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Complete complexes and spectral sequences
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Abstract: By analogy with the classical (Chasles-Schubert-Semple-
Tyrell) spaces of complete quadrics and complete collineations, we
introduce the variety of complete complexes. Its points can be seen
as equivalence classes of spectral sequences of a certain type. We
prove that the set of such equivalence classes has a structure of
a smooth projective variety. We show that it provides a desin-
gularization, with normal crossings boundary, of the Buchsbaum-
Eisenbud variety of complexes, i.e., a compactification of the union
of its maximal strata.
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0. Introduction

A. Background and motivation. The spaces of complete collineations and
complete quadrics form a beautiful and very important chapter of algebraic
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geometry, going back to the classical works of Chasles and Schubert in the
19th century, see [Se], [Ty], [L3], [L2], [Va], [Th], [DGMP], [Kau] and refer-
ences therein. They provide explicit examples of wonderful compactifications
(i.e., of smooth compactifications with normal crossings boundary).

To recall the basic example, the group PGLn(C) = GLn(C)/(C∗ · 1) has
an obvious compactification by the projective space P(Matn(C)) but it is not
wonderful since the complement, the determinantal variety, is highly singular.
Now let V,W be two C-vector spaces of the same dimension n. A complete
collineation from V to W is a sequence of the following data (assumed to be
nonzero and considered each up to a non-zero scalar factor):

(0) A linear operator A = A0 : V → W , possibly degenerate (not an iso-
morphism). Note that Ker(A) and Coker(A) have the same dimension.

(1) A linear operator A1 : Ker(A0) → Coker(A0), possibly degenerate.
(2) A linear operator A2 : Ker(A1) → Coker(A1), possibly degenerate, and

so on, until we obtain a non-degenerate linear operator.

One of the main results of the classical theory says that the set of complete
collineations has a natural structure of a smooth projective variety over C,
containing PGLn(C) as an open subset (A0 non-degenerate) so that the com-
plement is a divisor with normal crossings.

We now want to look at this classical construction from a more modern
perspective. We can view a linear operator A : V → W as a 2-term cochain
complex. Then the sequence (Aν) as above is nothing but a spectral sequence:
a sequence of complexes (E•

ν , D
ν) such that each E•

ν+1 is identified with the
cohomology H•

Dν (E•
ν).

This suggests a generalization of the construction of complete collineations
involving more full-fledged (simply graded) spectral sequences. In this paper
we develop such a generalization. The role of the group GLn(C) (or its pro-
jectivization PGLn(C)) is played by appropriate strata in the Buchsbaum-
Eisenbud variety of complexes C(V •) and its projectivization PC(V •). Here
V • is a graded vector space and C(V •) consists of all ways of making V •

into a cochain complex, see §2 and [Ke], [DS] for more background. The vari-
eties C(V •) are known to share many important properties of determinantal
varieties, in particular, they are spherical varieties: the action of the group
GL(V •) =

∏
GL(V i) on the coordinate ring has simple spectrum, i.e., each

irreducible representation enters at most once.

B. Summary of results. Our results can be summarized as follows. For
simplicity, consider the projective variety of complexes PC(V •). Let PC◦(V •)
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be the union of its maximal GL(V •)-orbits, a smooth open dense subvariety
in PC(V •), see (6.7).

At the same time let PSS(V •) be the set of equivalence classes of spectral
sequences (E•

ν , D
ν), ν = 0, · · · , N , of variable (finite) length N , see §7A, in

which:

• E•
0 = V •.

• Each Dν , ν = 0, · · · , N − 1, is not entirely zero and considered up to
an overall scalar.

• The “abutment” E•
N does not admit any two consecutive nonzero spaces

(so the spectral sequence must degenerate at E•
N ).

Then:

(1) The set PSS(V •) admits the structure of a smooth projective variety
PC(V •) over C.

(2) PC(V •) contains PC◦(V •) as an open dense part, and the complement
PSS(V •) − PC◦(V •) is a divisor with normal crossings.

(3) One can obtain PC(V •) as the successive blowup of the closures of the
natural strata in PC(V •).

These results are obtained by combining Theorems 6.10 and 7.3. The realiza-
tion of PC(V •) as an iterated blowup generalizes the approach of Vainsencher
[Va] to complete collineations. In the main body of the paper we work over
any algebraically closed field k of characteristic 0 and consider the varieties
C(V •) as well. Also, more generally, for any graded locally free sheaf of finite
rank V • over an arbitrary normal variety X over k, we introduce relative ver-
sions of varieties of complexes CX(V •) and PCX(V •) (cf. Section 4). When
X is smooth we obtain the analogs of the results (1)-(3) above.
C. Phenomena behind the results. The main phenomenon that makes our
theory work, is the remarkable self-similarity of the variety of complexes. More
precisely, C(V •) is subdivided into strata (loci of complexes with prescribed
ranks of the differentials). The transverse slice to a stratum passing through
a point D ∈ C(V •) (i.e., a differential in V •), is itself a variety of complexes
but corresponding to the graded vector space H•

D(V •) of cohomology of D (cf.
Propositions 2.9 and 4.4). This generalizes the familiar self-similarity of the
determinantal varieties: the transverse slice to the stratum formed by matrices
of fixed rank inside a determinantal variety, is itself a determinantal variety
of smaller size. In particular, our analysis implies that our stratification is
conical in the sense of MacPherson and Procesi [MP].

Further, the classical intuitive reason behind the appearance of complete
collineations has a transparent homological meaning. To recall this reason,
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consider a 1-parameter family A(t) of linear operators V → W (depending,
say, analytically on a complex number t near 0). If A(t) is nondegenerate for
t �= 0 but A0 = A(0) is degenerate, then the “next Taylor coefficient” of A(t)
gives A1 : Ker(A0) → Coker(A0), the further Taylor coefficients give A2 and
so on. This gives the limit limt→0 A(t) in the space of complete collineations
in the classical theory.

If we now have an analytic 1-parameter family D(t) of differentials in
the same graded C-vector space V •, we can view the Taylor expansion of
D(t) as a single differential D in the graded C((t))-vector space V •⊗CC((t)).
The fact that D(t) is analytic at 0 (so we are talking about Taylor, not
Laurent expansions), means that D preserves the t-adic filtration in V • ⊗C

C((t)). The associated spectral sequence of the filtered complex is essentially
simply graded, and it represents the limit of (V •, D(t)), as t → 0, in our
compactification.

D. Future directions. We expect our varieties of complete complexes to
have interesting enumerative invariants, generalizing the many remarkable
properties of complete collineations.

Historically, the first example of a “complete” variety of geometric objects
was the Chasles-Schubert space Qn of complete quadrics, which gives a won-
derful compactification of the variety Qn of smooth quadric hypersurfaces in
P
n, see [DGMP]. From our point of view, Qn can be seen as a particular case

of the variety of self-dual complexes. That is, we start with a graded (by Z or
Z + 1

2) vector space V • which is identified with its graded dual by a graded
symmetric bilinear form and consider all ways of making V • into a self-dual
complex. The corresponding analog of Qn is then formed by the variety of
self-dual spectral sequences. We leave its study to a future work.
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1. Categories of complexes

Let k be an algebraically closed field and Λ be a finitely generated commuta-
tive k-algebra. We denote by gModΛ the category of finitely generated graded
graded Λ-modules V •. That is, V • =

⊕
i∈Z V

i, with all V i finitely generated,
and V i = 0 for |i| � 0. For j ∈ Z the shifted graded module V •[j] is defined
by (V •[j])i = V j+i.
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We denote by ComΛ the category of cochain complexes over Λ, i.e., of
graded modules V • =

⊕
V i ∈ gModΛ equipped with a differential D, a

collection of Λ-linear maps Di : V i → V i+1 satisfying Di+1 ◦ Di = 0. We
will consider D = (Di) as a morphism V • → V •[1] in gModΛ. For a complex
(V •, D) we have the graded module H•

D(V •) of cohomology.

We define the shifted complex (V •, D)[j] to have the underlying graded
module V •[j] as above and the differential DV •[j] having components given
by

(1.1) D
V •[j]
i = (−1)jDV •

j+i.

One way to explain this formula is to represent V •[j] = Λ[j] ⊗Λ V • (here
Λ[j] is the ring Λ put in degree (−j)). Then (1.1) corresponds to defining the
differential via the graded Leibniz rule.

We recall that a morphism of complexes f : (V •, D) → (V ′•, D′) is called
null-homotopic, if it is of the form f = D′s + sD, where s : V • → V ′•[−1]
is any morphism in gModΛ. In this case we write f ∼ 0. For two morphisms
of complexes f, g : (V •, D) → (V ′•, D′) we say that f is homotopic to g
and write f ∼ g, if f − g ∼ 0. Null-homotopic morphisms form an ideal
in Mor(ComΛ), and the quotient category is called the homotopy category of
complexes and will be denoted HotΛ.

