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Abstract: We define a glN -stratification of the Grassmannian of
N planes Gr(N, d). The glN -stratification consists of strata ΩΛ
labeled by unordered sets Λ = (λ(1), . . . , λ(n)) of nonzero parti-
tions with at most N parts, satisfying a condition depending on
d, and such that (⊗n

i=1Vλ(i))slN �= 0. Here Vλ(i) is the irreducible
glN -module with highest weight λ(i). We show that the closure of
a stratum ΩΛ is the union of the strata ΩΞ, Ξ = (ξ(1), . . . , ξ(m)),
such that there is a partition {I1, . . . , Im} of {1, 2, . . . , n} with
HomglN

(Vξ(i) ,⊗j∈IiVλ(j)
)
�= 0 for i = 1, . . . ,m. The glN -stratification

of the Grassmannian agrees with the Wronski map.
We introduce and study the new object: the self-dual Grass-

mannian sGr(N, d) ⊂ Gr(N, d). Our main result is a similar gN -
stratification of the self-dual Grassmannian governed by represen-
tation theory of the Lie algebra g2r+1 := sp2r if N = 2r+ 1 and of
the Lie algebra g2r := so2r+1 if N = 2r.

1. Introduction

The Grassmannian Gr(N, d) of N -dimensional subspaces of the complex d-
dimensional vector space has the standard stratification by Schubert cells Ωλ

labeled by partitions λ = (d − N � λ1 � . . . � λN � 0). A Schubert cycle
is the closure of a cell Ωλ. It is well known that the Schubert cycle Ωλ is the
union of the cells Ωξ such that the Young diagram of λ is inscribed into the
Young diagram of ξ. This stratification depends on a choice of a full flag in
the d-dimensional space.

In this paper we introduce a new stratification of Gr(N, d) governed by
representation theory of glN and called the glN -stratification, see Theorem
3.5. The glN -strata ΩΛ are labeled by unordered sets Λ = (λ(1), . . . , λ(n)) of
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nonzero partitions λ(i) = (d−N � λ
(i)
1 � . . . � λ

(i)
N � 0) such that

(1.1) (⊗n
i=1Vλ(i))slN �= 0,

n∑
i=1

N∑
j=1

λ
(i)
j = N(d−N),

where Vλ(i) is the irreducible glN -module with highest weight λ(i). We have
dim ΩΛ = n. We call the closure of a stratum ΩΛ in Gr(N, d) a glN -cycle. The
glN -cycle ΩΛ is an algebraic set in Gr(N, d). We show that ΩΛ is the union of
the strata ΩΞ, Ξ = (ξ(1), . . . , ξ(m)), such that there is a partition {I1, . . . , Im}
of {1, 2, . . . , n} with HomglN

(Vξ(i) ,⊗j∈IiVλ(j)
)
�= 0 for i = 1, . . . ,m, see Theo-

rem 3.8.
Thus we have a partial order on the set of sequences of partitions satis-

fying (1.1). Namely Λ � Ξ if there is a partition {I1, . . . , Im} of {1, 2, . . . , n}
with HomglN

(Vξ(i) ,⊗j∈IiVλ(j)
)
�= 0 for i = 1, . . . ,m. An example of the corre-

sponding graph is given in Example 3.9. The glN -stratification can be viewed
as the geometrization of this partial order.

Let us describe the construction of the strata in more detail. We identify
the Grassmannian Gr(N, d) with the Grassmannian of N -dimensional sub-
spaces of the d-dimensional space Cd[x] of polynomials in x of degree less
than d. In other words, we always assume that for X ∈ Gr(N, d), we have
X ⊂ Cd[x]. Set P1 = C ∪ {∞}. Then, for any z ∈ P

1, we have the osculating
flag F(z), see (3.3), (3.4). Denote the Schubert cells corresponding to F(z) by
Ωλ(F(z)). Then the stratum ΩΛ consists of spaces X ∈ Gr(N, d) such that
X belongs to the intersection of Schubert cells Ωλ(i)(F(zi)) for some choice
of distinct zi ∈ P

1:

ΩΛ =
⋃

z1,...,zn
zi �=zj

( n⋂
i=1

Ωλ(i)(F(zi))
)
⊂ Gr(N, d).

A stratum ΩΛ is a ramified covering over (P1)n without diagonals quotient by
the free action of an appropriate symmetric group, see Proposition 3.4. The
degree of the covering is dim(⊗n

i=1Vλ(i))slN .
For example, if N = 1, then Gr(1, d) is the (d− 1)-dimensional projective

space of the vector space Cd[x]. The strata Ωm are labeled by unordered sets
m = (m1, . . . ,mn) of positive integers such that m1+· · ·+mn = d−1. A stra-
tum Ωm consists of all polynomials f(x) which have n distinct zeros of multi-
plicities m1, . . . ,mn. In this stratum we also include the polynomials of degree
d−1−mi with n−1 distinct roots of multiplicities m1, . . . ,mi−1,mi+1, . . . ,mn.
We interpret these polynomials as having a zero of multiplicity mi at infinity.
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The stratum Ω(1,...,1) is open in Gr(1, d). The union of other strata is classically
called the swallowtail and the gl1-stratification is the standard stratification
of the swallowtail; see, for example, Section 2.5 of Part 1 of [AGV].

The glN -stratification of Gr(N, d) agrees with the Wronski map

Wr : Gr(N, d) → Gr(1, N(d−N) + 1)

which sends an N -dimensional subspace of polynomials to its Wronskian
det(di−1fj/dx

i−1)Ni,j=1, where f1(x), . . . , fN (x) is a basis of the subspace. For
any gl1-stratum Ωm of Gr(1, N(d−N) + 1), the preimage of Ωm under the
Wronski map is the union of glN -strata of Gr(N, d) and the restriction of the
Wronski map to each of those strata ΩΛ is a ramified covering over Ωm of
degree b(Λ) dim(⊗n

i=1Vλ(i))slN , where b(Λ) is some combinatorial symmetry
coefficient of Λ, see (3.9).

The main goal of this paper is to develop a similar picture for the new ob-
ject sGr(N, d) ⊂ Gr(N, d), called self-dual Grassmannian. Let X ∈ Gr(N, d)
be an N -dimensional subspace of polynomials in x. Let X∨ be the N -dimen-
sional space of polynomials which are Wronski determinants of N−1 elements
of X:

X∨ = {det
(
di−1fj/dx

i−1
)N−1

i,j=1
, fj(x) ∈ X}.

The space X is called self-dual if X∨ = g ·X for some polynomial g(x), see
[MV1]. We define sGr(N, d) as the subset of Gr(N, d) of all self-dual spaces.
It is an algebraic set.

The main result of this paper is the stratification of sGr(N, d) governed
by representation theory of the Lie algebras g2r+1 := sp2r if N = 2r + 1
and g2r := so2r+1 if N = 2r. This stratification of sGr(N, d) is called the
gN -stratification, see Theorem 4.11.

The gN -stratification of sGr(N, d) consists of gN -strata sΩΛ,k labeled by
unordered sets of dominant integral gN -weights Λ = (λ(1), . . . , λ(n)), equipped
with nonnegative integer labels k = (k1, . . . , kn), such that (⊗n

i=1Vλ(i))gN �= 0
and satisfying a condition similar to the second equation in (1.1); see Section
4.3. Here Vλ(i) is the irreducible gN -module with highest weight λ(i). Different
liftings of an slN -weight to a glN -weight differ by a vector (k, . . . , k) with
integer k. Our label ki is an analog of this parameter in the case of gN .

A gN -stratum sΩΛ,k is a ramified covering over (P1)n without diagonals
quotient by the free action of an appropriate symmetric group. The degree
of the covering is dim(⊗n

i=1Vλ(i))gN and, in particular, dim sΩΛ,k = n; see
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Proposition 4.9. We call the closure of a stratum sΩΛ,k in sGr(N, d) a gN -
cycle. The gN -cycle sΩΛ,k is an algebraic set. We show that sΩΛ,k is the
union of the strata sΩΞ,l, Ξ = (ξ(1), . . . , ξ(m)), such that there is a partition
{I1, . . . , Im} of {1, 2, . . . , n} satisfying HomgN (Vξ(i) ,⊗j∈IiVλ(j)

)
�= 0 for i =

1, . . . ,m, and the appropriate matching of labels; see Theorem 4.13.
If N = 2r, there is exactly one stratum of top dimension 2(d − N) =

dim sGr(N, d). For example, the so5-stratification of sGr(4, 6) consists of 9
strata of dimensions 4, 3, 3, 3, 2, 2, 2, 2, 1, see the graph of adjacencies in
Example 4.14. If N = 2r + 1, there are many strata of top dimension d−N
(except in the trivial cases of d = 2r + 1 and d = 2r + 2). For example, the
sp4-stratification of sGr(5, 8) has four strata of dimension 3; see Section 4.7.
In all cases we have exactly one one-dimensional stratum corresponding to
n = 1, Λ = (0), and k = (d−N).

Essentially, we obtain the gN -stratification of sGr(N, d) by restricting the
glN -stratification of Gr(N, d) to sGr(N, d).

For X ∈ sGr(N, d), the multiplicity of every zero of the Wronskian of
X is divisible by r if N = 2r and by N if N = 2r + 1. We define the
reduced Wronski map Wr : sGr(N, d) → Gr(1, 2(d − N) + 1) if N = 2r and
Wr : sGr(N, d) → Gr(1, d − N + 1) if N = 2r + 1 by sending X to the
r-th root of its Wronskian if N = 2r and to the N -th root if N = 2r + 1.
The gN -stratification of sGr(N, d) agrees with the reduced Wronski map and
swallowtail gl1-stratification of Gr(1, 2(d−N) + 1) or Gr(1, d−N + 1). For
any gl1-stratum Ωm the preimage of Ωm under Wr is the union of gN -strata
(see Proposition 4.17) and the restriction of the reduced Wronski map to each
of those strata sΩΛ,k is a ramified covering over Ωm; see Proposition 4.18.

Our definition of the glN -stratification is motivated by the connection to
the Gaudin model of type A; see Theorem 3.2. Similarly, our definition of
the self-dual Grassmannian and of the gN -stratification is motivated by the
connection to the Gaudin models of types B and C; see Theorem 4.5.

It is interesting to study the geometry and topology of strata, cycles, and
of self-dual Grassmannian; see Section 4.7.

The exposition of the material is as follows. In Section 2 we introduce the
glN Bethe algebra. In Section 3 we describe the glN -stratification of Gr(N, d).
In Section 4 we define the gN -stratification of the self-dual Grassmannian
sGr(N, d). In Section 5 we recall the interrelations of the Lie algebras slN ,
so2r+1, sp2r. In Section 6 we discuss g-opers and their relations to self-dual
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spaces. Section 7 contains proofs of theorems formulated in Sections 3 and 4.
In Appendix A we describe the bijection between the self-dual spaces and the
set of glN Bethe vectors fixed by the Dynkin diagram automorphism of glN .
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2. Lie algebras

2.1. Lie algebra glN

Let eij , i, j = 1, . . . , N , be the standard generators of the Lie algebra glN ,
satisfying the relations [eij , esk] = δjseik − δikesj . We identify the Lie algebra
slN with the subalgebra of glN generated by the elements eii− ejj and eij for
i �= j, i, j = 1, . . . , N .

Let M be a glN -module. A vector v ∈ M has weight λ = (λ1, . . . , λN ) ∈
C

N if eiiv = λiv for i = 1, . . . , N . A vector v is called singular if eijv = 0 for
1 � i < j � N .

We denote by (M)λ the subspace of M of weight λ, by (M)sing the sub-
space of M of all singular vectors and by (M)sing

λ the subspace of M of all
singular vectors of weight λ.

Denote by Vλ the irreducible glN -module with highest weight λ.
The glN -module V(1,0,...,0) is the standard N -dimensional vector represen-

tation of glN , which we denote by L.
A sequence of integers λ = (λ1, . . . , λN ) such that λ1 � λ2 � . . . � λN �

0 is called a partition with at most N parts. Set |λ| =
∑N

i=1 λi. Then it is said
that λ is a partition of |λ|. The glN -module L⊗n contains the module Vλ if
and only if λ is a partition of n with at most N parts.

Let λ, μ be partitions with at most N parts. We write λ ⊆ μ if and only
if λi � μi for i = 1, . . . , N .

2.2. Simple Lie algebras

Let g be a simple Lie algebra over C with Cartan matrix A = (ai,j)ri,j=1. Let
D = diag{d1, . . . , dr} be the diagonal matrix with positive relatively prime
integers di such that DA is symmetric.
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Let h ⊂ g be the Cartan subalgebra and let g = n− ⊕ h ⊕ n+ be the
Cartan decomposition. Fix simple roots α1, . . . , αr in h∗. Let α̌1, . . . , α̌r ∈ h

be the corresponding coroots. Fix a nondegenerate invariant bilinear form (, )
in g such that (α̌i, α̌j) = ai,j/dj . The corresponding invariant bilinear form in
h∗ is given by (αi, αj) = diai,j . We have 〈λ, α̌i〉 = 2(λ, αi)/(αi, αi) for λ ∈ h∗.
In particular, 〈αj , α̌i〉 = ai,j . Let ω1, . . . , ωr ∈ h∗ be the fundamental weights,
〈ωj , α̌i〉 = δi,j .

