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Abstract: We completely describe the Brill-Noether theory for
curves in the primitive linear system on generic abelian surfaces,
in the following sense: given integers d and r, consider the variety
V r
d (|H|) parametrizing curves C in the primitive linear system |H|

together with a torsion-free sheaf on C of degree d and r+1 global
sections. We give a necessary and sufficient condition for this va-
riety to be non-empty, and show that it is either a disjoint union
of Grassmannians, or irreducible. Moreover, we show that, when
non-empty, it is of expected dimension.

This completes prior results by Knutsen, Lelli-Chiesa and Mon-
gardi.
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1. Introduction

By Lazarsfeld’s celebrated result [Laz86], a smooth curve in the primitive
linear system of a generic K3 surface is Brill-Noether general (in the strongest
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possible sense, see [Bay16, Theorem 1.1]). The corresponding question for
abelian surfaces is much more subtle. In the present article, we completely
determine when the Brill-Noether locus for the entire primitive linear system
on generic abelian surfaces is non-empty, and show that, when non-empty,
it is of the expected dimension. We show that the Brill-Noether locus is
either irreducible or a disjoint union of Grassmannians. In particular, unlike
for K3 surfaces our condition provides many examples with negative Brill-
Noether numbers where some of the curves in the primitive linear system
are not Brill-Noether general, in the sense of carrying torsion-free sheaves
of prescribed degree and number of global sections. This completes previous
work by Knutsen, Lelli-Chiesa and Mongardi [KLCM15].

Let X be an abelian surface whose Néron-Severi group NS(X) is generated
by the class of an ample line bundle H. Let g = H2

2 +1 be the arithmetic genus
of curves in |H|. Given integers r ≥ 1 and d ≥ 1, write χ = d+1−g, and recall
that the Brill-Noether number is given by ρ(r, d, g) = g−(r+1)(r+1−χ). Let
V r
d (|H|) denote the Brill-Noether locus parametrizing curves C in the linear

system |H| together with a pure sheaf L supported on C with c1(L) − H,
with χ(L) = χ, and h0(L) = r + 1; this includes, of course, smooth curves
in |H| equipped with a complete linear system grd : C → P

r of degree d. Our
main result is the following:

Theorem 1.1. Assume χ �= 0. The Brill-Noether locus V r
d (|H|) is non-empty

if and only if
ρ + g − 2 ≥ D |χ| −D2,

where D denotes the remainder of division of r+ 1 by |χ|. Moreover, when it
is non-empty, it is generically smooth and of expected dimension ρ + g − 2.

When the above inequality is strict, then V r
d (|H|) is irreducible. Otherwise,

it is a disjoint union of
(
g−1
χ

)2
Grassmannians.

In [KLCM15, Theorems 1.4 and A.1], the authors showed that the last
condition is necessary for non-emptiness, and that in this case the Brill-
Noether locus has a component of expected dimension; they also showed
that this condition is sufficient when d ≥ r(r + 1), and further implies the
existence of smooth curves with grd. In other words, in addition to their results
we show that this necessary condition is also sufficient for d < r(r + 1), and
we determine when the Brill-Noether locus is irreducible.

The fact that V r
d (|H|) has expected dimension implies in particular that

a generic curve in |H| is Brill-Noether general, in the sense that it has no
line bundle with ρ < 0. This was first proved by Paris [Par00], along with the
Petri property, under the same assumption χ �= 0.
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In fact, a similar statement holds for certain moduli spaces of vector
bundles. Let v ∈ H∗(X) be a class of the form v = (k, c1(H), χ) for some
integers k ∈ H0(X,Z) = Z and χ ∈ H4(X,Z) = Z. Then the moduli space
MH(v) of Gieseker-stable sheaves with Chern character v is smooth and ir-
reducible of dimension v2 + 2. Let M r+1

H (v) denote the subset of sheaves E

with h0(E) = r + 1.

Theorem 1.2. Assume that χ < 0, and let r, g,D be as above. Then M r+1
H (v)

is non-empty if and only if

v2 − (r + 1)(r + 1 − χ) ≥ D(−χ) −D2.

In this case, it is irreducible and of expected dimension v2+2−(r+1)(r+1−χ).