Definition 1.2. (a) A complex (V •, D) ∈ ComΛ will be called admissible, if:

(a1) Each V i is a projective Λ-module.
(a2) Each image Im(Di) ⊂ V i+1 is, locally, on the Zariski topology of

Spec(Λ), a direct summand in V i+1.

(b) Let X be a k-scheme of finite type. A complex V • of coherent sheaves
on X will be called admissible, if, for any affine open U ⊂ X, the complex
Γ(U, V •) of modules over Λ = O(U), is admissible.

Proposition 1.3. (a) For an admissible complex (V •, D), each H i
D(V •) is a

projective Λ-module.

(b) Assume that Λ is a local ring. Then any admissible complex V • ∈
ComΛ can be written as a direct sum V • = A•⊕H•, where A• is an admissible
acyclic complex (H•(A•) = 0), and H• is an admissible complex with zero
differential (so H• � H•(V •)).

(c) Further, for a local Λ, any acyclic admissible complex A• is con-
tractible (i.e., IdA• ∼ 0). Therefore, for any two admissible complexes (V •, D)
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and (V ′•, D′) over Λ we have

HomHotΛ

(
(V •, D), (V ′•, D′)

)
� HomgModΛ(H•

D(V •), H•
D′(V ′•)

)
Proof: (a) Since Im(Di) is locally a direct summand of a projective Λ-module
V i+1, it is projective. Therefore Ker(Di) which is the kernel of the surjective
morphism Di : V i → Im(Di) is itself projective and, moreover, locally a direct
summand in V i. So Im(Di−1) being, locally, a direct summand in V i, is in fact
locally a direct summand in Ker(Di), and so H i

D(V ) = Ker(Di)/ Im(Di−1) is
projective.

(b) Since Λ is local, all locally direct summands discussed above are in fact
direct summands of Λ-modules. Let H i ⊂ Ker(Di) be a direct complement to
Im(Di−1), and let W i ⊂ V i be a direct complement to Ker(Di), so that V i =
Im(Di−1) ⊕H i ⊕W i. Then H• ⊂ V • is a subcomplex with zero differential.
Putting Ai = Im(Di−1)⊕W i, we get a subcomplex A• ⊂ V • which is acyclic,
and V • = A• ⊕H•.

(c) If A• is admissible and acyclic, we write, as before, Ai = Im(Di−1) ⊕
W i. Since Im(Di−1) = Ker(Di), the restricted morphism Di|W i is an isomor-
phism W i → Im(Di). Denote si+1 : Ai+1 → Ai to be the composite map

Ai+1 pr−→ Im(Di)
Di

−1
|Wi

−→ W i ↪→ Ai.

Then s = (si : Ai → Ai−1) satisfies Ds + sD = IdA• .

When Λ = k, all complexes are admissible, and we obtain:

Proposition 1.4. Indecomposable objects in the abelian category Comk are
the following:

(1) k[j], j ∈ Z;
(2) {k Id→ k}[j], j ∈ Z (the 2-term complex with differential being the iden-

tity).

Proof: A complex with trivial differential is a direct sum of summands of type
(1). Further, an acyclic complex A• is a direct sum of summands of type (2).
Indeed, in the notation of the proof of Proposition 1.3(c), A• splits into a

direct sum of 2-term complexes {W i
Di|Wi

−→ Im(Di)}, which are thus direct
sums of summands of type (2). So our statement follows from Proposition
1.3(b).
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2. The affine variety of complexes, its strata and normal
cones

From now on we assume that the characteristic of k is 0. Let V • =
⊕

V i be
a finite-dimensional graded k-vector space.
Definition 2.1. The affine variety of complexes associated to V • is the closed
subscheme

C(V •) =
{
D = (Di) ∈

∏
i

Hom(V i, V i+1)
∣∣∣Di+1 ◦Di = 0 for all i

}
in the affine space

∏
i Hom(V i, V i+1).

In other words C(V •) is the subscheme of
∏

i Hom(V i, V i+1) formed by
all ways of making V • into a complex. See [DS] for background. In particular,
we note:
Proposition 2.2. C(V •) is a reduced scheme (affine algebraic variety). Fur-
ther, each irreducible component of C(V •) is a normal variety.

The group GL(V •) =
∏

i GL(V i) acts naturally on C(V •). An element
g = (gi), gi ∈ GL(V i), sends D = (Di) to

(2.3) (gD)i = gi+1Dig
−1
i .

Orbits of GL(V •) on C(V •) are nothing but isomorphism classes of complexes
(V •, D) with all possible D. We will call these orbits the strata of C(V •) and
denote by [D] the stratum passing through D. By the Krull-Schmidt theorem,
strata (isomorphism classes) are labelled by the multiplicities of the indecom-
posable summands of (V •, D) in the category Comk. Using the description of
indecomposables given by Proposition 1.4, one obtains an explicit combina-
torial description of the strata. Let us recall this description, together with
some further properties of strata and their closures that have been established
in [Go].

Without changing the essense of the problem, we can (and will) as-
sume that V • =

⊕m
i=0 V

i is concentrated in degrees [0,m], and denote ni =
dim(V i). Let R be the set of sequences r = (r1, · · · , rm), ri ∈ Z≥0, satisfying
the conditions

ri + ri−1 ≤ ni, i = 0, · · · ,m + 1.
Here we put r0 = rm+1 = nm+1 = 0. The set R is partially ordered by

r ≤ r′ ⇔ ri ≤ r′i, ∀i.
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For any r ∈ R we denote

C◦
r (V •) =

{
D ∈ C(V •)

∣∣ rk(Di) = ri+1, i = 1, · · · ,m
}
,

Cr(V •) =
{
D ∈ C(V •)

∣∣ rk(Di) ≤ ri+1, i = 1, · · · ,m
}
.

Proposition 2.4 ([Go]). (a) The strata of C(V •) are precisely the C◦
r (V •),

r ∈ R. They are non-empty, locally closed, smooth subvarieties.
(b) The closure of C◦

r (V •) is Cr(V •). In particular, each Cr(V •) is irre-
ducible.

(c) We have Cr(V •) ⊂ Cr′(V •), if and only if r ≤ r′.
(d) The irreducible components of C(V •) are precisely the Cr(V •) where r

runs over maximal elements of the poset R.
Proposition 2.5. (a) The subvariety Cr(V •) coincides with the subscheme
in C(V •) given by the vanishing of the minors of size ri+1 × ri+1 of the dif-
ferentials Di for all i. In other words, the subscheme thus defined, is reduced.

(b) The scheme-theoretic intersection Cr(V •)∩Cs(V •) coincides with the
variety Cmin(r,s)(V •), where

min(r, s) = (min(r1, s1), · · · ,min(rm, sm)).

Proof: Part (a) is one of the main results of De Concini-Strickland [DS]. Part
(b) follows from the following well known property of the determinantal ideals
in the ring k[aij ] of polynomials in the entries of an indeterminate p×q matrix
‖aij‖. The ideal generated by all r× r minors contains the ideal generated by
all (r + 1) × (r + 1) minors.

Let Y be a closed subscheme of a k-scheme Z of finite type, and IY ⊂ OZ

the sheaf of ideals of Y . We denote by

N ∗
Y/Z = IY /I

2
Y , NY/X = HomOY

(NY/Z ,OY )

the conormal and normal sheaves to Y in Z. We will be particularly interested
in the case when N ∗

Y/Z (and therefore NY/Z) is locally free, i.e., represents a
vector bundle on Y . The total space of this vector bundle is then a scheme
which we call the normal bundle to Y in Z and denote

NY/Z = SpecOY
S•
OY

(IY /I2
Y ).

We further denote by

NCY/Z = SpecOY

( ∞⊕
n=0

InY /I
n+1
Y

)
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the normal cone to Y in Z. Because of the surjection of sheaves of OY -algebras

S•
OY

(IY /I2
Y ) −→

∞⊕
n=0

InY /I
n+1
Y ,

NCY/Z is a closed subscheme in NY/Z . In particular, NCY/Z is a “cone bundle”
over Y : it is equipped with an affine morprhism NCY/Z → Y whose fiber over
a k-point y ∈ Y is a cone (NCY/Z)y in the linear space (NY/Z)y.

The above constructions extend easily to the case when Y is locally closed
(instead of closed) subscheme in Z. In this case, we define

N ∗
Y/Z = N ∗

Y/Z◦ , NY/Z = NY/Z◦ and NCY/Z = NCY/Z◦ ,

where Z◦ ⊂ Z is any open subset containing Y and such that Y is closed in
Z◦. See [F] for more background.

