\nabla] = -[\check{\lambda}]_{\mathcal{W}}, \quad s = 1, \dots, n,
$$

and which are regular elsewhere. Let $Op_{\mathfrak{g}}(\mathbb{P}^1)_{\check{\Lambda},z} \subset Op_{\mathfrak{g}}(\mathbb{P}^1)_{\check{\Lambda},z}^{RS}$ denote the subset consisting of those g-opers which are also monodromy-free.

Lemma 6.2 ([\[F\]](#page-42-4)). For every \mathfrak{g} -oper $[\nabla] \in \mathrm{Op}_{\mathfrak{a}}(\mathbb{P}^1)_{\lambda}$, there exists a Miura g*-oper as one of its representatives.*

Lemma 6.3 ([\[F\]](#page-42-4)). Let ∇ be a Miura g-oper, then $[\nabla] \in \text{Op}_{\mathfrak{g}}(\mathbb{P}^1)^{\text{RS}}_{\mathbf{\Lambda},\mathbf{z}}$ if and *only if the following conditions hold:*

 (i) ∇ *is of the form*

(6.1)
$$
\nabla = \partial_x + p_{-1} - \sum_{s=1}^n \frac{w_s \cdot \check{\lambda}^{(s)}}{x - z_s} - \sum_{j=1}^m \frac{\tilde{w}_j \cdot 0}{x - t_j}
$$

for some $m \in \mathbb{Z}_{\geqslant 0}$, $w_s \in \mathcal{W}$ *for* $s = 1, \ldots, n$ *and* $\tilde{w}_j \in \mathcal{W}$, $t_j \in \mathbb{P}^1 \setminus z$ *for* $j = 1, ..., m$ *,*

(ii) there exists w_{∞} ∈ *W such that*

(6.2)
$$
\sum_{s=1}^{n} w_s \cdot \check{\lambda}^{(s)} + \sum_{j=1}^{m} \tilde{w}_j \cdot 0 = w_{\infty} \cdot \check{\lambda},
$$

(iii) $[\nabla]$ *is regular at* t_j *for* $j = 1, \ldots, m$ *.*

Remark 6.4. The condition [\(6.2\)](#page-32-0) implies that $\sum_{s=1}^{n} \langle \alpha_r, \check{\lambda}^{(s)} \rangle + \langle \alpha_r, \check{\lambda} \rangle$ is even if $N = 2r$.

口

324 Kang Lu et al.

6.2. Miura transformation

Following [\[DS\]](#page-42-5), one can associate a linear differential operator *L*[∇] to each Miura $\mathfrak{g}\text{-oper } \nabla = \partial_x + p_{-1} + \mathfrak{v}(x), \mathfrak{v}(x) \in \mathcal{M}(\mathfrak{h}).$

In the case of \mathfrak{sl}_{r+1} , $v(x) \in \mathcal{M}(\mathfrak{h})$ can be viewed as an $(r+1)$ -tuple $(v_1(x), \ldots, v_{r+1}(x))$ such that $\sum_{i=1}^{r+1} v_i(x) = 0$. The *Miura transformation* sends $\nabla = \partial_x + p_{-1} + v(x)$ to the operator

$$
L_{\nabla} = (\partial_x + v_1(x)) \dots (\partial_x + v_{r+1}(x)).
$$

Similarly, the Miura transformation takes the form

$$
L_{\nabla} = (\partial_x + v_1(x)) \dots (\partial_x + v_r(x)) (\partial_x - v_r(x)) \dots (\partial_x - v_1(x))
$$

for $\mathfrak{g} = \mathfrak{sp}_{2r}$ and

$$
L_{\nabla} = (\partial_x + v_1(x)) \dots (\partial_x + v_r(x)) \partial_x (\partial_x - v_r(x)) \dots (\partial_x - v_1(x))
$$

for $\mathfrak{g} = \mathfrak{so}_{2r+1}$. The formulas of the corresponding linear differential operators for the cases of \mathfrak{sp}_{2r} and \mathfrak{so}_{2r+1} can be understood with the embeddings described in Sections [5.2](#page-28-1) and [5.3.](#page-29-1)

It is easy to see that different representatives of $[\nabla]$ give the same differential operator, we can write this map as $[\nabla] \mapsto L_{[\nabla]}$.

Recall the definition of $(\lambda)_{ii}$ for $\lambda \in \mathfrak{h}$ from Sections [5.2](#page-28-1) and [5.3.](#page-29-1)

Lemma 6.5. *Suppose* ∇ *is a Miura* \mathfrak{g} -oper with $[\nabla] \in \text{Op}_{\mathfrak{g}}(\mathbb{P}^1)_{\check{\Lambda},z}$ *, then* $L_{\left[\nabla\right]}$ *is a monic Fuchsian differential operator with singularities at points in z only. The exponents of* $L_{[\nabla]}$ *at* z_s *,* $s = 1, \ldots, n$ *, are* $(\check{\lambda}^{(s)})_{ii} + N - i$ *, and the* $$

Proof. Note that ∇ satisfies the conditions (i)-(iii) in Lemma [6.3.](#page-32-1) By Theorem 5.11 in $[F]$ and Lemma [6.1,](#page-32-2) we can assume $w_s = 1$ for given *s*. The lemma follows directly. \Box

Denote by $Z(\mathscr{G})$ the center of \mathscr{G} , then

$$
Z(\mathscr{G}) = \begin{cases} \{I_{2r+1}\} & \text{if } \mathfrak{g} = \mathfrak{so}_{2r+1}, \\ \{\pm I_{2r}\} & \text{if } \mathfrak{g} = \mathfrak{sp}_{2r}. \end{cases}
$$

We have the following lemma.

