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Wall-crossing functors for quantized symplectic
resolutions: perversity and partial Ringel dualities
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Abstract: In this paper we study wall-crossing functors between
categories of modules over quantizations of symplectic resolutions.
We prove that wall-crossing functors through faces are perverse
equivalences and use this to verify an Etingof type conjecture
for quantizations of Nakajima quiver varieties associated to affine
quivers. In the case when there is a Hamiltonian torus action on
the resolution with finitely many fixed points so that it makes sense
to speak about categories O over quantizations, we introduce new
standardly stratified structures on these categories O and relate
the wall-crossing functors to the Ringel duality functors associated
to these standardly stratified structures.

1. Introduction

In this paper we study the wall-crossing (a.k.a. twisting) functors between cat-
egories of modules over quantizations of symplectic resolutions. These func-
tors are derived equivalences introduced in this generality in [BPW, Section
6.4] and further studied in [BL].

More precisely, let X° denote a normal affine Poisson variety admitting
a symplectic resolution of singularities. We also assume that X is conical in
the sense that it comes with a C*-action that contracts X° to a single point
and rescales the Poisson bracket. The symplectic resolutions of X are pa-
rameterized by cones (to be called chambers) of a certain rational hyperplane
arrangement in H2(X,R), where X is any of these resolutions. By X? we de-
note a resolution corresponding to the open cone containing a generic element
0 € H%(X,R). We can speak about filtered quantizations A4 of (the structure
sheaf of) X% where A\ € H?(X,C) is a quantization parameter. Further, it
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makes sense to speak about the category of coherent A5-modules to be de-
noted by Coh(.A%). For 6,0’ lying in two different chambers we have a derived
equivalence W&y, ¢ : D’(Coh(A{)) = D’(Coh(AY)), introduced in [BPW,
Section 6.4], to be called the wall-crossing functor. We will be interested in
two special situations:

e 0,0 lie in two chambers that are opposite to one another with respect
to their common face,
e the same condition but for # and —6’.

The two extremes here is when these chambers share a common codimension
1 face and when one is the negative of the other.

There are two important results about the wall-crossing functors in this
situation that will be obtained in this paper. First, we will show that the
wall-crossing functor for the cones opposite with respect to a common face is
perverse in the sense of Chuang and Rouquier and give some description of
the corresponding filtration. This result was obtained in some special cases
in [BL, Sections 8,10] and in the closely related setting of rational Cherednik
algebras in [L5]. The proof in the present situation closely follows [L5] but we
need to replace some missing ingredients such as the restriction functors for
Harish-Chandra bimodules.

The perversity of the wall-crossing functors is used to prove a general-
ization of the main result of [BL], Etingof’s conjecture on the number of
finite dimensional irreducible modules for symplectic reflection algebras. In
[BL], Bezrukavnikov and the author interpreted the conjecture in terms of
quantized Nakajima quiver varieties. The conjecture was proved for quivers
of finite type and also of affine type with special framing. In this paper we
give a proof for affine quivers with an arbitrary framing'.

Our second main result concerns the situation when there is a Hamiltonian
torus 1" acting on X with finitely many fixed points. In this case one can fix a
generic one-parameter subgroup v : C* — T and consider the corresponding
category O, (A{) C Coh(Af), introduced in this generality in [BLPW]. This
is a highest weight category whose simple objects are labelled by X7 In [L7]
we have introduced compatible standardly stratified structures on (9,,(.,4?\) that
roughly speaking come from degenerating v. In this paper we will produce
a new kind of compatible standardly stratified structures that come from
deforming \. There is such a structure associated to each face of the chamber
containing . Namely, let I" be a face of the chamber containing 6 and x be

!The proof of this generalization was previously obtained in [L4], by now a
retired preprint, but the proof in the present paper is much simpler and more
straightforward.
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an integral point in the interior of T'. Set 6’ := 6§ — Ny for N > 0. We show
that the wall-crossing functor ?ZITQ:;;G, is the Ringel duality functor coming
from the standardly stratified structure given by 6.

The paper is organized as follows. Section 2 recalls various preliminaries
on symplectic resolutions and their quantizations following mostly [BPW] and
[BL]. These preliminaries include the structure of resolutions and their quan-
tizations, Harish-Chandra bimodules, localization theorems and wall-crossing
functors. In Section 3 we will state and prove a theorem on a perversity of
wall-crossing functors through faces. For this, we will need to study classical
and quantum slices to symplectic leaves and restriction functors for Harish-
Chandra bimodules. We use the perversity to prove an Etingof-type conjecture
for quantized quiver varieties associated to quivers of affine types. Finally, in
Section 4 we deal with standardly stratified categories and their Ringel dual-
ities. The most nontrivial part is to introduce the standardly stratified struc-
tures on O(A%) coming from deforming A\. Then we introduce Ringel duality
for standardly stratified categories and show that wall-crossing functors as in
the previous paragraph give Ringel duality functors.
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2. Preliminaries
2.1. Symplectic resolutions

Let X be a smooth symplectic variety (with form w) equipped also with an
action of C* subject to the following conditions:

(a) There is a positive integer d such that t.w = t%w.

(b) The algebra C[X] is finitely generated and is positively graded: there
are no negative components and the zero component consists of scalars.

(c) The natural morphism p : X — X% := Spec(C[X]) is a projective
resolution of singularities.

We will say that X is a conical symplectic resolution. Thanks to (b),
we can talk about the point 0 € XY Conditions (b) and (c) imply that
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lim;_,o t.2 exists and lies in p~1(0). So we will call the C*-actions on X and
XY contracting.

By the Grauert-Riemenschneider theorem, we have H*(X,Ox) = 0 fori >
0. By results of Kaledin, [K1, Theorem 2.3], X has finitely many symplectic
leaves.

We will be interested in conical deformations Xq /B, where B is a finite
dimensional vector space, and Xy is a symplectic scheme over P with sym-
plectic form @ € Q?(Xg/PB) that specializes to w and also with a C*-action
on Xz having the following properties:

e the morphism X — P is C*-equivariant, where we consider the action
of C* on B given by t.p = t~Ip,

e the restriction of the action to X coincides with the contracting action,

o t.0:=t0.

It turns out that there is a universal conical deformation X over P :=
H?(X,C) (any other deformation is obtained via the pull-back with respect
to a linear map P — ‘l?) We will often write Xg instead of X.

For A € ‘}3, let us write X for the corresponding fiber of Xy — €]~3
If X, X’ are two conical symplectic resolutions of X, then there are open
subvarieties X C X, X’ ¢ X’ with codimy X \ X, codimx X \ X > 2 and
X = X/, see, eg., [BPW, Proposition 2.19]. This allows to identify the
Picard groups Pic(X) = Pic(X’). Moreover, the Chern class map defines an
isomorphism C ®z Pic(X) = H?*(X,C). See, e.g., [BPW, Section 2.3]. Let
Pz be the image of Pic(X) in H*(X,C).

Set Pr := RRzPz. There is a finite group W acting on Pg as a reflection
group, such that the movable cone C of X (that does not depend on the choice
of a resolution) is a fundamental chamber for W.

Now consider the locus of A € 9 such that the fiber X of Xy — B
over A is not affine. As Namikawa checked in [Nam], this locus is the union
of hyperplanes defined over R. Let Hy,..., Hy C ‘i?R be the real forms of
these hyperplanes. It turns out that the collection Hy, ..., Hy is W-stable
and includes all the walls for W. The hyperplanes H; that intersect C' split
it into the union of polyhedral cones. These cones are in bijection with the
conical symplectic resolutions of X°, where to a resolution we assign its ample
cone. Let C1,...,C,, denote all the ample cones.

Definition 2.1. We say that an element 6 € ‘i?@ is generic if it does not lie
in JF_, H;. The cones wC; (for w € W) will be called chambers.

For a generic element 0, we will write X for the resolution corresponding
to the ample cone containing Wé N C'. Further, if wd € C, we will choose a
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different identification of H?(X?, C) with 9, one twisted by w (so that the
ample cone actually contains 6).

2.2. Quantizations

We start by introducing the various versions of quantizations that we are
going to consider.

Let X be a Poisson scheme (of finite type over C) and d € Z~o. By a
formal quantization of X (relative to d) we mean a sheaf of C|[[h]]-algebras
Dy, in Zariski topology on X together with an isomorphism ¢ : Dy /(h) = Ox
of sheaves of algebras that satisfy the following conditions.

Dy, is flat over C[[A]].

The h-adic filtration on Dy is complete and separated.
[Dh, Dr] C heDy,. This gives a Poisson bracket on Dp/(h).
¢ is a Poisson isomorphism.

It is a standard fact that to give such a quantization in the case when X is
affine is the same thing as to give a single algebra that is a formal quantization
of C[X].

Now suppose that C* acts on X in such a way that t € C* rescales
the Poisson bracket on Ox by t%. Then we can speak about graded formal
quantization. By definition, this is a formal quantization (Dp, ¢) such that Dy,
is equipped with a C*-action by algebra isomorphisms with ¢. = th and such
that ¢ is C*-equivariant.

Let us now recall the notion of a filtered quantization. Suppose that C*
acts on X as in the previous paragraph. Assume, in addition, that every point
in X has a C*-stable open affine neighborhood. This is the case when X is
quasi-projective or by a theorem of Sumihiro, [S], when X is normal. By the
conical topology on X we mean the topology, where “open” means Zariski
open and C*-stable. Note that Oy is a sheaf of graded algebras in the conical
topology. By a filtered quantization of Ox we mean a pair (D, ), where D
is a sheaf of Z-filtered algebras (the filtration is ascending) in the conical
topology on X and ¢ is an isomorphism grD = Ox of sheaves of graded
algebras. These data are supposed to satisfy the following axioms.

e The topology on D induced by the filtration is complete and separated.

e If D¢, denotes the ith filtration component, then [D¢;, D<;| C D<itj—d
for all 4,7 € Z.

e The isomorphism ¢ : gr D = Oy is Poisson.
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Let us explain a connection between graded formal and filtered quanti-
zations. Let Dy be a graded formal quantization. Then we can consider the
subsheaf of C*-finite sections Dy, y;,, of Dy, restricted to conical topology. Then
Dy, fin/(h—1) is a filtered quantization. Conversely, let D be a filtered quanti-
zation. Then we can consider the Rees sheaf Rp(D) := @, D<;h'. The h-adic
completion of Ry (D) uniquely extends to a sheaf in the Zariski topology that
is a graded formal quantization. It is easy to see that these two procedures
give mutually inverse bijections between the set of filtered quantizations and
the set of graded formal quantizations.

Now let us discuss the classification of quantizations obtained in [BeKa,
L3]. Let Qx(X) denote the set of isomorphism classes of formal quantiza-
tions of X. Bezrukavnikov and Kaledin, [BeKa, Section 4], defined a natu-
ral (in particular, compatible with pull-backs under open embeddings) map
Per : Q,(X) — H?(X,C)[[A]]. They have shown in [BeKa, Theorem 1.8] that
if H(X,0x) = 0 for i = 1,2, then this map is an isomorphism. Now let
Qp.cx (X) denote the set of isomorphism classes of graded formal quantiza-
tions. It was shown in [L3, Section 2.3] that the composition Qp cx(X) —
Qr(X) — H?(X,C)[[n]] restricts to a bijection Qpcx(X) = H?*(X,C). We
conclude that the filtered quantizations of X are parameterized by H?(X,C).
For A € H?(X,C), we write D) for the corresponding filtered quantization.

The definitions of a quantization admit several ramifications. First, in-
stead of X we can consider a Poisson scheme X over a vector space 3 and
talk about quantizations of X /9 that are now required to be sheaves of C[J]-
algebras. When we speak about graded quantizations, we will always assume
that C* acts on P by t.p = t~%p. Also we can talk about quantizations of
formal schemes. The classification results quoted in the previous paragraph
still hold for formal quantizations: for a symplectic formal scheme X with
HY(X,0x) = 0,i = 1,2, the formal quantizations are classified by elements
of Cl[H(X), H].