We now specialize to the case when Z = C(V •) and Y = [D] is the
stratum through a k-point D. Let r = (r1, · · · , rm) ∈ R and let ∗ stand for
any of the categories Comk,Hotk or gModk. We denote by

Hom≤r
∗

(
(V •, D), (V •, D)[1]

)
⊂ Hom∗

(
(V •, D), (V •, D)[1]

)
the closed subvariety formed by morphisms f = (fi : V i → V i+1) such that
rk(fi) ≤ ri for all i.

Proposition 2.6. (a) The Zariski tangent space to C(V •) at D is found
by:

TDC(V •) = HomComk

(
(V •, D), (V •, D)[1]

)
.

(b) Suppose D is contained in some Cr(V •). Then, the Zariski tangent space
to Cr(V •) at D is found by:

TDCr(V •) = Hom≤r
Comk

(
(V •, D), (V •, D)[1]

)
.

Proof: (a) By definition, TDC(V •) is the set of points Dε of C(V •) with
values in k[ε]/ε2 which extend the k-point D. Since C(V •) is embedded into
the affine space HomgVectk(V

•, V •[1]), we can write Dε = D + εf where
f ∈ HomgVectk(V

•, V •[1]). The condition for Dε to be a point of C(V •) is the
vanishing of D2

ε = D2 + ε(Df + fD). Since D2 = 0 by assumption, we are
left with Df + fD = 0 which, in virtue of the convention (1.1), means that
f : (V •, D) → (V •, D)[1] is a morphism of complexes. Part (b) is similar.
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Proposition 2.7. The Zariski tangent space TD[D] ⊂ TDC(V •) consists of
those morphisms of complexes (V •, D) → (V •, D)[1], which are homotopic
to 0.

Proof: By definition, [D] = GL(V •) · D is the orbit of D under the action
(2.3). Therefore

TD[D] = Im
{
gl(V •) hD−→ TDC(V •)

}
is the image of the Lie algebra gl(V •) under the infinitesimal action hD in-
duced by (2.3). To differentiate (2.3), we take

g = (gi), gi = 1 + εsi, si ∈ gl(V i), ε2 = 0.

Then

(gD)i = (1 + εsi+1)Di(1 − εsi) = Di + ε(si+1Di −Disi)

which is precisely a perturbation of D by a morphism homotopic to 0. Since
si can be arbitrary, the statement follows.

Since [D] is an orbit of GL(V •), the conormal sheaf N ∗
[D]/C(V •) is locally

free and so we can speak about the normal bundle N[D]/C(V •). Proposition
1.3(c) together with the above implies:

Corollary 2.8. The fiber at D of the normal bundle N[D]/C(V •) is found by:

(N[D]/C(V •))D � HomgModk

(
H•

D(V •), H•
D(V •)[1]

)
.

Proposition 2.9. (a) The fiber of NC[D]/C(V •) at D is found by:

(NC[D]/C(V •))D � C(H•
D(V •)) ⊂ HomgModk

(
H•

D(V •), H•
D(V •)[1]

)
.

(b) Suppose D is contained in some Cr(V •). Then, the fiber of NC[D]/Cr(V •)
at D is found by:

(NC[D]/Cr(V •))D � Cr−rD(H•
D(V •))

⊂ Hom≤r−rD
gModk

(
H•

D(V •), H•
D(V •)[1]

)
,

where rD is the sequence of ranks of the differential D.
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Proof: (a) We note first that

(2.10) (NC[D]/C(V •))D � NCD/C(V •)
/
TD[D],

the quotient of the tangent cone at the point D by the action of the vector
space TD[D] (we consider this space as an algebraic group acting on the
tangent cone). Now, the normal cone to any subvariety Y in any X at a
k-point y is found, inside TyY , by:

(1) Considering all k[[ε]]-points xε of X which are (1st order) tangent to Y
(2) Restricting the equations of Y in X to such xε.
(3) Equating to 0 the next (after the linear) lowest nonvanishing terms in

ε in these equations.

In our case X = HomgModk(V
•, V •[1]) is an affine space, so in Step (1)

above it is enough to take the k[[ε]]-points of the form Dε = D + εf with
f ∈ HomgVectk(V

•, V •[1]). By Proposition 2.6, for Dε to be 1st order tangent
to C(V •), it is necessary and sufficient that f be a morphism in Comk, not
just in gModk.

Further, in Step(2), the equations of C(V •) after restricting to Dε are the
matrix elements of

D2
ε = D2 + ε(Df + fD) + ε2f2,

so the next nonvanishing coefficient in Step (3) is f2. This means that

NCD/C(V •) =
{
f ∈ HomComk

(
(V •, D), (V •, D)[1]

) ∣∣ f2 = 0
}
.

Our statement now follows from (2.10), the identification of TD[D] in Propo-
sition 2.7 and Proposition 1.3(c).

(b) The isomorphism of Proposition 1.3(c) restricts to an isomorphism of
the subspace Hom≤r

Hotk

(
(V •, D), (V •, D)[1]

)
with Hom≤r−rD

gModk
(H•

D(V •),
H•

D(V •)[1]
)
. So it suffices to repeat the argument of (a).

3. The projective variety of complexes

It follows from Definition 2.1 that C(V •) is given by homogeneous (quadratic)
equations in the linear space HomgModk(V

•, V •[1]); those are the matrix ele-
ments of all the maps Di+1 ◦Di : V i → V i+2, where Di ∈ Hom(V i, V i+1) for
all i. We can therefore give the following definition:
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Definition 3.1. The projective variety of complexes associated to V • is the
projectivization

PC(V •) ⊂ P
(
HomgModk(V

•, V •[1])
)

of C(V •).
It follows that PC(V •) is a reduced scheme (projective algebraic variety),

and each of its irreducible components is normal.
For any nonzero differential D = (Di : V i → V i+1) in C(V •), we denote

its image in PC(V •) by PD. Further, for any 0 �= r ∈ R, we denote by
PC◦

r (V •) and PCr(V •) the images of the stratum C◦
r (V •) and of its closure in

PC(V •) respectively. We call the PC◦
r (V •) for r �= 0, the strata of PCom(V •)

and denote by [PD] the stratum passing through PD.
The properties of the affine varieties of complexes and their strata imply

at once:
Proposition 3.2. (a) The strata of PC(V •) are precisely the GL(V •)-or-

bits. They are non-empty, locally closed, smooth subvarieties.
(b) The closure of PC◦

r (V •) is PCr(V •). In particular, each PCr(V •) is
irreducible.

(c) We have PCr(V •) ⊂ PCr′(V •) if and only if r ≤ r′.
(d) The irreducible components of PC(V •) are precisely the PCr(V •) where

r runs over maximal elements of the poset R.
Proposition 3.3. (a) The fiber of NC[PD]/PC(V •) at PD is found by:

(NC[PD]/PC(V •))PD � C(H•
D(V •)).

(b) Suppose PD is contained in some PCr(V •). The fiber of NC[PD]/PCr(V •)
at PD is found by:

(NC[PD]/PCr(V •))PD � Cr−rD(H•
D(V •)).

4. The relative varieties of complexes and their normal cones

Let X be a normal algebraic variety over k. We denote by gCohX the category
of graded coherent sheaves F• =

⊕
i∈Z F i and morphisms preserving the grad-

ing. For any two F•,G• ∈ gCohX we have a coherent sheaf HomgCohX
(F•,G•)

on X (local homomorphisms).
Let V • =

⊕m
i=0 V

i be a graded vector bundle (locally free sheaf of finite
rank) on X concentrated in degrees [0,m]. For any k-point x ∈ X we de-
note by V •

x the graded vector space obtained as the fiber of V • at x. The
constructions of §2 admit obvious relative versions.
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Definition 4.1. The relative affine variety of complexes associated to V • is
the X-scheme CX(V •) π→ X that represents the functor on schemes given by

T �→
{
(φ,D)|φ : T → X a morphism of schemes, D a differential in φ∗V •}.

By definition, CX(V •) carries the universal complex of vector bundles

(V •, D), V • = π∗V •,

D = the universal differential coming from Definition 4.1.

In particular, the fiber of π at a k-point x ∈ X is the variety of complexes
C(V •

x ).
We denote by

M = HomgCohX
(V •, V •[1]) = SpecOX

S•
(m−1⊕

i=0
V i ⊗ (V i+1)∗

)

the total space of the vector bundle HomgCohX
(V •, V •[1]) (“relative space of

matrices”). Then CX(V •) is a closed conic subvariety in M . Let PM → X be
the projectivization of M over X.
Definition 4.2. The relative projective variety of complexes associated to V •

is the projectivization PCX(V •) ⊂ PM of CX(V •).