Lemma 6.6. *Suppose* ∇ *is a Miura* **g**-oper with $[\nabla] \in \text{Op}_{\mathfrak{a}}(\mathbb{P}^1)_{\lambda}$ *z.* If $\mathfrak{g} =$ \mathfrak{so}_{2r+1} *, then* $L_{|\nabla|}$ *is a monodromy-free differential operator.* If $\mathfrak{g} = \mathfrak{sp}_{2r}$ *, then the monodromy of* $L_{[\nabla]}$ *around* z_s *is* −*I*₂*r if and only if* $\langle \alpha_r, \check{\lambda}^{(s)} \rangle$ *is odd for given* $s \in \{1, ..., n\}$ *.* □

6.3. Relations with pure self-dual spaces

Let $\check{\mathbf{\Lambda}} = (\check{\lambda}^{(1)}, \ldots, \check{\lambda}^{(n)}, \check{\lambda})$ be a sequence of $n+1$ dominant integral \mathfrak{g} -coweights and let $\boldsymbol{z} = (z_1, \ldots, z_n, \infty) \in \mathbb{P}_{n+1}$.

Consider $\check{\Lambda}$ as a sequence of dominant integral g_N -weights. Choose *d* large enough so that $k := d - N - \sum_{s=1}^n (\check{\lambda}^{(s)})_{11} - (\check{\lambda})_{11} \geq 0$. (We only need to consider the case that $\sum_{s=1}^{n}(\check{\lambda}^{(s)})_{11} + (\check{\lambda})_{11}$ is an integer for $N = 2r$, see Lemma [4.4](#page-17-1) and Remark [6.4.](#page-32-3)) Let $\mathbf{k} = (0, \ldots, 0, k)$. Note that we always have $|\mathbf{\Lambda}_{A,k}| = N(d-N)$ and spaces of polynomials in s $\Omega_{\mathbf{\Lambda},k,z}$ (= s $\Omega_{\mathbf{\Lambda}_{A,k,z}}$) are pure self-dual spaces.

Theorem 6.7. *There exists a bijection between* $\text{Op}_{\mathfrak{g}}(\mathbb{P}^1)_{\tilde{\Lambda},z}$ *and* $\text{s}\Omega_{\tilde{\Lambda},k,z}$ *given by the map* $[\nabla] \mapsto \text{Ker}(f^{-1} \cdot L_{[\nabla]} \cdot f)$ *, where* $\mathbf{T} = (T_1, \ldots, T_N)$ *is associated* $with \Lambda_{A,k}, z \text{ and } f = (T_1 \dots T_N)^{-1/2}.$

Proof. We only prove it for the case of $\mathfrak{g} = \mathfrak{sp}_{2r}$. Suppose $[\nabla] \in \mathrm{Op}_{\mathfrak{g}}(\mathbb{P}^1)_{\check{\mathbf{\Lambda}}, \mathbf{z}}$, by Lemmas [6.2](#page-32-4) and [6.3,](#page-32-1) we can assume ∇ has the form [\(6.1\)](#page-32-5) satisfying the conditions (i), (ii), and (iii) in Lemma [6.3.](#page-32-1)

Note that if $\langle \alpha_r, \check{\lambda}^{(s)} \rangle$ is odd, *f* has monodromy $-I_{2r}$ around the point *z*_{*s*}. By Lemma [6.6,](#page-34-0) one has that $f^{-1} \cdot L_{|\nabla|} \cdot f$ is monodromy-free around the point z_s for $s = 1, \ldots, n$. Note also that $\sum_{s=1}^n \langle \alpha_r, \check{\lambda}^{(s)} \rangle + \langle \alpha_r, \check{\lambda} \rangle$ is even, it follows that $f^{-1} \cdot L_{[\nabla]} \cdot f$ is also monodromy-free around the point ∞ . Hence $f^{-1} \cdot L_{|\nabla|} \cdot f$ is a monodromy-free differential operator.

It follows from Lemmas [5.1](#page-29-2) and [6.5](#page-33-0) that $\text{Ker}(f^{-1} \cdot L_{|\nabla|} \cdot f) \in \Omega_{\tilde{\Lambda}_{AB},\tilde{\mathbf{z}}}$. Since $L_{[\nabla]}$ takes the form

$$
(\partial_x + v_1(x)) \dots (\partial_x + v_r(x))(\partial_x - v_r(x)) \dots (\partial_x - v_1(x)),
$$

it follows that $\text{Ker}(f^{-1} \cdot L_{|\nabla|} \cdot f)$ is a pure self-dual space by Lemma [5.4.](#page-30-2)

If there exist $[\nabla_1], [\nabla_2] \in \text{Op}_{\mathfrak{g}}(\mathbb{P}^1)_{\check{\mathbf{\Lambda}}, z}$ such that $f^{-1} \cdot L_{[\nabla_1]} \cdot f = f^{-1} \cdot f$ $L_{[\nabla_2]} \cdot f$, then they are the same differential operator constructed from different bases of $\text{Ker}(f^{-1} \cdot L_{|\nabla|} \cdot f)$ as described in Lemma [5.2.](#page-30-3) Therefore they 326 Kang Lu et al.

correspond to the same \mathfrak{so}_{2r+1} -population by Theorem 7.5 of $|MVI|$. It follows from Theorem 4.2 and remarks in Section 4.3 of [\[MV2\]](#page-43-10) that $[\nabla_1]=[\nabla_2]$.