Now let us discuss quantizations of a conical symplectic resolution X =
XY (see [BPW, Section 3]). The equalities H*(X, Ox) = 0 hold so the filtered
quantizations are classified by ‘J~3 = H?(X,C). The quantization correspond-
ing to A € P will be denoted by AS. Moreover, recall that we have the
universal conical deformation Xg of X. It was shown in [BeKa, Section 6.2]
that X‘i‘ admits a canonical quantization to be denoted by A%. It satisfies

the following property: its specialization to A € ‘,]3‘ coincides with A;o\.

Since H(X,Ox) = 0 for all i > 0, we see that Ay := I'(A%) is a quan-
tization of C[X], while H*(X,A{) = 0. It was shown in [BPW, Section 3.3]
that A, is independent of the choice of 6.
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Note that A%, is identified with (A§)°P, [L3, Section 2.3], and hence
Ay 2 AP Also we have Ay = A,y for all A € P,w € W, see [BPW,
Proposition 3.10].

2.3. Example: quiver varieties

Let us recall a special class of symplectic resolutions that will be of importance
for us later. This class is the Nakajima quiver varieties.

Let @ be a quiver (=oriented graph, we allow loops and multiple edges).
We can formally represent @) as a quadruple (Qo, Q1,t, h), where Q) is a finite
set of vertices, (1 is a finite set of arrows, ¢, h : ()1 — ()¢ are maps that to an
arrow ¢ assign its tail and head. In this paper we are interested in the case
when () is of affine type, i.e., @) is an extended Dynkin quiver of type A, D, E.

Pick vectors v = (v;)icQo, w = (Wi)icq, € Zg% and vector spaces V;, W;
with dim V; = v;, dim W; = w;. Consider the (co)framed representation space

R = R(v,w) := @ Hom(Vi(a). Via)) ® @ Hom(V;, ;).
a€Qq i€Qo

We will also consider its cotangent bundle T* R = R® R*, this is a symplectic
vector space that can be identified with

T (Hom(Vt(a), Vi) © Hom(Viy(a), Vt(a)))
acQ1
@ @ Hom(V;, W;) ® Hom(W;, V;)) .
1€Qo

The group G = [ljeq, GL(Vk) naturally acts on T*R and this action is
Hamiltonian. Its moment map p : T*R — g* is dual to x — xp : g — C[T*R],
where z i stands for the vector field on R induced by x € g.

Fix a 6 € Z? (to be called a stability condition later on) that is thought
as a character of G via 0((gr)keqo) = [Treo, det(gr)?. Then, by definition,
the quiver variety M?(v, w) is the GIT Hamiltonian reduction p~1(0)%=%*//G.
We are interested in two extreme cases: when 6 is generic (and so MY (v, w) is
smooth and symplectic) and when 6 = 0 (and so M?(v, w) is affine). We will
write M (v, w) for Spec(C[M?(v,w)]). This is an affine variety independent
of . A natural projective morphism p : M%(v,w) — M(v,w) is a resolution
of singularities; see, for example, [BL, Section 2.1]. Note also that we have
compatible C*-actions on M? (v, w), M(v, w) induced from the action on T*R
given by t.(r,a) = (t7'r,t7'a),r € R,a € R*. So M(v,w) — M(v,w)
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is a conical symplectic resolution. Note that if p is flat, then M(v,w) =
M°O(v,w). There is a combinatorial necessary and sufficient condition on
to be flat due to Crawley-Boevey, [CB], but we do not need that.

Now let us proceed to the quantum setting. We will work with quantiza-
tions of MY (v, w), M(v,w). Consider the algebra D(R) of differential opera-
tors on R. The group G naturally acts on D(R) with a quantum comoment
map ¢ : g — D(R),xz — xg. We can consider the quantum Hamiltonian
reduction A9 (v,w) = [D(R)/D(R){zr — (\,z)|x € g}]%. It is a quantiza-
tion of M%(v,w) = M(v,w) when the moment map p is flat. We can also
define a quantization A (v, w) of M?(v,w) by quantum Hamiltonian reduc-
tion. Namely, we can microlocalize D(R) to a sheaf in the conical topology
so that we can consider the restriction of D(R) to (T*R)?~%%, let DY~ de-
note the restriction. Let 7 stand for the quotient morphism p~1(0)=% —
= 10)0=%% /G = MP(v,w). Let us notice that D=5 /DY~ {xp—(\, )|z € g}
is scheme-theoretically supported on £~1(0)?~*% and so can be regarded as a
sheaf in conical topology on that variety. Set

A (v,w) = [ (D7 /D" {ar — (\ 2)}) %,

this is a quantization of M?(v, w). We note that the period of A4 (v, w) equals
to the cohomology class in H2(M?(v,w), C) defined by A up to a shift by a
fixed element in H?(M®(v,w),C). We will write Ay (v, w) for T'(A4 (v, w)).
We have Ay (v, w) = A3 (v, w) for a Zariski generic A, see [BL, Section 2.2].

Below we will need a standard and well-known result about symplectic
leaves in quiver varieties.

Lemma 2.2. Let v/ < v be a root of Q. Pick a Zariski generic parameter A
with v' - X\ = 0. If the variety My (v, w) has a single symplectic leaf that is a
point, then v’ is a real root.

Proof. Recall that from ) and w we can form a new quiver Q% with one
additional vertex oo and w; arrow from 4 to oo. Then we can form the double
quiver Q¥ so that T*R is the representation space of Q% of dimension (v,1).

Consider a representation r of Q¥ lying in ' (\) and having closed orbit.
Let H denote the stabilizer of r in G and U be the symplectic part of the
slice representation in X. Then the point corresponding to x in the quotient
= t(N)//G is a symplectic leaf if and only if U = {0}. Recall, see e.g. [BL,
Section 2.1], that the space U is recovered as follows. We decompose r into the
sum of the irreducible Q¥-modules: 7 = r° @ (r)® @ ... @ (ry)®™, where 7g
is an irreducible representation with dimension vector of the form (v°,1) and
r; are pairwise non-isomorphic irreducible representations of @ of dimension
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vector v'. By the choice of \, we see that all v*,i > 0, are proportional to
v’'. We note that U is the representation of another quiver that has vertices
1,...,k with 1 — %(vi,vi) loops at the vertex i. If UH = {0}, then there are
no loops and so each v is a real root and hence v’ is a real root. O

2.4. Harish-Chandra bimodules

Now let A be a Z-filtered algebra with a complete and separated filtration
A = U;ez A<i. We assume that [Ag;, A<;] C Agitj—q for some fixed d € Z~q
and that gr A is finitely generated.

By a Harish-Chandra A-bimodule we mean a bimodule B that can be
equipped with a complete and separated filtration B = (J;cz B<; such that

e The filtration is compatible with the filtration on A.
o [A<i, Bgj] C Bgivj—d-
e gr 3 is a finitely generated gr A-module.

For a HC bimodule B we can define its associated variety V() inside of
the reduced scheme associated to gr.A in the usual way. Note that V(B) is a
Poisson subvariety.

When A', A? are quotients of A we can speak about HC A'- A%-bimodules.

The following lemma is proved analogously to [L5, Proposition 3.8].

Lemma 2.3. Let B',B° be HC A-bimodules. Then Tor (B!, B?),
Ext’y (B, B?), Ext'yon (B, B?) are HC.

Now let us give an example of a HC bimodule. Let A = Ag. Pick x € By
Consider a line bundle O(x) on X% (recall that Bz is the image of Pic(X)
in H%(X,C), for O(x) we take any line bundle corresponding to a lift of y
to Pic(X)). Since Hi(X%,OXq) = 0 for i > 0, we see that O(x) admits a

by -
unique quantization AY , foan A% -bimodule, where for a € P* we have
[a,m] = (x,a)m for any local section m of B, see [BPW, Section 5.1] for
details. .

Now pick an affine subspace B C PB. Set ‘Agﬁ,x = ‘A‘%,x ®cpp CIPB]- Then
the global section bimodule ’A‘(lg?x = F('Agﬁ,x) is HC over Ag.

Under some conditions, the bimodule A‘(Jg?x is independent of 6.

Lemma 2.4. Suppose that the vector subspace 0fi]~3 associated to P is not
contained in the singular locus. Then ‘A‘(ﬁ?x is independent of 0.

This is [BPW, Proposition 6.24]. The following lemma is [BPW, Propo-
sition 6.26].
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Lemma 2.5. Suppose that H (X, O(x)) = 0. Then the specialization OfA‘%)?x
to A € P coincides with Af\a.

Now let us discuss si}—supports of HC bimodules. Let B be a HC Ai;—
bimodule. By its right B-support we mean the set Supp%(l’)’) consisting of all
A € B such that By =B Q¢ C, is nonzero.

The following result was obtained in [L7, Proposition 2.6].

Lemma 2.6. The subset Supp%(B) C i]~3 is Zariski closed. Its asymptotic
cone s Suppsﬁ(gr B), where the associated graded is taken with respect to any
good filtration.

For a HC Ag-bimodule B, by Vo(B) we will denote V(B) N X9.
2.5. Localization theorems

Let X = XY be a conical symplectic resolution. Let A € 3 and A be the
corresponding filtered quantization of X with global sections Ay. We can
consider the category Coh(A$) of all coherent sheaves of .A%-modules and
its derived category D?(Coh(A)), see [BL, Section 2.3]. We have the global
section functor I'y = Hom 4o (A4, e) : Coh(Af) — Ay -mod and its left adjoint
functor Locy = Ai ®.a, ®: Ay-mod — .A?\ -mod.

We say that abelian localization holds for (A, X) (or (A, 8)) if 'y, Locy are
mutually inverse equivalences. The following result (proved in [BPW, Section
5.3]) gives a necessary and sufficient condition for the abelian localization to
hold. Let y be an ample element in 7.

Lemma 2.7. The following two conditions on X\ € ‘,ff are equivalent:

o Abelian localization holds for (A, 0).
e There isn > 0 such that the bimodules Ag\?mnx,nx and Ag)inx‘)\_i_m(n_i_l)x
are mutually inverse Morita equivalences for all m € Z>(;.

Recall that an open subset U C ‘.]~3 is said to be asymptotically generic (a
terminology from [BL]) if the asymptotic cone of its complement is contained
in the singular locus.

Corollary 2.8. Let y € Pz be ample and m be such that the line bundle
Ox(nx) has no higher cohomology. Then there is an asymptotically generic
open subset Uy, C is‘ such that abelian localization holds for (XA, 0) provided
A+nmyx € Uy, for all m € Zxy.
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Proof. The locus of A\, where the bimodules Agfznx and Ag?_mx| Afmy are
inverse Morita equivalences is Zariski open and asymptotically generic. This
is proved using Lemma 2.6, compare to the proof of (2) of [BL, Proposition

4.5]. The claim of our corollary follows from Lemma 2.7. O

A weaker version of this result was obtained in [BPW, Section 5.3].

We consider the derived functors RTy : D?(Coh(A)) — DP(Ax-mod)
and LLocy : D™(Ay-mod) — D~(Coh(A%)) (if A, has finite homological
dimension, then L Loc) restricts to a functor between the bounded derived
categories).

We say that derived localization holds for (A, X) (or (A,0)) if RT'y and
L Locy are mutually inverse equivalences. In this case, Ay has finite homo-
logical dimension. In all known examples, the converse is also true, however,
this fact is not proved in general.

2.6. Wall-crossing functors

Let 6,6 be two generic elements of H?(X,Q) and A € P. Following [BPW,
Section 6.3], we are going to produce a derived equivalence W&y g
Db(Coh(AY)) = Db(Coh(AY)) assuming abelian localization holds for (), 6)
and derived localization holds for (X, 0'). Then we set W€ g := L Locf ol.
Note that this functor is right t-exact.

We can give a different realization of 20€y, 4. Namely, pick ' € \ +
Bz such that abelian localization holds for (X,¢). We identify Coh(.A%)
with Ay -mod by means of I'{ and Coh(A§) with Ay -mod by means of
F?\I/ (A?\i Vo ® A e). Under these identifications, the functor Q€ .y becomes

Wy = Af\gj\,_)\ ®ﬁA e, see [BPW, Proposition 6.31].