As before, for any r ∈ R we denote by C◦
X,r(V •), (resp. by CX,r(V •))

the locally closed, (resp. closed) subvariety in CX(V •) formed by differentials
D = (Di) with the rank of Di equal to ri everywhere (resp. ≤ ri everywhere).
We refer to the C◦

X,r(V •) as the strata of CX(V •).
If r �= 0, we denote by PC◦

X,r(V •), resp. PCX,r(V •), the image of C◦
X,r(V •),

resp. CX,r(V •) in PCX(V •). We call the PC◦
X,r(V •) the strata of PCX(V •).

Proposition 4.3. (a) CX(V •) and PCX(V •) are reduced schemes; each ir-
reducible component of these schemes is a normal variety.

(b) If X is smooth, then each stratum C◦
X,r(V •), PC◦

X,r(V •) is smooth.
(c) The subvariety CX,r(V •) coincides with the subscheme in CX(V •)

given by the vanishing of the minors of size ri+1 × ri+1 of the differentials Di

for all i.
(d) The scheme-theoretic intersection CX,r(V •)∩CX,s(V •) coincides with

the variety CX,min(r,s)(V •), where

min(r, s) = (min(r1, s1), · · · ,min(rm, sm)).



228 Mikhail Kapranov and Evangelos Routis

Proof: Parts (a)-(c) follow from the absolute case, cf. Proposition 2.5. The
proof of (d) is also similar to the proof of Proposition 2.5(b).
Let S be a stratum of CX(V •). We denote by V •

S = V •|S the restriction to S
of the universal complex V •. By the definition of the strata, V •

S is an admis-
sible complex (Def. 1.2), and therefore its graded sheaf of cohomology with
respect to the restriction of the differential D, is locally free (a graded vector
bundle). We denote this graded vector bundle by H•

S := H•
D(V •

S). Note that
H•

S descends canonically to a graded vector bundle on the projectivization
PS, which we will denote by H•

PS .
Propositions 2.9 and 3.3, describing the normal cones to the strata fiber-

wise, can be formulated in a neater, global way, using relative varieties of
complexes. The proofs are identical and we omit them.
Proposition 4.4. (a) Let S = C◦

X,r′(X) be a stratum in CX(V •) and r′ ≤ r.
Then

NCS(CX(V •)) = CS(H•
S), NCS(CX,r(V •)) = CS,r−r′(H•

S).

(b) Let PS = PC◦
X,r′(X) be a stratum in PCX(V •) and r′ ≤ r. Then

NCPS(PCX(V •)) = CPS(H•
PS), NCPS(PCX,r(V •)) = CPS,r−r′(H•

PS).

5. Charts in varieties of complexes

We keep the notation of §4. The goal of this section is to prove:
Proposition 5.1. (a) Let c be a k-point of CX(V •) (resp. PCX(V •)) be-

longing to a stratum S. There exists an isomorphism of an étale neigh-
borhood of c in CX(V •) (resp. in PCX(V •) with an étale neighborhood
of c in NCS/CX(V •) (resp. in NCS/PCX(V •)).

(b) Suppose that c (and therefore S) is contained in some CX,r(V •) (resp.
PCX,r(V •)). Then the isomorphism of part (a) restricts to an isomor-
phism of an étale neighborhood of c in CX,r(V •) (resp. in PCX,r(V •))
with an étale neighborhood of c in NCS/CX,r(V •)(resp. NCS/PCX,r(V •)).

Remark 5.2. (a) Combining Propositions 5.1 and 4.4, we obtain the follow-
ing conclusion (“self-similarity of varieties of complexes”). Any relative affine
or projective variety of complexes is modeled, near any point c, by another
affine variety of complexes, which is typically simpler than the original one
(depending on the singular nature of c).

(b) The proposition implies, in particular, that the natural stratifications
of CX(V •) and PCX(V •) are conical in the sense of MacPherson and Procesi
[MP].
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Proof of Proposition 5.1: We begin by a series of reductions. First, we only
need to prove the statement for the affine variety of complexes: the projective
case follows immediately from that by descent.

Second, we need only to give the proof for part (a): part (b) will follow
by identical arguments.

Third, it is enough to consider only the absolute case when X is a point.
Indeed, by restricting, if necessary, to an open subset of X, we can assume
that the graded vector bundle V • is trivial, identified with X × V •

x , where
V •
x is the fiber at some x ∈ X. In this case CX(V •) = X × C(V •

x ), and the
stratum S has the form X × Sx, where Sx is a stratum in C(V •

x ). A point
c has then the form c = (x,D) where x ∈ X and D lies in Sx. A chart for
CX(V •) near c will follow from a chart for C(V •

x ) near D.
So we assume that X = Spec(k) and V • is a graded vector space. Our

point c is therefore just a differential D in V • and S = [D]. The remainder
of the proof is subdivided into three steps.

Step 1: We write V • = H• ⊕ A•, where H• is a complex with zero
differential and A• is an acyclic complex (see Proposition 1.3). Let DA be the
differential of A•. Then we can write D in matrix form as

(5.3) D =
(

0 0
0 DA

)

where the zero upper left part corresponds to H•. Now, we have an embedding
of C(H•) into C(V •) defined by

(5.4) δ �→ Dδ :=
(

δ 0
0 DA

)
, δ ∈ C(H•).

Further, H• is isomorphic to H•
D(V •), the cohomology of V •. Therefore, by

Proposition 2.9, we deduce that C(H•) is isomorphic to the fiber of the normal
cone NC[D]/C(V •) over D. In other words, we have embedded the fiber of the
normal cone over D back into C(V •). Our goal in the steps to follow is to
extend this embedding to an étale map from an open neighborhood of the
fiber to an open neighborhood of D in C(V •).
Step 2: Let StD be the stabilizer of D for the action of GL(V •) on C(V •).
We write g ∈ GL(V •) as g = (gi : V i → V i)mi=0, and then write each gi in the
matrix form with respect to V i = H i ⊕ Ai:

gi =
(

Pi Qi

Ri Si

)
, Pi : H i → H i, Ri : H i → Ai, etc.
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The condition that g ∈ StD means, in virtue of (5.3) and the action law (2.3):

(5.5) Qi+1Di = DiRi = 0, Si+1Di = DiSi,

which is a set of linear homogeneous equations on the matrix elements of
the gi. In other words, (5.5) defines a linear subspace W ⊂ End(V •) =⊕

i Endk(V i), and StD = W ∩GL(V •). Choose a complementary affine sub-
space L to W passing through 1 ∈ End(V •) (which is the unit element of
GL(V •)). Then set U = L ∩GL(V •).

Lemma 5.6. The action map φ : U → [D], g �→ g ·D, is birational, and its
differential at 1 ∈ U is an isomorphism.

Proof: It is clear from the construction (the tangent space T1U is a com-
plement to T1StD), that dim(U) = dim[D], and d1φ is an isomorphism. To
see that φ is birational, fix a generic g0 ∈ U and see how many g ∈ U are
there such that φ(g) = φ(g0). The latter condition means g ·D = g0 ·D, i.e.,
g−1
0 g ∈ StD, or, in other words, g ∈ g0 · StD. Since StD is the intersection of
GL(V •) with a linear subspace in End(V •), the coset g0 · StD also has this
property, so L ∩ (g0 · StD) typically consists of one point, i.e. φ is generically
bijective onto its image. Since [D] is normal and the ground field k has char-
acteristic 0, Zariski’s Main Theorem for quasifinite morphisms implies that φ
is generically an open immersion, i.e. birational.

Let us now extend (5.4) to an embedding

(5.7) η : Hom(H•, H•[1]) ↪→ Hom(V •, V •[1]), δ �→ Dδ

by allowing δ to be an arbitrary morphism of graded vector spaces H• →
H•[1] (not necessarily satisfying δ2 = 0).

Lemma 5.8. Inside the tangent space TD Hom(V •, V •[1]) we have Im(d0η)∩
TD[D] = 0.

Proof: Identifying the tangent space in question with the vector space
Hom(V •, V •[1]), we have

Im(d0η) = Hom(H•, H•[1]) ⊂ Hom(H•⊕A•, H•[1]⊕A•[1]) = Hom(V •, V •[1]).

Note that Im(d0η) consists of morphisms of complexes, not just of graded
vector spaces, since H• has zero differential and is a direct summand in V • as a
complex. On the other hand, TD[D] consists, by Proposition 2.7, of morphisms
of complexes V • → V •[1] which are homotopic to 0. Such morphisms induce
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the zero map on the cohomology. On the other hand, morphisms from Im(d0η)
are faithfully represented by their action on the cohomology, since H• �
H•

D(V •). Therefore the intersection of the two subspaces is 0.

Lemma 5.9. The action map

Ψ : U × Hom(H•, H•[1]) −→ Hom(V •, V •[1]), (g, δ) �→ g ·Dδ,

is, at the point (1, 0), étale onto its image.