Let P = {λ ∈ h∗|〈λ, α̌i〉 ∈ Z, i = 1, . . . , r} and P+ = {λ ∈ h∗|〈λ, α̌i〉 ∈
Z�0, i = 1, . . . , r} be the weight lattice and the cone of dominant integral
weights.

For λ ∈ h∗, let Vλ be the irreducible g-module with highest weight λ. We
denote 〈λ, α̌i〉 by λi and sometimes write (λ1, λ2, . . . , λr) for λ.

Let M be a g-module. Let (M)sing = {v ∈ M | n+v = 0} be the sub-
space of singular vectors in M . For μ ∈ h∗ let (M)μ = {v ∈ M | hv =
μ(h)v, for all h ∈ h} be the subspace of M of vectors of weight μ. Let
(M)sing

μ = (M)sing∩(M)μ be the subspace of singular vectors in M of weight μ.
Given a g-module M , denote by (M)g the subspace of g-invariants in M .

The subspace (M)g is the multiplicity space of the trivial g-module in M .
The following facts are well known. Let λ, μ be partitions with at most N
parts, dim(Vλ ⊗Vμ)slN = 1 if λi = k−μN+1−i, i = 1, . . . , N , for some integer
k � μ1 and 0 otherwise. Let λ, μ be g-weights, dim(Vλ ⊗ Vμ)g = δλ,μ for
g = so2r+1, sp2r.

For any Lie algebra g, denote by U(g) the universal enveloping algebra
of g.

2.3. Current algebra g[t]

Let g[t] = g⊗C[t] be the Lie algebra of g-valued polynomials with the point-
wise commutator. We call it the current algebra of g. We identify the Lie
algebra g with the subalgebra g ⊗ 1 of constant polynomials in g[t]. Hence,
any g[t]-module has the canonical structure of a g-module. The standard
generators of glN [t] are eij ⊗ tp, i, j = 1, . . . , N , p ∈ Z�0. They satisfy the
relations [eij ⊗ tp, esk ⊗ tq] = δjseik ⊗ tp+q − δikesj ⊗ tp+q. It is convenient to
collect elements of g[t] in generating series of a formal variable x. For g ∈ g,
set

(2.1) g(x) =
∞∑
s=0

(g ⊗ ts)x−s−1.

For glN [t] we have (x2 − x1)[eij(x1), esk(x2)] = δjs(eik(x1) − eik(x2)) −
δik(esj(x1) − esj(x2)). For each a ∈ C, there exists an automorphism τa of
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g[t], τa : g(x) → g(x − a). Given a g[t]-module M , we denote by M(a) the
pull-back of M through the automorphism τa. As g-modules, M and M(a)
are isomorphic by the identity map.

We have the evaluation homomorphism, ev : g[t] → g, ev : g(x) → gx−1.
Its restriction to the subalgebra g ⊂ g[t] is the identity map. For any g-module
M , we denote by the same letter the g[t]-module, obtained by pulling M back
through the evaluation homomorphism. For each a ∈ C, the g[t]-module M(a)
is called an evaluation module.

For g = slN , sp2r, so2r+1, it is well known that finite-dimensional irre-
ducible g[t]-modules are tensor products of evaluation modules Vλ(1)(z1) ⊗
· · · ⊗ Vλ(n)(zn) with dominant integral g-weights λ(1), . . . , λ(n) and distinct
evaluation parameters z1, . . . , zn.

2.4. Bethe algebra

Let Sl be the permutation group of the set {1, . . . , l}. Given an N×N matrix
B with possibly noncommuting entries bij , we define its row determinant to
be

rdet B =
∑
σ∈SN

(−1)σb1σ(1)b2σ(2) . . . bNσ(N).

Define the universal differential operator DB by

(2.2) DB = rdet(δij∂x − eji(x))Ni,j=1.

It is a differential operator in variable x, whose coefficients are formal power
series in x−1 with coefficients in U(glN [t]),

(2.3) DB = ∂N
x +

N∑
i=1

Bi(x)∂N−i
x ,

where

Bi(x) =
∞∑
j=i

Bijx
−j

and Bij ∈ U(glN [t]), i = 1, . . . , N , j ∈ Z�i. We call the unital subalgebra
of U(glN [t]) generated by Bij ∈ U(glN [t]), i = 1, . . . , N , j ∈ Z�i, the Bethe
algebra of glN and denote it by B.

The Bethe algebra B is commutative and commutes with the subalgebra
U(glN ) ⊂ U(glN [t]), see [T]. As a subalgebra of U(glN [t]), the algebra B
acts on any glN [t]-module M . Since B commutes with U(glN ), it preserves
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the subspace of singular vectors (M)sing as well as weight subspaces of M .
Therefore, the subspace (M)sing

λ is B-invariant for any weight λ.

We denote M(∞) the glN -module M with the trivial action of the Bethe
algebra B. More generally, for a glN [t]-module M ′, we denote by M ′⊗M(∞)
the glN -module where we define the action of B so that it acts trivially on
M(∞). Namely, the element b ∈ B acts on M ′ ⊗M(∞) by b⊗ 1.

Note that for a ∈ C and glN -module M , the action of eij(x) on M(a)
is given by eij/(x − a) on M . Therefore, the action of series Bi(x) on the
module M ′⊗M(∞) is the limit of the action of the series Bi(x) on the module
M ′ ⊗M(z) as z → ∞ in the sense of rational functions of x. However, such
a limit of the action of coefficients Bij on the module M ′ ⊗M(z) as z → ∞
does not exist.

Let M = Vλ be an irreducible glN -module and let M ′ be an irreducible
finite-dimensional glN [t]-module. Let c be the value of the

∑N
i=1 eii action on

M ′.
Lemma 2.1. We have an isomorphism of vector spaces:

π : (M ′ ⊗ Vλ)slN → (M ′)sing
λ̄

, where λ̄i = c + |λ|
N

− λN+1−i,

given by the projection to a lowest weight vector in Vλ. The map π is an
isomorphism of B-modules (M ′ ⊗ Vλ(∞))slN → (M ′)sing

λ̄
.

Consider P1 := C ∪ {∞}. Set

P̊n := {z = (z1, . . . , zn) ∈ (P1)n | zi �= zj for 1 � i < j � n},

RP̊n := {z = (z1, . . . , zn) ∈ P̊n | zi ∈ R or zi = ∞, for 1 � i � n}.

We are interested in the action of the Bethe algebra B on the tensor
product

⊗n
s=1 Vλ(s)(zs), where Λ = (λ(1), . . . , λ(n)) is a sequence of partitions

with at most N parts and z = (z1, . . . , zn) ∈ P̊n. By Lemma 2.1, it is sufficient
to consider spaces of invariants (

⊗n
s=1 Vλ(s)(zs))slN . For brevity, we write VΛ,z

for the B-module
⊗n

s=1 Vλ(s)(zs) and VΛ for the glN -module
⊗n

s=1 Vλ(s) .
Let v ∈ VΛ,z be a common eigenvector of the Bethe algebra B, Bi(x)v =

hi(x)v, i = 1, . . . , N . Then we call the scalar differential operator

Dv = ∂N
x +

N∑
i=1

hi(x)∂N−i
x

the differential operator associated with the eigenvector v.
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3. The glN -stratification of Grassmannian

Let N , d ∈ Z>0 such that N � d.

3.1. Schubert cells

Let Cd[x] be the space of polynomials in x with complex coefficients of degree
less than d. We have dimCd[x] = d. Let Gr(N, d) be the Grassmannian of all
N -dimensional subspaces in Cd[x]. The Grassmannian Gr(N, d) is a smooth
projective complex variety of dimension N(d−N).

Let Rd[x] ⊂ Cd[x] be the space of polynomials in x with real coefficients
of degree less than d. Let GrR(N, d) ⊂ Gr(N, d) be the set of subspaces which
have a basis consisting of polynomials with real coefficients. For X ∈ Gr(N, d)
we have X ∈ GrR(N, d) if and only if dimR(X ∩ Rd[x]) = N . We call such
points X real.

For a full flag F = {0 ⊂ F1 ⊂ F2 ⊂ · · · ⊂ Fd = Cd[x]} and a partition
λ = (λ1, . . . , λN ) such that λ1 � d−N , the Schubert cell Ωλ(F) ⊂ Gr(N, d)
is given by

Ωλ(F) = {X ∈ Gr(N, d) | dim(X ∩ Fd−j−λN−j ) = N − j,

dim(X ∩ Fd−j−λN−j−1) = N − j − 1}.

We have codim Ωλ(F) = |λ|.
The Schubert cell decomposition associated to a full flag F , see for ex-

ample [GH], is given by

(3.1) Gr(N, d) =
⊔

λ, λ1�d−N

Ωλ(F).

The Schubert cycle Ωλ(F) is the closure of a Schubert cell Ωλ(F) in the
Grassmannian Gr(N, d). Schubert cycles are algebraic sets with very rich ge-
ometry and topology. It is well known that Schubert cycle Ωλ(F) is described
by the formula

(3.2) Ωλ(F) =
⊔
λ⊆μ,

μ1�d−N

Ωμ(F).

Given a partition λ = (λ1, . . . , λN ) such that λ1 � d − N , introduce a
new partition

λ̄ = (d−N − λN , d−N − λN−1, . . . , d−N − λ1).
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We have |λ| + |λ̄| = N(d−N).
Let F(∞) be the full flag given by

F(∞) = {0 ⊂ C1[x] ⊂ C2[x] ⊂ · · · ⊂ Cd[x]}.(3.3)

The subspace X is a point of Ωλ(F(∞)) if and only if for every i =
1, . . . , N , it contains a polynomial of degree λ̄i + N − i.

For z ∈ C, consider the full flag

F(z) = {0 ⊂ (x− z)d−1
C1[x] ⊂ (x− z)d−2

C2[x] ⊂ · · · ⊂ Cd[x]}.(3.4)

The subspace X is a point of Ωλ(F(z)) if and only if for every i = 1, . . . , N ,
it contains a polynomial with a root at z of order λi + N − i.

A point z ∈ C is called a base point for a subspace X ⊂ Cd[x] if g(z) = 0
for every g ∈ X.

3.2. Intersection of Schubert cells

Let Λ = (λ(1), . . . , λ(n)) be a sequence of partitions with at most N parts and
z = (z1, . . . , zn) ∈ P̊n. Set |Λ| =

∑n
s=1 |λ(s)|.

The following lemma is elementary.

Lemma 3.1. If dim(VΛ)slN > 0, then |Λ| is divisible by N . Suppose further
|Λ| = N(d−N), then λ

(s)
1 � d−N for s = 1, . . . , n.

Assuming |Λ| = N(d−N), denote by ΩΛ,z the intersection of the Schubert
cells:

(3.5) ΩΛ,z =
n⋂

s=1
Ωλ(s)(F(zs)).

Note that due to our assumption, ΩΛ,z is a finite subset of Gr(N, d). Note
also that ΩΛ,z is non-empty if and only if dim(VΛ)slN > 0.

Theorem 3.2. Suppose dim(VΛ)slN > 0. Let v ∈ (VΛ,z)slN be an eigenvector
of the Bethe algebra B. Then KerDv ∈ ΩΛ,z. Moreover, the assignment κ :
v �→ KerDv is a bijective correspondence between the set of eigenvectors of
the Bethe algebra in (VΛ,z)slN (considered up to multiplication by nonzero
scalars) and the set ΩΛ,z.

Proof. The first statement is Theorem 4.1 in [MTV3] and the second state-
ment is Theorem 6.1 in [MTV4].
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We also have the following lemma, see for example [MTV1].

Lemma 3.3. Let z be a generic point in P̊n. Then the action of the Bethe
algebra B on (VΛ,z)slN is diagonalizable. In particular, this statement holds
for any sequence z ∈ RP̊n.

3.3. The glN -stratification of Gr(N, d)

The following definition plays an important role in what follows.
Define a partial order � on the set of sequences of partitions with at

most N parts as follows. Let Λ = (λ(1), . . . , λ(n)), Ξ = (ξ(1), . . . , ξ(m)) be two
sequences of partitions with at most N parts. We say that Λ � Ξ if and only
if there exists a partition {I1, . . . , Im} of the set {1, 2, . . . , n} such that

HomglN
(Vξ(i) ,

⊗
j∈Ii

Vλ(j)
)
�= 0, i = 1, . . . ,m.