We will need to study the functor Q0€, »_» as A’ — X is fixed and \ varies
along a suitable affine subspace of 3. Namely, we take any face I' of any
chamber C' and consider the chamber C’ opposite to C' with respect I". For
example, if I' = {0}, then C' = —C, while for I' of codimension 1, we get
the unique chamber C’ sharing the face I' with C. Now pick a parameter \g
such that abelian localization holds for (g, #) with € in the interior of C'. Let
By be the vector subspace in 9P spanned by T' and P := \g + Po. Further,
fix x € Pz, such that abelian localization holds for Ay = Ao + x and ', an
element in the interior of C”.

Proposition 2.9. Possibly after replacing Ao with an element Ao + ¥ (and
X with x — ), where ¥ € Py and abelian localization holds for (Ao + 1,0),
we have the following: for a Zariski generic A € B, the functor Agi;],\ ®JL4A °
is an equivalence D*(Ay-mod) = DP(Ay, -mod).
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In the proof we will need a connection between derived localization and
global sections functors and homological duality functors. Let us recall the
latter. Assume that the algebra A, has finite homological dimension. First, we
have a functor Dy : D?(Ay-mod) = D’(A_,-mod)?? given by R Hom 4, (e,
A)) (here we use the identification A" = A_, mentioned in the end of
Section 2.2). Second, for a generic element ¢ € ‘BQ we have a functor DY :
Db(Coh(AY)) = D*(Coh(A?,))?P given by RHom (e, AY).

Lemma 2.10. We have Dy = RT, o DY o L Loc}.
Proof. Note that RV, o DY (e) = RHom 4 (e, A?). Now

R, 0 DY o LLocY(M) = RHom 49 (AS ©%, M, AY)
= RHomy, (M, AY) = RHomy, (M, Ay) = Dy(M).

Here R Homy, (M, Ay) — RHomy, (M, AY) is induced by Ay — AY, it is an
isomorphism for any M because it is an isomorphism for M = A,. O

Corollary 2.11. Suppose that Ay, A_) have finite homological dimension.
The functor RTY, is an equivalence if and only if LLOC? is. FEquivalently,
derived localization holds for (X, ) if and only if it holds for (—\, ).

Proof of Proposition 2.9. 1t is enough to prove this claim for a Weil generic
element of P, compare to [L5, Section 5.3]. We only need to check that de-
rived localization holds for (A, #'). By Corollary 2.11, this is equivalent to
the claim that derived localization holds for (— A\, #"). We note that (perhaps,
after replacing \g with A\g + ¢ as in the statement of the proposition) abelian
localization holds for (—A\, #”) (this follows from the choice of A (Weil generic)
and Corollary 2.8). The claim of the proposition follows. O

Now let us discuss a special class of wall-crossing functors, the long wall-
crossing functors.
Pick a generic 6 € Pg and A\, A~ € B subject to the following conditions:

L. Abelian localization holds for (A, 0), (=A, =), (A~ ).
2. A" — X e Ty

So we get the wall-crossing functor 20€,- . : D°(Ay-mod) — D’(Ay- -mod).

We want to study the behavior of this functor on the subcategory
Db (A)) C Db(Ay-mod) of all objects with holonomic homology. Recall that
we say that an Ay-module M is holonomic if its associated variety V(M) in-
tersects all leaves of X at isotropic subvarieties, equivalently, if 7=1(V(M))
is an isotropic subvariety of X, see [L6, Section 5].
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It is easy to see that V(H(DM)) C V(M) for all i. From here and D? =
id, it follows that D restricts to an equivalence D} ,(Ax) — D (A_))°PP.

Similarly, we can define the full subcategory D? ,(AY) C D®(Coh(AY)).
It was checked in [BL, Section 4], that D[ dim X] is a t-exact equivalence
DZOZ(A’(X) 1> Dzol(‘Aé)\)'

The functor WCE,- ., also restricts to an equivalence DZOI(A,\) =
D?Lol ("4)\*)'

The following result was obtained (in a special case but the proof in the
general case is the same) in [BL, Proposition 5.13] (proved in [BL, Section

8]).
Proposition 2.12. Under the assumptions (1),(2) above, there is a t-exact
equivalence DY ,(Ax-) = D% ,(A_1)PP that intertwines 2WE\—, \ with D.

Here is a corollary of this proposition also proved in [BL, Section 8].

Corollary 2.13. For M € Ay -mod, the following two conditions are equiv-
alent:

(1) Hi(WE,- M) =0 fori< 5dimX.
(2) dim M < oo.

3. Perversity of wall-crossing
3.1. Main result

Let (AL, 0Y), (\2,62) € P x ‘ﬁ(@, where 6%, 02 are generic, be such that abelian
localization holds for these pairs, and A2 — A\' € PBz. Let C*,C? denote the
chambers of 8!, 62, respectively. We assume that C! and C? are opposite to
each other with respect to their common face, say I'. In other words, there is
an interval whose midpoint is generic in I', while the end points are generic
in C',C?. We are going to prove that the functor 20€y2, y1 is a perverse
equivalence in the sense of Chuang and Rouquier, [R1, Section 2.6].

Let us recall the general definition. Let 7, 72 be triangulated categories
equipped with t-structures that are homologically finite (each object in 77 has
only finitely many nonzero homology groups). Let C!,C? denote the hearts of
T', T2, respectively.

We are going to recall the definition of a perverse equivalence with respect
to filtrations C* = Cj D C{ D ... D Ci = {0} by Serre subcategories. By
definition, this is a triangulated equivalence 7' — T2 subject to the following
conditions:
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(P1) For any j, the equivalence F restricts to an equivalence ’7'C1 — 7"22,

where we write 77,7 = 1,2, for the category of all objects in T* Wlth

C“
homology (computed with respect to the t-structures of interest) in C]Z

(P2) For M € C}, we have Hy(FM) = 0 for { < j and H,(FM) € C7,, for
> 7.

(P3) The functor M +— H;(FM) induces an equivalence C} /Cj,; = C7/C3,
of abelian categories.

Now let B!, P2 € P denote the affine subspaces P := X + Spang(I'). We
can shift the space B! (see Proposition 2.9) such that the derived localization
holds for a Weil generic point of this space and the stability condition #2. We
will produce chains of two-sided ideals

.70 1 q q+1 _

where ¢ = % dim X, having the following property:

(*) For a Weil generic parameter o€ P, the specialization I%Z is the
minimal two-sided ideal Z C A, such that GK-dim A, /T < 2j.

(*) implies that (Iii)2 = I/{i for a Weil generic A' € B* and hence also
for a Zariski generic A’. Note that the ideal If\ is well-defined for a Zariski
generic A\’ as in the proof of [L9, Lemma 2.9]. We set Ci = (Ayi/T,) -mod.
This is a Serre subcategory of C*.

Theorem 3.1. We assume that X° has conical slices (see Definition 3.2
below). Suppose that derived localization holds for a Weil generic point Mg
B! and 62. Pick x in the chamber of 6% such that H(X% O(x)) = 0. For
a Zariski generic \' € B and x € Py such that P2 = P! + x and abelian
localization holds for (\!,0%), where A2 = X\ + x, the functor W&y1_, 52 is a
perverse equivalence with respect to the filtrations C]"- cCii=1,2.

3.2. Slices

Here we are going to impose an additional assumption. Pick a point z € X°.
Let £ = L, denote the symplectic leaf through x. Consider the completion
C[X "= of C[X"]. Then we can embed C[£,]"* into C[X°]"* and this embed-
ding is unique up to a twist with a Hamiltonian automorphism of C[X%]"=,
see [K1, Section 3]. Moreover, C[X°]"* splits into the completed tensor prod-
uct C[X%" = C[£]"* @ A,, where A, is the centralizer of C[£]"* in C[X]"=,
[K1, Section 3|. Below we will often omit the subscript z.
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50, S0 - -
Let X (= X,) denote the formal spectrum of A. We can view X, as a

formal subscheme of X© so that X0 = £/ x X * We call X ® a slice to z in
X0,

>0
Definition 3.2. We say that X is conical if there is a pro-rational C*-action
on A that

e rescales the Poisson bracket on A by t~¢,
e whose weights on the maximal ideal of A are positive,

e and that lifts to the preimage X of XO in X.

Further, we say that X° has conical slices if XO is conical for all z € X°. This
holds for all examples of X° that we know.

Let A denote the C*-finite part of AA This is a Poisson subalgebra. Then
X := Spec(A) is a Poisson variety with a contracting action of C*. Moreover,
X? admits a symplectic resolution: the formal neighborhood of the zero fiber
in the resolution of X° coincides with the formal neighborhood of p=*(x). So
@ = H*(X,C) = H?*(p~(2),C).

Now let A be a quantization of C[X"]. We are going to produce a slice
quantization of C[X"], a construction that first appeared in [L1] with some
refinements given in [L2]. In what follows we assume that d is even (we can
always replace d with its multiple by replacing the contracting torus with
its cover). Let V := T, L, this is a symplectic vector space (let wy denote
the form). Consider the homogenized Weyl algebra A (V') with the relations
uv — vu = hlwy (v, v). We can consider the completion A (V)" of Ay (V) at
0 € V. Note that this is an algebra flat over C[[h]] and Ay (V)" /(h) = C[L]"=.

Now consider the Rees algebra Ay of A and its completion A;i\“”. We can
lift the embedding C[£]"s — C[X%"* to an embedding Ay (V)" — Ap*
(that is unique up to a twist with an automorphism of the form exp(h'=?f)
for f € A)7), see [L2, Section 2.1]. Moreover, the centralizer Ay of Ap(V)
in A+ satisfies Ay, /(h) = A so that we have Apr = Ah(V)/\O@JCHFL]]AAﬁ.

Assume now that A = Ay, where \ € P.

Lemma 3.3. The following statements are true:

(1) The action of C* on A lifts to a pro-rational C*-action on AAE by algebra
automorphisms with h of degree 1.

(2) Let A, denote the C*-finite part of Ay, then A == A,/(h—1) is the
algebra of global sections of the filtered quantization of X, whose period
is the pull-back of \ to p~*(z).
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Proof. Let us prove (1). It is enough to lift the C*-action on ARC[[V]] to
AA,-L@C[[EHAE(V)AO (by changing the embedding of V into the latter tensor
product we may achieve that V' is C*-stable so that the C*-action will restrict
to Ap,).

The action of C* on Ay, gives rise to the Euler derivation that we denote
by eu. The derivation extends to the completion .A;L\” that we have identified
with AAE(%C[W]]AE(V)AO. Now on AQC|[[V]] we have two derivations eu and eu,
the latter comes from the C*-action on AQC[[V]], where the action on V is
by dilations. The difference d := eu — eu is a Poisson derivation of AQC[[V]].
It is enough to show that it is Hamiltonian, then we can lift eu to a derivation
eu of AAFL@(CHEHAH(V)AO, which is easily seen to integrate to a C*-action.

To prove that § is Hamiltonian, we note that both eu and eu lift to X . So
0 also lifts to a symplectic vector field on X. On the other hand, by a result
of Kaledin, [K2, Corollary 1.5], H!(p~!(z),C) = 0. It follows that X has no
1st de Rham cohomology. This shows that ¢ is Hamiltonian and finishes the
proof of (1).

Let us prove (2). We can still form the completion (A%)"='@) that will
be a formal quantization of the formal neighborhood X”~'@) of 7~1(z) in
X. The notion of period still makes sense. It follows from the construction in
[BeKa, Section 4] that the period of (A%)"= is the pull-back A of A to 7~ !(z).
On the other hand, the centralizer of Az (V)" in (A2)"+ (to be denoted by

~0
Ap) is a quantization of the slice in X”"'=~'@). Note that the global sections

~0 ~
of A;, are A;. By the proof of (1), C* acts by automorphisms of (A%)"='@
preserving V' so that, modulo %, we get the contracting action on X”'= ' So
0
C* acts on A, . From here we get a filtered quantization A? of X with period
A. By the construction, its global sections are ,A. This finishes the proof of
(2). O
Remark 3.4. We can also consider slices for the varieties X%, ng and the
algebra A,ﬁ. For the same reasons as before, we get the deformations X%, X' %
of X° X . Further, we get the quantization Ag} of X, P and its algebra of global
sections Ag. Part (2) of Lemma 3.3 shows that Ag~3 is obtained from the

canonical quantization of X % under the pull-back with respect to the natural

map P — PB. Recall that we write P for H*(X,C).
3.3. Restriction functors for HC bimodules

Now we are going to define restriction functors between the categories of HC
bimodules. Namely, we pick a point € X°. This allows us to define the slice
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algebras A, for A, and Agﬁ for Agﬁ. We are going to produce an exact functor
;s : HO(Ag) — HC(Ag).