Conversely, give a self-dual space $X \in s\Omega_{\lambda, k, z}$. By Lemma [5.5,](#page-30-4) there exists a basis Γ of *X* such that for $y_{\Gamma} = (y_1, \ldots, y_{N-1})$ we have $y_i = y_{N-i}$, $i = 1, \ldots, N - 1$. Following [\[MV2\]](#page-43-10), define $v \in \mathcal{M}(\mathfrak{h})$ by

$$
\langle \alpha_i, \boldsymbol{v} \rangle = -\ln' \Big(T_i \prod_{j=1}^r y_j^{-a_{i,j}} \Big),
$$

then we introduce the Miura g-oper $\nabla_{\Gamma} = \partial_x + p_{-1} + v$, which only has regular singularities. It is easy to see from Lemma [5.2](#page-30-3) that $f^{-1} \cdot L_{\vert \nabla_{\Gamma} \vert} \cdot f = \mathcal{D}_X$. It follows from the same argument as the previous paragraph that $[\nabla_{\Gamma}] = [\nabla_{\Gamma'}]$ for any other basis Γ' of *X* and hence $[\nabla_{\Gamma}]$ is independent of the choice of Γ. Again by Lemma [5.5,](#page-30-4) for any $x_0 \in \mathbb{C} \setminus \mathbb{Z}$ we can choose Γ such that $y_i(x_0) \neq 0$ for all $i = 1, \ldots, N-1$, it follows that $[\nabla_{\Gamma}]$ is regular at x_0 . By exponents reasons (see Lemma [6.5\)](#page-33-0), we have

$$
\operatorname{res}_{z_s}[\nabla_{\Gamma}] = [\check{\lambda}^{(s)}]_{\mathcal{W}}, \quad \operatorname{res}_{\infty}[\nabla_{\Gamma}] = -[\check{\lambda}]_{\mathcal{W}}, \quad s = 1, \dots, n.
$$

On the other hand, $[\nabla_{\Gamma}]$ is monodromy-free by Theorem 4.1 of [\[MV2\]](#page-43-10). It follows that $[\nabla_{\Gamma}] \in \text{Op}_{\sigma}(\mathbb{P}^1)_{\lambda}$, which completes the proof. follows that $[\nabla_{\Gamma}] \in \text{Op}_{\mathfrak{a}}(\mathbb{P}^1)_{\check{\Lambda}, \mathbf{z}}$, which completes the proof.

7. Proof of main theorems

7.1. Proof of Theorems [3.6](#page-11-3) and [3.8](#page-11-1)

We prove Theorem [3.6](#page-11-3) first.

By assumption, $\Xi = (\xi^{(1)}, \ldots, \xi^{(n-1)})$ is a simple degeneration of $\Lambda =$ $(\lambda^{(1)}, \ldots, \lambda^{(n)})$. Without loss of generality, we assume that $\xi^{(i)} = \lambda^{(i)}$ for *i* = 1, ..., *n* − 2 and

$$
\dim(V_{\lambda^{(n-1)}} \otimes V_{\lambda^{(n)}})^{\text{sing}}_{\xi^{(n-1)}} > 0.
$$

Recall the strata Ω_{Λ} is a union of intersections of Schubert cells $\Omega_{\Lambda,z}$, see [\(3.6\)](#page-10-1). Taking the closure of Ω_{Λ} is equivalent to allowing coordinates of $z \in \check{\mathbb{P}}_n$ coincide.

Let $z_0 = (z_1, \ldots, z_{n-1}) \in \mathring{P}_{n-1}$. Let $X \in \Omega_{\mathbf{\Xi}, z_0}$. By Theorem [3.2,](#page-9-2) there exists a common eigenvector $v \in (V_{\Xi, z_0})^{\mathfrak{sl}_N}$ of the Bethe algebra $\mathcal B$ such that $\mathcal{D}_v = \mathcal{D}_X.$

Let $z'_0 = (z_1, \ldots, z_{n-1}, z_{n-1})$. Consider the B-module V_{Λ, z'_0} , then we have

$$
V_{\mathbf{\Lambda},\mathbf{z}'_{0}} = (\bigotimes_{s=1}^{n-2} V_{\lambda^{(s)}}(z_{s})) \otimes (V_{\lambda^{(n-1)}} \otimes V_{\lambda^{(n)}})(z_{n-1})
$$

=
$$
\bigoplus_{\mu} c_{\lambda^{(n-1)},\lambda^{(n)}}^{\mu} (\bigotimes_{s=1}^{n-2} V_{\lambda^{(s)}}(z_{s})) \otimes V_{\mu}(z_{n-1}),
$$

where $c^{\mu}_{\lambda^{(n-1)},\lambda^{(n)}} := \dim(V_{\lambda^{(n-1)}} \otimes V_{\lambda^{(n)}})^{\text{sing}}_{\mu}$ are the Littlewood-Richardson coefficients. Since $\dim(V_{\lambda^{(n-1)}} \otimes V_{\lambda^{(n)}})_{\xi^{(n-1)}}^{sing} > 0$, we have $V_{\Xi, z_0} \subset V_{\Lambda, z'_0}$. In particular, $(V_{\Xi, z_0})^{\mathfrak{sl}_N} \subset (V_{\Lambda, z'_0})^{\mathfrak{sl}_N}$. Hence *v* is a common eigenvector of the Bethe algebra \mathcal{B} on $(V_{\mathbf{\Lambda}, z'_0})^{\mathfrak{sl}_N}$ such that $\mathcal{D}_v = \mathcal{D}_X$.