Note that Λ and Ξ are comparable only if |Λ| = |Ξ|.
We say that Λ = (λ(1), . . . , λ(n)) is nontrivial if and only if (VΛ)slN �= 0

and |λ(s)| > 0, s = 1, . . . , n. The sequence Λ will be called d-nontrivial if Λ
is nontrivial and |Λ| = N(d−N).

Suppose Ξ is d-nontrivial. If Λ � Ξ and |λ(s)| > 0 for all s = 1, . . . , n,
then Λ is also d-nontrivial.

Recall that ΩΛ,z is the intersection of Schubert cells for each given z, see
(3.5), define ΩΛ by the formula

(3.6) ΩΛ :=
⋃

z∈P̊n

ΩΛ,z ⊂ Gr(N, d).

By definition, ΩΛ does not depend on the order of λ(s) in the sequence Λ =
(λ(1), . . . , λ(n)). Note that ΩΛ is a constructible subset of the Grassmannian
Gr(N, d) in Zariski topology. We call ΩΛ with a d-nontrivial Λ a glN -stratum
of Gr(N, d).

Let μ(1), . . . , μ(a) be the list of all distinct partitions in Λ. Let ni be the
number of occurrences of μ(i) in Λ, i = 1, . . . , a, then

∑a
i=1 ni = n. Denote

n = (n1, . . . , na). We shall write Λ in the following order: λ(i) = μ(j) for∑j−1
s=1 ns + 1 � i � ∑j

s=1 ns, j = 1, . . . , a.
Let Sn;ni be the subgroup of the symmetric group Sn permuting {n1 +

· · · + ni−1 + 1, . . . , n1 + · · · + ni}, i = 1, . . . , a. Then the group Sn = Sn;n1 ×
Sn;n2 × · · · × Sn;na acts freely on P̊n and on RP̊n. Denote by P̊n/Sn and
RP̊n/Sn the sets of orbits.
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Proposition 3.4. Suppose Λ = (λ(1), . . . , λ(n)) is d-nontrivial. The stratum
ΩΛ is a ramified covering of P̊n/Sn. Moreover, the degree of the covering is
equal to dim(VΛ)slN . In particular, dim ΩΛ = n. Over RP̊n/Sn, this covering
is unramified of the same degree, moreover all points in fibers are real.
Proof. The statement follows from Theorem 3.2, Lemma 3.3, and Theorem
1.1 of [MTV3].

Clearly, we have the following theorem.
Theorem 3.5. We have

(3.7) Gr(N, d) =
⊔

d-nontrivial Λ
ΩΛ.

Next, for a d-nontrivial Λ, we call the closure of ΩΛ inside Gr(N, d), a
glN -cycle. The glN -cycle ΩΛ is an algebraic set. We describe the glN -cycles
as unions of glN -strata.

Let Λ = (λ(1), . . . , λ(n)) and Ξ = (ξ(1), . . . , ξ(n−1)) be such that Ξ � Λ.
We call ΩΞ a simple degeneration of ΩΛ if and only if both Λ and Ξ are d-
nontrivial. In view of Theorem 3.2, taking a simple degeneration is equivalent
to making two coordinates of z collide.
Theorem 3.6. If ΩΞ is a simple degeneration of ΩΛ, then ΩΞ is contained
in the glN -cycle ΩΛ.

Theorem 3.6 is proved in Section 7.1.

Suppose Θ = (θ(1), . . . , θ(l)) is d-nontrivial and Λ � Θ. Then, it is clear
that ΩΘ is obtained from ΩΛ by a sequence of simple degenerations. We call
ΩΘ a degeneration of ΩΛ.
Corollary 3.7. If ΩΘ is a degeneration of ΩΛ, then ΩΘ is contained in the
glN -cycle ΩΛ.
Theorem 3.8. For d-nontrivial Λ, we have

(3.8) ΩΛ =
⊔

Ξ�Λ,
d-nontrivial Ξ

ΩΞ.

Theorem 3.8 is proved in Section 7.1.

Theorems 3.5 and 3.8 imply that the subsets ΩΛ with d-nontrivial Λ give
a stratification of Gr(N, d). We call it the glN -stratification of Gr(N, d).
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Example 3.9. We give an example of the gl2-stratification for Gr(2, 4) in
the following picture. In the picture, we simply write Λ for ΩΛ. We also
write tuples of numbers with bold font for 4-nontrivial tuples of partitions,
solid arrows for simple degenerations between 4-nontrivial tuples of parti-
tions. The dashed arrows go between comparable sequences where the set ΩΞ
corresponding to the smaller sequence is empty.

((1,0), (1,0), (1,0), (1,0))

((2,0), (1,0), (1,0)) ((1,1), (1,0), (1,0))

((2,1), (1,0))((2,0), (2,0)) ((1,1), (1,1))((3, 0), (1, 0)) ((2, 0), (1, 1))

((3, 1)) ((2,2))((4, 0))

In particular, Ω((1,0),(1,0),(1,0),(1,0)) is dense in Gr(2, 4).

Remark 3.10. In general, for Gr(N, d), let ε1 = (1, 0, . . . , 0) and let

Λ = (ε1, ε1, . . . , ε1︸ ︷︷ ︸
N(d−N)

).

Then Λ is d-nontrivial, and ΩΛ is dense in Gr(N, d). Clearly, ΩΛ consists
of spaces of polynomials whose Wronskian (see Section 3.4) has only simple
roots.

Remark 3.11. The group of affine translations acts on Cd[x] by changes of
variable. Namely, for a ∈ C

∗, b ∈ C, we have a map sending f(x) �→ f(ax+ b)
for all f(x) ∈ Cd[x]. This group action preserves the Grassmannian Gr(N, d)
and the strata ΩΛ.

3.4. The case of N = 1 and the Wronski map

We show that the decomposition in Theorems 3.5 and 3.8 respects the Wronski
map.
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From now on, we use the convention that x − zs is considered as the
constant function 1 if zs = ∞.

Consider the Grassmannian of lines Gr(1, d̃). By Theorem 3.5, the de-
composition of Gr(1, d̃) is parameterized by unordered sequences of positive
integers m = (m1, . . . ,mn) such that |m| = d̃− 1.

Let z = (z1, . . . , zn) ∈ P̊n. We have Cf ∈ Ωm,z if and only if

f(x) = a
n∏

s=1
(x− zs)ms , a �= 0.

In other words, the stratum Ωm of the gl1-stratification (3.7) of Gr(1, d̃)
consists of all points in Gr(1, d̃) whose representative polynomials have n
distinct roots (one of them can be ∞) of multiplicities m1, . . . ,mn.

Therefore the gl1-stratification is exactly the celebrated swallowtail strat-
ification.

For g1(x), . . . , gl(x) ∈ C[x], denote by Wr(g1(x), . . . , gl(x)) the Wronskian,

Wr(g1(x), . . . , gl(x)) = det(di−1gj/dx
i−1)li,j=1.

Let X ∈ Gr(N, d). The Wronskians of two bases of X differ by a multipli-
cation by a nonzero number. We call the monic polynomial representing the
Wronskian the Wronskian of X and denote it by Wr(X). It is clear that
degx Wr(X) � N(d−N).

The Wronski map

Wr : Gr(N, d) → Gr(1, N(d−N) + 1)

is sending X ∈ Gr(N, d) to CWr(X).
The Wronski map is a finite algebraic map; see, for example, Propositions

3.1 and 4.2 in [MTV5], of degree dim(L⊗N(d−N))sln , which is explicitly given
by

(N(d−N))! 0! 1! 2! . . . (d−N − 1)!
N ! (N + 1)! (N + 2)! . . . (d− 1)! ,

see [S].
Let Λ = (λ(1), . . . , λ(n)) be d-nontrivial and z = (z1, . . . , zn) ∈ P̊n. If

X ∈ ΩΛ,z, then one has

Wr(X) =
n∏

s=1
(x− zs)|λ

(s)|.

Set d̃ = N(d−N) + 1. Therefore, we have the following proposition.
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Proposition 3.12. The preimage of the stratum Ωm of Gr(1, N(d−N)+1)
under the Wronski map is a union of all d-nontrivial strata ΩΛ of Gr(N, d)
such that |λ(s)| = ms, s = 1, . . . , n.

Let Λ = (λ(1), . . . , λ(n)) be an unordered sequence of partitions with at
most N parts. Let a be the number of distinct partitions in Λ. We can assume
that λ(1), . . . , λ(a) are all distinct and let n1, . . . , na be their multiplicities in
Λ, n1 + · · · + na = n. Define the symmetry coefficient of Λ as the product of
multinomial coefficients:

(3.9) b(Λ) =
∏
i

(∑
s=1,...,a, |λ(s)|=i ns

)
!∏

s=1,...,a, |λ(s)|=i(ns)!
.

Proposition 3.13. Let Λ = (λ(1), . . . , λ(n)) be d-nontrivial. Then the Wron-
ski map Wr|ΩΛ : ΩΛ → Ωm is a ramified covering of degree b(Λ) dim(VΛ)slN .
Proof. The statement follows from Theorem 3.2, Lemma 3.3, and Proposition
3.12.

In other words, the glN -stratification of Gr(N, d) given by Theorems 3.5
and 3.8, is adjacent to the swallowtail gl1-stratification of Gr(1, N(d−N)+1)
and the Wronski map.

4. The gN -stratification of self-dual Grassmannian

It is convenient to use the notation: g2r+1 = sp2r, and g2r = so2r+1, r � 2.
We also set g3 = sl2. The case of g3 = sl2 is discussed in detail in Section 4.6.

4.1. Self-dual spaces

Let Λ = (λ(1), . . . , λ(n)) be a tuple of partitions with at most N parts such
that |Λ| = N(d−N) and let z = (z1, . . . , zn) ∈ P̊n.

Define a tuple of polynomials T = (T1, . . . , TN ) by

(4.1) Ti(x) =
n∏

s=1
(x− zs)λ

(s)
i −λ

(s)
i+1 , i = 1, . . . , N,

where λ
(s)
N+1 = 0. We say that T is associated with Λ,z.

Let X ∈ ΩΛ,z and g1, . . . , gi ∈ X. Define the divided Wronskian Wr† with
respect to Λ, z by

Wr†(g1, . . . , gi) = Wr(g1, . . . , gi)
i∏

j=1
T j−i−1
N+1−j , i = 1, . . . , N.
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Note that Wr†(g1, . . . , gi) is a polynomial in x.
Given X ∈ Gr(N, d), define the dual space X† of X by

X† = {Wr†(g1, . . . , gN−1) | gi ∈ X, i = 1, . . . , N − 1}.

Lemma 4.1. If X ∈ ΩΛ,z, then X† ∈ ΩΛ̃,z ⊂ Gr(N, d̃), where

d̃ =
n∑

s=1
λ

(s)
1 − d + 2N,

and Λ̃ = (λ̃(1), . . . , λ̃(n)) is a sequence of partitions with at most N parts such
that

λ̃
(s)
i = λ

(s)
1 − λ

(s)
N+1−i, i = 1, . . . , N, s = 1, . . . , n.

Note that we always have λ̃
(s)
N = 0 for every s = 1, . . . , n, hence X† has

no base points.
Given a space of polynomials X and a rational function g in x, denote by

g ·X the space of rational functions of the form g · f with f ∈ X.
A self-dual space is called a pure self-dual space if X = X†. A space of

polynomials X is called self-dual if X = g ·X† for some polynomial g ∈ C[x].
In particular, if X ∈ ΩΛ,z is self-dual, then X = TN ·X†, where TN is defined
in (4.1). Note also, that if X is self-dual then g ·X is also self-dual.

It is obvious that every point in Gr(2, d) is a self-dual space.
Let sGr(N, d) be the set of all self-dual spaces in Gr(N, d). We call

sGr(N, d) the self-dual Grassmannian. The self-dual Grassmannian sGr(N, d)
is an algebraic subset of Gr(N, d).

Let ΩΛ,z be the finite set defined in (3.5) and ΩΛ the set defined in (3.6).
Denote by sΩΛ,z the set of all self-dual spaces in ΩΛ,z and by sΩΛ the set of
all self-dual spaces in ΩΛ:

sΩΛ,z = ΩΛ,z

⋂
sGr(N, d) and sΩΛ = ΩΛ

⋂
sGr(N, d).

We call the sets sΩΛ gN -strata of the self-dual Grassmannian. A stratum sΩΛ
does not depend on the order of the set of partitions Λ. Note that each sΩΛ
is a constructible subset of the Grassmannian Gr(N, d) in Zariski topology.

A partition λ with at most N parts is called N-symmetric if λi − λi+1 =
λN−i − λN−i+1, i = 1, . . . , N − 1. If the stratum sΩΛ is nonempty, then all
partitions λ(s) are N -symmetric; see also Lemma 4.4 below.
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The self-dual Grassmannian is related to the Gaudin model in types B and
C, see [MV1] and Theorem 4.5 below. We show that sGr(N, d) also has a re-
markable stratification structure similar to the glN -stratification of Gr(N, d),
governed by representation theory of gN ; see Theorems 4.11 and 4.13.