Pick B € HC(Ag). Choose a good filtration on B and form the cor-
responding Rees A‘i;ﬁ—bimodule Bp. This bimodule comes with the Euler
derivation eu. The derivation extends to the completion Bj* that is an A%“ih—
bimodule. Similarly to [L1, Section 3.3], we see that Bj* decomposes into
the product AE(V)“@CHEHEH, where Eh stands for the centralizer of V in
B;,*. Note that we can equip Bh with an Euler derivation that is compati-
ble with the derivation eu on AA‘ﬁ,h' Namely, recall the proof of Lemma 3.3;
there is an element a € AE(V)AO(%C[[ﬁ]]A\;ﬁ’h such that eu — eu = A~ %a, .
Now we can define the derivation eu of By as eu — h~%a,-]. It restricts to
Eh. Then we define the Aﬁﬁ—subbimodule B;, of Bh as the the eu-finite part
of Bﬁ. The bimodule B, is gradeable and is finitely generated over A;. We
set Bi, = Bp/(h — 1)B;. The assignment B +— B;, is indeed a functor. It
follows easily from the construction that this functor is exact, compare to [L1,
Section 3.4].

The following two properties of e; , are established as in [BL, Section 5.5].

Lemma 3.5. The associated variety V(Bm) 1s the unique conical subvariety
in Xog such that V(B ;) x L = V(B)".

Lemma 3.6. The functor e; ,, intertwines the Tor and the Ext functors. More
precisely, we get the following:

- A-
Tor, * (B', B)t.0 = Tor; * (B} . B2,,),
EthélfjB (Bla BZ)T@ = EXtZAi; (B%,Jw B%x)'

The latter equality holds for Ext’s of left A;ﬁ—modules and of right modules.

Let £ denote the leaf through z. Consider the full subcategory HCZ(Agﬁ) C

HC(Ag) consisting of all HC bimodules B such that Vo(B) C L. Also con-
sider the full subcategory HCfin(Ag) C HCO(Ag) of all bimodules that are

finitely generated over C[]. By Lemma 3.5, the functor e;, restricts to

Lemma 3.7. The functor ey, : HCz(Ag) — HCrin(Ag) admits a right
adjoint functor, to be denoted by o1,

Proof. This is proved as an analogous statement in [L.1] (see Proposition 3.3.4
and 3.4.1 in loc.cit.) using [L6, Lemma 3.9] instead of [L1, Section 3.2]. O
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Now let us study the behavior of e; ; on wall-crossing bimodules.

Proposition 3.8. Suppose that A\ € P,x € Pz, that abelian localization
holds for (A + x,0) and that H*(X% O(x)) = 0. Then (A(e)) te = A(G) .

Here and below we write AA) for the .A -bimodule defined similarly to
A(9)

Proof. From H'(X? O(x)) = 0 we deduce that gr A/\ I'(O(x))- By the
formal function theorem, we have that T'(O(x))"= commdes with the global
sections of O(x)" = '@ . It follows that

(3.1) (AL ) ALY, )N =T(O(x) @)

Now let O() denote the line bundle on X obtained by restricting O(x). From
(3.1) and the construction of the functor e; ,, we conclude that

(32) ar (A1) = T(O(X)).

On the other hand, we have a natural homomorphism

(A = T (A ) =)

Note that
((A)\Xh) r”“) AR &y T ((A)\Xh) ’1“))).

This yields a filtered bimodule homomorphism (.A )T z — A(e) The cor-
responding homomorphism gr ((A )T x) —gr A A( ) intertwines the isomor-
phism gr ((A/\ Ot x) = T'(O(x)) and the 1nclu81on grA vy = TOW). It
follows that gr ((A/\;)T,x) S oer AA, and hence (A )TJ; = A(e) . O

3.4. Proof of Theorem 3.1

The proof follows the strategy of [L5, Section 6] using besides Corollary 2.13
and Proposition 3.8. '
First, let us produce the ideals ZZ,;,7 = 1,2. We start with I%y.

Lemma 3.9. There is an ideal I%y C .Aqy that specializes to the minimal
ideal of finite codimension for a Weil generic parameter in B’ and such that
AR TR is finitely generated as a module over C[B1).
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Proof. The proof repeats that of [L5, Lemma 5.1] (using the fact that the
algebra A4, has a unique minimal ideal of finite codimension, see [L6, Section
4.3], instead of appealing to the category O as in [L5]). O

Now let us construct the ideals Igy for arbitrary j as in [L5, Section 5.2].
We set

J

J LLNE,

% - (o)
c

where the union is taken over all symplectic leaves £ C Xy with dim £ < 2j

and x € L. Here I%:f C AL, (the slice algebra corresponding to the leaf £) is

the ideal constructed similarly to I‘lﬁi C Agi. Similarly to [L5, Lemma 5.2],

we see that, for a Weil generic N P, the ideal L/J\ is the minimal ideal
T C A;, with GK-dim Ay, /T < 2j.

Now, similarly to the proof of [L5, Theorem 6.1], Theorem 3.1 follows
from the next proposition. Here we pick a Zariski generic A\! € B! and set

A = A>\1,A2 = A)\1+X7B = Ag\el ;’IJ = I§\17I] : Ii\l-i-x'

Proposition 3.10. The following is true.

(a) For alli,j, we have T} Tor{" (B, .Al/I]) =0.

(b) For alli,j, we have TorAQ(.Ag/Ig, B)I] =0.

(¢c) We have Tor{ (B, A/T}) =0 fori<n-+1—j.

(d) We have T}~ 1TOI"A1(B AT = Torf?(Ay/T3, BT = 0 for i >
n+1-—7.

(e) Set Bj := TornJr1 (B, A1/T]). The kernel and the cokernel of the nat-
ural homomorphzsm

B; ® .4, Homa, (B;, As/T}) — As/T}

are annihilated by Igfl on the left and on the right.
(f) The kernel and the cokernel of the natural homomorphism

HOIIlA1 (Bj, ./41/1—{) ®_A2 Bj — Al/I{.

are annihilated on the left and on the right by I{_l.

Proof. The proof of this proposition closely follows that of [L5, Proposition
6.3]. As in that proof (see Step 4 there), it is enough to prove (a)-(f) in the
case when \! is Weil generic in 3!. The proof that (a),(b) hold is the same
as in Step 1 of the proof of [L5, Proposition 6.3]. To prove (c)-(f), we start
with the case of j = 1. Here these claims follow from Corollary 2.13. Now the
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proof for arbitrary j repeats that of Step 3 of the proof of [L5, Proposition
6.3], where we use Proposition 3.8 to show that the restriction of the wall-
crossing bimodule is still a wall-crossing bimodule (note that we can take
sufficiently ample y in the definition of a wall-crossing bimodule and hence
the cohomology vanishing required in Proposition 3.8 holds). O

Remark 3.11. All varieties X° we know have conical slices. One can prove
Theorem 3.1 even without this assumption, but the proof is considerably more
technical.

3.5. Application to Etingof type conjecture

Here we consider a quiver () of affine type. We use the notation from Section
2.3.

We consider the category AS§ (v, w) -mod,-1(g) of all coherent A8 (v, w)-
modules supported at p~1(0). We are going to describe Ko(A4 (v,
w)-mod,-1(g)) (we always consider complexified Ky) confirming [BL, Con-
jecture 1.1] when @ is affine. The dimension of this Ky coincides with the
number of finite dimensional irreducible representations of Ay (v, w) provided
the homological dimension of Ay (v, w) is finite, see, e.g., [BL, Section 1.5].

Let us write w for the dominant weight of g(@)) with labels w;. Further, we
set v = w—3cq, Viti, where we write a; for the simple root of ) correspond-
ing to i € Q. Recall that, by [Nak], the homology group Hia(M®(v,w))
(where “mid” stands for dim¢ M (v, w)) is identified with the weight space
L[v] of weight v in the irreducible integrable g(Q)-module L, with highest
weight w. Further, by [BaGi] (see also [BL, Section 11]), we have a natural
inclusion Ko(Ax(v, w)-mod,-1()) < Hpmia(M(v,w)) given by the charac-
teristic cycle map CCy. We want to describe the image of CCj.

Following [BL, Section 3], we define a subalgebra a(= a)) C g(Q) and an
a-submodule LS C L. By definition, a is spanned by the Cartan subalgebra
t C g(Q) and all root spaces gs(Q) where 8 =3, b;a’ is a real root with
Zier bi\i € Z. For LY we take the a-submodule of L, generated by the
extremal weight spaces (those, where the weight is conjugate to the highest
one under the action of the Weyl group).

Theorem 3.12. Let Q) be of affine type. Then the map CCy is injective and
the image of Ko(A% (v, w)-mod,-1(g)) in Ly,[v] under CCy coincides with L% N
L,[v].

Proof of Theorem 3.12. It was checked in [BL, Section 7] that L& N L,[v]
is contained in the image of CCy. According to [BL, Section 11], to finish
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the proof one needs to check that there are no notrivial extremal finite di-
mensional modules (defined in [BL, Section 11.1]). This, in turn, follows if
one proves that the wall-crossing through the wall ker§ (where § stands for
the indecomposable imaginary root of ()) cannot have a homological shift of
1 dim M’ (v, w). This reduction was obtained in [BL, Section 11.2)].

So let us check that the homological shift for the wall-crossing to ker ¢ is
less than dim M (v, w)/2. Thanks to Theorem 3.1, it is enough to prove the
following. Let 3! be an affine subspace in 9§ with associated vector space ker 8.
We need to show that the ideal 1%31 coincides with the algebra Ag (v, w) (at
least after localization to a Zariski generic locus). The quotient Ag (v, w) /Zy.
is finitely generated over C[B!] and so is gr (.A;Ip(v,w)/I%y). But ng%ﬂ is
a Poisson ideal. What remains to prove is that the variety M, (v, w) has no

symplectic leaves that are single points as long as p € ker § is Zariski generic
(provided M, (v, w) is not a point itself). This follows from Lemma 2.2. O

3.6. Wall-crossing bijections and annihilators

We use the notation of Theorem 3.1. Being perverse, the wall-crossing functor
W2,y induces a bijection tocyz, y1 @ Irr(Ayi) — Irr(Ayz) between the
sets of irreducible modules (to be called the wall-crossing bijection). In this
section, we are going to investigate a compatibility of these bijections with
the annihilators.

The following proposition generalizes the left cell part of [L8, Theorem

L1(1)].

Proposition 3.13. Let Ny, Na C Irr(Axi) be such that Anng,, (N1) =
Anny,, (No). Let M; = wcyn(Ng),i = 1,2, Then Anng,(M;) =
AnnA}\2<M2).

Proof. Let us write A’ for A,; and B for the wall-crossing .42-A'-bimodule.
Let J := Ann g (N;),i =1,2.

Note that B ®%, e is a perverse equivalence between HC(A') and
HC(A%-A') (viewed as hearts of standard t-structures on the full subcat-
egories of DP(A!-bimod), D’(A%-A! -bimod) of all complexes with HC ho-
mology). The filtrations are again defined by the annihilation by the ideals
Iil,IiQ from the left.