It follows that *X* is a limit point of $\Omega_{\Lambda, z}$ as z_n approaches z_{n-1} . This completes the proof of Theorem [3.6.](#page-11-3)

Theorem [3.8](#page-11-1) follows directly from Theorem [3.6.](#page-11-3)

7.2. Proof of Theorems [4.5,](#page-17-0) [4.12,](#page-21-2) and [4.13](#page-21-0)

We prove Theorem [4.5](#page-17-0) first. We follow the convention of Section [6.](#page-31-0)

We can identify the sequence $\check{\mathbf{\Lambda}} = (\check{\lambda}^{(1)}, \ldots, \check{\lambda}^{(n)}, \check{\lambda})$ of dominant integral \mathfrak{g} -coweights as a sequence of dominant integral \mathfrak{g}_N -weights. Consider the \mathfrak{g}_N module $V_{\tilde{\mathbf{A}}} = V_{\tilde{\lambda}^{(1)}} \otimes \cdots \otimes V_{\tilde{\lambda}^{(n)}} \otimes V_{\tilde{\lambda}}$. It follows from Theorem 3.2 and Corollary 3.3 of [\[R\]](#page-43-8) that there exists a bijection between the joint eigenvalues of the \mathfrak{g}_N Bethe algebra B acting on $(V_{\check{\lambda}^{(1)}}(z_1) \otimes \cdots \otimes V_{\check{\lambda}^{(n)}}(z_n))^{\text{sing}}$ and the g-opers in $Op_{\mathfrak{g}}(\mathbb{P}^1)_{\check{\Lambda},z}$ for all possible dominant integral \mathfrak{g} -coweight $\check{\lambda}$. In fact, one can show that Theorem 3.2 and Corollary 3.3 of [\[R\]](#page-43-8) are also true for the subspaces of $(V_{\check{\lambda}^{(1)}}(z_1) \otimes \cdots \otimes V_{\check{\lambda}^{(n)}}(z_n))_{\check{\lambda}}^{\text{sing}}$ with specific \mathfrak{g}_N -weight $\check{\lambda}$. Recall that $\mathbf{k} = (0, \ldots, 0, k)$, where $k = d - N - \sum_{s=1}^{n} (\check{\lambda}^{(s)})_{11} - (\check{\lambda})_{11} \geq 0$. Since one has the canonical isomorphism of β -modules

$$
(V_{\check{\mathbf{\Lambda}},\mathbf{z}})^{\mathfrak{g}_N}\cong (V_{\check{\lambda}^{(1)}}(z_1)\otimes\cdots\otimes V_{\check{\lambda}^{(n)}}(z_n))_{\check{\lambda}}^{\rm sing},
$$

by Theorem [6.7,](#page-34-1) we have the following theorem.

Theorem 7.1. *There exists a bijection between the joint eigenvalues of the* \mathfrak{g}_N *Bethe algebra* B *acting on* $(V_{\mathbf{A},z})^{\mathfrak{g}_N}$ *and* $\mathrm{s}\Omega_{\mathbf{A},k,z} \subset \mathrm{sGr}(N,d)$ *such that given a joint eigenvalue of* B *with a corresponding* B-eigenvector *v in* $(V_{\lambda}^{\times})^{\mathfrak{g}_N}$ we *have* Ker $((T_1 \ldots T_N)^{1/2} \cdot \mathcal{D}_v \cdot (T_1 \ldots T_N)^{-1/2}) \in s\Omega_{\lambda, k, z}$. □

The fact that Ker $((T_1 \ldots T_N)^{1/2} \cdot \mathcal{D}_v \cdot (T_1 \ldots T_N)^{-1/2}) \in s\Omega_{\check{\Lambda},\check{k},z}$ for the eigenvector $v \in (V_{\lambda,z})^{\mathfrak{g}_N}$ of the \mathfrak{g}_N Bethe algebra (except for the case of even *N* when there exists $s \in \{1, 2, ..., n\}$ such that $\langle \alpha_r, \check{\lambda}^{(s)} \rangle$ is odd) also follows from the results of [\[LMV\]](#page-42-6) and [\[MM\]](#page-43-11).

Note that by Proposition 2.10 in $\vert R \vert$, the *i*-th coefficient of the scalar differential operator $L_{[\nabla]}$ in Theorem [6.7](#page-34-1) is obtained by action of a universal series $G_i(x) \in \mathcal{U}(\mathfrak{g}_N[t][[x^{-1}]])$. Theorem [4.5](#page-17-0) for the case of $N \geq 4$ is a direct corollary of Theorems [6.7](#page-34-1) and [7.1.](#page-36-1)

Thanks to Theorem [4.5,](#page-17-0) Theorems [4.12](#page-21-2) and [4.13](#page-21-0) can be proved in a similar way as Theorems [3.6](#page-11-3) and [3.8.](#page-11-1)

Appendix A. Self-dual spaces and ϖ -invariant vectors

A.1. Diagram automorphism ϖ

There is a diagram automorphism $\varpi : \mathfrak{sl}_N \to \mathfrak{sl}_N$ such that

$$
\varpi(E_i) = E_{N-i}, \quad \varpi(F_i) = F_{N-i}, \quad \varpi^2 = 1, \quad \varpi(\mathfrak{h}_A) = \mathfrak{h}_A.
$$

The automorphism ϖ is extended to the automorphism of \mathfrak{gl}_N by

$$
\mathfrak{gl}_N \to \mathfrak{gl}_N, \quad e_{ij} \mapsto (-1)^{i-j-1} e_{N+1-j,N+1-i}, \quad i,j=1,\ldots,N.
$$

By abuse of notation, we denote this automorphism of \mathfrak{gl}_N also by ϖ .

The restriction of ϖ to the Cartan subalgebra \mathfrak{h}_A induces a dual map $\varpi^* : \mathfrak{h}_A^* \to \mathfrak{h}_A^*, \lambda \mapsto \lambda^*,$ by

$$
\lambda^*(h) = \varpi^*(\lambda)(h) = \lambda(\varpi(h)),
$$

for all $\lambda \in \mathfrak{h}_A^*, h \in \mathfrak{h}_A$.

Let $(\mathfrak{h}_A^*)^0 = \{\lambda \in \mathfrak{h}_A^* \mid \lambda^* = \lambda\} \subset \mathfrak{h}_A^*$. We call elements of $(\mathfrak{h}_A^*)^0$ *symmetric weights*.