Remark 4.2. The self-dual Grassmannian also has a stratification induced
from the usual Schubert cell decomposition (3.1), (3.2). For z ∈ P

1, and an N -
symmetric partition λ with λ1 � d−N , set sΩλ(F(z)) = Ωλ(F(z))∩sGr(N, d).
Then it is easy to see that

sGr(N, d) =
⊔

N−symmetric μ,
μ1�d−N

sΩμ(F(z)) and

sΩλ(F(z)) =
⊔

N−symmetric μ,
μ1�d−N, λ⊆μ

sΩμ(F(z)).

4.2. Bethe algebras of types B and C and self-dual Grassmannian

The Bethe algebra B (the algebra of higher Gaudin Hamiltonians) for a simple
Lie algebras g were described in [FFR]. The Bethe algebra B is a commutative
subalgebra of U(g[t]) which commutes with the subalgebra U(g) ⊂ U(g[t]).
An explicit set of generators of the Bethe algebra in Lie algebras of types
B, C, and D was given in [M]. Such a description in the case of glN is given
above in Section 2.4. For the case of gN we only need the following fact.

Recall our notation g(x) for the current of g ∈ g, see (2.1).

Proposition 4.3 ([FFR, M]). Let N > 3. There exist elements Fij ∈ gN ,
i, j = 1, . . . , N , and polynomials Gs(x) in dkFij(x)/dxk, s = 1, . . . , N , k =
0, . . . , N , such that the Bethe algebra of gN is generated by coefficients of
Gs(x) considered as formal power series in x−1.

Similar to the glN case, for a collection of dominant integral gN -weights
Λ = (λ(1), . . . , λ(n)) and z = (z1, . . . , zn) ∈ P̊n, we set VΛ,z =

⊗n
s=1 Vλ(s)(zs),

considered as a B-module. Namely, if z ∈ C
n, then VΛ,z is a tensor product

of evaluation gN [t]-modules and therefore a B-module. If, say, zn = ∞, then
B acts trivially on Vλ(n)(∞). More precisely, in this case, b ∈ B acts by b⊗ 1
where the first factor acts on

⊗n−1
s=1 Vλ(s)(zs) and 1 acts on Vλ(n)(∞).

We also denote VΛ the module VΛ,z considered as a gN -module.
Let μ be a dominant integral gN -weight and k ∈ Z�0. Define an N -

symmetric partition μA,k with at most N parts by the rule: (μA,k)N = k
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and

(4.2) (μA,k)i − (μA,k)i+1 =
{
〈μ, α̌i〉, if 1 � i �

[
N
2
]
,

〈μ, α̌N−i〉, if
[
N
2
]
< i � N − 1.

We call μA,k the partition associated with weight μ and integer k.
Let Λ = (λ(1), . . . , λ(n)) be a sequence of dominant integral gN -weights

and let k = (k1, . . . , kn) be an n-tuple of nonnegative integers. Then denote
ΛA,k = (λ(1)

A,k1
, . . . , λ

(n)
A,kn

) the sequence of partitions associated with λ(s) and
ks, s = 1, . . . , n.

We use notation μA = μA,0 and ΛA = ΛA,(0,...,0).

Lemma 4.4. If Ξ is a d-nontrivial sequence of partitions with at most N
parts and sΩΞ is nonempty, then Ξ has the form Ξ = ΛA,k for a sequence
of dominant integral gN -weights Λ = (λ(1), . . . , λ(n)) and an n-tuple k of
nonnegative integers. The pair (Λ,k) is uniquely determined by Ξ. Moreover,
if N = 2r, then

∑n
s=1〈λ(s), α̌r〉 is even.

Proof. The first statement follows from Lemma 4.1. If N = 2r is even, the
second statement follows from the equality

N(d−N) = |Ξ| =
n∑

s=1
r
(
2
r−1∑
i=1

〈λ(s), α̌i〉 + 〈λ(s), α̌r〉
)

+ N
n∑

s=1
ks.

Therefore the strata are effectively parameterized by sequences of domi-
nant integral gN -weights and tuples of nonnegative integers. In what follows
we write sΩΛ,k for sΩΛA,k

and sΩΛ,k,z for sΩΛA,k,z.

Define a formal differential operator

DB = ∂N
x +

N∑
i=1

Gi(x)∂N−i
x .

For a B-eigenvector v ∈ VΛ,z, Gi(x)v = hi(x)v, we denote Dv = ∂N
x +∑N

i=1 hi(x)∂N−i
x the corresponding scalar differential operator.

Theorem 4.5. Let N > 3.
There exists a choice of generators Gi(x) of the gN Bethe algebra B (see

Proposition 4.3), such that for any sequence of dominant integral gN -weights
Λ = (λ(1), . . . , λ(n)), any z ∈ P̊n, and any B-eigenvector v ∈ (VΛ,z)gN ,
we have Ker ((T1 . . . TN )1/2 · Dv · (T1 . . . TN )−1/2) ∈ sΩΛA,z, where T =
(T1, . . . , TN ) is associated with ΛA,z.
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Moreover, if |ΛA| = N(d − N), then this defines a bijection between the
joint eigenvalues of B on (VΛ,z)gN and sΩΛA,z ⊂ Gr(N, d).

Proof. Theorem 4.5 is deduced from [R] in Section 7.2.

The second part of the theorem also holds for N = 3; see Section 4.6.

Remark 4.6. In particular, Theorem 4.5 implies that if dim(VΛ)gN > 0,
then dim(VΛA,k

)slN > 0. This statement also follows from Lemma A.2 given
in the Appendix.

We also have the following lemma from [R].

Lemma 4.7. Let z be a generic point in P̊n. Then the action of the gN Bethe
algebra on (VΛ,z)gN is diagonalizable and has simple spectrum. In particular,
this statement holds for any sequence z ∈ RP̊n.

4.3. Properties of the strata

We describe simple properties of the strata sΩΛ,k.
Given Λ,k,z, define Λ̃, k̃, z̃ by removing all zero components, that is the

ones with both λ(s) = 0 and ks = 0. Then sΩΛ̃,k̃,z̃ = sΩΛ,k,z and sΩΛ̃,k̃ =
sΩΛ,k. Also, by Remark 4.6, if (VΛ)gN �= 0, then dim(VΛA,k

)slN > 0, thus
|ΛA,k| is divisible by N .

We say that (Λ,k) is d-nontrivial if and only if (VΛ)gN �= 0, |λ(s)
A,ks

| > 0,
s = 1, . . . , n, and |ΛA,k| = N(d−N).

If (Λ,k) is d-nontrivial then the corresponding stratum sΩΛ,k ⊂ sGr(N, d)
is nonempty, see Proposition 4.9 below.

Note that |ΛA,k| = |ΛA|+N |k|, where |k| = k1+ · · ·+kn. In particular, if
(Λ,0) is d-nontrivial then (Λ,k) is (d + |k|)-nontrivial. Further, there exists
a bijection between ΩΛA,z in Gr(N, d) and ΩΛA,k,z in Gr(N, d+ |k|) given by

(4.3) ΩΛA,z → ΩΛA,k,z, X �→
n∏

s=1
(x− zs)ks ·X.

Moreover, (4.3) restricts to a bijection of sΩΛA,z in sGr(N, d) and sΩΛA,k,z in
sGr(N, d + |k|).

If (Λ,k) is d-nontrivial then ΛA,k is d-nontrivial. The converse is not true.
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Example 4.8. For this example we write the highest weights in terms of
fundamental weights, e.g. (1, 0, 0, 1) = ω1 + ω4. We also use slN -modules
instead of glN -modules, since the spaces of invariants are the same.

For N = 4 and g4 = so5 of type B2, we have

dim(V(2,0) ⊗ V(1,0) ⊗ V(2,0))g4 = 0 and dim(V(2,0,2) ⊗ V(1,0,1) ⊗ V(2,0,2))sl4 = 2.

Let Λ = ((2, 0), (1, 0), (2, 0)). Then ΛA is 9-nontrivial, but (Λ, (0, 0, 0)) is not.
Similarly, for N = 5 and g5 = sp4 of type C2, we have

dim(V(1,0)⊗V(0,1)⊗V(0,1))g5 = 0 and dim(V(1,0,0,1)⊗V(0,1,1,0)⊗V(0,1,1,0))sl5 = 2.

Let Λ = ((1, 0), (0, 1), (1, 0)). Then ΛA is 8-nontrivial, but (Λ, (0, 0, 0)) is not.

Let μ(1), . . . , μ(a) be all distinct partitions in ΛA,k. Let ni be the number
of occurrences of μ(i) in ΛA,k, then

∑a
i=1 ni = n. Denote n = (n1, . . . , na),

we shall write ΛA,k in the following order: λ(i)
A,ki

= μ(j) for
∑j−1

s=1 ns + 1 � i �∑j
s=1 ns, j = 1, . . . , a.

Proposition 4.9. Suppose (Λ,k) is d-nontrivial. The set sΩΛ,k is a ramified
covering of P̊n/Sn. Moreover, the degree of the covering is equal to dim(VΛ)gN .
In particular, dim sΩΛ,k = n. Over RP̊n/Sn, this covering is unramified of
the same degree, moreover all points in fibers are real.

Proof. The proposition follows from Theorem 4.5, Lemma 4.7, and Theorem
1.1 of [MTV3].

We find strata sΩΛ,k ⊂ sGr(N, d) of the largest dimension.

Lemma 4.10. If N = 2r, then the d-nontrivial stratum sΩΛ,k ⊂ sGr(N, d)
with the largest dimension has (λ(s), ks) = (ωr, 0), s = 1, . . . , 2(d − N). In
particular, the dimension of this stratum is 2(d−N).

If N = 2r + 1, the d-nontrivial strata sΩΛ,k ⊂ sGr(N, d) with the largest
dimension have (λ(s), ks) equal to either (ωjs , 0) with some js ∈ {1, . . . , r},
or to (0, 1), for s = 1, . . . , d − N . Each such stratum is either empty or has
dimension d−N . There is at least one nonempty stratum of this dimension,
and if d > N + 1 then more than one.

Proof. By Proposition 4.9, we are going to find the maximal n such that
(Λ,k) is d-nontrivial, where Λ = (λ(1), . . . , λ(n)) is a sequence of dominant
integral gN -weights and k = (k1, . . . , kn) is an n-tuple of nonnegative integers.
Since ΛA,k is d-nontrivial, it follows that λ(s) �= 0 or λ(s) = 0 and ks > 0, for
all s = 1, . . . , n.
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Suppose N = 2r. If λ(s) �= 0, we have

|λ(s)
A,ks

| � |λ(s)
A,0| = r

(
2
r−1∑
i=1

〈λ(s), α̌i〉 + 〈λ(s), α̌r〉
)
� r.

If ks > 0, then |λ(s)
A,ks

| � 2rks � 2r. Therefore, it follows that

rn �
n∑

s=1
|λ(s)

A,ks
| = |ΛA,k| = (d−N)N.

Hence n � 2(d−N).
If we set λ(s) = wr and ks = 0 for all s = 1, . . . , 2(d−N). Then (Λ,k) is

d-nontrivial since
dim(Vωr ⊗ Vωr)so2r+1 = 1.

Now let us consider N = 2r + 1, r � 1. Similarly, if λ(s) �= 0, we have

|λ(s)
A,ks

| � |λ(s)
A,0| = (2r + 1)

r∑
i=1

〈λ(s), α̌i〉 � 2r + 1.

If ks > 0, then |λ(s)
A,ks

| � (2r + 1)ks � 2r + 1. It follows that

(2r + 1)n �
n∑

s=1
|λ(s)

A,ks
| = |ΛA,k| = (d−N)N.

Hence n � d−N . Clearly, the equality is achieved only for the (Λ,k) described
in the statement of the lemma. Note that if (λ(s), ks) = (0, 1) for all s =
1, . . . , d−N , then (Λ,k) is d-nontrivial and therefore nonempty. If d > N +1
we also have d-nontrivial tuples parameterized by i = 1, . . . , r, such that
(λ(s), ks) = (0, 1), s = 3, . . . , d−N , and (λ(s), ks) = (ωi, 0), s = 1, 2.

4.4. The gN -stratification of self-dual Grassmannian

The following theorem follows directly from Theorems 3.5 and 4.5.

Theorem 4.11. We have

(4.4) sGr(N, d) =
⊔

d-nontrivial (Λ,k)
sΩΛ,k.
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Next, for a d-nontrivial (Λ,k), we call the closure of sΩΛ,k inside sGr(N,

d), a gN -cycle. The gN -cycles sΩΛ,k are algebraic sets in sGr(N, d) and there-
fore in Gr(N, d). We describe gN -cycles as unions of gN -strata similar to (3.8).