Proof: As both the source and target of Ψ are smooth, it is enough to show
that the differential d(1,0)Ψ is an injective linear map. Now,

T(1,0)(U × Hom(H•, H•[1])) = T1U ⊕ Hom(H•, H•[1]).

The restriction of d(1,0)Ψ to the summand T1U is the map d1φ which, by
Lemma 5.6, maps it isomorphically to TD[D]. The restriction of d(1,0)Ψ to
the summand Hom(H•, H•[1]) is the embedding d0η, see (5.7). So, by Lemma
5.8, its image does not intersect the image of the summand T1U , which is
TD[D]. This means that the map from the direct sum of the two summands
is injective.

Corollary 5.10. The action map

Φ : U × C(H•) −→ C(V •), (g, δ) �→ g ·Dδ,

(the restriction of Ψ) is étale at the point (1, 0).

Proof: By Lemma 5.9, Φ is, at (1, 0), étale onto its image. This image is
contained in C(V •). Now, we look at the irreducible components K of C(V •)
through D. Applying Proposition 2.4(d), we see that they are in bijection with
irreducible components of C(H•) through 0 and therefore with irreducible
components K ′ of U × C(H•) through (1, 0). The dimension of each compo-
nent K ′ is equal to the dimension of the corresponding K, and we see that K
is covered by K ′ near D (and therefore Φ(K ′) = K). So Im(Φ) = C(V •).

Step 3: The isomorphism H• � H•
D(V •) induces, by Proposition 2.9, an

identification

ξ : C(H•) → C(H•
D(V •)) =

(
NC[D]/C(V •)

)
D
.

We extend it to a map

Ξ : U × C(H•) −→ NC[D]/C(V •), (g, δ) �→ g · ξ(Dδ),
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using the action of GL(V •) on NC[D]/C(V •). This morphism is birational and,
moreover, biregular near {1} × C(H•) by Lemma 5.6, since g ∈ U takes the
fiber of NC[D]/C(V •) over D to the fiber over g ·D.

Now, the composition Φ ◦ Ξ−1 : NC[D]/C(V •) → C(V •) is a rational map,
regular and étale at the point D ∈ NC[D]/C(V •). Proposition 5.1 is proved.

6. Complete complexes via blowups

Let X be a smooth irreducible variety over k, and V • be a graded vector bun-
dle over X with grading situated in degrees [0,m], and rk(V i) = ni. We keep
all the other notations of §4. In this section we construct the variety of com-
plete complexes, resp. projective variety of complete complexes by successively
blowing up closures of strata in CX(V •) and PCX(V •) respectively.
A. Reminder on blowups. Let Z be a scheme of finite type over k and
Y ⊂ Z a closed subscheme with sheaf of ideal IY . The blowup of Y in Z is
the scheme

BlY (Z) = Proj
( ∞⊕
n=0

InY

)
.

See [F] and [H] for general background. In particular, we have a natural
projection

p : BlY (Z) → Z, p−1(Y ) = PNCY/Z := Proj
( ∞⊕
n=0

InY /I
n+1
Y

)
,

which restricts to an isomorphism BlY (Z) − p−1(Y ) → Z − Y . We will be
especially interested in the case when Y is a smooth algebraic variety and
the conormal sheaf N ∗

Y/Z is locally free, in which case PNCY/Z ⊂ PNY/Z is a
closed subscheme in the projectivization of the normal bundle NY/Z . Compare
with §2.

If W ⊂ Z is a closed subscheme, the strict transform of W is defined as
W st = BlW∩Y (W ) where W ∩ Y is the scheme-theoretic intersection. It is a
closed subscheme in BlY (Z).

If Z is an algebraic variety and W is an irreducible subvariety, then W st

is equal to the closure in BlY (Z) of p−1(W − Y ) (in particular, it is empty, if
W ⊂ Y ). More generally, if W ⊂ Z is any subvariety, its dominant transform
W̃ is defined as [L4]:

W̃ =
{
W st, if W �⊂ Y ;
total inverse image p−1(W ), if W ⊂ Y.
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Proposition 6.1. Let Z be a scheme of finite type over k and W1,W2 ⊂ Z
be closed subschemes. Let Y = W1∩W2 (scheme-theoretic intersection). Then
the strict transforms of W1 and W2 in BlY (Z) are disjoint.

Proof: This is Exercise 7.12 in [H].

B. Details on the poset of strata. Recall the poset R of integer vectors
r = (r1, · · · , rm) labelling the strata (as well as the closures of the strata) of
CX(V •), see §2 for the absolute case, extended in §4 to the relative case. Thus
the zero vector 0 is the minimal element of R. For r ∈ R we denote |r| =

∑
ri,

and call this number the length of r. We denote Rl = {r ∈ R : |r| = l}, and
similarly for R≥l, R<l etc.

Proposition 6.2. (a) The poset R is ranked with rank function |r|. That is,
for any r ≤ r′ all maximal chains of strict inequalities r = r(0) < · · · < r(l) =
r′ have the same cardinality l + 1, where l = |r′| − |r|.
(b) The set of minimal elements of R≥l coincides with Rl.

Proof: Both statements follow from the next property which is obvious from
the definition of R by inequalities.

Lemma 6.3. If r ∈ R and ri �= 0, then r − ei ∈ R, where ei is the ith basis
vector (1 at the position i, zeroes everywhere else).

We now introduce the notation for some subsets of R:
Rmax denotes the set of maximal elements of R (which label irreducible

components of CX(V •) as well as of PCX(V •)).
R� = R − Rmax (labels closures of non-maximal strata in CX(V •), to be

blown up).
R�

>l = R� ∩ R>l etc. In particular, R�
>0 labels closures of non-maximal

strata in PCX(V •).

Definition 6.4. A graded vector space V • is sparse, if the numbers ni =
dim(V i) are such that nini+1 = 0 for each i.

Remark 6.5. V • is sparse, iff C(V •) = {0}.

Proposition 6.6. A vector r ∈ R lies in Rmax if and only if for each D ∈
C◦

r (V •) the graded vector space H•
D(V •) is sparse.

Proof: Indeed, the fiber of the normal cone to the stratum [D] = C◦
r (V •) over

D is, by Proposition 2.9, identified with C(H•
D(V •)). Saying that [D] is a

maximal stratum is equivalent to saying that its normal cone consists of just
the zero section.
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We denote by

(6.7) C◦(V •) =
⋃

r∈Rmax

C◦
r (V •), PC◦(V •) =

⋃
r∈Rmax

PC◦
r (V •)

the union of the maximal strata. It is a smooth open dense subvariety in
C(V •), resp. PC(V •). We will refer to it as the generic part of C(V •), resp.
PC(V •).

C. Main constructions and results. Let d be the maximal value of |r|
for r ∈ R. Our first result gives a construction of a series of blowups of the
varieties of complexes with good properties (at each step we perform a blowup
with a smooth center). For convenience of inductive arguments, we formulate
the results for both affine and projective varieties of complexes.

Theorem 6.8. There exist towers of blowups

CX(V •) = C
(d)
X (V •) → · · · → C

(1)
X (V •) → C

(0)
X (V •) = CX(V •),

PCX(V •) = PC
(d)
X (V •) → · · · → PC

(2)
X (V •) → PC

(1)
X (V •) = PCX(V •)

with the following properties (which define them uniquely). For r ∈ R let
C

(l)
X,r(V •) ⊂ C

(l)
X (V •) be the iterated dominant transform of CX,r(V •) ⊂

CX(V •), and for r ∈ R>0 let PC(l)
X,r(V •) ⊂ PC

(l)
X (V •) be the iterated dominant

transform of PCX,r(V •) ⊂ PCX(V •).

(a) For any given l and for |r| = l, the subvarieties C
(l)
X,r (resp. PC(l)

X,r) are
smooth and disjoint.

(b) We have

C
(l+1)
X (V •) = Bl ∐

|r|=l

C
(l)
X,r(V •)C

(l)
X (V •),

PC
(l+1)
X (V •) = Bl ∐

|r|=l

PC
(l)
X,r(V •)PC

(l)
X (V •).

The theorem will allow us to make the following definition.

Definition 6.9. The relative variety of complete complexes associated to V •,
is the variety CX(V •). The relative projective variety of complete complexes
associated to V •, is the variety PCX(V •).