Consider the HC A'-bimodule A' /J. The ideal J is primitive hence
prime and so, by classical results of Borho and Kraft, [BoKr, Corollary 3.6],
the inclusion J ¢ J implies GK-dim(A'/J) > GK-dim(A'/J). Tt follows
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that the HC bimodule A'/J has simple socle, say S. Let T be the corre-
sponding simple A%-A-bimodule. We claim that Ann 42 (M;) coincides with
the left annihilator, LAnn 42(7), of T.
First of all, note that Ann 42(M;), LAnn 42(7") are primitive ideals. More-
over,
V(A?/ Ann g2 (M;)) = V(A®/ LAnn g2 (T)) = V(A'/J).
Indeed, as in [BL, Theorem 10.2],

V(A?/ Ann_g2(M;)) = V(A!/ Ann g (N),
V(A?/LAnn 4 (T)) = V(A'/ LAnn 4 (S)).

As in the proof of [BL, Theorem 10.2], we see that M, is the head of B;® 41
N; and T is the head of By® 41 S, where B, is the Tor bimodule introduced in
Proposition 3.10. Note that S® 41 N; — N;. By axiom (P3) in the definition of
a perverse equivalence, the kernels of B;® 41 N; — M; are annihilated by Il? 1
and the same is true for the kernel of By ® 41.5 — T'. So we get epimorphisms
T ®1 Nj — M;. From here we see that LAnn 42(7") C Ann 42(Mj). Since the
associated varieties of these primitive ideals coincide, we apply the result of
Borho and Kraft again, and get LAnn 42(7") = Ann 42(M;). O

4. Wall-crossing functors as partial Ringel dualities
4.1. Highest weight categories

Let us start by recalling the standard notion of a highest weight category.

Basic assumptions. Let C be a C-linear abelian category equivalent to
the category of finite dimensional modules over a unital associative finite
dimensional C-algebra. Let 7 be an indexing set for the simples in C, we
write L(7) for the simple object indexed by 7 and P(7) for its projective
cover.

By a highest weight structure on C we mean a partial order < on 7 that
satisfies the axioms (HW1) and (HW2) below. For 7 € T, let C<, (resp., C<;)
denote the Serre span of L(7') with 7/ < 7 (resp., 7/ < 7). Here is our first
axiom:

(HW1) The quotient category C<,/C<; is equivalent to the category of
vector spaces.

Let A(7) denote the projective cover of L(7) in C«,, by definition, this is the
standard object corresponding to 7. Note that we have a natural epimorphism
P(1) — A(7). Here is our second axiom:
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(HW2) The kernel of P(7) — A(7) is filtered with A(7"), where 7/ > 7.

Recall that in any highest weight category one has costandard objects V(7),
7 € T, with dim Ext'(A(7), V(7)) = 0,06, By a tilting in C we mean
an object that is standardly filtered (admits a filtration by A’s) and also
costandardly filtered. The indecomposable tilting objects are indexed by T
we have a unique indecomposable tilting 7'(7) that admits an embedding
A(1) <= T'(7) with standardly filtered cokernel.

Now let us recall the notion of Ringel duality that we will be gener-
alizing below. Let Cy,Co be two highest weight categories. Let C3,CY de-
note the full subcategories of standardly and costandardly filtered objects in
Co,Cy, respectively. Let R be an equivalence CY —» C5 of exact categories.
Let T denote the tilting generator of Cy, i.e., the sum of all indecompos-
able tilting objects. Then Cy gets identified with End(7")P? -mod and the
equivalence R above becomes Hom(7T', ). We also have a derived equivalence
RHom(T,e) : D*(C;) — D"(Cs). This equivalence maps injectives to tiltings
and, obviously, tiltings to projectives. We write Cy for Cy. The functor R is
called the (covariant) Ringel duality, and the category Cy is called the Ringel
dual of Cy.

4.2. Categories O for symplectic resolutions and cross-walling
functors

Now let us recall an example of a highest weight category from [BLPW].

Suppose that we have a conical symplectic resolution X that comes equip-
ped with a Hamiltonian action of a torus T that commutes with the contract-
ing C*-action. Let A € P. The action of T on Ox lifts to a Hamiltonian action
of T on Af. So we get a Hamiltonian action on Ay. By ® we denote a quan-
tum comoment map t — A), recall that it is defined up to adding a character
of t.

Let v : C* — T be a one-parameter subgroup. The subgroup v induces
a grading Ay = @,z AV We set A" = Di>o ALY and define A7™" simi-
larly. Further, set C,(Ay) == AY"/ @iog Ay VALY . Note that Ay /AyA7" is
an Ay-C, (Ay)-bimodule, while Ay /A" Ay is a C,(Ay)-Ax-bimodule.

Define the category O, (A,) as the full subcategory of Ay -mod consisting
of all modules, where the action of Aio"j is locally nilpotent. We get two
functors A,, V, : C,(Ay)-mod — O,(A)) given by

AL/(N) = (-A)\/A/\Aiow) ®CV(A,\) N> VV(N) = HomCu(.A)\)(A)\/A;O’V-A)\; N)
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Now suppose that T" acts on X with finitely many fixed points. We say that
a one-parameter group v : C* — T is generic if X¥(€*) = X7 Equivalently,
v is generic if and only if it does not lie in ker k for any character x of the
T-action on @, xr TpX. The hyperplanes ker « split the lattice Hom(C*,T)
into the union of polyhedral regions to be called chambers (of one-parameter
subgroups).

Suppose that v is generic. Further, pick a generic (see Definition 2.1)
96‘3@ and Ao € P. Let A := \g + nb for n > 0.

Proposition 4.1. The following is true:

(1) The category O,(Ax) only depends on the chamber of v.

(2) The natural functor D*(O,(Ay)) — D°(Ax-mod) is a full embedding.
(3) Cu(Ay) = C[XT].

(4) More generally, we have C,,(Ax) = @Dy .ALZ*Z()\)_pZ, where the summa-

tion is taken over the irreducible components Z of X*(€) 1, is the
embedding Z — X, 1y : H*(X,C) — H?*(Z,C) is the correspond-
ing pull-back map, pz is a suitable element of H*(Z,C) and ALZ*Z(A)_pZ
stands for the global sections of the filtered quantization of Z with period
7 (A) = pz.

(5) The category O,(.Ay) is highest weight, where the standard objects are
A, (p), the costandard objects are ¥V, (p), where p € XT. For an order,
which is a part of the definition of a highest weight structure, we take
the contraction order on XT defined by v.

(6) Suppose vy lies in the face of a chamber containing v. Then Ay, V,,
restrict to exact functors Ou(Coy(Ar)) = Ou(Ay).

(7) The functor WE, L\~ : D*(O,(Ay)) = D*(Oy(As-)) is a Ringel dual-
ity functor.

Proof. (1) follows from [BLPW, Corollary 3.19]. (2) is [BLPW, Corollary
5.13]. (3) is [BLPW, Proposition 5.3]. (4) follows from [L7, Propositions
5.3,5.7]. (5) follows from [BLPW, Proposition 6.7]. (6) follows from [L7,
Proposition 6.9, Section 6.5]. (7) is [L7, Proposition 7.7]. O

Let us recall the cross-walling (a.k.a. shuffling) functors introduced in
[BLPW, Section 8] and studied in more detail in [L7]. Let v,/ be two
generic one-parameter subgroups. Then there is a unique functor €0, :
D(0,(Ax)) = D*(O,(Ay)) with the property that

Home(Ak —mod)(M7 N) == Home(oy,(AA))(QQﬁV/H,M, N)

This was proved in [BLPW, Section 8.2]
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The following results were obtained in [L7, Section 7]. We choose a pa-
rameter A in the same way as for Proposition 4.1.

Proposition 4.2. The functor €05, ,, has the following properties.

(1) The functor is an equivalence for all v,V/'.

(2) Suppose that a sequence v, V', v" is reduced (meaning that any wall that
does not separate v, V" does not separate v, v’ either). Then €W,n_, —
szu”(—u’ o Q:Q‘BZ//(—V'

(3) The functor €W_,, ,[dim X/2] : D*(O,(Ay)) = D*(O_,(Ay)) is a
Ringel duality functor.

(4) Let vy be a one-parameter subgroup lying in a common face of the
chambers of v,V'. Then the functors €W, o Ay, and Ay, 0 €W,
from D*(O,(C,,(Ay))) to D*(O,/(Ay)) are naturally isomorphic. Here

e, , stands for the cross-walling functor D*(0,(C,,(Ay))) =
D¥(Ou(Cyy (AN)))-

4.3. Standardly stratified categories

Here we are going to recall the definition of standardly stratified structures
generalizing highest weight ones. We follow [LW]. The definition given there
is more restrictive than in [CPS] but is less restrictive than in [ADL].

Let C, T, L(7), P(7) have the same meaning as in Basic assumptions of
Section 4.1. The additional structure of a standardly stratified category on C is
a partial pre-order < on T that should satisfy certain axioms to be explained
below. Let us write = for the set of equivalence classes of <, this is a poset
(with partial order again denoted by <) that comes with a natural surjection
0: T — Z. The pre-order < defines a filtration on C by Serre subcategories
indexed by =. Namely, to £ € = we assign the subcategories C<¢ that is
the Serre span of the simples L(7) with o(7) < &. Define C.¢ analogously
and let C¢ denote the quotient C<¢/Cc¢. Let me denote the quotient functor
C<e = Ce. Let us write Ag : C¢ — C«¢ for the left adjoint functor of m¢. Also
we write gr C for @ C¢, A for P, A¢ : grC — C. We call A the standardization
functor. Finally, for 7 € o71(¢) we write L¢(7) for me(L(7)), Pe(7) for the
projective cover of L¢(7) in Ce and A(7) for A¢(Pe(7)). The object A(7) is
called standard. Note that there is a natural epimorphism P(7) — A(7). The
object A(7) := A¢(L¢(7)) is called proper standard.

The axioms to be satisfied by (C, <) in order to give a standardly stratified
structure are as follows.

(SS1) The functor A : grC — C is exact.
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(SS2) The projective P(7) admits an epimorphism onto A(7) whose kernel
is filtered by A(7')’s, where 7/ > 7.

We will also need the notion of a weakly standardly stratified category.
Here we keep (SS1) but use a weaker version of (SS2):

(SS2’) The projective P(7) admits an epimorphism onto A(7) whose kernel
admits a filtration with successive quotients A¢ (M), where £ > o(T)
and M¢ is some object in C¢.

Note that (SS1) allows to identify Ko(grC) and Ko(C) by means of A.
If (SS2) also holds, then we also have the identification of Ky(grC -proj) and
Ky (C -proj).

If all quotient categories C¢ are equivalent to Vect, then a standardly
stratified category is the same as a highest weight category. On the opposite
end, if we take the trivial pre-order on 7, then there is no additional structure.

4.3.1. (Proper) standardly filtered objects We say that an object in
C is standardly filtered if it admits a filtration whose successive quotients are
standard. The notion of a proper standardly filtered object is introduced in
a similar fashion. The categories of the standardly filtered and of the proper
standardly filtered objects will be denoted by C* and C*. Note that (SS1)
implies that C® C CA.

Lemma 4.3. Suppose (S51) holds. Let M be an object in CA such that all
proper standard quotients are of the form A(T) with o(1) = &. Then M =

Ag(me(M)).
This is [L7, Lemma 3.1].

Also note that in a weakly standardly stratified category the following
hold:

(4.1) Exte(Ag(M), Ag(N)) #0 = ¢ <&
Exte(Ae(M), Ag(N)) = Exte, (M, N).

4.3.2. Subcategories and quotients Suppose that C is weakly standardly
stratified.

Let =y be a poset ideal in =. Let Cz, denote the Serre span of the simples
L(7) with o(7) € Zg. Then Cz, is a standardly stratified category with pre-

—_

order on Ty := 0 1(Zg) restricted from =. Note that, for 7 € Ty, we have
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Az, (1) = A(7), Az, (1) = A(7), where the subscript =g refers to the objects
computed in Cz,.

The embedding ¢z, : CEA0 < C» admits a left adjoint functor L!EO, to an
object M € CA, this functor assigns the maximal quotient lying in CEA0 .