Define a partial order � on the set of pairs {(Λ,k)} as follows. Let Λ =
(λ(1), . . . , λ(n)), Ξ = (ξ(1), . . . , ξ(m)) be two sequences of dominant integral gN -
weights. Let k = (k1, . . . , kn), l = (l1, . . . , lm) be two tuples of nonnegative
integers. We say that (Λ,k) � (Ξ, l) if and only if there exists a partition
{I1, . . . , Im} of {1, 2, . . . , n} such that

HomgN (Vξ(i) ,
⊗
j∈Ii

Vλ(j)) �= 0, |ξ(i)
A,li

| =
∑
j∈Ii

|λ(j)
A,kj

|,

for i = 1, . . . ,m.
If (Λ,k) � (Ξ, l) are d-nontrivial, we call sΩΞ,l a degeneration of sΩΛ,k.

If we suppose further that m = n− 1, we call sΩΞ,l a simple degeneration of
sΩΛ,k.

Theorem 4.12. If sΩΞ,l is a degeneration of sΩΛ,k, then sΩΞ,l is contained
in the gN -cycle sΩΛ,k.

Theorem 4.12 is proved in Section 7.2.

Theorem 4.13. For d-nontrivial (Λ,k), we have

(4.5) sΩΛ,k =
⊔

(Ξ,l)�(Λ,k),
d-nontrivial (Ξ,l)

sΩΞ,l.

Theorem 4.13 is proved in Section 7.2.

Theorems 4.11 and 4.13 imply that the subsets sΩΛ,k with d-nontrivial
(Λ,k) give a stratification of sGr(N, d), similar to the glN -stratification of
Gr(N, d); see (3.7) and (3.8). We call it the gN -stratification of sGr(N, d).

Example 4.14. The following picture gives an example for so5-stratification
of sGr(4, 6). In the following picture, we write ((λ(1))k1 , . . . , (λ(n))kn) for sΩΛ,k.
We also simply write λ(s) for (λ(s))0. For instance, ((0, 1)1, (0, 1)) represents
sΩΛ,k where Λ = ((0, 1), (0, 1)) and k = (1, 0). The solid arrows represent
simple degenerations. Unlike the picture in Example 3.9 we do not include
here the pairs of sequences which are not 6-nontrivial, as there are too many
of them.
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((0, 1), (0, 1), (0, 1), (0, 1))

((0, 2), (0, 1), (0, 1)) ((1, 0), (0, 1), (0, 1)) ((0, 0)1, (0, 1), (0, 1))

((0, 0)1, (0, 0)1)((1, 0), (1, 0))((0, 2), (0, 2)) ((0, 1)1, (0, 1))

((0, 0)2)

In particular, the stratum sΩ((0,1),(0,1),(0,1),(0,1)) is dense in sGr(4, 6).

Proposition 4.15. If N = 2r is even, then the stratum sΩΛ,k with (λ(s), ks) =
(ωr, 0), where s = 1, . . . , 2(d−N), is dense in sGr(N, d).
Proof. For N = 2r, one has the gN -module decomposition

(4.6) Vωr ⊗ Vωr = V2ωr ⊕ Vω1 ⊕ · · · ⊕ Vωr−1 ⊕ V(0,...,0).

It is clear that (Λ,k) is d-nontrivial. It also follows from (4.6) that if (Ξ, l)
is d-nontrivial then (Λ,k) � (Ξ, l). The proposition follows from Theorems
4.11 and 4.13.

Remark 4.16. The group of affine translations, see Remark 3.11, preserves
the self-dual Grassmannian sGr(N, d) and the strata sΩΛ,k.

4.5. The gN -stratification of sGr(N, d) and the Wronski map

Let Λ = (λ(1), . . . , λ(n)) be a sequence of dominant integral gN -weights and let
k = (k1, . . . , kn) be an n-tuple of nonnegative integers. Let z = (z1, . . . , zn) ∈
P̊n.

Recall that λ(s)
i = 〈λ(s), α̌i〉. If X ∈ sΩΛ,k,z, one has

Wr(X) =

⎧⎪⎪⎨⎪⎪⎩
( n∏

s=1
(x− zs)λ

(s)
1 +···+λ

(s)
r +ks

)N
, if N = 2r + 1;( n∏

s=1
(x− zs)2λ

(s)
1 +···+2λ(s)

r−1+λ
(s)
r +2ks

)r
, if N = 2r.
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We define the reduced Wronski map Wr as follows.
If N = 2r + 1, the reduced Wronski map

Wr : sGr(N, d) → Gr(1, d−N + 1)

is sending X ∈ sGr(N, d) to C(Wr(X))1/N .
If N = 2r, the reduced Wronski map

Wr : sGr(N, d) → Gr(1, 2(d−N) + 1)

is sending X ∈ sGr(N, d) to C(Wr(X))1/r.
The reduced Wronski map is also a finite map.
For N = 2r, the degree of the reduced Wronski map is given by

dim(V ⊗2(d−N)
ωr )gN . This dimension is given by, see [KLP],

(4.7) (N −1)!!
∏

1�i<j�r

(
(j− i)(N − i− j+1)

) r−1∏
k=0

(2(d−N + k))!
(d− k − 1)!(d−N + k)! .

Let d̃ = d − N + 1 if N = 2r + 1 and d̃ = 2(d − N) + 1 if N = 2r. Let
m = (m1, . . . ,mn) be an unordered sequence of positive integers such that
|m| = d̃− 1.

Similar to Section 3.4, we have the following proposition.

Proposition 4.17. The preimage of the stratum Ωm of Gr(1, d̃) under the
reduced Wronski map is a union of all strata sΩΛ,k of sGr(N, d) such that
|λ(s)

A,ks
| = Nms, s = 1, . . . , n, if N is odd and such that |λ(s)

A,ks
| = rms, s =

1, . . . , n, if N = 2r is even.

Let Λ = (λ(1), . . . , λ(n)) be an unordered sequence of dominant integral
gN -weights and k = (k1, . . . , kn) a sequence of nonnegative integers. Let a
be the number of distinct pairs in the set {(λ(s), ks), s = 1, . . . , n}. We can
assume that (λ(1), k1), . . . , (λ(a), ka) are all distinct, and let n1, . . . , na be their
multiplicities, n1 + · · · + na = n.

Consider the unordered set of integers m = (m1, . . . ,mn), where Nms =
|λ(s)

A,ks
| if N is odd or rms = |λ(s)

A,ks
| if N = 2r is even. Consider the stra-

tum Ωm in Gr(1, d̃), corresponding to polynomials with n distinct roots of
multiplicities m1, . . . ,mn.

Proposition 4.18. Let (Λ,k) be d-nontrivial. Then the reduced Wronski map
Wr|sΩΛ,k

: sΩΛ,k → Ωm is a ramified covering of degree b(ΛA,k) dim(VΛ)gN ,
where b(ΛA,k) is given by (3.9).
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Proof. The statement follows from Theorem 4.5, Lemma 4.7, and Proposition
4.17.

In other words, the gN -stratification of sGr(N, d) given by Theorems 4.11
and 4.13, is adjacent to the swallowtail gl1-stratification of Gr(1, d̃) and the
reduced Wronski map.

4.6. Self-dual Grassmannian for N = 3

Let N = 3 and g3 = sl2. We identify the dominant integral sl2-weights with
nonnegative integers. Let Λ = (λ(1), . . . , λ(n), λ) be a sequence of nonnegative
integers and z = (z1, . . . , zn,∞) ∈ P̊n+1.

Choose d large enough so that k := d − 3 − ∑n
s=1 λ

(s) − λ � 0. Let
k = (0, . . . , 0, k). Then ΛA,k has coordinates

λ
(s)
A = (2λ(s), λ(s), 0), s = 1, . . . , n,

λA,k =
(
d− 3 −

n∑
s=1

λ(s) + λ, d− 3 −
n∑

s=1
λ(s), d− 3 −

n∑
s=1

λ(s) − λ
)
.

Note that we always have |ΛA,k| = 3(d− 3) and spaces of polynomials in
sΩΛ,k,z are pure self-dual spaces.

Theorem 4.19. There exists a bijection between the common eigenvectors in
(VΛ,z)sl2 of the gl2 Bethe algebra B and sΩΛ,k,z.

Proof. Let X ∈ sΩΛ,k,z, and let T = (T1(x), T2(x), T3(x)) be associated with
ΛA,k, z, then

T1(x) = T2(x) =
n∏

s=1
(x− zs)λ

(s)
.

Following Section 6 of [MV1], let u = (u1, u2, u3) be a Witt basis of X,
one has

Wr(u1, u2) = T1u1, Wr(u1, u3) = T1u2, Wr(u2, u3) = T1u3.

Let y(x, c) = u1 + cu2 + c2

2 u3, it follows from Lemma 6.15 of [MV1] that

Wr
(
y(x, c), ∂y

∂c
(x, c)

)
= T1y(x, c).

Since X has no base points, there must exist c′ ∈ C such that y(x, c′) and
T1(x) do not have common roots. It follows from Lemma 6.16 of [MV1] that
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y(x, c′) = p2 and y(x, c) = (p + (c− c′)q)2 for suitable polynomials p(x), q(x)
satisfying Wr(p, q) = 2T1. In particular, {p2, pq, q2} is a basis of X. Without
loss of generality, we can assume that deg p < deg q. Then

deg p = 1
2
( n∑

s=1
λ(s) − λ

)
, deg q = 1

2
( n∑

s=1
λ(s) + λ

)
+ 1.

Since X has no base points, p and q do not have common roots. Combining
with the equality Wr(p, q) = 2T1, one has that the space spanned by p and q
has singular points at z1, . . . , zn and ∞ only. Moreover, the exponents at zs,
s = 1, . . . , n, are equal to 0, λ(s) + 1, and the exponents at ∞ are equal to
− deg p,− deg q.

By Theorem 3.2, the space span{p, q} corresponds to a common eigenvec-
tor of the gl2 Bethe subalgebra in the subspace

(⊗n
s=1 V(λ(s),0)(zs) ⊗

V(d−2−deg p,d−1−deg q)(∞)
)sl2 .

Conversely, given a common eigenvector of the gl2 Bethe algebra in
(VΛ,z)sl2 , by Theorem 3.2, it corresponds to a space X̃ of polynomials in
Gr(2, d) without base points. Let {p, q} be a basis of X̃, define a space of poly-
nomials span{p2, pq, q2} in Gr(3, d). It is easy to see that span{p2, pq, q2} ∈
sΩΛ,k,z is a pure self-dual space.

Let X ∈ Gr(2, d), denote by X2 the space spanned by f2 for all polyno-
mials f ∈ X. It is clear that X2 ∈ sGr(3, 2d− 1). Define

(4.8) π : Gr(2, d) → sGr(3, 2d− 1)

by sending X to X2. The map π is an injective algebraic map.

Corollary 4.20. The map π defines a bijection between the subset of spaces
of polynomials without base points in Gr(2, d) and the subset of pure self-dual
spaces in sGr(3, 2d− 1).

Note that not all self-dual spaces in sGr(3, 2d−1) can be expressed as X2

for some X ∈ Gr(2, d) since the greatest common divisor of a self-dual space
does not have to be a square of a polynomial.

4.7. Geometry and topology

It would be very interesting to determine the topology and geometry of the
strata and cycles of Gr(N, d) and of sGr(N, d). In particular, it would be
interesting to understand the geometry and topology of the self-dual Grass-
mannian sGr(N, d). Here are some simple examples of small dimension.
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Of course, sGr(N,N) = Gr(N,N) is just one point. Also, sGr(2r+1, 2r+
2) is just P

1.

Consider sGr(2r, 2r + 1), r � 1. It has only two strata: sΩ(ωr,ωr),(0,0) and
sΩ(0),(1). Moreover, the reduced Wronski map has degree 1 and defines a bijec-
tion: Wr : sGr(2r, 2r + 1) → Gr(1, 3). In particular, the so2r+1-stratification
in this case is identified with the swallowtail gl1-stratification of quadratics.
There are two strata: polynomials with two distinct roots and polynomials
with one double root. Therefore, through the reduced Wronski map, the self-
dual Grassmannian sGr(2r, 2r+1) can be identified with P2 with coordinates
(a0 : a1 : a2) and the stratum sΩ(0),(1) is a nonsingular curve of degree 2 given
by the equation a2

1 − 4a0a2 = 0.