1.1. Comparison with [KLCM15]

When H2 = 54, in other word, g = 28, the following table lists the existence
and emptiness result for curves in V r

d (|H|) for 20 ≤ d ≤ 26 and r ≥ 1.

Table 1: (non-)emptiness of V r
d (|H|)

degree
r(section) 1 2 3 4 5 6 7

20 BN KLM KLM φ φ φ φ
21 BN BN KLM φ φ φ φ
22 BN BN KLM KLM φ φ φ
23 BN BN KLM KLM φ φ φ
24 BN BN BN KLM Thm. 1.1 φ φ
25 BN BN BN KLM Δ φ φ
26 BN BN BN KLM Δ φ φ

The labels in each box indicate the following situations:

φ: There is no line bundle of degree d with r + 1 section on a curve in |H|;
this follows from [KLCM15, Theorem A.1] or our Theorem 1.1.

BN: The Brill-Noether number, ρ(g, r, d), is non-negative, and thus every
smooth curves carries a grd by [Kem71, KL72],

KLM: We have ρ(g, r, d) < 0, but there exists a smooth curve with a grd by
[KLCM15, Theorem 1.4].

Δ: V r
d (|H|) is non-empty, see discussion below.

Thm. 1.1: The non-emptiness of V r
d (|H|) follows from Theorem 1.1.
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We now give more explanation on the cells marked ‘Δ’. First of all, by our
Theorem 1.1, V r

d (|H|) is non-empty. On the other hand, the non-emptiness of
such V r

d (|H|) can be deduced from [KLCM15, Theorem 1.6 (i)] with the same
arguments as that in [KLCM15, Example 5.15]. For example, when r = 5 and
d = 25, one may let k = 2 and δ = 15. It is direct to check that δ, k, and g

(or p in the notation of [KLCM15]) satisfy the inequality in Theorem 1.6(i)
in [KLCM15]. By the theorem, there is a curve C in |H| with 15 nodes, and
its normalization C̃ is hyper-elliptic. In particular, C̃ carries linear series with
degree 10 and rank 5. Push-forward to C produces a torsion free sheaf with
degree 10 + 15 = 25 and rank 5. For the box that is marked by ‘Thm. 1.1’,
the non-emptiness of V r

d (|H|) is due to Theorem 1.1 and is completely new.
Interesting readers may check that Theorem 1.6 (i) in [KLCM15] does not
provide suitable nodal curves that may carry linear series as desired.

Remark 1.3. Note that V r
d (|H|) in our setting is different from the space

|L|rd defined in [KLCM15]: for the latter, the support curve is required to be
smooth.

1.2. Proof strategy

We proof Theorem 1.1 by wall-crossing. Let v = (0, H, χ); then the moduli
space MH(v) contains all pure torsion sheaves F with c1(F ) = H and χ(F ) =
χ. It can be reinterpreted as the moduli space Mσ(v) of Bridgeland-stable
objects when σ is contained in the Gieseker-chamber for v. We then show
(for χ < 0) that the first wall bounding the Gieseker-chamber destabilizes
exactly those F with h0(F ⊗L0) �= 0 for degree zero line bundle L0 on X. In
particular, there is a natural short exact sequence

OX ⊗H0(F ) ↪→ F � F ′

of semistable objects that is part of the Jordan-Hölder filtration of F . How-
ever, unlike in the case of K3 surfaces treated in [Bay16], we may have
h0(F ′) �= 0; in fact, this may be necessary for the extension F to exist, as
otherwise Ext1(F ′,OX) might be too small.

Thus, we have to proceed by induction. This induction is possible since
all steps remain part of the finite Jordan-Hölder filtration of F . On the other
hand, it is precisely this induction process that leads to the slightly arithmetic
nature of our results (involving the division by remainder).
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1.3. Generalisation

All our results hold slightly more generally for any polarized abelian surface
(X,H) satisfying the following:

Assumption (*) H2 divides H.D for all curve classes D on X.

To simplify the presentation, we first explain our entire argument in the case
of Picard rank one; we then explain in Section 6 how to extend the arguments
to this situation.