Let \mathfrak{h}_N be the Cartan subalgebra of \mathfrak{g}_N . Consider the root system of type A_{N-1} with simple roots $\alpha_1^A, \ldots, \alpha_{N-1}^A$ and the root system of \mathfrak{g}_N with simple roots $\alpha_1, \ldots, \alpha_{\left[\frac{N}{2}\right]}$.

There is a linear isomorphism $P^*_{\varpi} : \mathfrak{h}_N^* \to (\mathfrak{h}_A^*)^0$, $\lambda \mapsto \lambda_A$, where λ_A is defined by

(A.1)
$$
\langle \lambda_A, \check{\alpha}_i^A \rangle = \langle \lambda_A, \check{\alpha}_{N-i}^A \rangle = \langle \lambda, \check{\alpha}_i \rangle, \quad i = 1, ..., \left[\frac{N}{2} \right].
$$

Let $\lambda \in \mathfrak{h}_A^*$ and fix two nonzero highest weight vectors $v_{\lambda} \in (V_{\lambda})_{\lambda}, v_{\lambda^*} \in$ $(V_{\lambda^*})_{\lambda^*}$. Then there exists a unique linear isomorphism $\mathcal{I}_{\varpi}: V_{\lambda} \to V_{\lambda^*}$ such that

(A.2)
$$
\mathcal{I}_{\varpi}(v_{\lambda}) = v_{\lambda^*}, \quad \mathcal{I}_{\varpi}(gv) = \varpi(g)\mathcal{I}_{\varpi}(v),
$$

for all $g \in \mathfrak{sl}_N, v \in V_\lambda$. In particular, if λ is a symmetric weight, \mathcal{I}_ϖ is a linear automorphism of V_{λ} , where we always assume that $v_{\lambda} = v_{\lambda^*}$.

Let *M* be a finite-dimensional \mathfrak{sl}_N -module with a weight space decomposition $M = \bigoplus_{\mu \in \mathfrak{h}_A^*} (M)_\mu$. Let $f : M \to M$ be a linear map such that $f(hv) = \varpi(h)f(v)$ for $h \in \mathfrak{h}_A, v \in M$. Then it follows that $f((M)_{\mu}) \subset (M)_{\mu^*}$ for all $\mu \in \mathfrak{h}_A^*$. Define a formal sum

$$
\text{Tr}_{M}^{\varpi}f = \sum_{\mu \in (\mathfrak{h}_{A}^{*})^{0}} \text{Tr}(f|_{(M)_{\mu}})e(\mu),
$$

where $\text{Tr}(f|_{(M)\mu})$ for $\mu \in (\mathfrak{h}_A^*)^0$ denotes the trace of the restriction of f to the weight space $(M)_{\mu}$.

Lemma A.1. We have $\text{Tr}^{\varpi}_{M \otimes M'}(f \otimes f') = (\text{Tr}^{\varpi}_{M} f) \cdot (\text{Tr}^{\varpi}_{M'} f')$. \Box

Let $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(n)})$ be a sequence of dominant integral \mathfrak{g}_N -weights, then the tuple $\Lambda^A = (\lambda_A^{(1)}, \ldots, \lambda_A^{(n)})$ is a sequence of symmetric dominant integral \mathfrak{sl}_N -weights. Let $V_{\mathbf{\Lambda}^A} = \bigotimes_{s=1}^n V_{\lambda_A^{(s)}}$. The tensor product of maps \mathcal{I}_ϖ in [\(A.2\)](#page-38-1) with respect to $\lambda_A^{(s)}$, $s = 1, \ldots, n$, gives a linear isomorphism

$$
(\mathbf{A}.3) \qquad \qquad \mathcal{I}_{\varpi} : V_{\mathbf{\Lambda}^A} \to V_{\mathbf{\Lambda}^A},
$$

of \mathfrak{sl}_N -modules. Note that the map \mathcal{I}_{ϖ} preserves the weight spaces with symmetric weights and the corresponding spaces of singular vectors. In particular, $(V_{\mathbf{\Lambda}^A})^{\mathfrak{sl}_N}$ is invariant under \mathcal{I}_{ϖ} .

Lemma A.2. *Let* μ *be a* \mathfrak{g}_N *-weight. Then we have*

$$
\dim(V_{\mathbf{\Lambda}})^{\rm sing}_{\mu}=\text{Tr}\big(\mathcal{I}_{\varpi}\big|_{(V_{\mathbf{\Lambda}^A})_{\mu_A}^{\rm sing}}\big),\qquad \dim(V_{\mathbf{\Lambda}})_{\mu}=\text{Tr}\big(\mathcal{I}_{\varpi}\big|_{(V_{\mathbf{\Lambda}^A})_{\mu_A}}\big).
$$

 $\text{In particular, } \dim(V_{\mathbf{\Lambda}})^{\mathfrak{g}_N} = \text{Tr}(\mathcal{I}_{\varpi}|_{(V_{\mathbf{\Lambda}^A})^{\mathfrak{sl}_N}}).$

Proof. The statement follows from Lemma [A.1](#page-38-2) and Theorem 1 of Section 4.4 of [\[FSS\]](#page-42-7).□

A.2. Action of ϖ on the Bethe algebra

The automorphism ϖ is extended to the automorphism of current algebra $\mathfrak{gl}_N[t]$ by the formula $\overline{\omega}(g\otimes t^s) = \overline{\omega}(g)\otimes t^s$, where $g \in \mathfrak{gl}_N$ and $s = 0, 1, 2, \ldots$. Recall the operator $\mathcal{D}^{\mathcal{B}}$, see [\(2.3\)](#page-6-1).