Consider sGr(2r + 1, 2r + 3), r � 1. In this case, we have r + 2 strata:
sΩ(ωi,ωi),(0,0), i = 1, . . . , r, sΩ(0,0),(1,1), and sΩ(0),(2). The reduced Wronski map
Wr : sGr(2r + 1, 2r + 3) → Gr(1, 3) restricted to any strata again has degree
1. Therefore, through the reduced Wronski map, the self-dual Grassmannian
sGr(2r+ 1, 2r+ 3) can be identified with r+ 1 copies of P2 all intersecting in
the same nonsingular degree 2 curve corresponding to the stratum sΩ(0),(2).
In particular, every 2-dimensional sp2r-cycle is just P

2.

Consider sGr(2r + 1, 2r + 4), r � 1. We have dim sGr(2r + 1, 2r + 4) = 3.
This is the last case when for all strata the coverings of Proposition 4.9 have
degree one. There are already many strata. For example, consider sGr(5, 8),
that is r = 2. There are four strata of dimension 3 corresponding to the
following sequences of sp4-weights and 3-tuples of nonnegative integers:

Λ1 = (ω1, ω1, 0), k1 = (0, 0, 1); Λ2 = (ω1, ω1, ω2), k2 = (0, 0, 0);

Λ3 = (ω2, ω2, 0), k3 = (0, 0, 1); Λ4 = (0, 0, 0), k4 = (1, 1, 1).

By the reduced Wronski map, the stratum ΩΛ4,k4 is identified with the sub-
set of Gr(1, 4) represented by cubic polynomials without multiple roots and
the cycle ΩΛ4,k4 with Gr(1, 4) = P

3. The stratification of ΩΛ4,k4 is just
the swallowtail of cubic polynomials. However, for other three strata the
reduced Wronski map has degree 3. Using instead the map in Proposition
4.9, we identify each of these strata with P̊3/(Z/2Z) or with the subset of
Gr(1, 3) × Gr(1, 2) represented by a pair of polynomials (p1, p2), such that
deg(p1) � 2, deg(p2) � 1 and such that all three roots (including infinity)
of p1p2 are distinct. Then the corresponding sp4-cycles ΩΛi,ki , i = 1, 2, 3, are
identified with Gr(1, 3) × Gr(1, 2) = P

2 × P
1.
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A similar picture is observed for 3-dimensional strata in the case of
sGr(2r, 2r + 2). Consider, for example, Gr(2, 4); see Example 3.9. Then the
4-dimensional stratum Ω(1,0),(1,0),(1,0),(1,0) is dense and (relatively) compli-
cated, as the corresponding covering in Proposition 3.4 has degree 2. But
for the 3-dimensional strata the degrees are 1. Therefore, Ω(2,0),(1,0),(1,0) and
Ω(1,1),(1,0),(1,0) are identified with P̊3/(Z/2Z) and the corresponding cycles are
just Gr(1, 3) × Gr(1, 2) = P

2 × P
1.

5. More notation

5.1. Lie algebras

Let g and h be as in Section 2.2. One has the Cartan decomposition g = n−⊕
h⊕n+. Introduce also the positive and negative Borel subalgebras b = h⊕n+
and b− = h⊕ n−.

Let G be a simple Lie group, B a Borel subgroup, and N = [B,B] its
unipotent radical, with the corresponding Lie algebras n+ ⊂ b ⊂ g. Let G act
on g by adjoint action.

Let E1, . . . , Er ∈ n+, α̌1, . . . , α̌r ∈ h, F1, . . . , Fr ∈ n− be the Chevalley
generators of g. Let p−1 be the regular nilpotent element

∑r
i=1 Fi. The set

p−1 + b = {p−1 + b | b ∈ b} is invariant under conjugation by elements of N .
Consider the quotient space (p−1 + b)/N and denote the N -conjugacy class
of g ∈ p−1 + b by [g]g.

Let P̌ = {λ̌ ∈ h|〈αi, λ̌〉 ∈ Z, i = 1, . . . , r} and P̌+ = {λ̌ ∈ h|〈αi, λ̌〉 ∈
Z�0, i = 1, . . . , r} be the coweight lattice and the cone of dominant integral
coweights. Let ρ ∈ h∗ and ρ̌ ∈ h be the Weyl vector and covector such that
〈ρ, α̌i〉 = 1 and 〈αi, ρ̌〉 = 1, i = 1, . . . , r.

The Weyl group W ⊂ Aut(h∗) is generated by simple reflections si, i =
1, . . . , r,

si(λ) = λ− 〈λ, α̌i〉αi, λ ∈ h∗.

The restriction of the bilinear form (·, ·) to h is nondegenerate and induces an
isomorphism h ∼= h∗. The action of W on h is given by si(μ̌) = μ̌− 〈αi, μ̌〉α̌i

for μ̌ ∈ h. We use the notation

w · λ = w(λ + ρ) − ρ, w · λ̌ = w(λ̌ + ρ̌) − ρ̌, w ∈ W, λ ∈ h∗, λ̌ ∈ h,

for the shifted action of the Weyl group on h∗ and h, respectively.
Let tg = g(tA) be the Langlands dual Lie algebra of g, then t(so2r+1) =

sp2r and t(sp2r) = so2r+1. A system of simple roots of tg is α̌1, . . . , α̌r with
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the corresponding coroots α1, . . . , αr. A coweight λ̌ ∈ h of g can be identified
with a weight of tg.

For a vector space X we denote by M(X) the space of X-valued mero-
morphic functions on P

1. For a group R we denote by R(M) the group of
R-valued meromorphic functions on P

1.

5.2. sp2r as a subalgebra of sl2r

Let v1, . . . , v2r be a basis of C2r. Define a nondegenerate skew-symmetric form
χ on C

2r by

χ(vi, vj) = (−1)i+1δi,2r+1−j , i, j = 1, . . . , 2r.

The special symplectic Lie algebra g = sp2r by definition consists of all endo-
morphisms K of C2r such that χ(Kv, v′) + χ(v,Kv′) = 0 for all v, v′ ∈ C

2r.
This identifies sp2r with a Lie subalgebra of sl2r.

Denote Eij the matrix with zero entries except 1 at the intersection of
the i-th row and j-th column.

The Chevalley generators of g = sp2r are given by

Ei = Ei,i+1 + E2r−i,2r+1−i, Fi = Ei+1,i + E2r+1−i,2r−i, i = 1, . . . , r − 1,
Er = Er,r+1, Fr = Er+1,r,

α̌j = Ejj − Ej+1,j+1 + E2r−j,2r−j − E2r+1−j,2r+1−j , α̌r = Err − Er+1,r+1,

j = 1, . . . , r − 1.

Moreover, a coweight λ̌ ∈ h can be written as

(5.1) λ̌ =
r∑

i=1

(
〈αi, λ̌〉 + · · · + 〈αr−1, λ̌〉 + 〈αr, λ̌〉/2

)
(Eii − E2r+1−i,2r+1−i).

In particular,

ρ̌ =
r∑

i=1

2r − 2i + 1
2 (Eii − E2r+1−i,2r+1−i).

For convenience, we denote the coefficient of Eii in the right hand side of
(5.1) by (λ̌)ii, for i = 1, . . . , 2r.
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5.3. so2r+1 as a subalgebra of sl2r+1

Let v1, . . . , v2r+1 be a basis of C2r+1. Define a nondegenerate symmetric form
χ on C

2r+1 by

χ(vi, vj) = (−1)i+1δi,2r+2−j , i, j = 1, . . . , 2r + 1.

The special orthogonal Lie algebra g = so2r+1 by definition consists of all
endomorphisms K of C2r+1 such that χ(Kv, v′)+χ(v,Kv′) = 0 for all v, v′ ∈
C

2r+1. This identifies so2r+1 with a Lie subalgebra of sl2r+1.
Denote Eij the matrix with zero entries except 1 at the intersection of

the i-th row and j-th column.
The Chevalley generators of g = so2r+1 are given by

Ei = Ei,i+1 + E2r+1−i,2r+2−i, Fi = Ei+1,i + E2r+2−i,2r+1−i,

i = 1, . . . , r,

α̌j = Ejj − Ej+1,j+1 + E2r+1−j,2r+1−j − E2r+2−j,2r+2−j , j = 1, . . . , r.

Moreover, a coweight λ̌ ∈ h can be written as

(5.2) λ̌ =
r∑

i=1

(
〈αi, λ̌〉 + · · · + 〈αr, λ̌〉

)
(Eii − E2r+2−i,2r+2−i).

In particular,

ρ̌ =
r∑

i=1
(r + 1 − i)(Eii − E2r+2−i,2r+2−i).

For convenience, we denote the coefficient of Eii in the right hand side of
(5.2) by (λ̌)ii, for i = 1, . . . , 2r + 1.

5.4. Lemmas on spaces of polynomials

Let Λ = (λ(1), . . . , λ(n), λ) be a sequence of partitions with at most N parts
such that |Λ| = N(d−N) and let z = (z1, . . . , zn,∞) ∈ P̊n+1.

Given an N -dimensional space of polynomials X, denote by DX the monic
scalar differential operator of order N with kernel X. The operator DX is a
monodromy-free Fuchsian differential operator with rational coefficients.
Lemma 5.1. A subspace X ⊂ Cd[x] is a point of ΩΛ,z if and only if the
operator DX is Fuchsian, regular in C \ {z1, . . . , zn}, the exponents at zs,
s = 1, . . . , n, being equal to λ

(s)
N , λ

(s)
N−1 +1, . . . , λ(s)

1 +N−1, and the exponents
at ∞ being equal to 1 + λN − d, 2 + λN−1 − d, . . . , N + λ1 − d.
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Let T = (T1, . . . , TN ) be associated with Λ,z, see (4.1). Let Γ = {u1, . . . ,
uN} be a basis of X ∈ ΩΛ,z, define a sequence of polynomials

(5.3) yN−i = Wr†(u1, . . . , ui), i = 1, . . . , N − 1.

Denote (y1, . . . , yN−1) by yΓ. We say that yΓ is constructed from the basis Γ.
Lemma 5.2 ([MV1]). Suppose X ∈ ΩΛ,z and let Γ = {u1, . . . , uN} be a basis
of X. If yΓ = (y1, . . . , yN−1) is constructed from Γ, then

DX =
(
∂x − ln′

(T1 · · ·TN

y1

))(
∂x − ln′

(y1T2 · · ·TN

y2

))
× . . .

×
(
∂x − ln′

(yN−2TN−1TN

yN−1

))(
∂x − ln′(yN−1TN )

)
.

Let D = ∂N
x +

∑N
i=1 hi(x)∂N−i

x be a differential operator with meromorphic
coefficients. The operator D∗ = ∂N

x +
∑N

i=1(−1)i∂N−i
x hi(x) is called the formal

conjugate to D.
Lemma 5.3. Let X ∈ ΩΛ,z and let {u1, . . . , uN} be a basis of X, then

Wr(u1, . . . , ûi, . . . , uN )
Wr(u1, . . . , uN ) , i = 1, . . . , N,

form a basis of Ker((DX)∗). The symbol ûi means that ui is skipped. Moreover,
given an arbitrary factorization of DX to linear factors, DX = (∂x + f1)(∂x +
f2) . . . (∂x + fN ), we have (DX)∗ = (∂x − fN )(∂x − fN−1) . . . (∂x − f1).
Proof. The first statement follows from Theorem 3.14 of [MTV2]. The second
statement follows from the first statement and Lemma A.5 of [MV1].

Lemma 5.4. Let X ∈ ΩΛ,z. Then

DX† = (T1 · · ·TN ) ·
(
DX

)∗ · (T1 · · ·TN )−1.

Proof. The statement follows from Lemma 5.3 and the definition of X†.

Lemma 5.5. Suppose X ∈ ΩΛ,z is a pure self-dual space and z is an arbitrary
complex number, then there exists a basis Γ = {u1, . . . , uN} of X such that
for yΓ = (y1, . . . , yN−1) given by (5.3), we have yi = yN−i and yi(z) �= 0 for
every i = 1, . . . , N − 1.
Proof. The lemma follows from the proofs of Theorem 8.2 and Theorem 8.3
of [MV1].
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6. g-oper

We fix N , N � 4, and set g to be the Langlands dual of gN . Explicitly,
g = sp2r if N = 2r and g = so2r+1 if N = 2r + 1.

6.1. Miura g-oper

Fix a global coordinate x on C ⊂ P
1. Consider the following subset of differ-

ential operators

opg(P1) = {∂x + p−1 + v | v ∈ M(b)}.

This set is stable under the gauge action of the unipotent subgroup N (M) ⊂
G (M). The space of g-opers is defined as the quotient space Opg(P1) :=
opg(P1)/N (M). We denote by [∇] the class of ∇ ∈ opg(P1) in Opg(P1).

We say that ∇ = ∂x + p−1 + v ∈ opg(P1) is regular at z ∈ P
1 if v has no

pole at z. A g-oper [∇] is said to be regular at z if there exists f ∈ N (M)
such that f−1 · ∇ · f is regular at z.