1.4. Related questions

In addition to [KLCM15], there have been a number of recent articles studying
Brill-Noether loci of curves in Mg carying a grd for negative Brill-Noether
numbers, in particular [Pfl13, Pfl17, JR17]. However, our results have no
direct implication on this question, as we cannot prove that smooth curves
appear in our locus V r

d (|H|).

2. Background: stability conditions, moduli spaces

2.1. Review: stability conditions on abelian surfaces

Let X be an abelian surface of Picard rank one; we denote by Db(X) the
bounded derived category of coherent sheaves on X. In this section, we will
review the description of a component of the space Stab(X) of stability con-
ditions on Db(X) given in [Bri08, Section 15].

Given an object E ∈ Db(X) we write ch(E) ∈ H∗(X,Z) for its Chern
character with value in cohomology. We write H∗

alg(X,Z) for its algebraic
part, i.e. the image of ch.

Let H be a line bundle as above; by abuse of notation, we will also write H
for its class in NS(X). Given β ∈ R, we defined the β-twisted Chern character
by

chβ(E) := e−βH . ch(E) ∈ H∗
alg(X,R)

and the β-twisted slope of a coherent sheaf E ∈ CohX by

μH,β(E) :=

⎧⎨⎩
H. chβ

1 (E)
H2 ch0(E) if ch0(E) > 0
+∞ if ch0(E) = 0.
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This leads to the usual notion of slope-stability, and the construction of the
following torsion pair

T β := 〈E : E is μH,β-semistable with μH,β(E) > 0 〉,
Fβ := 〈E : E is μH,β-semistable with μH,β(E) ≤ 0〉,

where 〈·〉 denotes the extension-closure. This is a torsion pair in CohX. Fol-
lowing [HRS96, Bri08], this lets us define a new heart of a bounded t-structure
in Db(X) as follows:

Cohβ X := 〈Fβ [1], T β〉
=

{
E : H−1(E) ∈ Fβ , H0(E) ∈ T β, H i(E) = 0 for i �= 0,−1

}
.

For α > 0 and β ∈ R as before, we define the central charge Zα,β : K(X) →
C by
(1)

Zα,β(E) := −
∫
X
e−iαH . chβ(E) = − chβ

2 (E) + iαH. chβ
1 (E) + α2

2 H2 ch0(E).

Note that Zα,β factors via the Chern character

(2) ch : K(X) → H∗
alg(X,Z) ∼= Z

3.

We will first state Bridgeland’s result constructing stability conditions on
Db(X), and then explain its meaning.

Theorem 2.1 ([Bri08, Section 15]). For α > 0, β ∈ R, the pair σα,β :=(
Cohβ X,Zα,β

)
defines a stability condition on Db(X) satisfying the support

property. Moreover, the map R>0 × R → Stab(X) is continuous.

We refer also to [MS16] or [Bay16] for more details and a sketch of the
proof. Up to an action of the universal cover of GL+

2 (R), the above theorem in
fact describes an entire component of Stab(X), but that fact will be irrelevant
for us.

For our purposes, Theorem 2.1 makes two statements. First, consider the
slope function

να,β : Cohβ X → R ∪ {+∞}, να,β(E) :=

⎧⎨⎩
−�Zα,β(E)
�Zα,β(E) if 
Zα,β(E) > 0

+∞ if 
Zα,β(E) = 0.
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This defines a notion of slope-stability in Cohβ X: every objects admits a
Harder-Narasimhan filtration into slope-semistable objects; every slope-semi-
stable objects admits a Jordan-Hölder filtration into slope-stable objects of
the same slope.

Moreover, that these satisfy the support property just follows from the
fact that on an abelian surface, the Chern character v of any stable object
satisfies v2 ≥ 0; see Section 2.2 for a discussion of this fact.

The second statement, the continuity, implies that this family satisfies
wall-crossing as α, β vary. To give an efficient description of the walls, we
change our viewpoint slightly. Observe that up to the action of GL2(R) on
C ∼= R

2, a central charge Z : K(X) → C that factors via the Chern character
(2) is uniquely determined by its kernel KerZ ⊂ H∗

alg(X,R) ∼= R
3. The Mukai

pairing:

〈(v0, v1, v2), (w0, w1, w2)〉 := v1w1 − v0w2 − v2w0

equips H∗
alg(X,R) with a quadratic form Q of signature (2, 1). The definition

of Zα,β in equation (1) identifies the upper half plane R>0 × R with the
projectivisation of the negative cone of Q, via the correspondence (α, β) �→
KerZα,β.