Proposition A.3. *We have the following identity*

$$
\varpi(\mathcal{D}^{\mathcal{B}}) = \partial_x^N + \sum_{i=1}^N (-1)^i \partial_x^{N-i} B_i(x).
$$

Proof. It follows from the proof of Lemma 3.5 of [\[BHLW\]](#page-42-8) that no nonzero elements of $\mathcal{U}(\mathfrak{gl}_N[t])$ kill all $\bigotimes_{s=1}^n L(z_s)$ for all $n \in \mathbb{Z}_{>0}$ and all z_1, \ldots, z_n . It suffices to show the identity when it evaluates on $\bigotimes_{s=1}^{n} L(z_s)$.

Following the convention of MTV6 , define the *N* × *N* matrix \mathcal{G}_h = $\mathcal{G}_h(N,n,x,p_x,\boldsymbol{z},\boldsymbol{\lambda},X,P)$ by the formula

$$
\mathcal{G}_h := \left((p_x - \lambda_i) \, \delta_{ij} + \sum_{a=1}^n (-1)^{i-j} \frac{x_{N+1-i,a} p_{N+1-j,a}}{x - z_a} \right)_{i,j=1}^N.
$$

By Theorem 2.1 of [\[MTV6\]](#page-43-12), it suffices to show that

$$
\text{rdet}(\mathcal{G}_h) \prod_{a=1}^n (x - z_a)
$$
\n
$$
= \sum_{A,B,|A|=|B|} \prod_{b \notin A} (p_x - \lambda_b) \prod_{a \notin B} (x - z_a) \det(x_{ab})_{a \in A}^{b \in B} \det(p_{ab})_{a \in A}^{b \in B}.
$$

The proof of $(A.4)$ is similar to the proof of Theorem 2.1 in [\[MTV6\]](#page-43-12) with the following modifications.

Let *m* be a product whose factors are of the form $f(x)$, p_x , p_{ij} , x_{ij} where *f*(*x*) is a rational function in *x*. Then the product *m* will be called *normally ordered* if all factors of the form p_x , x_{ij} are on the left from all factors of the form $f(x)$, p_{ii} .

Correspondingly, in Lemma 2.4 of [\[MTV6\]](#page-43-12), we put the normal order for the first *i* factors of each summand. \Box

We have the following corollary of Proposition [A.3.](#page-39-1)

Corollary A.4. *The* \mathfrak{gl}_N *Bethe algebra* $\mathcal B$ *is invariant under* ϖ *, that is* $\varpi(\mathcal B) = \mathcal B$. $\varpi(\mathcal{B})=\mathcal{B}.$

Let $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(n)})$ be a sequence of partitions with at most *N* parts and $\boldsymbol{z} = (z_1, \ldots, z_n) \in \mathring{\mathbb{P}}_n$.

Let $v \in (V_{\Lambda, z})^{s \mathfrak{l}_N}$ be an eigenvector of the \mathfrak{gl}_N Bethe algebra \mathcal{B} . Denote $\varpi(\mathcal{D}^{\mathcal{B}})_{v}$ the scalar differential operator obtained by acting by the formal operator $\varpi(\mathcal{D}^{\mathcal{B}})$ on *v*.

Corollary A.5. *Let* $v \in (V_{\mathbf{\Lambda},\mathbf{z}})^{\mathfrak{sl}_N}$ *be a common eigenvector of the* \mathfrak{gl}_N *Bethe* algebra: then the identity $\varpi(\mathcal{D}^{\mathcal{B}})_{\mathfrak{m}} = (\mathcal{D}_{\mathfrak{m}})^*$ holds. *algebra; then the identity* $\varpi(\mathcal{D}^{\mathcal{B}})_{v} = (\mathcal{D}_{v})^{*}$ *holds.*

Let $\mathbf{\Xi} = (\xi^{(1)}, \ldots, \xi^{(n)})$ be a sequence of *N*-tuples of integers. Suppose

$$
\xi^{(s)} - \lambda^{(s)} = m_s(1, ..., 1), \quad s = 1, ..., n.
$$

Define the following rational functions depending on m_s , $s = 1, \ldots, n$,

$$
\varphi(x) = \prod_{s=1}^{n} (x - z_s)^{m_s}, \quad \psi(x) = \ln'(\varphi(x)) = \sum_{s=1}^{n} \frac{m_s}{x - z_s}.
$$

Here we use the convention that $1/(x - z_s)$ is considered as the constant function 0 if $z_s = \infty$.

Lemma A.6. For any formal power series $a(x)$ in x^{-1} with complex coeffi*cients, the linear map obtained by sending* $e_{ij}(x)$ *to* $e_{ij}(x) + \delta_{ij}a(x)$ *induces an automorphism of* $\mathfrak{gl}_N[t]$. □

We denote the automorphism in Lemma [A.6](#page-40-0) by $\eta_{a(x)}$.

Lemma A.7. *The B-module obtained by pulling* $V_{\mathbf{\Lambda},z}$ *via* $\eta_{\psi(x)}$ *is isomorphic* to $V_{\mathbf{\Xi},z}$. $to V_{\Xi, z}$.

By Lemma [A.7,](#page-40-1) we can identify the B-module $V_{\Xi, z}$ with the B-module *V***Λ**_{*,z*} as vector spaces. This identification is an isomorphism of \mathfrak{sl}_N -modules. For $v \in (V_{\mathbf{\Lambda},\mathbf{z}})^{\mathfrak{sl}_N}$ we use $\eta_{\psi(x)}(v)$ to express the same vector in $(V_{\Xi,\mathbf{z}})^{\mathfrak{sl}_N}$ under this identification.