Our second result says that the iterated blowup we construct, provides
wonderful compactifications of the open strata in the irreducible components
of the varieties of complexes.
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Theorem 6.10. (a) The variety CX(V •) (resp. PCX(V •)) is smooth and
equal to the disjoint union of the C

(d)
X,r(V •) (resp, of the PCX,r(V •)) for

r ∈ Rmax.
(b) The varieties Δr = C

(d)
X,r(V •), r ∈ R�, are smooth and form a divisor

with normal crossings in CX(V •) which we denote ∂CX(V •). Similarly,
the varieties PΔr = PC

(d)
X,r(V •), r ∈ R�

>0, are smooth and form a divisor
with normal crossings in PCX(V •), which we denote ∂PCX(V •),

(c) The complement CX(V •)−∂CX(V •) is identified with the disjoint union
of the strata C◦

X,r(V •) for r ∈ Rmax (i.e., with the open strata in the
irreducible components of CX(V •)). Similarly, PCX(V •) − ∂PCX(V •)
is identified with the union of the strata PC◦

X,r(V •) for r ∈ Rmax.

In fact, our construction provides, along the way, a wonderful compacti-
fication of any stratum in any variety of complexes.

Theorem 6.11. (a) The projection C
(|r|)
X,r (V •) → CX,r(V •) is birational

and biregular over the open stratum C◦
X,r(V •). The subvarieties

C
(|r|)
X,r (V •) ∩ C

(|r|)
X,r′(V •), r′ < r, are smooth and form a divisor with nor-

mal crossings in C
(|r|)
X,r (V •).

(b) Similarly, the projection PC
(|r|)
X,r (V •) → PCX,r(V •) is birational and

biregular over the open stratum PC◦
X,r(V •). The subvarieties

PC
(|r|)
X,r (V •) ∩ PC

(|r|)
X,r′(V •), 0 < r′ < r, are smooth and form a divisor

with normal crossings in PC
(|r|)
X,r (V •).

Our strategy for proving Theorems 6.8 - 6.11 consists in reducing the
analysis of each blowup, by means of étale local charts, to the simplest case:
the blowup of the zero section in the relative affine variety of complexes. This
strategy agrees with the general approach to conical stratifications of singu-
lar varieties, sketched in §3.3 of [MP]. Our analysis also provides additional
information that will be used in §7 to identify k-points of the blowup with
spectral sequences.

We start by analyzing this simplest case.

D. Inductive step: structure of the first blowup. Consider C(1)
X (V •) =

BlXCX(V •), where X = CX,0(V •) is the zero section. Since CX(V •) → X

is conic over X, we have the projection q : C(1)
X (V •) → PCX(V •) realizing

C
(1)
X (V •) as the total space of the relative line bundle O(−1). Therefore the

strict transforms of the varieties CX,r(V •) (i.e., of the closures of strata) in
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C
(1)
X (V •) are:

C
(1)
X,r(V

•) = q−1(
PCX,r(V •)

)
, |r| ≥ 1.

The lowest closures of the strata (coinciding with the corresponding strata)
in PCX(V •) are the PCX,r(V •) for |r| = 1, i.e., for r = ei for some i. Being
the strata, they are smooth and disjoint and carry vector bundles H•

PCX,r(V •),
see §4. Let

H•
r = q∗

(
H•

PCX,r(V •)
)
, |r| = 1.

This is a vector bundle on C
(1)
X,r(V •). Proposition 5.1 implies, now, by pullback:

Proposition 6.12. Let |r| = 1. Then:

(a) Let c be any k-point of C(1)
X,r(V •). There exists an isomorphism of an

étale neighborhood of c in C
(1)
X,r(V •) with an étale neighborhood of c in the

relative variety of complexes C
C

(1)
X,r(V )(H

•
r ). Here, in the second variety, c is

understood as lying in the zero section.

(b) Further, the isomorphism in (a) can be chosen so that it takes, for
any r′ ≥ r, an étale neighborhood of c in C

(1)
X,r′(V •) to an étale neighborhood

of c in C
C

(1)
X,r(V •),r′−r(H

•
r ).

E. Proof of Theorem 6.8 and a “disjointness lemma”. We prove, by
induction in l, the compound statement consisting of Theorem 6.8 and the
following claim.

Proposition 6.13. Let l = 0, · · · , d. Let |r| = l and c be any k-point of
C

(l)
X,r(V •) (resp. of PC(l)

X,r(V •)).

(a) There exist:

• A Zariski open neighborhood U of c in C
(l)
X,r(V •) (resp. in PC

(l)
X,r(V •)).

• A graded vector bundle H• on U .
• An isomorphism Ξ = Ξr,l of an étale neighborhood of c in C

(l)
X (V •)

(resp. in PC
(l)
X (V •)) with an étale neighborhood of c in CU (H•).

(b) Further, for any r′ ≥ r, Ξ restricts to an isomorphism of an étale
neighborhood of c in C

(l)
X,r′(V •) with an étale neighborhood of c in CU,r′−r(H•).

We assume the statements proven for a given value of l (as well as for all
the previous values). In particular, we define C

(l+1)
X (V •) and PC

(l+1)
X (V •) by

the formulas in Theorem 6.8(b). After this, we prove Theorem 6.8 for l + 1.
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The statement of Theorem 6.8(a) for l + 1 reads as follows. For different
r with |r| = l + 1, the subvarieties C

(l+1)
X,r (V •), resp. PC(l+1)

X,r (V •), are smooth
and disjoint.

To prove this, we note the following. By Proposition 6.13(b) for l, we know
that for any r′ with |r′| = l, the variety C

(l)
X (V •) (resp. PC(l)

X (V •)) behaves
near C(l)

X,r′(V •) (resp. near PC(l)
X,r′(V •)), like the variety CU (H•) behaves near

its zero section U (étale local identification). So Bl
C

(l)
X,r′ (V

•)C
(l)
X (V •) (resp.

Bl
PC

(l)
X,r′ (V

•)PC
(l)
X (V •)) together with its closures of the strata, will be étale

locally identified with BlU (CU (H•)) together with its closures of the strata.
This latter blowup was studied in Proposition 6.12. In particular, as pointed
out in the discussion just above that proposition, its lowest closures of the
strata, C(1)

U,r′′(H•), |r′′| = 1, are smooth and disjoint. But Proposition 6.13(b)
(for l) implies that these lowest closures of the strata are étale locally identified
with the strict transforms of the C

(l)
X,r(V •), |r| = l+ 1 in C

(l+1)
X (V •), i.e. with

C
(l+1)
X,r (V •). This proves part (a) of Theorem 6.8 for l + 1.

Part (b) of Theorem 6.8 for l + 1 now constitutes the definition of
C

(l+1)
X (V •) and PC

(l+1)
X (V •).

We now prove Proposition 6.13 for l+1. For this we just need to combine
two charts:

(1) The étale chart given by Proposition 6.12 for BlU (CU (H•))
(2) The (source- and target-wise) blowup of the already constructed étale

chart Ξr′,l, |r′| = l, from Proposition 6.13 for l.

This concludes the inductive proof of Theorem 6.8 and Proposition 6.13.

Let us conclude this part with the following “disjointness lemma”, to be
used later.

Lemma 6.14. Let r, s ∈ R. Suppose that r �< s and s �< r. Let r′ = min(r, s)
(see Proposition 2.5) and l′ = |r′|. Then the varieties

C
(l′+1)
X,r (V •), C

(l′+1)
X,s (V •) ⊂ C

(l′+1)
X (V •)

are disjoint.

Proof: By Proposition 4.3(d), CX,r′(V •) = CX,r(V •) ∩ CX,s(V •) (scheme-
theoretic intersection). Therefore the strict transforms of CX,r(V •) and
CX,s(V •) in the blowup of CX(V •) along CX,r′(V •) are disjoint by Propo-
sition 6.1. Now, over the open stratum C◦

X,r′(V •), this blowup coincides with



238 Mikhail Kapranov and Evangelos Routis

C
(l′+1)
X (V •) so we conclude that the image of the intersection C

(l′+1)
X,r (V •) ∩

C
(l′+1)
X,s (V •) in CX(V •) does not meet C◦

X,r′(V •).

It remains to eliminate the possibility of a point p ∈ C
(l′+1)
X,r′ (V •) belonging

to C
(l′+1)
X,r (V •)∩C

(l′+1)
X,s (V •) and projecting to a point in some smaller stratum

S inside CX,r′(V •). Such a stratum has the form S = C◦
X,t(V •) with t < r′.

Let q be the image of p in C
(|t|)
X (V •). By Proposition 6.13, near q, the va-

riety C
(|t|)
X (V •) is étale locally identified with some CS(H•) so that C(|t|)

X,r (V •),
resp. C(|t|)

X,s (V •), resp. C(|t|)
X,r′(V •) is identified with CS,r−t(H•), resp. CS,s−t(H•)

resp. CS,r′−t(H•). Under this identification, the relevant part of C(|t|+1)
X,r (V •)

is just the blowup of (the relevant part of) CS,r−t(H•) along CS,r′−t(H•), and
similarly for C(|t|+1)

X,s (V •). Now observe that min(r− t, s− t) = min(r, s)− t.
So, as before, the center of the blowup is the scheme-theoretic intersection of
two subvarieties and so their strict transforms in the blowup are disjoint. We
have thus shown that C

(|t|+1)
X,r (V •) and C

(|t|+1)
X,s (V •) do not intersect over S.