Proposition 2.2 ([Bri08, Proposition 9.3]). Let v ∈ H∗
alg(X,Z) be a primitive

algebraic cohomology class. Then there exists a collection of two-dimensional
linear subspaces W i

v ⊂ H∗
alg(X,R) ∼= R

3 containing v with the following prop-
erties:

• there exists a strictly σα,β-semistable object with Chern character v if
and only if KerZα,β is contained in one of the subspaces W i

v;
• the intersection of these subspaces with the negative cone of Q is locally

finite; and
• as α, β vary within a chamber, i.e. without crossing a wall, (semi-)

stability with respect to σα,β is unchanged for objects of Chern character
v.

In the case where v2 = 0, the set of walls is empty.

See Figure 1 for a picture; we also refer to [Mac12, Theorem 3.1] for a
proof of the fact that the walls are nested when viewed as semi-circles in the
upper half plane.

The final claim, for the case v2 = 0, is a general fact for stability condi-
tions satisfying the support property with respect to a given quadratic form,
see e.g. [BMS16, Proposition A.8].
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Q = 0

•
(0, 0, ∗)

The space of
H∗

alg(X,R)
Q-negative cone
KerZα,β is in the

•O

Wi
v

Wj
v

•v

KerZα,β

Projective space of
H∗

alg(X,R)

‘large volume limit’

•
(0, 0, 1)

The character of Op

•v

Wi
v

Wj
v

a chamber where stable objects
with character v are unchanged

Figure 1: Describing walls via KerZα,β ⊂ H∗(X,R).

2.2. Moduli spaces and large-volume limit

Recall that on an abelian surface, there are no rigid objects (see [Bri08,
Lemma 15.1] for a short proof). Therefore, if the moduli space Mσα,β

(v)
of σα,β-stable objects of Chern character v ∈ H∗(X,Z) is non-empty, then
Hirzebruch-Riemann-Roch shows v2 ≥ 0. It turns out that this necessary
condition is also sufficient.

Theorem 2.3 ([Yos16, MYY11]). Let v ∈ H∗
alg(X,Z) be a primitive alge-

braic cohomology class. If α, β are generic, then the moduli space Mσα,β
(v) of

semistable objects of Chern character v is non-empty if and only if v2 ≥ 0.
In this case it is a smooth holomorphic symplectic variety1 and has dimension
v2 + 2.

Proof. In the case of v2 > 0, this is part of the statement of [Yos16, The-
orem 1.13] and [MYY11, Proposition 5.16]. (The statement “deformation-
equivalent to . . . ” in [MYY11, Proposition 5.16] in particular includes the
non-emptiness.)

1Note that it is not an irreducible holomorphic symplectic variety when v2 > 0;
instead it is deformation equivalent to Hilbv2/2(X) ×X.
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As for v2 = 0, in this case there are no walls as observed in Proposition
2.2. Therefore, we may assume that σ is near the large-volume limit, in which
case it is well-known that the Gieseker-moduli space Mσ(v) = MH(v) is an
abelian surface derived equivalent to X.

Now fix such a primitive cohomology class v of positive rank. If β remains
fixed, and α � +∞, then the phase of Zα,β(E) is asymptotically governed
by the slope μH(E). The following result will refine that observation.

We write MH(v) for the moduli space of Gieseker-stable sheaves with
respect to the polarization H. Given E ∈ Db(X), let E∨ = RHom(E,OX)
be its derived dual, and write v∨ for the class dual to v.

Proposition 2.4 ([Bri08, Proposition 14.2]). If β < μH(v) and if α is suf-
ficiently big, then Mσα,β

(v) = MH(v): an object E ∈ Cohβ(X) of Chern
character v is σα,β-stable if an only if it is a Gieseker-stable sheaf.