Lemma A.8. *The following identity for differential operators holds*

$$
\eta_{\psi(x)}(\mathcal{D}^{\mathcal{B}}) = \varphi(x)\mathcal{D}^{\mathcal{B}}(\varphi(x))^{-1}.
$$

Proof. The lemma follows from the simple computation:

$$
\varphi(x)(\partial_x - e_{ii}(x))(\varphi(x))^{-1} = \partial_x - e_{ii}(x) - \psi(x).
$$

Proposition A.9. *Let* $v \in (V_{\Lambda,z})^{s \mathfrak{l}_N}$ *be an eigenvector of the Bethe algebra such that* $\mathcal{D}_v = \mathcal{D}_X$ *for some* $X \in \Omega_{\Lambda, z}$ *, then* $\mathcal{D}_{\eta_{\psi(x)}(v)} = \mathcal{D}_{\varphi(x) \cdot X}$ *.*

Proof. With the identification between the B-modules $V_{\Xi, z}$ and $V_{\Lambda, z}$, we have

$$
\mathcal{D}_{\eta_{\psi(x)}(v)} = (\eta_{\psi(x)}(\mathcal{D}^{\mathcal{B}}))_v = \varphi(x)\mathcal{D}_v(\varphi(x))^{-1} = \varphi(x)\mathcal{D}_X(\varphi(x))^{-1} = \mathcal{D}_{\varphi(x)\cdot X}.
$$

The second equality follows from Lemma [A.8.](#page-40-2)

A.3. I*-***-invariant Bethe vectors and self-dual spaces**

Let $\Lambda = (\lambda^{(1)}, \ldots, \lambda^{(n)})$ be a tuple of dominant integral \mathfrak{g}_N -weights. Recall the map $\mathcal{I}_{\varpi}: V_{\Lambda^A} \to V_{\Lambda^A}$, from [\(A.3\)](#page-38-3).

Note that an \mathfrak{sl}_N -weight can be lifted to a \mathfrak{gl}_N -weight such that the *N*-th coordinate of the corresponding \mathfrak{gl}_N -weight is zero. From now on, we consider $\lambda_A^{(s)}$ from [\(A.1\)](#page-37-0) as \mathfrak{gl}_N -weights obtained from [\(4.2\)](#page-17-2), that is as the partitions with at most $N-1$ parts.

Let $\mathbf{\Xi} = (\xi^{(1)}, \ldots, \xi^{(n)})$ be a sequence of *N*-tuples of integers such that

$$
\xi^{(s)} - \lambda_A^{(s)} = -(\lambda_A^{(s)})_1(1,\ldots,1), \quad s = 1,\ldots,n.
$$

Consider the \mathfrak{sl}_N -module $V_{\mathbf{\Lambda}^A}$ as the \mathfrak{gl}_N -module $V_{\mathbf{\Lambda}^A}$, the image of $V_{\mathbf{\Lambda}^A}$ under \mathcal{I}_{ϖ} in [\(A.3\)](#page-38-3), considered as a \mathfrak{gl}_N -module, is V_{Ξ} . Furthermore, the image of $(V_{\mathbf{\Lambda}_{A}})^{\mathfrak{sl}_{N}}$ under \mathcal{I}_{ϖ} is $(V_{\Xi})^{\mathfrak{sl}_{N}}$.

Let $T = (T_1, \ldots, T_N)$ be associated with Λ_A , z, we have

$$
T_1 \cdots T_N = \prod_{s=1}^n (x - z_s)^{(\lambda_A^{(s)})_1}.
$$

Let $\varphi(x) = T_1 \cdots T_N$ and let $\psi(x) = \varphi'(x)/\varphi(x)$. Hence by Lemma [A.7,](#page-40-1) the pull-back of $V_{\Xi, z}$ through $\eta_{\psi(x)}$ is isomorphic to $V_{\Lambda_A, z}$. Furthermore, the pull-back of $(V_{\Xi, z})^{s \mathfrak{l}_N}$ through $\eta_{\psi(x)}$ is isomorphic to $(V_{\Lambda_A, z})^{s \mathfrak{l}_N}$.

Theorem A.10. *Let* $v \in (V_{\Lambda_A,z})^{5\mathfrak{l}_N}$ *be an eigenvector of the* \mathfrak{gl}_N *Bethe algebra* \mathcal{B} *such that* $\mathcal{D}_v = \mathcal{D}_X$ *for some* $X \in \Omega_{\Lambda_A, z}$ *, then* $\mathcal{D}_{\eta_{\psi(x)} \circ \mathcal{I}_{\varpi}(v)} = \mathcal{D}_X$ ^{*t*}. *Moreover, X is self-dual if and only if* $\mathcal{I}_{\varpi}(v) = v$ *.*

Proof. It follows from Proposition [A.9,](#page-40-3) Corollary [A.5,](#page-40-4) and Lemma [5.4](#page-30-2) that

$$
\mathcal{D}_{\eta_{\psi(x)} \circ \mathcal{I}_{\varpi}(v)} = \varphi(x) \mathcal{D}_{\mathcal{I}_{\varpi}(v)}(\varphi(x))^{-1} = \varphi(x) \varpi(\mathcal{D}^{\mathcal{B}})_{v}(\varphi(x))^{-1}
$$

$$
= (T_1 \dots T_N)(\mathcal{D}_X)^*(T_1 \dots T_N)^{-1} = \mathcal{D}_{X^{\dagger}}.
$$

Since $(\lambda_A^{(s)})_N = 0$ for all $s = 1, \ldots, n$, *X* has no base points. Therefore *X* is self-dual if and only if $\mathcal{D}_X = \mathcal{D}_{X^{\dagger}}$. Suppose *X* is self-dual, it follows from Theorem [3.2](#page-9-2) that $\eta_{\psi(x)} \circ \mathcal{I}_{\varpi}(v)$ is a scalar multiple of *v*. By our identification, in terms of an \mathfrak{sl}_N -module homomorphism, $\eta_{\psi(x)}$ is the identity map. Moreover, since \mathcal{I}_{ϖ} is an involution, we have $\mathcal{I}_{\varpi}(v) = \pm v$.