Now let C=° be the quotient category C/Cz,. Let 7=, denote the quotient
functor C — C=0 and let 75 , be its left adjoint. The category C=0 is standardly
stratified with pre-order on A? := A\ A restricted from A. For ¢ € =0 :=
=\ Zp we have Ag = 7=, 0 A¢. Let us also point out that 77!50 defines a full
embedding (C°)» — C? whose image coincides with the full subcategory
CAA° consisting of all objects that admit a filtration with successive quotients
A(7) with 7 € T°. This embedding sends A=°(7) to A(7), P=°(7) to P(7).

The following lemma describes the derived categories of C=° and Cz,.

Lemma 4.4. A natural functor D*(Cz,) < D®(C) is a fully faithful embed-
ding. Moreover, D*(CZ0) = D*(C)/D"(Cxs,).

See [L7, Lemma 3.2] for a proof.

4.3.3. Opposite category Let C be a standardly stratified category. It
turns out that the opposite category CPP is also standardly stratified with
the same pre-order <, see [LW, Section 1.2]. The standard and proper stan-
dard objects for CPP are denoted by V() and V(7), when viewed as objects of
C, they are called costandard and proper costandard. The right adjoint functor
to m¢ will be denoted by V¢ and we write V for @, V¢ (this is the so called co-
standardization functor). So we have V(1) = V(L¢(7)) and V(1) = V(I¢(7)),
where I¢(7) is the injective envelope of L¢(7) in Ce.

Let us write CV,CV for the subcategories of costandardly and of proper
costandardly filtered objects. We have the following standard lemma (that
was used in [LW] to verify the claims in the previous paragraph).

Lemma 4.5 (Lemma 2.4 in [LW]). The following is true.
(1) dim Ext’(A(7), V(7)) = dim Ext’(A(7), V(")) = 0,007
(2) For N € C, we have N € CV (resp., N € CV) if and only if Ext'(A(r),
N) =0 (resp., EXil(A(T), N) =0) for all 7. Similar characterizations
are true for C*,C2.

Let us also note the following fact.

Lemma 4.6. Let C be a weakly standardly stratified category. Then C is
standardly stratified if and only if the right adjoint V¢ of m¢ is exact.

This is [L7, Lemma 3.4].
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4.3.4. Equivalences Let C;,Cs be two weakly standardly stratified cat-
egories and let =;,Zy be the corresponding posets. By an equivalence of
(C1,Z1), (C2,Z2) we mean a pair (P, ¢) consisting of an equivalence ® : C; —
Cy of abelian categories and a poset isomorphism ¢ : =; — Z5 such that the
bijection between the simples induced by ® is compatible with ¢. Clearly, ® in-
duces an equivalence gr ® : gr C; — grCo and PoA = Aogr d, oV = Vogr .

4.3.5. Example: categorical tensor products The formalism of stan-
dardly stratified categories was introduced in [LW] to treat tensor products of
categorical representations of Kac-Moody algebras. Namely, let g be a Kac-
Moody algebra and Vi, ..., Vi be minimal g-categorifications (in the sense of
Rouquier, [R2]) that categorify irreducible integrable highest weight represen-
tations. Webster in [W] constructed the categorical tensor product V1 ®. . .®@Vy
that was equipped in [LW] with a structure of a standardly stratified category.
The reader is referred to [LW] for details.

4.3.6. Example: standardly stratified structure on O from degen-
erating v Let us give another example of a standardly stratified category.
Let X, T be as in Section 4.2. Pick a generic v : C* — T and let 1q lie in the
closure of the chamber containing v. Then vy defines an order on the set of
irreducible components of X*(€*) (by contraction, see [L7, Section 6.1] for
details). So we get the pre-order <,, on the set X7 It is easy to see (and was
checked in [L7, Section 6.1]) that the order <, refines <,,.

Now pick a sufficiently dominant quantization parameter A (i.e., a param-
eter of the form Ay + ny, where n > 0) and consider the category O,(A)).

The following proposition is the main result of [L7, Section 6].

Proposition 4.7. The pre-order <,, defines a standardly stratified structure
on O,(Ay). The associated graded category is O,(C,,(Ax)). The standardiza-
tion functor is A,,, while the costandardization functor is V.

4.4. Standardly stratified structure on O from deforming
parameters

This is one of two central parts of this section. Here we introduce a new
standardly stratified structure on O,(.A)) coming from deforming A along an
affine subspace parallel to a face in a suitable chamber.
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4.4.1. Main result Pick a face I' of a classical chamber €' and an element
X\° € PB. Let Py denote the vector subspace of P spanned by I'. Set P! :=
A° 4+ Po.

Lemma 4.8. There is an asymptotically generic Zariski open subset if.?o C ‘jff
with the following properties.

(1) We have an algebra isomorphism C,(Ay) = C[XT] for any A € R0,
(2) For any A € PB°, the category O, (Ay) is highest weight with standard
objects A, (p) and costandard objects V,, (p).

Proof. (1) follows from the proof of [L7, Proposition 5.3] (the statement of
this proposition is slightly weaker than (1)).

Now let ‘,]A30 be an asymptotically generic open subset of B satisfying
the conditions of (1). The category O, (A,) is highest weight with standards
A, (p) and costandards V,(p) if and only if Ext*(A, A(p), V,a(p')) = 0, see
the proof of [BLPW, Theorem 5.12]. That Ext*(A, (p), V,a(p')) = 0 for A
in an asymptotically generic open subset follows from the proof in [BLPW,
Appendix|, where instead of 8 we had a suitable line in there. Let us provide
details for reader’s convenience.

We observe that Ext% (Aua(p), Voa(p)) = Torf*(Ay,A(p),AiuA(p’))*,
where A" \(p’) is the Verma module for the opposite algebra. So it is enough
to show that

Tory* (Aua(p), AL, (p) = 0

for A in an asymptotically generic open subset. Consider the universal modules
Ay’fjg(p),A’;V@(p/). As in [BLPW, Appendix], we see that Tors™(A,q(p),
A", 5 (p)) is a finitely generated C[B]-module that admits a filtration such
that the associated graded C[J3]-module is finitely generated and is supported
on the singular locus in . This implies the the complement to the support
of Tora (A, 5 (p), Aiym(p’ )) is an asymptotically generic open subset. For 3!

we can take the intersection of this open subset with $3°. O

It follows that, possibly after replacing A°, with A° + x for y € Pz N C
we may assume that O, (A,) is highest weight for a Zariski generic A € .
Recall, [L7, Lemma 6.4], that the order is introduced as follows. Let cy(p)
denote the image of h € A% under the composition

(4.3) AL — C,(Ay) — C,.

We set p <) p' if ex(p') — ex(p) € Zso. Recall that cx(p) — cx(p’) is a linear

function whose value at x € Pz coincides with a,(x) —ayy (x), where we write
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ap(x) for the character of the action of v in the fiber of O(x), see [L7, Lemma
6.4].

Now pick a sufficiently general integral point x in the interior of I'. For
A= A°+ Ny for N > 0, the order <, can be described in the following way.
Set p < P if oy (x) — ap(x) > 0 and p ~, p' if oy (x) = ap(x). For p ~, 7/,
the difference ¢,y (\) — ¢, () is independent of A € Pt. In particular, if p ~,, p/,
then we have p <, p’ if and only if p <5 p’ for a Weil generic = PBL. So we
see that the order < is refined by the following order <: we have p < p’ if
p =x P’ or p <5 p' (note that the latter automatically implies p ~, p’). We
also would like to point out that <, is a pre-order on X7 (refined by <,).

Here is the main result of the present section.

Proposition 4.9. Let A be as above. The category O, (Ay) is standardly strat-
ified with respect to the pre-order <. We have a labeling preserving equiva-
lence gr O, (Ay) = O, (A3) for a Weil generic X € BL: in particular, the right
hand side is independent of A

We prove this result in the rest of the section.

4.4.2. Objects qul (p), V1 (p) Note that every p € X7 defines an al-
gebra homomorphism C,(Agqi) — C[J'] (similar to Section 4.3) that is an
isomorphism over an asymptotically generic open subset in 3'. This allows
to define the Agqu-modules Agi(p), Vi (p) that specialize to Ax(p), Va(p)
for a Zariski generic A € B

We start by constructing Aspi-modules Agi(p), Vaui (p) that have the
following properties:

(1) they are generically free over 3,

(2) specialize to Ly(p) at X,

(3) we have Ax(p) — La(p) (vesp., La(p) — Va(p)) with kernel (resp.,
cokernel) filtered with Ly(p') for p’ <, p.

Later we will see that these objects specialized to A become proper standard
and proper costandard for the standardly stratified structure on O,(Ay) we
are going to produce.

The objects Ay (p) are constructed as quotients of Ag(p) similarly to
the proof of [L9, Lemma 3.3]. Namely, let us consider all labels p’ such that
P’ ~x p,p" <5 p. Then we consider the object My = @,y Aq1(p'). Then
we define the object Afpl(p) recursively as follows: A?nl(p) = Agpi(p) and
Al (p) is the cokernel of the natural homomorphism

HOIHA(131 (ngl,Agll (p)) ®<c[q31] ngl — Agll (p)
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For i sufficiently large, Agpl(p) = A%;l(p) for all j > i because Ay is
Noetherian. We take Ay, (p) for Agu (p).
The objects Ag1(p) have properties (1)-(3) similarly to [L9, Lemma 3.3].
The modules Vi1 (p) are produced as follows. We set Ny := @,y Vap1 (p'),
V%l(p) := Vi (p). Take generators ¢1, ..., ¢, of the C[J3!]-module

Homa,,, (Vis!(p), Nyn).

Then for me (p) we take the intersection of the kernels of ¢;,i =1,...,¢. So
we have a descending chain Vi (p) D Vi (p) D Vay(p) D .... This chain
does not need to stabilize. However, it does stabilize after a specialization to
a Weil generic point. Define Va1 (p) as ﬁfnl(p) when V) (p) stabilizes for a
Weil generic A € L.

As in [L9, Lemma 3.3], one shows that the modules Vi1 (p) have proper-
ties (1)-(3).

4.4.3. Filtrations Now let us establish an important property of the ob-
jects Agi(p), Vg (p).

Lemma 4.10. We have a principal Zariski open subset ‘}A31 c B! and a
filtration A‘ﬁl(p)(:: CIP @cppr] Aqi(p) = Fo 2 F1 2 Fp... 2 F 2
Fit1 = {0} with the following properties:

(i) Fi/Fit1 is flat over Pl ~
(11) (Fo/Fl))\l = A)\l@) fOT’ )\1 € ;131.

(iii) Fori > 0,\! € B, we have (F;/Fi1)a = Ayi(p')®™, where pb ~,,
p,p" <5 p and m; € L independent of AL

Proof. The construction of the filtration is based on the construction of

Agi(A). Namely, let us order the labels satisfying p" ~, p, p’ <5 p in a non-

increasing way: ps,Ps—1,--.,00 = P (ps is the smallest). Then define Fj, as

the image of Hom 4, (A1 (ps), Api(p)) @g1 Agi(ps) — A (p). It satisfies

(i) and (iii) (with p; = p). Shrinking P! to a principal Zariski open subset

P, we see that Hom 4 (Agﬁl(ps), Agﬁl(p)/Fk) = 0. In particular, every ho-
»

momorphism Afﬁl (ps—1) — A@l (p)/ F factors through Z@ (ps—1). We define
Fi—1/Fj as the image of Homg,, (Zspl(ps,l),Aml(p)) Qg Agpi(ps—1) —

A1 (p). Then we shrink ‘ﬁl. We continue considering homomorphisms from
Agﬁl(ps), A;fy (ps—1) until we arrive at the situation when both

Homay, ((Bg(pe). Mg (p)/Fr)  Homua (Bg, (pe-1), Mgy (p)/F) ave zero
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(we do arrive at this situation because the length of a Weil generic spe-
cialization of A(ﬁl (p)/ F; reduces after each step). In particular, possibly after
shrinking 3!, every homomorphism Asfy (ps—2) — Afﬁl (p)/ F; factors through
A%1<ps_2). Then we repeat the argument. O

_ The dual statement holds for Vg (p) (we consider the filtration by
V@(pi)’s). Here we will take the descending filtration and use the fact that
the lengthes of the filtration terms at Weil generic points are decreasing.