If β > μH(v) and α is sufficiently big, then Mσα,β
(−v) = D(MH(v∨))[1]:

an object E ∈ Cohβ(X) of Chern character −v is σα,β-stable if and only if
it is the shift E = F∨[1] of the derived dual of a Gieseker-stable sheaf F of
class v∨.

In other words, there is a Gieseker-chamber in which Bridgeland stability
and Gieseker stability coincide for objects of Chern character v; and similarly
there is a dual Gieseker chamber in which they coincide up to taking derived
duals.

We also make the following observation for non-primitive classes of square
zero:

Proposition 2.5. Let v = mv0 with m > 1 and v2
0 = 0. Then every σ-

semistable object of class v is strictly semistable, and all its Jordan-Hölder
factors are of class v0.

In particular, such an object has a stable quotient and a stable subobject
of the same phase, each of class v0.

Proof. By the same argument as in the proof of [BMS16, Proposition A.8],
the set of semistable objects of class v is constant as σ varies. Hence we can
assume σ is in the Gieseker-chamber for v0 and v. The moduli space Mσ(v0)
is an abelian surface derived equivalent to X (up to a Brauer twist). The
associated Mukai transform sends objects in Mσ(v0) to skyscraper sheaves of
points, and objects in Mσ(v) to 0-dimensional torsion sheaves of length m.
This proves the claim.
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Finally, we need the construction of associated Kummer varieties. Let
X̂ := Pic0(X) be the dual abelian variety, and let P be the Poincaré line
bundle on X× X̂. Let ΦP : Db(X) → Db(X̂) be the associated Fourier-Mukai
transform. Given E ∈ Db(X), let det(E) be the associated determined line
bundle. Now consider a moduli space Mσ(v) with chosen basepoint E0. We
obtain a map

det : Mσ(v) → X̂, E �→ det(E) ⊗ det(E0)∨, and, dually,(3)
d̂et : Mσ(v) → X, E �→ det(ΦPE) ⊗ det(ΦPE0)∨.(4)

Proposition 2.6 (Yoshioka). Assume that v2 ≥ 2 is primitive. Then the
Albanese map of Mσ(v) is given by

det × d̂et : Mσ(v) → X × X̂,

and it has connected fibers.
If v2 = 0 and with v primitive, then Mσ(v) is an abelian surface. If

moreover the rank rk(v) is positive, then det : Mσ(v) → X̂ is a finite map of
degree rk(v)2.

Proof. For v2 ≥ 6, this is part of the statement of [MYY11, Proposition 5.16,
(2a)]. For v2 = 4 and v2 = 2 this is proven for moduli spaces of Gieseker-stable
sheaves in [Yos99a, Section 3] and [Yos99b, Corollary 4.3]. This property
remains preserved under wall-crossing, and thus holds for any Mσ(v), with
the same proof as the one given in [MYY11] for v2 ≥ 6.

In case v2 = 0, then Mσ(v) is (up to shift) a moduli space of semi-
homogeneous vector bundles. In particular, for E ∈ Mσ(v) there is a map
Π: X̂ → Mσ(v), L �→ E ⊗ L that is surjective [Muk78, Proposition 6.10]
of degree rk(v)2 [Muk78, Proposition 7.1]. Since the composition det ◦ Π is
multiplication by rk(v), and thus of degree rk(v)4, the claim follows.

If in fact v2 ≥ 4, then the fibers of the Albanese map are irreducible
holomorphic symplectic varieties (or K3 surfaces) of dimension v2 − 2, but
we will not need that fact.

3. The Gieseker-wall

The Gieseker chamber described by Proposition 2.4 typically has a wall cor-
responding to the Gieseker-Uhlenbeck contraction, corresponding to the sub-
space spanned by v and (0, 0, 1). In this section, we will describe its second
wall for classes v with c1(v) = H and χ(v) < 0.
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Proposition 3.1. Let v = (r,H, χ) ∈ H∗
alg(X,Z) with r ≥ 0. For any α > 0

and β = 0, we have Mσα,0(v) = MH(v). Similarly, all line bundles L ∈
Pic0(X) of degree 0 are σα,0-stable.