Finally, generically, we have an eigenbasis of the action of \mathcal{B} in $(V_{\mathbf{\Lambda}_{A},\mathbf{z}})^{\mathfrak{sl}_N}$ (for example for all $\boldsymbol{z} \in \mathbb{R} \mathbb{P}_n$). In such a case, by the equality of dimensions using Lemma [A.2,](#page-38-0) we have $\mathcal{I}_{\varpi}(v) = v$. Then the general case is obtained by taking the limit. taking the limit.

References

- [AGV] V. Arnold, S. Gusein-Zade, A. Varchenko, *Singularities of differentiable maps*, vol. I, Monographs in Mathematics, **82**, Birkhäuser, Boston, 1985.
- [BHLW] A. Beliakova, K. Habiro, A. Lauda, B. Webster, *Current algebras and categorified quantum groups*, J. London Math. Soc. **95** (2017), 248–276.
- [CFR] A. Chervov, G. Falqui, L. Rybnikov. *Limits of Gaudin algebras, quantization of bending flows, Jucys-Murphy elements and Gelfand-Tsetlin bases*. Lett. Math. Phys. **91** (2010), no. 2, 129–150.
- [DS] V. Drinfeld, V. Sokolov, *Lie algebras and KdV type equations*, J. Sov. Math **30** (1985), 1975–2036.
- [FFR] B. Feigin, E. Frenkel, N. Reshetikhin, *Gaudin model, Bethe ansatz and critical level*, Comm. Math. Phys., **166** (1994), no. 1, 27–62.
- [F] E. Frenkel, *Gaudin Model and Opers*, in Infinite Dimensional Algebras and Quantum Integrable Systems, Progress in Mathematics, **237** (2005), 1–58.
- [FSS] J. Fuchs, B. Schellekens, C. Schweigert, *From Dynkin diagram symmetries to fixed point structures*, Comm. Math. Phys. **180** (1996), no. 1, 39–97.
- [GH] P. GRIFFITHS, J. HARRIS, Principles of Algebraic Geometry, Wiley (1994).
- [KLP] P. Kulish, V. Lyakhovsky, O. Postnova, *Tensor power decomposition.* B*ⁿ case*, J. Phys.: Conf. Ser. **343** (2012), 012095.
- [LMV] Kang Lu, E. Mukhin, A. Varchenko, *On the Gaudin model associated to Lie algebras of classical types*, J. Math. Phys. **57** (2016), no. 101703, 1–22.
- [M] A. Molev, *Feigin—Frenkel center in types B, C and D*, Invent. Math. **191** (2013), no. 1, 1–34.
- [MM] A. Molev, E. Mukhin, *Eigenvalues of Bethe vectors in the Gaudin model*, Theor. Math. Phys. **192** (2017), no. 3, 1258–1281.
- [MTV1] E. Mukhin, V. Tarasov, A. Varchenko, *Bethe eigenvectors of higher transfer matrices*, J. Stat. Mech. Theor. Exp. (2006) P08002.
- [MTV2] E. Mukhin, V. Tarasov, A. Varchenko, *Bispectral and* $(\mathfrak{gl}_N, \mathfrak{gl}_M)$ *dualities, discrete versus differential*, Adv. Math. 218 (2008), no. 1, 216–265.
- [MTV3] E. Mukhin, V. Tarasov, A. Varchenko, *The B. and M. Shapiro conjecture in real algebraic geometry and the Bethe ansatz*, Ann. Math. **170** (2009), no. 2, 863–881.
- [MTV4] E. Mukhin, V. Tarasov, A. Varchenko, *Schubert calculus and representations of general linear group*, J. Amer. Math. Soc. **22** (2009), no. 4, 909–940.
- [MTV5] E. Mukhin, V. Tarasov, A. Varchenko, *On reality property of Wronski maps*, Confluentes Math. **1** (2009), no. 2, 225–247.
- [MTV6] E. Mukhin, V. Tarasov, A. Varchenko, *A generalization of the Capelli identity*, in Algebra, Arithmetic, and Geometry, Progress in Mathematics, **270** (2010), 383–398.
- [MV1] E. Mukhin, A. Varchenko, *Critical points of master functions and flag varieties*, Commun. Contemp. Math. **6** (2004), no. 1, 111– 163.
- [MV2] E. Mukhin, A. Varchenko, *Miura opers and critical points of master functions*, Cent. Eur. J. Math. **3** (2005), no. 2, 155–182.
- [R] L. Rybnikov, *A proof of the Gaudin Bethe Ansatz conjecture*, preprint, 1–15, [math.QA/1608.04625.](http://arxiv.org/abs/1608.04625)
- [S] H. Schubert, *Anzahl-Bestimmungen für lineare Räume beliebiger Dimension*, Acta. Math. **8** (1886) 97–118.
- [T] D. Talalaev, *The quantum Gaudin system (Russian)*. Funktsional. Anal. i Prilozhen. **40** (2006), no. 1, 86–91; translation in Funct. Anal. Appl. **40** (2006), no. 1, 73–77.

Kang Lu, E. Mukhin Department of Mathematical Sciences Indiana University-Purdue University Indianapolis 402 N.Blackford St., LD 270 Indianapolis IN 46202 USA E-mail: [lukang@iupui.edu;](mailto:lukang@iupui.edu) emukhin@iupui.edu

A. Varchenko Department of Mathematics University of North Carolina at Chapel Hill Chapel Hill NC 27599-3250 USA E-mail: anv@email.unc.edu