4.4.4. Objects A‘Bl (p), Va1 (p) Now let us produce the objects A;pl(p)
whose specializations will later be shown to be standard for the standardly
stratified structure. Namely, let us order the labels p’ with p’ ~, p in a non-
decreasing way: p; > pa > ... > p,. Let us define the objects Aml (pi)ks k < 1,
inductively. We set Aml(pl)z A (ps). If Afpl(pl) 1 is already defined, then
for Aspl (pi)k—1 we take the universal extension

0 — EXt}“‘Jm (Aq:;l (pi)k, Aml (pk,l)) ®(C[‘J31] A&I;l (pkfl) — Asl;l (pi)k,1
— Aml(pi)k — 0.

We then set Aqy (pi) :== Aqgl (pi)1- Note that this mirrors the construction of
the projective objects in highest weight categories.

Lemma 4.11. For X equal to either A or to a Weil generic )€ B, _we have
an epimorphism Py (p;) — Ay (pi). It is an isomorphism when N = X and its
kernel is filtered with Ax(p'), where p’ >, p, when X' = .

Recall that here by A we mean a point of 3! of the form \° 4+ ny, where
A° is some fixed point and n > 0.

Proof. First of all, let us recall a standard fact. Let By be a C[J3']-algebra
that is flat over C[P!] and M1, Nog1 be finitely generated Bgi-modules that
are flat in a neighborhood of a point x € 3!. Then if we have Extﬁgml (Mg,
Nyp1), = Extly (Mg, N,) foralli =0,...,k—1, then Ext’f%l (Mg, Nogt )y —
Ext} (M, N,).

The algebra Agp: is countable dimensional. It follows that the spaces
Exti%l (Mg, Nyp1) is at most countable dimensional for any finitely gener-
ated Agi-modules Mg, Nog1 and any . In particular, the set of A € P! such
that the maximal ideal of A! has a nonzero annihilator in Exti\ml (M1, Negr),

i = 1,2, is countable. If the maximal ideal of A! has zero annihilator in
EXt]:LAml(Mspl,le) then ExtA (Mg, qu)A:Ext (M N3). Therefore,
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. - N i—1 i—1 .
for a Weil generic A € 3!, we have Extf%l (Mg, Ny )5 = Extil? (M5, Ny, i =
1,2. From here we deduce by induction that (Agpl(pi> k)i = Ag(pi) & (where
the object on the right hand side is defined analogously to Ag1(pi)r). This

shows that P(pi) = Ag(pi)-
Let us consider the case of ' = A now. We prove by induction on k that

(4.4) EX‘&W (At (i), Ayt (Pr—1))x = Exctly (Ax(pi)i, Aa(pr-1)),

for j = 0,1. Thanks to the inductive construction of the indecomposable
projective objects in highest weight categories, this will imply the claim of
the proposition.

Let us do the case of 7 = 0 first. Clearly, we have an inclusion of the
left hand side into the right hand side. The dimension of the left hand side
is the same for all Zariski generic A € PB!. So it equals to the multiplicity of
L; (pi) in A (px). That, in turn, equals to the multiplicity of Ax(p;) in Ax(pg).-
Recall that the multiplicity of Ly(p;,) in Ax(pi,) equals d;, 4, by Section 4.4.2.
It follows that the multiplicity of Ay(p;) in Ax(px) equals that of Ly(p;) in
Ax(pr). On the other hand, this multiplicity is bigger than or equal to the
right hand side of (4.4). This finishes the proof of (4.4) in the case j = 0.

Let us proceed to the 5 = 1 case. So far, we know that, first, the left
hand side of (4.4) is included into the right hand side and, second, (4.4) holds
for A replaced with a Weil generic X € PL. It follows from the inductive
construction of the indecomposable projectives that to show (4.4), we need to
show that the multiplicity of Ay(p;) in P\(p;) (for j < i) coincides with that
of As(pj) in Py(pi). By the BGG reciprocity, this is equivalent to [Va(p;) :
Lx(pi)] = [V5(p)) : Ly(pi)].- By the V-analog of Lemma 4.10, the right hand
side coincides with the multiplicity of V(p;) in Va(p;). By the properties
(1)-(3) of V(pi), that coincides with the multiplicity [Va(p;) : Lx(p;)]. That
latter coincides with [Py(p;) : Ax(p;)]. So we see that [Px(p;) : Ax(p;)] =
[Py(ps) : 3 (p5). O

Similarly, we define the objects @ml(p). A direct analog of Lemma 4.10
holds.

4.4.5. Standardly stratified structure We proceed to proving that the
pre-order <, defines a standardly stratified structure on O,(Ay). We start
by proving two technical lemmas.

Lemma 4.12. For a Zariski generic A\ € B, we have dim Ext%(A,\(p),
VA(p')) = diodpp -
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Proof. Note that V,(p') is quasi-isomorphic to a complex whose terms are
filtered with V(p") with p” ~, p'. Using the V-analog of Lemma 4.10, we
see that Ext%(ﬁ,\(p),v,\(p’)) =0 for all ¢ unless p ~, p'.

Now consider the case p ~, p’. By Lemma 4.11, we have an exact sequence
0 — K — Py(p) = Ax(p) = 0, where K is filtered by Ay (p")’s for p” <y p.
By the previous paragraph, Ext’y (K, V(p')) = 0 for all i. So

(4.5) EXtib\ (A)\ (p), v)\ (p/)) = EXtiét,\ (P)\ (p), V)\ (p/)).

Now recall, Section 4.4.2, that Ly(p) appears in V(p') with multiplicity &, .
We apply (4.5) to finish the proof. O

Similarly, we get dim Ext’y (Ax(p), VA(p')) = i00pp -

Lemma 4.13. Let M € O,(A,) be such that Ext'y (M,Vx(p)) = 0 for all
p. Then M is filtered by A’s.

Proof. Thanks to the V-analog of Lemma 4.10, we see that M is A-filtered.
Let 71,..., 7k be the equivalence classes for ~, ordered so that 7; <, T; =
i < j. Then we have a filtration on M by objects of the form M;, where M;
is filtered by Ax(p')’s, where p’ € T;. What we need to check is that each M,
is the direct sum of Ay(p')’s.

Similarly to the proof of Lemma 4.12, Ext'(M;, V(p)) = 0if p € T;. So
in the proof of the lemma it is enough to assume that M = M; for some j.

The equality Ext:i\A (M,¥V(p)) = 0 is equivalent to Extl, (M, Va(p)) =
0, which, in turn, is equivalent to Extégp(ﬂp(M),wp(VA(p))) = 0, where we
write O, for the subquotient highest weight category corresponding to the
interval {p'|p’ ~y p} and 7, for the quotient O« , — O,. Since the objects
mp(VA(p')) are simple, we deduce that m,(M) is projective. Note that the
natural homomorphism W;(?TP(M )) = M is an epimorphism as m, does not
kill any simple in the head of M. Also then classes of TFI!,(TFP(M )) and M in the
category of standardly filtered objects coincide. So 7, (m,(M)) = M, which

p
finishes the proof. O

Now we can complete the proof that (O, (A)), <y) is a standardly strati-
fied category. By Lemma 4.13, any projective in O,(Ay) is A-filtered, which
is (SS2). Similarly, every injective is V-filtered. It follows that the quotient
functor m¢ maps the injective objects in the subcategory O< , C O,(A)) to
injective objects in the quotient O,. Equivalently, by [L7, Lemma 3.4], the
functor 7, is exact, which is (SS1).
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4.4.6. Associated graded category To finish the proof of Proposition
4.9 we need to check that gr O,(Ay) = O,(A;). Note that the subquotient
category O, of O,(A)) corresponding to the equivalence class of p with re-
spect to ~, is equivalent to the category of right modules over the algebra
By := Endy, (@, AX(p')), where the summation is taken over all p’ ~, p.
We can also consider the algebra By := End Ag (Dy Aspl(p, )), the algebra
By, is the specialization of By to A (and the same is true for a Weil generic

element X) What remains to prove is the following lemma.

Lemma 4.14. We have an algebra isomorphism By = B, that respects the
primitive idempotents ey, where p' ~y p.

Proof. After passing to a principal Zariski open subset q%l C P!, we achieve
that the algebra Bsﬁl is a free C[‘ﬁl]—module with a basis including the idem-
potents e,y and compatible with the decomposition €, ep/Bq}lepu = B@l.
This gives rise to a morphism &]Ais‘l — X, where X denotes the variety of as-
sociative products such that the elements e,y are idempotents. Isomorphisms
correspond to a suitable algebraic group action. What we need to prove is
that a Zariski open subset of ' maps to a single orbit. For this we note
that we have a labeling preserving isomorphism By = By;,/, where x’ is an
integral element of I". It follows that the elements A\, A + x’ map to the same

orbit. But the set {\+y'} is Zariski dense in 9B*, which implies our claim. [

4.5. Ringel dualities for standardly stratified structures

In this section we discuss Ringel duality for standardly stratified categories?.

The most important example of Ringel duality functors comes from wall-
crossing functors.

4.5.1. Tilting and cotilting objects An object in C-tilt := C*NCV is
called tilting. We can construct an indecomposable tilting 7(7) similarly to
the highest weight case. Namely, let us order elements of T, 71, ..., 7, in such
a way that 7, > 7; implies ¢ < j. Define the objects T;(7;), where j < 4,
inductively as follows:

o Ti(m) := A(m).
e Once T}(7;) is constructed, for Tj_ (1) we take the universal extension of
Ext' (A(7j_1), Tj(7:)) @ A(7j_1) by Tj(7;). So we have an exact sequence

0= Ty(7:) = Tj_1(ms) —= Ext! (A(75-1), Tj(7)) @ A(75-1) = 0.

2Preliminary versions of sections 4.5.1-4.5.4 appeared in one of the first drafts
of our joint paper [LW] with Ben Webster and were later removed.
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We set T'(7;) := T1(7;). From the construction of T'(7) and (4.1) it is easy to
see that Ext'(A(7), T(7)) = 0 for any 7’. By (2) of Lemma 4.5, T'(7) € CV,
so T'(7) is indeed tilting,.

Lemma 4.15. The object T(7) is indecomposable. Moreover, any indecom-
posable tilting object in C is isomorphic to precisely one T'(T).

Proof. Note that by the construction of T'(7), the label 7 is uniquely deter-
mined by the following property: there is an embedding A(7) < T'(7) such
that the cokernel is standardly filtered. Moreover, Lemma 4.5(2) implies that
a direct summand of a standardly filtered object is standardly filtered. These
two observations imply both claims of the lemma. O

Applying this construction to CPP we get cotilting objects.
Below we will need some further easy properties of tilting objects.

Lemma 4.16. We have an epimorphism T'(1) — V(Pe(T)), where & = o(7),

whose kernel lies in CZ.

Proof. In the proof we can assume that £ is the largest element of = (if not,
we pass to the standardly stratified subcategory C<¢). Note that Ext'(V(7'),
V(7)) = 0if 7/ < 7. It follows that we have a canonical exact sequence

0—-K—=T(r) = C —0,

where K € C¢ N ¢V and C is filtered with successive quotients of the form

V(7) with o(7) = £. It remains to prove that C' = V(P¢(7)). We have 7¢(C') =
7e(T(1)) = me(A(7)) = Pe(7). Then we can apply Lemma 4.3 to CPP. O

Lemma 4.17. Let M € C2 and N € CV. Then there is a tilting object Ty
with an epimorphism Ty — N whose kernel lies in CV. Furthermore, any
morphism M — N factors through Ty .

Proof. We can construct T by taking the consecutive universal extensions
of N by V(r;) ® Ext'(N,V(r;)) for i ranging from 1 to n = |T| (we order
labels in non-decreasing way with respect to <). The claim about morphisms
follows from Lemma 4.5(1) as the kernel of Ty — N is proper costandardly
filtered. O

4.5.2. Definition of Ringel duality Let C; be a standardly stratified cat-
egory and Co be a weakly standardly stratified category. By a Ringel duality
data, we mean a pair (R, ) of
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e A poset isomorphism 6 : =

~, =opp
1 — —9 .
e an equivalence R : D(C;) =

D®(Cy) of triangulated categories that

restricts to an equivalence CY ~ C2 of exact categories.

o If R(V(7)) = A(7'), then o(7") = 6 o o(7).