Let ∇ = ∂x +p−1 +v be a representative of a g-oper [∇]. Consider ∇ as a
G -connection on the trivial principal bundle p : G ×P

1 → P
1. The connection

has singularities at the set Sing ⊂ C where the function v has poles (and
maybe at infinity). Parallel translations with respect to the connection define
the monodromy representation π1(C \ Sing) → G . Its image is called the
monodromy group of ∇. If the monodromy group of one of the representatives
of [∇] is contained in the center of G , we say that [∇] is a monodromy-free
g-oper.

A Miura g-oper is a differential operator of the form ∇ = ∂x + p−1 + v,
where v ∈ M(h).

A g-oper [∇] has regular singularity at z ∈ P1 \ {∞}, if there exists a
representative ∇ of [∇] such that

(x− z)ρ̌ · ∇ · (x− z)−ρ̌ = ∂x + p−1 + w

x− z
,

where w ∈ M(b) is regular at z. The residue of [∇] at z is [p−1 +w(z)]g. We
denote the residue of [∇] at z by resz[∇].

Similarly, a g-oper [∇] has regular singularity at ∞ ∈ P
1, if there exists a

representative ∇ of [∇] such that

xρ̌ · ∇ · x−ρ̌ = ∂x + p−1 + w̃

x
,
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where w̃ ∈ M(b) is regular at ∞. The residue of [∇] at ∞ is −[p−1+w̃(∞)]g.
We denote the residue of [∇] at ∞ by res∞[∇].

Lemma 6.1. For any λ̌, μ̌ ∈ h, we have [p−1 − ρ̌ − λ̌]g = [p−1 − ρ̌ − μ̌]g if
and only if there exists w ∈ W such that λ̌ = w · μ̌.

Hence we can write [λ̌]W for [p−1 − ρ̌− λ̌]g. In particular, if [∇] is regular
at z, then resz[∇] = [0]W .

Let Λ̌ = (λ̌(1), . . . , λ̌(n), λ̌) be a sequence of n + 1 dominant integral g-
coweights and let z = (z1, . . . , zn,∞) ∈ P̊n+1. Let Opg(P1)RS

Λ̌,z
denote the set

of all g-opers with at most regular singularities at points zs and ∞ whose
residues are given by

reszs [∇] = [λ̌(s)]W , res∞[∇] = −[λ̌]W , s = 1, . . . , n,

and which are regular elsewhere. Let Opg(P1)Λ̌,z ⊂ Opg(P1)RS
Λ̌,z

denote the
subset consisting of those g-opers which are also monodromy-free.

Lemma 6.2 ([F]). For every g-oper [∇] ∈ Opg(P1)Λ̌,z, there exists a Miura
g-oper as one of its representatives.

Lemma 6.3 ([F]). Let ∇ be a Miura g-oper, then [∇] ∈ Opg(P1)RS
Λ̌,z

if and
only if the following conditions hold:

(i) ∇ is of the form

(6.1) ∇ = ∂x + p−1 −
n∑

s=1

ws · λ̌(s)

x− zs
−

m∑
j=1

w̃j · 0
x− tj

for some m ∈ Z�0, ws ∈ W for s = 1, . . . , n and w̃j ∈ W, tj ∈ P
1 \ z

for j = 1, . . . ,m,
(ii) there exists w∞ ∈ W such that

(6.2)
n∑

s=1
ws · λ̌(s) +

m∑
j=1

w̃j · 0 = w∞ · λ̌,

(iii) [∇] is regular at tj for j = 1, . . . ,m.

Remark 6.4. The condition (6.2) implies that
∑n

s=1〈αr, λ̌
(s)〉 + 〈αr, λ̌〉 is

even if N = 2r.
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6.2. Miura transformation

Following [DS], one can associate a linear differential operator L∇ to each
Miura g-oper ∇ = ∂x + p−1 + v(x), v(x) ∈ M(h).

In the case of slr+1, v(x) ∈ M(h) can be viewed as an (r + 1)-tuple
(v1(x), . . . , vr+1(x)) such that

∑r+1
i=1 vi(x) = 0. The Miura transformation

sends ∇ = ∂x + p−1 + v(x) to the operator

L∇ = (∂x + v1(x)) . . . (∂x + vr+1(x)).

Similarly, the Miura transformation takes the form

L∇ = (∂x + v1(x)) . . . (∂x + vr(x))(∂x − vr(x)) . . . (∂x − v1(x))

for g = sp2r and

L∇ = (∂x + v1(x)) . . . (∂x + vr(x))∂x(∂x − vr(x)) . . . (∂x − v1(x))

for g = so2r+1. The formulas of the corresponding linear differential operators
for the cases of sp2r and so2r+1 can be understood with the embeddings
described in Sections 5.2 and 5.3.

It is easy to see that different representatives of [∇] give the same differ-
ential operator, we can write this map as [∇] �→ L[∇].

Recall the definition of (λ̌)ii for λ̌ ∈ h from Sections 5.2 and 5.3.

Lemma 6.5. Suppose ∇ is a Miura g-oper with [∇] ∈ Opg(P1)Λ̌,z, then
L[∇] is a monic Fuchsian differential operator with singularities at points in
z only. The exponents of L[∇] at zs, s = 1, . . . , n, are (λ̌(s))ii +N − i, and the
exponents at ∞ are −(λ̌)ii −N + i, i = 1, . . . , N .

Proof. Note that ∇ satisfies the conditions (i)-(iii) in Lemma 6.3. By Theorem
5.11 in [F] and Lemma 6.1, we can assume ws = 1 for given s. The lemma
follows directly.

Denote by Z(G ) the center of G , then

Z(G ) =
{
{I2r+1} if g = so2r+1,

{±I2r} if g = sp2r.

We have the following lemma.
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Lemma 6.6. Suppose ∇ is a Miura g-oper with [∇] ∈ Opg(P1)Λ̌,z. If g =
so2r+1, then L[∇] is a monodromy-free differential operator. If g = sp2r, then
the monodromy of L[∇] around zs is −I2r if and only if 〈αr, λ̌

(s)〉 is odd for
given s ∈ {1, . . . , n}.

6.3. Relations with pure self-dual spaces

Let Λ̌ = (λ̌(1), . . . , λ̌(n), λ̌) be a sequence of n+1 dominant integral g-coweights
and let z = (z1, . . . , zn,∞) ∈ P̊n+1.

Consider Λ̌ as a sequence of dominant integral gN -weights. Choose d

large enough so that k := d− N −∑n
s=1(λ̌(s))11 − (λ̌)11 � 0. (We only need

to consider the case that
∑n

s=1(λ̌(s))11 + (λ̌)11 is an integer for N = 2r, see
Lemma 4.4 and Remark 6.4.) Let k = (0, . . . , 0, k). Note that we always have
|Λ̌A,k| = N(d − N) and spaces of polynomials in sΩΛ̌,k,z (= sΩΛ̌A,k,z

) are
pure self-dual spaces.

Theorem 6.7. There exists a bijection between Opg(P1)Λ̌,z and sΩΛ̌,k,z given
by the map [∇] �→ Ker(f−1 · L[∇] · f), where T = (T1, . . . , TN ) is associated
with Λ̌A,k, z and f = (T1 . . . TN )−1/2.

Proof. We only prove it for the case of g = sp2r. Suppose [∇] ∈ Opg(P1)Λ̌,z,
by Lemmas 6.2 and 6.3, we can assume ∇ has the form (6.1) satisfying the
conditions (i), (ii), and (iii) in Lemma 6.3.

Note that if 〈αr, λ̌
(s)〉 is odd, f has monodromy −I2r around the point

zs. By Lemma 6.6, one has that f−1 · L[∇] · f is monodromy-free around the
point zs for s = 1, . . . , n. Note also that

∑n
s=1〈αr, λ̌

(s)〉 + 〈αr, λ̌〉 is even, it
follows that f−1 ·L[∇] · f is also monodromy-free around the point ∞. Hence
f−1 · L[∇] · f is a monodromy-free differential operator.

It follows from Lemmas 5.1 and 6.5 that Ker(f−1 · L[∇] · f) ∈ ΩΛ̌A,k,z
.

Since L[∇] takes the form

(∂x + v1(x)) . . . (∂x + vr(x))(∂x − vr(x)) . . . (∂x − v1(x)),

it follows that Ker(f−1 · L[∇] · f) is a pure self-dual space by Lemma 5.4.
If there exist [∇1], [∇2] ∈ Opg(P1)Λ̌,z such that f−1 · L[∇1] · f = f−1 ·

L[∇2] · f , then they are the same differential operator constructed from dif-
ferent bases of Ker(f−1 · L[∇] · f) as described in Lemma 5.2. Therefore they
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correspond to the same so2r+1-population by Theorem 7.5 of [MV1]. It follows
from Theorem 4.2 and remarks in Section 4.3 of [MV2] that [∇1] = [∇2].

Conversely, give a self-dual space X ∈ sΩΛ̌,k,z. By Lemma 5.5, there
exists a basis Γ of X such that for yΓ = (y1, . . . , yN−1) we have yi = yN−i,
i = 1, . . . , N − 1. Following [MV2], define v ∈ M(h) by

〈αi,v〉 = − ln′
(
Ti

r∏
j=1

y
−ai,j
j

)
,

then we introduce the Miura g-oper ∇Γ = ∂x+p−1+v, which only has regular
singularities. It is easy to see from Lemma 5.2 that f−1 · L[∇Γ] · f = DX . It
follows from the same argument as the previous paragraph that [∇Γ] = [∇Γ′ ]
for any other basis Γ′ of X and hence [∇Γ] is independent of the choice of Γ.
Again by Lemma 5.5, for any x0 ∈ C\z we can choose Γ such that yi(x0) �= 0
for all i = 1, . . . , N − 1, it follows that [∇Γ] is regular at x0. By exponents
reasons (see Lemma 6.5), we have

reszs [∇Γ] = [λ̌(s)]W , res∞[∇Γ] = −[λ̌]W , s = 1, . . . , n.

On the other hand, [∇Γ] is monodromy-free by Theorem 4.1 of [MV2]. It
follows that [∇Γ] ∈ Opg(P1)Λ̌,z, which completes the proof.

7. Proof of main theorems

7.1. Proof of Theorems 3.6 and 3.8

We prove Theorem 3.6 first.
By assumption, Ξ = (ξ(1), . . . , ξ(n−1)) is a simple degeneration of Λ =

(λ(1), . . . , λ(n)). Without loss of generality, we assume that ξ(i) = λ(i) for
i = 1, . . . , n− 2 and

dim(Vλ(n−1) ⊗ Vλ(n))sing
ξ(n−1) > 0.

Recall the strata ΩΛ is a union of intersections of Schubert cells ΩΛ,z,
see (3.6). Taking the closure of ΩΛ is equivalent to allowing coordinates of
z ∈ P̊n coincide.

Let z0 = (z1, . . . , zn−1) ∈ P̊n−1. Let X ∈ ΩΞ,z0 . By Theorem 3.2, there
exists a common eigenvector v ∈ (VΞ,z0)slN of the Bethe algebra B such that
Dv = DX .
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Let z′
0 = (z1, . . . , zn−1, zn−1). Consider the B-module VΛ,z′

0
, then we have

VΛ,z′
0

=(
n−2⊗
s=1

Vλ(s)(zs)) ⊗ (Vλ(n−1) ⊗ Vλ(n))(zn−1)

=
⊕
μ

cμ
λ(n−1),λ(n)(

n−2⊗
s=1

Vλ(s)(zs)) ⊗ Vμ(zn−1),

where cμ
λ(n−1),λ(n) := dim(Vλ(n−1) ⊗ Vλ(n))sing

μ are the Littlewood-Richardson
coefficients. Since dim(Vλ(n−1) ⊗ Vλ(n))sing

ξ(n−1) > 0, we have VΞ,z0 ⊂ VΛ,z′
0
. In

particular, (VΞ,z0)slN ⊂ (VΛ,z′
0
)slN . Hence v is a common eigenvector of the

Bethe algebra B on (VΛ,z′
0
)slN such that Dv = DX .

It follows that X is a limit point of ΩΛ,z as zn approaches zn−1. This
completes the proof of Theorem 3.6.

Theorem 3.8 follows directly from Theorem 3.6.