Proof. Observe that


Zα,0(E) ∈ Z≥0 · αH2 for all E ∈ Cohβ X, and

Zα,0(v) = αH2.

Therefore, an object E ∈ Coh0 X with ch(E) = v can never by strictly σα,0-
semistable: its Jordan-Hölder factors Ei would satisfy 
Zα,0(Ei) ∈ (0, αH2)
in contradiction to the first equation. Combined with Propositions 2.2 and
2.4, this proves the first claim.

The stability of L ∈ Pic0(X) immediately follows from the last claim of
Proposition 2.2, again combined with Proposition 2.4.

•
OX

•
‘large volume limit’

•v

•

MH(v) = Mσα,0(v)

The wall Wχ

•
(−R,H, χ)

•
σ0

•
σ+

Gieseker-Uhlenbeck wall

•MH(v)
= Mσ(v)

A ray inside the Gieseker-chamber for v

the line of
α > 0, β = 0

•
(0, H, χ)

Figure 2: The space Mσ(v) is unchanged in the chamber bounded by walls of
vOp and vOX .

The line connecting v with KerZ0,0 = R · (1, 0, 0) is therefore the first
possibility for a second wall of the Gieseker-chamber for v. For χ < 0, this
wall does exist and will be described in the following.



60 Arend Bayer and Chunyi Li

Definition 3.2. 1. Given χ < 0, let R be the number

R := max
{
r ∈ Z≥0

∣∣∣ (−r,H, χ)2 = H2 + 2rχ ≥ 0
}

=
⌊
H2

−2χ

⌋
.

We denote w0 by the character (−R,H, χ) ∈ H∗
alg(X,Z), and wk =

w0 + (k, 0, 0) for k ∈ Z≥0.
2. Let Wχ ⊂ H∗

alg(X,R) ∼= R
3 be the two-dimensional subspace spanned

by (1, 0, 0) and w0 (and containing all wk). Denote by σ0 = (Cohβ X,
Zα,β) a stability condition on the wall corresponding to Wχ: it is given
as σα0,β0 as in Theorem 2.1 for any α0, β0 with KerZα0,β0 ⊂ Wχ.

3. Finally, let P0 denote the category of σ0-semistable objects in Cohβ0 X
of the same slope ν0 as objects of character wk (for any k ≥ 0). The
category P0 does not depend on the choice of σ0 on Wχ.

Given an object E ∈ P0, its Chern character is a linear combination

(5) ch(E) = a(1, 0, 0) + bw0.

Since H generates the Picard group, b has to be integral, and therefore a as
well. Moreover, Zα0,β0(E) has to lie on the same ray as Zα0,β0(wk); combined
with ch(E)2 ≥ 0 this is only possible if b ≥ 0. This leads to the following
observation:

Lemma 3.3. Let E ∈ P0 be a σ0-semistable object with ch(E) = wk. Then
for each of its Jordan-Hölder factor Ei, the Chern character is either given
by ch(Ei) = wk′ for some 0 ≤ k′ ≤ k, or by ch(Ei) = (1, 0, 0). Moreover, Wχ

is a wall for the Chern character wk for all k > 0.

Proof. Since wk−ch(Ei) is the sum of the characters of the remaining Jordan-
Hölder factors, we must, in addition to the observations of the previous para-
graph have b ≤ 1.

If b = 0, i.e. ch(Ei) = (a, 0, 0), then Proposition 2.5 shows ch(Ei) =
(1, 0, 0). If b = 1, we have ch(Ei) = wk−a.

It remains to prove that Wχ is a wall for wk for k > 0. By Theorem 2.3
and the definition of wk and R, there exists a stable object E′ with Chern
character wk−1. Then E′ ⊕OX is a strictly σ0-semistable object, and so Wχ

describes a wall for the Chern character wk.