Note that an equivalence CY — C4* of exact categories automatically maps
a proper costandard object to a proper standard one, and this induces a
bijection between the labelling sets of simples.

We say that (Ce,Z3) is a Ringel dual of (Cy,Z;). We call R the Ringel
duality functor.

4.5.3. Existence Let C be a standardly stratified category. Let T :=
@D.c7T(r) be the tilting generator. Consider the category CY :=
Endc(T)°PP -mod and the functor R := RHome (T, ®) : D*(C) — D*(CV).
The functor R is an equivalence. Indeed, it is easy to see that the higher
self-extensions of 7' vanish. This shows that R is a quotient functor. The
functor is an equivalence because the objects T'(7) generate the triangulated

category D®(C). The equivalence R is exact on CV.

Proposition 4.18. The category CV is weakly standardly stratified with poset
ZPP qnd the pair (R,id) is a Ringel duality data. Moreover, for any other
Ringel dual category C' and Ringel duality data (R',0"), there is an equivalence
(®,0) : CY — C' of weakly standardly stratified categories such that R’ is
isomorphic to ® o R and 0’ = ¢.

We will start by proving that C¥ is indeed a weakly standardly stratified
category (a harder part) and then prove a uniqueness statement. After that
we will briefly discuss conditions under which C is standardly stratified and
not just weakly standardly stratified.

4.5.4. Weakly standardly stratified structure on CV The following
proposition shows that CV is Ringel dual to C.

Proposition 4.19. The category CV has a weakly standardly stratified struc-
ture for the opposite preorder on T. We have an identification grC¥ = grC
and the functor AV(e): grC¥ — CV coincides with Home (T, V(e)).

Proof. The proof is in several steps.

Step 1. For an ideal =y C Z, the category (Cz,)" is naturally identified
with a quotient of CV. The quotient functor is M +— Mez,, where ez, denotes
the central idempotent that is the projection from 7" to @, 5, 7'(7). So for a
coideal Z° C = (=ideal Z° C Z°P) we can define the subcategory (CV)=zo C C¥
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as the kernel of the projection C¥ — (Cz\z0)". This gives rise to a filtration on
CV by Serre subcategories. In particular, we can talk about the subquotients
c/.

‘ Step 2. Now we claim that (CV)¢ is naturally identified with C¢. By the
definition of our filtration, we can represent (C¥)¢ as the kernel of the quotient
(C<e)¥ — (C¢)Y. So, in order to prove the claim in the beginning of the
paragraph, we can assume that ¢ is the largest element of =. We claim that
the required equivalence C¢ = Cgv is given by the functor « : Hom(T, V¢(e)) :
Ce — CY. The image of ¢ is contained in (CY)¢ because Hom(T'(7'), V(7)) =0
for 7 < 7. So ¢ is a functor C¢ — (CV)e.

Let us show that ¢ is an equivalence. Consider the quotient A; of
End(T")°PP by the 2-sided ideal of all morphisms that factor as ' — Teg — T
for Toe € Cee-tilt. So (CY)e is just Aj-mod. Consider the object R :=
Dreco-1(¢) V(Pe(7)) that is a quotient of T" in such a way that the kernel lies in
C<¢, see Lemma 4.16. Clearly a morphism 7" — 7" induces a morphism R — R
and so we get a homomorphism End(7")?? — Ay, where A := End(R)% so
that C¢ = Az-mod. Note that the homomorphism End(T")P? — A, factors
through A; because we have Hom(&,(;)<¢ 7'(7), R) = 0. Let ¢ be the result-
ing homomorphism A; — As. It is straightforward from the construction of
L:Ce — (CY)e is just o™

So we need to check that ¢ is an isomorphism. By Lemma 4.17, any
homomorphism T" — V(P¢(7)) lifts to an endomorphism of T'. So ¢ is sur-
jective. Now let ) be an endomorphism of 7" whose image lies in the kernel
K of T — V(P¢(7)). Recall that K € C<¢ NCY. So, by Lemma 4.17, there
is a tilting object Tk € C.¢ with Tx — K and every morphism 7' — K
factors through Ty . It follows that any morphism 7" — K lies in the kernel
of End(7T)°P? — A;. Hence ¢ is injective. This finishes the proof of the claim
that ¢ is an equivalence and establishes an equivalence grC = grCV that we
will be using from now on.

Step 3. Fix £ € Zand set =0 := {¢' € Z|¢' > £}, 5y := =\ =°. Let us show
that, under the identification C¢ = C¢/, the quotient functor (7V)¢ : (C¥)se —
C¢ gets identified with 7=, ¢ (N®gna(r) 1), where we write 7=, ¢ for the quotient
functor Cz, — C¢. Note that, for N € (CV)x¢, the tensor product N @gnacry T
lies in Cz, because ez, N = 0. So the functor 7=, ¢(® @gnacry I') does make
sense. To show the coincidence of the functors we can replace C by C<¢ (and
so C¥ will be replaced with a suitable quotient). Then ¢ (T ®gpa(r)orr ) is
just a quasi-inverse of Hom(7', V¢(e)) and our claim follows.

Step 4. An isomorphism (7V)¢(e) = 7z, ¢(® @pnacry T) shows that the
functor AY : C¢ — CY, defined by A/(e) := Home(T', Ve(e)) is left adjoint
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to the projection C3; — C;. The functor A is exact. Moreover, the functor
Hom (T, @) identifies CV with (C¥)®. Under this identification, we have

A(r)=V(r), PY(r)=T(r). O

4.5.5. Uniqueness Now let C’ be another Ringel dual category of C, let
(R',0") be the corresponding Ringel duality data. It follows that R o R'~! is
an equivalence D?(C’) = Db(CV). Every projective P’ in C’ satisfies Ext, (P,
A(1")) = 0 for all labels 7/. Tt follows that Ext;(R'~1(P"), V(7)) = 0 for all
labels 7. So R'~}(P’) is A-filtered. It is also V-filtered by the definition of a
Ringel duality functor. So R'~1(P’) is tilting and therefore R o R'~! is pro-
jective. It follows that R o R/~ restricts to C'-proj — C-proj and so comes
from an equivalence of abelian categories. This equivalence is automatically
an equivalence of weakly standardly stratified categories (and ¢’ is the corre-
sponding bijection of posets).

4.5.6. When CV is standardly stratified In general, it seems that C¥
is only weakly standardly stratified. Clearly, the claim that CV is standardly
stratified is equivalent to the following claim:

(*) All tilting objects in C admit a filtration with successive quotients of
the form V¢(P:), where P is a projective object in C¢ (instead of just
some object that is guaranteed by the condition of being tilting).

When all projectives in grC are injective, (*) becomes
(**) Tilting and co-tilting objects in C are the same.

For example, (**) is satisfied for tensor products of minimal categorifications
studied in [LW]. In order to see that one applies an analog of the inductive
construction of projective objects used in the proof of [LW, Theorem 6.1] to
construct tilting objects using the dual splitting procedure from [LW, Section
4.4]. The inductive construction shows that all tilting objects are co-tilting.

4.5.7. Wall-crossing functors Let X, v, A\, x be as in Section 4.4.1. Set
N = A= Ny for N > 0. We are going to describe the Ringel dual of
(O,(Ay), <y) and the corresponding Ringel duality functor.

Theorem 4.20. The standardly stratified category (O,(Ax),<_y) is the
Ringel dual of (0, (Ay), <y). The functor &, , is the corresponding Ringel
duality functor.
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Proof. We need to prove that there is a highest weight equivalence ¢ :
grO,(Ay) = Ou(A) < grO,(Ay) such that we have a functorial isomor-
phism W&y AA (M) = V_,(«(M)). Let A~ :== XA — N6 for N > 0 so that
N, A7 lie in chambers that are opposite with respect to the face containing
—x. It follows that

(46) QUQIM_,\— = QIIC,V_,\/ o QU@)\Q_)\—.

Since ?2136;\}_ - is the Ringel duality functor for the highest weight struc-
ture on O,(A)), see Proposition 4.1, we only need to show that 20€,,, -
maps Ax-(p) to A_y o V4(p). For the same reason as in [L9, Proposition
3.2], the object W&y, y- A~ (p) has no higher homology and its class in K
coincides with [Ax(p)] = [A—, 0 V5(p)]. Because of this the functor W&y 5~
restricts to an equivalence

DO, (Ax)=,p) = D*(Oy(Ax-)=,p)-

Hence there is an equivalence 20¢€ : Db(OV(A;,)) = Db((’)y(AX,)) such that

WpOQUQ:;,LA, = ¢om,. By adjunction, we get W&y -0 A_, = A_, 020C.
Note that 2QJ€ induces the trivial map between the Ky-groups and sends
As_(p) to an object. The highest weight orders for O,(A;_), O, (Ay,) are
opposite. It follows that 20€ sends A (p) to V5, (p). A required equivalence

v is given by 20¢ o Q0E<! O
N~

Remark 4.21. Proposition 4.9 and Theorem 4.20 are still true for categories
O over Rational Cherednik algebras (since an analog of (4.6) is not known in
that context, a priori, the Ringel duality functor will be given by 23€y,,_ - o
QﬂQ;}_k). We need to take the chamber structure defined by the c-order
as in [L5, Section 2.6] and consider wall-crossing functors from loc.cit. The
proofs carry over to the RCA situation more or less verbatim (in the proof
of Lemma 4.14 we need to use equivalences from [L5, Proposition 4.2] rather
than equivalences coming from localization theorem).

Remark 4.22. Note that the functor 20¢ in the proof of Theorem 4.20 coin-
cides with the wall-crossing functor W, 5 (where ® means a Weil generic
deformation of a parameter along the face I') up to post-composing with an
abelian equivalence that is the identity on the level of K. The isomorphism
A o Q¢ = W),y o A implies that the wall-crossing bijections (see Sec-
tion 3.6) ey, ;- and ey, - coincide. This result was established in (L8,

Theorem 1.1(iii)] and [L9, Proposition 3.1} for special varieties X.
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Remark 4.23. The isomorphism Ao2J&€ = 9J¢,,,_ - oA may be viewed as a
categorical analog of a result predicted by Maulik and Okounkov and proved
by Negut in the special case of affine type A quiver varieties. This result, [Ne,
(3.21)], reduces the computation of a K-theoretic R-matrix R O (re)8
to root quantum subalgebras.

4.5.8. Example of partial Ringel duality: cross-walling functors Let
X, v, 19, X be as in 4.3.6. Assume, in addition, that all components of X*(C*)
have the same dimension. Let d := (dim X — dim X*(€™)) /2. Define a one-
parameter subgroup v’ as follows. Let v; be such that Nvg + vq lies in the
same open chamber as v. Then we set v/ := —Nvyy + v4.

The following is a corollary of Proposition 4.2 (compare to the proof of
Theorem 4.20).

Proposition 4.24. There is an abelian equivalence of the category (O, (Ay),
<_y,) with the Ringel dual of (O,(A\), <u,) and is trivial on K that inter-
twines the Ringel duality functor with €0} [—d].

4.5.9. Prospective example: Webster’s functors Let Vy,...,)V; be as
in Section 4.3.5. Fix a composition k = k1 + ... + k.. Let wy be the longest
element of Sy and w{ be the longest element of Sy, X Sk, X ... x S,. Set
o= whwy"'. Let V1 ® ... ® Vy denote the categorical tensor product of the
categories Vi, ..., V.

For o € S}, Webster in [W] defined right t-exact equivalences T, : D*(V;®
W) & Db(Vs(l) ® ... ® Vyx)). He showed that these equivalences give
rise to a braid group action. The category V,1)®...® Vy ) is expected to be
the Ringel dual of V} ®...®Vj with respect to a suitable standardly stratified
structure provided o = wjwy *. The functor 7,7 is expected to be the Ringel
duality functor.
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