7.2. Proof of Theorems 4.5, 4.12, and 4.13

We prove Theorem 4.5 first. We follow the convention of Section 6.
We can identify the sequence Λ̌ = (λ̌(1), . . . , λ̌(n), λ̌) of dominant integral

g-coweights as a sequence of dominant integral gN -weights. Consider the gN -
module VΛ̌ = Vλ̌(1)⊗· · ·⊗Vλ̌(n)⊗Vλ̌. It follows from Theorem 3.2 and Corollary
3.3 of [R] that there exists a bijection between the joint eigenvalues of the
gN Bethe algebra B acting on (Vλ̌(1)(z1)⊗ · · · ⊗ Vλ̌(n)(zn))sing and the g-opers
in Opg(P1)Λ̌,z for all possible dominant integral g-coweight λ̌. In fact, one
can show that Theorem 3.2 and Corollary 3.3 of [R] are also true for the
subspaces of (Vλ̌(1)(z1)⊗ · · · ⊗ Vλ̌(n)(zn))sing

λ̌
with specific gN -weight λ̌. Recall

that k = (0, . . . , 0, k), where k = d−N −∑n
s=1(λ̌(s))11 − (λ̌)11 � 0. Since one

has the canonical isomorphism of B-modules

(VΛ̌,z)gN ∼= (Vλ̌(1)(z1) ⊗ · · · ⊗ Vλ̌(n)(zn))sing
λ̌

,

by Theorem 6.7, we have the following theorem.

Theorem 7.1. There exists a bijection between the joint eigenvalues of the
gN Bethe algebra B acting on (VΛ̌,z)gN and sΩΛ̌,k,z ⊂ sGr(N, d) such that
given a joint eigenvalue of B with a corresponding B-eigenvector v in (VΛ̌,z)gN

we have Ker ((T1 . . . TN )1/2 · Dv · (T1 . . . TN )−1/2) ∈ sΩΛ̌,k,z.
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The fact that Ker ((T1 . . . TN )1/2 · Dv · (T1 . . . TN )−1/2) ∈ sΩΛ̌,k,z for the
eigenvector v ∈ (VΛ̌,z)gN of the gN Bethe algebra (except for the case of even
N when there exists s ∈ {1, 2, . . . , n} such that 〈αr, λ̌

(s)〉 is odd) also follows
from the results of [LMV] and [MM].

Note that by Proposition 2.10 in [R], the i-th coefficient of the scalar
differential operator L[∇] in Theorem 6.7 is obtained by action of a universal
series Gi(x) ∈ U(gN [t][[x−1]]). Theorem 4.5 for the case of N � 4 is a direct
corollary of Theorems 6.7 and 7.1.

Thanks to Theorem 4.5, Theorems 4.12 and 4.13 can be proved in a similar
way as Theorems 3.6 and 3.8.

Appendix A. Self-dual spaces and �-invariant vectors

A.1. Diagram automorphism �

There is a diagram automorphism � : slN → slN such that

�(Ei) = EN−i, �(Fi) = FN−i, �2 = 1, �(hA) = hA.

The automorphism � is extended to the automorphism of glN by

glN → glN , eij �→ (−1)i−j−1eN+1−j,N+1−i, i, j = 1, . . . , N.

By abuse of notation, we denote this automorphism of glN also by �.
The restriction of � to the Cartan subalgebra hA induces a dual map

�∗ : h∗A → h∗A, λ �→ λ�, by

λ�(h) = �∗(λ)(h) = λ(�(h)),

for all λ ∈ h∗A, h ∈ hA.
Let (h∗A)0 = {λ ∈ h∗A | λ� = λ} ⊂ h∗A. We call elements of (h∗A)0 symmetric

weights.
Let hN be the Cartan subalgebra of gN . Consider the root system of type

AN−1 with simple roots αA
1 , . . . , α

A
N−1 and the root system of gN with simple

roots α1, . . . , α[N2 ].
There is a linear isomorphism P ∗

� : h∗N → (h∗A)0, λ �→ λA, where λA is
defined by

(A.1) 〈λA, α̌
A
i 〉 = 〈λA, α̌

A
N−i〉 = 〈λ, α̌i〉, i = 1, . . . ,

[
N

2

]
.
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Let λ ∈ h∗A and fix two nonzero highest weight vectors vλ ∈ (Vλ)λ, vλ� ∈
(Vλ�)λ� . Then there exists a unique linear isomorphism I� : Vλ → Vλ� such
that

(A.2) I�(vλ) = vλ� , I�(gv) = �(g)I�(v),

for all g ∈ slN , v ∈ Vλ. In particular, if λ is a symmetric weight, I� is a linear
automorphism of Vλ, where we always assume that vλ = vλ� .

Let M be a finite-dimensional slN -module with a weight space decom-
position M =

⊕
μ∈h∗

A
(M)μ. Let f : M → M be a linear map such that

f(hv) = �(h)f(v) for h ∈ hA, v ∈ M . Then it follows that f((M)μ) ⊂ (M)μ�

for all μ ∈ h∗A. Define a formal sum

Tr�Mf =
∑

μ∈(h∗
A)0

Tr(f |(M)μ)e(μ),

where Tr(f |(M)μ) for μ ∈ (h∗A)0 denotes the trace of the restriction of f to the
weight space (M)μ.

Lemma A.1. We have Tr�M⊗M ′(f ⊗ f ′) = (Tr�Mf) · (Tr�M ′f ′).

Let Λ = (λ(1), . . . , λ(n)) be a sequence of dominant integral gN -weights,
then the tuple ΛA = (λ(1)

A , . . . , λ
(n)
A ) is a sequence of symmetric dominant

integral slN -weights. Let VΛA =
⊗n

s=1 Vλ
(s)
A

. The tensor product of maps I�
in (A.2) with respect to λ

(s)
A , s = 1, . . . , n, gives a linear isomorphism

(A.3) I� : VΛA → VΛA ,

of slN -modules. Note that the map I� preserves the weight spaces with sym-
metric weights and the corresponding spaces of singular vectors. In particular,
(VΛA)slN is invariant under I�.

Lemma A.2. Let μ be a gN -weight. Then we have

dim(VΛ)sing
μ = Tr

(
I�|(VΛA )sing

μA

)
, dim(VΛ)μ = Tr

(
I�|(VΛA )μA

)
.

In particular, dim(VΛ)gN = Tr
(
I�|(VΛA )slN

)
.

Proof. The statement follows from Lemma A.1 and Theorem 1 of Section 4.4
of [FSS].
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A.2. Action of � on the Bethe algebra

The automorphism � is extended to the automorphism of current algebra
glN [t] by the formula �(g⊗ts) = �(g)⊗ts, where g ∈ glN and s = 0, 1, 2, . . . .
Recall the operator DB, see (2.3).

Proposition A.3. We have the following identity

�(DB) = ∂N
x +

N∑
i=1

(−1)i∂N−i
x Bi(x).

Proof. It follows from the proof of Lemma 3.5 of [BHLW] that no nonzero
elements of U(glN [t]) kill all

⊗n
s=1 L(zs) for all n ∈ Z>0 and all z1, . . . , zn. It

suffices to show the identity when it evaluates on
⊗n

s=1 L(zs).
Following the convention of [MTV6], define the N × N matrix Gh =

Gh(N,n, x, px,z,λ, X, P ) by the formula

Gh :=
(

(px − λi) δij +
n∑

a=1
(−1)i−j xN+1−i,apN+1−j,a

x− za

)N
i,j=1

.

By Theorem 2.1 of [MTV6], it suffices to show that

rdet(Gh)
n∏

a=1
(x− za)

=
∑

A,B,|A|=|B|

∏
b 
∈A

(px − λb)
∏
a 
∈B

(x− za) det(xab)b∈Ba∈A det(pab)b∈Ba∈A.(A.4)

The proof of (A.4) is similar to the proof of Theorem 2.1 in [MTV6] with the
following modifications.

Let m be a product whose factors are of the form f(x), px, pij , xij where
f(x) is a rational function in x. Then the product m will be called normally
ordered if all factors of the form px, xij are on the left from all factors of the
form f(x), pij .

Correspondingly, in Lemma 2.4 of [MTV6], we put the normal order for
the first i factors of each summand.

We have the following corollary of Proposition A.3.

Corollary A.4. The glN Bethe algebra B is invariant under �, that is
�(B) = B.
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Let Λ = (λ(1), . . . , λ(n)) be a sequence of partitions with at most N parts
and z = (z1, . . . , zn) ∈ P̊n.

Let v ∈ (VΛ,z)slN be an eigenvector of the glN Bethe algebra B. Denote
�(DB)v the scalar differential operator obtained by acting by the formal
operator �(DB) on v.

Corollary A.5. Let v ∈ (VΛ,z)slN be a common eigenvector of the glN Bethe
algebra; then the identity �(DB)v =

(
Dv

)∗ holds.

Let Ξ = (ξ(1), . . . , ξ(n)) be a sequence of N -tuples of integers. Suppose

ξ(s) − λ(s) = ms(1, . . . , 1), s = 1, . . . , n.

Define the following rational functions depending on ms, s = 1, . . . , n,

ϕ(x) =
n∏

s=1
(x− zs)ms , ψ(x) = ln′(ϕ(x)) =

n∑
s=1

ms

x− zs
.

Here we use the convention that 1/(x − zs) is considered as the constant
function 0 if zs = ∞.

Lemma A.6. For any formal power series a(x) in x−1 with complex coeffi-
cients, the linear map obtained by sending eij(x) to eij(x) + δija(x) induces
an automorphism of glN [t].

We denote the automorphism in Lemma A.6 by ηa(x).

Lemma A.7. The B-module obtained by pulling VΛ,z via ηψ(x) is isomorphic
to VΞ,z.

By Lemma A.7, we can identify the B-module VΞ,z with the B-module
VΛ,z as vector spaces. This identification is an isomorphism of slN -modules.
For v ∈ (VΛ,z)slN we use ηψ(x)(v) to express the same vector in (VΞ,z)slN
under this identification.

Lemma A.8. The following identity for differential operators holds

ηψ(x)(DB) = ϕ(x)DB(ϕ(x))−1.

Proof. The lemma follows from the simple computation:

ϕ(x)(∂x − eii(x))(ϕ(x))−1 = ∂x − eii(x) − ψ(x).

Proposition A.9. Let v ∈ (VΛ,z)slN be an eigenvector of the Bethe algebra
such that Dv = DX for some X ∈ ΩΛ,z, then Dηψ(x)(v) = Dϕ(x)·X .
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Proof. With the identification between the B-modules VΞ,z and VΛ,z, we have

Dηψ(x)(v) =
(
ηψ(x)(DB)

)
v

= ϕ(x)Dv(ϕ(x))−1 = ϕ(x)DX(ϕ(x))−1 = Dϕ(x)·X .

The second equality follows from Lemma A.8.

A.3. I�-invariant Bethe vectors and self-dual spaces

Let Λ = (λ(1), . . . , λ(n)) be a tuple of dominant integral gN -weights. Recall
the map I� : VΛA → VΛA , from (A.3).

Note that an slN -weight can be lifted to a glN -weight such that the N -th
coordinate of the corresponding glN -weight is zero. From now on, we consider
λ

(s)
A from (A.1) as glN -weights obtained from (4.2), that is as the partitions

with at most N − 1 parts.
Let Ξ = (ξ(1), . . . , ξ(n)) be a sequence of N -tuples of integers such that

ξ(s) − λ
(s)
A = −(λ(s)

A )1(1, . . . , 1), s = 1, . . . , n.

Consider the slN -module VΛA as the glN -module VΛA , the image of VΛA under
I� in (A.3), considered as a glN -module, is VΞ. Furthermore, the image of
(VΛA)slN under I� is (VΞ)slN .

Let T = (T1, . . . , TN ) be associated with ΛA,z, we have

T1 · · ·TN =
n∏

s=1
(x− zs)(λ

(s)
A )1 .

Let ϕ(x) = T1 · · ·TN and let ψ(x) = ϕ′(x)/ϕ(x). Hence by Lemma A.7,
the pull-back of VΞ,z through ηψ(x) is isomorphic to VΛA,z. Furthermore, the
pull-back of (VΞ,z)slN through ηψ(x) is isomorphic to (VΛA,z)slN .

Theorem A.10. Let v ∈ (VΛA,z)slN be an eigenvector of the glN Bethe
algebra B such that Dv = DX for some X ∈ ΩΛA,z, then Dηψ(x)◦I�(v) = DX† .
Moreover, X is self-dual if and only if I�(v) = v.

Proof. It follows from Proposition A.9, Corollary A.5, and Lemma 5.4 that

Dηψ(x)◦I�(v) =ϕ(x)DI�(v)(ϕ(x))−1 = ϕ(x)�(DB)v(ϕ(x))−1

=(T1 . . . TN )(DX)∗(T1 . . . TN )−1 = DX† .

Since (λ(s)
A )N = 0 for all s = 1, . . . , n, X has no base points. Therefore X

is self-dual if and only if DX = DX† . Suppose X is self-dual, it follows from
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Theorem 3.2 that ηψ(x)◦I�(v) is a scalar multiple of v. By our identification, in
terms of an slN -module homomorphism, ηψ(x) is the identity map. Moreover,
since I� is an involution, we have I�(v) = ±v.

Finally, generically, we have an eigenbasis of the action of B in (VΛA,z)slN
(for example for all z ∈ RP̊n). In such a case, by the equality of dimensions
using Lemma A.2, we have I�(v) = v. Then the general case is obtained by
taking the limit.
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