Fix K ≥ 0. Let σ+ be a geometric stability condition, i.e. one given as in
Theorem 2.1, sufficiently nearby the wall corresponding to Wχ, on the side
where the associated slope function satisfies ν+(O) < ν+(wk) for k ≥ 0. It is
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immediate from the local finiteness of walls (see Proposition 2.2) that σ+ is
not separated by a wall from Wχ for any wk and 0 ≤ k ≤ K; in particular,
M s

σ+(wk) = Mσ+(wk) ⊂ M ss
σ0(wk). By Proposition 3.1, the stability condition

σ+ is in fact in the (dual of the) Gieseker-chamber of wk. Moreover:

Proposition 3.4 ([BM14, Proposition 5.1]). Let E be σ0-semistable and of
Chern character wk for 0 ≤ k ≤ K. Let Ei be any of its Harder-Narasimhan
filtration factors with respect to σ+. Then Ei is σ0-semistable, and its Chern
character is contained in Wχ. Moreover, the Jordan-Hölder factors of Ei are
a subset of the Jordan-Hölder factors of E.

Corollary 3.5. Let E ∈ Cohβ0 be a σ0-semistable object with character wk.
Then it is σ+-stable if and only if for every L ∈ Pic0(X) we have Hom(E,L) =
0.

Proof. Since ν+(L) = ν+(O) < ν+(wk), and since L is σ+-stable by Proposi-
tion 2.2, the condition is clearly necessary.

Conversely, assume that E is σ0-semistable but unstable with respect to
σ+. By Proposition 3.4, there is a destabilizing quotient E � E′ such that E′

is σ0-semistable with ch(E′) ∈ Wχ, and such that the Jordan-Hölder factors
of E′ are a subset of those of E. By Lemma 3.3, the character of E′ is either
equal to wk′ for k′ < k, or equal to (r, 0, 0). Since ν+(E) ≥ ν+(E′), the former
case is impossible, and so ch(E′) = (r, 0, 0). In light of Proposition 2.5, we
can in fact assume r = 1, and so E′ = L for some L ∈ Pic0(X).

The following lemma is well-known.

Lemma 3.6. Let E be an object that is σ0-semistable, and let S be one of its
JH factors. Then there exists a unique short exact sequence

T ↪→ E � E′

such that T is σ0-semistable with all JH factors isomorphic to S, and such
that Hom(S,E′) = 0.

Proof. The existence of E′ is proved by induction on the length of the Jordan-
Hölder filtration of E. If T̃ ↪→ E � Ẽ′ is another such short exact sequence,
then Hom(T, Ẽ′) = 0 = Hom(T̃ , E′), and a simple diagram-chase proves the
uniqueness.

We will use this in the following context.
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Definition 3.7. Let E be an object an object that is σ0-semistable. We apply
Lemma 3.6 with S = OX and define Ered as the unique object with a short
exact sequence

(6) T ↪→ E � Ered,

such that T is an iterated self-extension of OX , and Hom(OX , Ered) = 0.

4. Main proof

We continue to use the notation from the previous section, in particular see
Definition 3.2, and we continue to assume χ < 0. The goal of this section is
Theorem 4.12, on non-emptiness and dimension of the loci

Mh
k :=

{
E ∈ M s

σ+(wk)
∣∣∣ hom(OX , E) = h

}
.

The strategy is to control the existence of objects in Mh
k , and to construct

them, via the two short exact sequences appearing in Lemma 4.2, respectively.
First we observe the following:

Lemma 4.1. If E ∈ Mh
k , then dim Ext1(E,OX) = h− χ.

Proof. This follows from Serre duality, χ(E) = χ, and Hom(E,OX) = 0 by
stability.

Lemma 4.2. Let E be an object in Mh
k .

1. Given a subspace W ⊂ H0(E), consider the short exact sequence in P0
given as

(7) OX ⊗W ↪→ E � E′.

Then E′ is σ+-stable with h0(E′) ≥ dimW + χ.
2. Conversely, let V ⊂ Ext1(E,OX), and consider the natural short exact

sequence

(8) OX ⊗ V ∨ ↪→ Ẽ � E.

Then Ẽ is σ+-stable with h0(Ẽ) ≥ dimV .

Proof. Since E′ and Ẽ are σ0-semistable, in light of Corollary 3.5 we need
to verify that they do not admit L ∈ Pic0(X) as a quotient in P0. This is
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immediate for E′. For Ẽ, we consider the long exact sequence associated via
Hom( , L):

0 = Hom(E,L) → Hom(Ẽ, L) ↪→ Hom(OX , L) ⊗ V → Hom(E,L[1]).