Since |t| < l′, their subsequent iterated dominant transforms C(l′+1)
X,r (V •) and

C
(l′+1)
X,s (V •), respectively, do not intersect over S as well.

F. Proof of Theorems 6.10 and 6.11. We start with some reductions.
First, we will treat only the blowups C

(l)
X (V •) of the affine varieties of

complexes. The treatment of the PC
(l)
X (V •) is completely parallel.

Second, note that Theorem 6.10 is a particular case of Theorem 6.11.
Indeed, each C

(d)
X,r(V •), r ∈ Rmax, will first appear as C

(|r|)
X,r (V •) and will not

change in the subsequent blowups. So we concentrate on the proof of Theorem
6.11.

Let us write C
(l)
r = C

(l)
X,r(V •). For any r ∈ R and any l ≤ |r| put

(6.15) W (l)
r = C(l)

r −
⋃

s<r, l≤|s|

(
C(l)

r ∩ C(l)
s

)
.

This is an open subvariety in C
(l)
r . Put also

D(l)
r = W (l)

r ∩
⋃

s<r, l>|s|
C(l)

s .

When l = 0, we have that W
(0)
r = C◦

r = C◦
X,r(V •) is the open stratum

corresponding to r in the variety of complexes, while D
(0)
r = ∅.
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When l = |r|, we have that W
(|r|)
r = C

(|r|)
r , and

D(|r|)
r = C(|r|)

r ∩
⋃
s<r

C(|r|)
s

is the divisor which is claimed in the theorem to be a divisor with normal
crossings. So it suffices to prove the following more general statement. In this
statement and its proof we will use the following terminology. A pair (Z,D)
will be called wonderful, if Z is a smooth variety and D is a divisor with
normal crossings in Z.

Proposition 6.16. For any r ∈ R and any l ≤ |r|, the pair (W (l)
r , D

(l)
r ) is

wonderful.

Proof: We proceed by induction in l. The case l = 0 is clear from the above.
Suppose the statement is proved for a given value of l, and suppose that
(l + 1) ≤ |r|, so that the next statement is a part of the proposition. Look at
the blowup map p : C(l+1) → C(l) with the smooth center

∐
|s|=l C

(l)
s , as in

Theorem 6.8(b).

Lemma 6.17. p is biregular over W
(l)
r ⊂ C(l), i.e., W (l)

r does not meet the
center of the blowup.

Proof of the lemma: Indeed, each C
(l)
s , |s| = l, will either not meet C

(l)
r and

hence W
(l)
r (this will happen if s �< r by Lemma 6.14), or will meet C

(l)
r but

will be removed in forming W
(l)
r (this will happen if s < r).

Denote by E the exceptional divisor of p (the preimage of the center of
the blowup). The lemma means that any “new” point w ∈ W

(l+1)
r (i.e., a

point not lifted by a local biregular map from a point in W
(l)
r ), lies in E. So

it is enough to prove that (W (l+1)
r , D

(l+1)
r ) is wonderful only near such new

points w, belonging to E.

So we choose such w and denote c = p(w). Then c ∈ C
(l)
s for some s

with |s| = l. Since w ∈ W
(l+1)
r , we have s < r. We now apply Proposition

6.13 to get an open neighborhood U of c in C
(l)
s , a graded vector bundle

H• on U and an identification Ξ of an étale neighborhood of c in C
(l)
r with

an étale neighborhood of c in CU,r−s(H•). Applying the blowup along the
intersection of U with the étale neighborhoods in the source and target of Ξ,
we identify an étale neighborhood of w in C

(l+1)
r with the étale neighborhood

of a point w′ in BlU (CU,r−s(H•)), which is the total space of the line bundle
O(−1) → PCU,r−s(H•).
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Lemma 6.18. (a) The point w′ lies on the zero section of the bundle O(−1).

(b) Identifying this zero section with PCU,r−s(H•), we have that w′ lies in
the open stratum PC◦

U,r−s(H•).

Proof of the lemma: (a) follows because w lies in the exceptional divisor of p.

(b) Applying (6.15) in our case, we can write that

w ∈ W (l+1)
r = C(l+1)

r −
⋃
r′<r

l+1≤|r′|

(C(l+1)
r ∩ C

(l+1)
r′ ) ⊂ C(l+1)

r .

Since w ∈ E, it represents a point in the projectivization of the normal cone

NC
C

(l)
s
W (l)

r ⊂ NC
C

(l)
s
C(l)

r .

The variety NC
C

(l)
s
C

(l)
r is identified under Ξ (étale locally around c ∈ C

(l)
r )

with Cr−s(H•). Under this identification, the parts removed in forming W (l+1)
r ,

namely C
(l+1)
r ∩C

(l+1)
r′ match the subvarieties PCr′−s(H•). More precisely, the

intersection C
(l+1)
r ∩C

(l+1)
r′ ∩E, is identified with PCr′−s(H•). So if the state-

ment of part (b) is not true, then w would lie in one of the removed parts.

Now Proposition 6.16 follows from the next obvious statement.

Lemma 6.19. Let (Z,D) be a wonderful pair, and q : L → Z be a line bundle.
Then (L, q−1(D) ∪ Z) (with Z ⊂ L being the zero section), is a wonderful
pair.

Therefore, Theorems 6.10 and 6.11 are proved.

7. Complete complexes and spectral sequences

A. Single-graded spectral sequences. By a spectral sequence of k-vector
spaces we mean a sequence of complexes (E•

ν , D
ν) ∈ Comk, ν = 0, · · · , k + 1

such that E•
ν+1 = H•

Dν (E•
ν) for each ν < k + 1. Here k + 1 can be either a

finite number of ∞. If k + 1 is finite, then the differential Dk+1 is considered
to be zero (so that there is no additional E•

k+2 to speak of).

Definition 7.1. A spectral sequence (E•
ν , D

ν), ν = 0, · · · , k+1, will be called
reduced, if:

(1) E•
0 (and therefore each E•

ν) is finite-dimensional, i.e., the total dimen-
sion dim(E•

0) < ∞.
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(2) Each Dν , ν = 1, · · · , k, is not entirely 0, i.e., at least one component
Dν

i : Ei
ν → Ei+1

ν is nonzero.
(3) The graded vector space E•

k+1 is sparse, see §6B.

We say that (E•
ν , D

ν) is strongly reduced if, in addition, D0 �= 0.

For a reduced spectral sequence we have dim(E•
ν+1) < dim(E•

ν), so the
length of such a sequence is bounded by dim(E•

0).

Definition 7.2. Let V • be a finite-dimensional graded k-vector space. A com-
plete complex (affine version) on V • is an equivalence class of reduced spectral
sequences (E•

ν , D
ν) with E•

0 = V •, where each differential Dν , ν ≥ 1 is con-
sidered modulo scaling (the same scalar for all components Dν

i ).
A complete complex (projective version) on V • is an equivalence class

of strongly reduced spectral sequences (E•
ν , D

ν) with E•
0 = V •, where each

differential Dν , ν ≥ 0 is considered modulo scaling (the same scalar for all
components Dν

i ).

We denote by SS(V •) and PSS(V •) the sets of complete complexes on V •

in the affine and projective version respectively.

B. k-points of C(V •) and PC(V •) as spectral sequences. Let C◦(V •) be
the generic part of C(V •), i.e., the union of the maximal strata, see (6.7). We
have an embeding C◦(V •)(k) ⊂ SS(V •): a differential D making V • into a
complex, is identified with a spectral sequence of length 1, that is, consisting
only of E•

0 = V • and E•
1 = H•

D(E•
0). The fact that D lies in a maximal

stratum means, by Proposition 6.6, means that E•
1 is sparse, so condition

(3) of Definition 7.1 is satisfied. We have a similar embedding PC(V •)(k) ⊂
PSS(V •).

Theorem 7.3. We have identifications

C(V •)(k) � SS(V •), PC(V •)(k) � PSS(V •),

extending the above embeddings.

C. Stratification of complete complexes. Before proving the theorem, we
study the natural stratifications of C(V •) and PC(V •) given by the generic
parts of all possible intersections of the boundary divisors in each of these
wonderful compactifications. It is convenient to work in the relative situation
of the relative varieties of complete complexes CX(V •) and PCX(V •) corre-
sponding to a graded vector bundle V • on a smooth variety X. We recall the
divisors Δr ⊂ CX(V •), r ∈ R� and PΔr ⊂ PCX(V •), r ∈ R�

>0 from Theorem
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6.10. To emphasize their dependence on X,V • we will write ΔCX(V •)
r and

PΔPCX(V •)
r respectively, if needed.

Proposition 7.4. Let r(1), · · · , r(k) ∈ R� (resp. r(1), · · · , r(k) ∈ R�
>0) be dis-

tinct. The intersection Δr(1) ∩ Δr(2) ∩ · · · ∩ Δr(k) ⊂ CX(V •) (resp. PΔr(1) ∩
PΔr(2) ∩ · · · ∩ PΔr(k) ⊂ PCX(V •)) is nonempty if and only if, after a permu-
tation of the r(i), we have r(1) < · · · < r(k).

Proof: We only prove the statement about the variety of complete complexes;
the projective case follows by identical arguments.

“If”: We proceed by induction on k, the case k = 1 being trivial. So we
assume the statement proved for all X,V • and r(1) < · · · < r(k−1).

Suppose now some X,V • and r(1) < · · · < r(k) are given. We consider
the stratum S = C◦

X,r(1)(V •). By Propositions 4.4 and 5.1, each point of S
has an étale neighborhood U → CX(V •) identified with a part (étale) of
CS(H•) where H• is the vector bundle of the cohomology on S. Under this
identification, each subvariety CS,s(H•) corresponds to CX,r(1)+s(V •).

Accordingly, the preimage of U in CX(V •) is identified with a part of
CS(H•) in such a way that the divisors ΔCS(H•)

s in CS(H•) correspond to the
divisors ΔCX(V •)

r(1)+s in CX(V •). In particular, ΔCX(V •)
r(1) corresponds to the dom-

inant transform of the zero section of CS(H•) which is nothing but PCS(H•),
the projective variety of complete complexes.

Since, by the inductive assumption, the intersection Δr(2)−r(1) ∩ · · · ∩
Δr(k)−r(1) in CS(H•) is nonempty, the intersection of their images in PCS(H•)
is also non-empty. But by the above argument, this intersection in PCS(H•)
is étale locally identified with a part of the intersection Δr(1)∩Δr(2)∩· · ·∩Δr(k)

in CX(V •), which is therefore nonempty too.

“Only if”: The statement reduces to the following: if Δr ∩ Δs �= ∅, then
r < s or s < r. To prove this, suppose that r �< s and s �< r. Let r′ = min(r, s),
see Proposition 2.5. and l = |r′|. Then r′ < r, s. Our statement now follows
from Lemma 6.14.

We now make precise the natural stratification of the varieties of complete
complexes associated to their boundary. To this end, we give the following
Definition:

Definition 7.5. Let T ⊂ R be any subset of the form T = {r(1) < · · · < r(k)},
where r(1), · · · , r(k) ∈ R�. We allow the case k = 0, i.e., T = ∅.
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1. The stratum of CX(V •) associated to T is defined to be the locally closed
subvariety

Δ◦
T (X,V •) = Δr(1),··· ,r(k)(X,V •) :=

⋂
r∈T

Δr −
⋃
s/∈T

Δs ⊂ CX(V •).

2. Let r(1) �= 0. The stratum of PCX(V •) associated to T is defined to be
the locally closed subvariety

PΔ◦
T (X,V •) = PΔr(1),··· ,r(k)(X,V •)

:=
⋂
r∈T

PΔr −
⋃
s/∈T

PΔs ⊂ PCX(V •).

Remark 7.6. If T = ∅, the stratum of CX(V •) (resp. PCX(V •)) associated
to T is the generic part C◦

X(V •) (resp. PC◦
X(V •)) of CX(V •) (resp. PCX(V •))

that is, the union of C◦
X,r(V •) (resp. PC◦

X,r(V •)) for all r ∈ Rmax.

If X = Spec(k), i.e., V • is just a graded k-vector space, we abbreviate
the notation for the above varieties to Δ◦

T (V •), resp. PΔ◦
T (V •).

D. Proof of Theorem 7.3. Let V • be a graded k-vector space, as in the
theorem. We will identify each stratum in C(V •), resp. PC(V •), with the set
of spectral sequences with fixed numerical invariants. Let T = {r(1) < · · · <
r(k)} be as above. Define the set SS◦

T (V •) ⊂ SS(V •) to consist of equivalence
classes of spectral sequences (E•

ν , D
ν) (see discussion after Definition 7.1) such

that:

(0) E•
0 = V • and D0 ∈ C◦

r(1)(E•
0);

(1) D1 ∈ C◦
r(2)−r(1)(E1), where E•

1 := H•
D0(E•

0),
(2) D2 ∈ C◦

r(3)−r(2)(E2), and so on.

If r(1) �= 0, we denote by PSS◦
T (V •) the subset of PSS(V •) corresponding to

SS◦
T (V •). It is clear that we have disjoint decompositions

SS(V •) =
⊔

T={r(1)<···<r(k)}
SS◦

T (V •), PSS(V •) =
⊔

T={0<r(1)<···<r(k)}
PSS◦

T (V •).

Theorem 7.3 is a consequence of the following refined statement.

Proposition 7.7. For any T = {r(1) < · · · < r(k)} as above we have identi-
fications

SS◦
T (V •) � Δ◦

T (V •)(k), PSS◦
T (V •) � PΔ◦

T (V •)(k).
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Proof of the proposition: For the proof, we work with relative complete va-
rieties of complexes and analyze their strata, introduced in part C, in an
inductive fashion.

Lemma 7.8. Let X be a smooth variety over k and V • a graded vector bundle
on X. Then we have an isomorphism

Δ◦
r(1),··· ,r(k)(X,V •) � PΔ◦

r(2)−r(1),r(3)−r(1),··· ,r(k)−r(1)(C◦
X,r(1)(V •), H•),

where H• is the vector bundle of cohomology on the stratum C◦
X,r(1)(V •). We

further have an isomorphism

PΔ◦
r(1),··· ,r(k)(X,V •) � PΔ◦

r(2)−r(1),r(3)−r(1),··· ,r(k)−r(1)(PC◦
X,r(1)(V •), H•).

Knowing the lemma, the proof of Proposition 7.7 (and thus of Theorem
7.3) for strata in CX(V •) is finished as follows. We construct inductively the
following varieties Xν together with graded vector bundles E•

ν on them:

(0) X0 = Spec(k), and E•
0 = V •.

(1) X1 is the stratum PC◦
r(1),X0

(E•
0), and E•

1 is the bundle of cohomology
on this stratum.

(2) X2 is the stratum PC◦
r(2)−r(1),X1

(E•
1), and E•

2 is the bundle of cohomology
on this stratum,
.......

(k) Xk is the stratum PC◦
r(k)−r(k−1),Xk−1

(E•
k−1), and E•

k is the bundle of
cohomology on this stratum.

Lemma 7.8 implies, by induction, the following:

Corollary 7.9. The variety Xk is identified with Δ◦
T (V •).

Proposition 7.7 for strata in CX(V •) now follows because points of Xk

are manifestly identified with equivalence classes of spectral sequences, as in
Definition 7.1. The case of strata in PCX(V •) is treated similarly.

E. Proof of Lemma 7.8. By definition, Δr(1) = Δr(1)(X,V •) is the iterated
dominant transform of the closed subvariety CX,r(1)(V •) in the first tower of
blowups in Theorem 6.8. It follows that

Δr(1) −
⋃

s<r(1)

Δs = C̃◦
X,r(1)(V •)

is the iterated dominant transform of the open part (stratum) C◦
X,r(1)(V •). Let

us analyze this iterated transform and the tower of blowups in more detail.
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The first blowup nontrivial over C◦
X,r(1)(V •), will appear at the stage

l = |r(1)|. It will be the blowup along the dominant transform of CX,r(1)(V •)
which, on our part, reduces to C◦

X,r(1)(V •) itself. The corresponding dominant
transform is, therefore, the total inverse image, i.e., the projectivization of the
normal cone to C◦

X,r(1)(V •) in CX(V •). This projectivization is the projective
variety of complexes PCC◦

X,r(1)
(V •)(H•).

If we continue the construction of CX(V •) in the tower of blowups of
Theorem 6.8, then subsequent blowups along dominant transforms of the
CX,t(V •), t > r(1) will induce blowups of PCC◦

X,r(1)
(V •)(H•) along (dominant

transforms of) the PCC◦
X,r(1)

(V •),t−r(1)(H•). This will produce PCC◦
X,r(1)

(V •)(H•),
the relative projective variety of complete complexes. In other words, we have
established an identification

Δr(1) −
⋃

s<r(1)

Δs � PCC◦
r(1),X

(V •)(H•).

Under this identification the intersection of the LHS with each divisor ΔCX(V •)
t ,

t > r(1), corresponds to the divisor PΔt−r(1) in PCC◦
r(1),X

(V •)(H•). The lemma
is immediate from this.
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