For L �= OX , the vanishing is immediate. For L = OX , it follows by our choice
of V .

The bound for h0(Ẽ) is immediate, as W is a subspace of H0(Ẽ) and the
quotient injects into H0(E). As for E′, observe that H2(E′) =
Hom(E′,OX)∨ = 0 and, due to the existence of the non-trivial extension
E, also dimH1(E′) = Ext1(E′,OX) ≥ dimW . Combined with h0(E′) =
χ + h1(E′) this shows the remaining claim.

The key difficulty is that for both short exact sequences above, we only
obtain a bound for h0 of the corresponding object, and that h0(E′) may be
non-zero even for W = H0(E). (In contrast, in the case of K3 surface, these
dimensions are directly determined due to h1(OX) = 0.) As we have explained
previously, we need to proceed by induction. Moreover, in order to control
the dimension of H0 precisely for some of these extensions, it turns out that
we have to prove more precise statements in our induction claim. These more
precise claims are based on Lemma 3.6, by involving the class of Ered.

Corollary 4.3. Let E be an object in Mh
k , then Ered given in Definition 3.7

is σ+-stable. In particular, Ered ∈ M0
kred

for some kred ∈ Z≥0.

Proof. This follows from the inductive construction of Ered in Lemma 3.6,
and Lemma 4.2.

Definition 4.4. We define a locally closed subset Mh
k,kred

of Mh
k by

Mh
k,kred

:=
{
E ∈ Mh

k

∣∣∣ Ered ∈ M0
kred

}
.

Our induction process will be controlled by the following piece-wise linear
function:

Definition 4.5. Let ΔKLM : R≥0 → R be a function inductively defined as
follows:

• ΔKLM (t) := t, when 0 ≤ t ≤ 1;
• ΔKLM (t) := ΔKLM (t− 1) + t for t ≥ 1.
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It is a continuous piece-wise linear function with ΔKLM (n) = n(n+1)
2 for

n ∈ Z≥0; explicitly,

(9) ΔKLM (t) =
(
t− �t�

2

)
(�t� + 1) for all t ∈ R≥0.

Proposition 4.6. The space Mh
k,kred

is empty when

(10) k − kred

−χ
< ΔKLM

(
h

−χ

)
.

Before the proof, let us use the statement of the Proposition 4.6 in order
to illustrate the purpose of the function ΔKLM . Consider the short exact
sequence (7) for W = H0(E), and assume that E ∈ Mh

k,kred
for a tuple

k, kred, h that satisfies (10). Then E′ ∈ Mh′
k′,kred

for k′ = k−h and h′ ≥ h+χ.
Then the tuple k′, kred, h

′ also satisfies (10) precisely because of the functional
equation satisfied by ΔKLM .

Proof. When k ≤ kred − χ, suppose there is an object E ∈ Mh
k,kred

such that
inequality (10) holds, i.e. h ≥ k − kred + 1 ≥ 1. Consider the quotient E′

defined by

(11) O⊕h
X

∼= OX ⊗ Hom(OX , E) ↪→ E � E′.

Note that, by Definition 3.7, Ered ∼= (E′)red. But since E′ ∈ Mk−h, we have
(E′)red ∈ Mt′ = Mkred for t′ ≤ k − h ≤ kred − 1, this leads the contradiction.

When k > kred − χ, we proceed by induction on k. Suppose there is an
object E ∈ Mh

k,kred
such that the (10) holds. In particular, we have h > −χ.

We again consider E′ fitting into the short exact sequence (11). By Lemma
4.2, E′ is σ+-stable with h0(E′) ≥ h + χ.

As before, Ered � (E′)red, therefore, Mh′
k−h,kred

�= ∅ for some h′ ≥ h + χ.
By induction on k,

k − h− kred

−χ
≥ ΔKLM

(
h′

−χ

)
≥ ΔKLM

(
h + χ

−χ

)
= ΔKLM

(
h

−χ

)
− h

−χ
.

This contradicts the assumption on k.

Definition 4.7. We write d(k, h) for the expected dimension of Mh
k , which

is given as

d(k, h) := w2
0 − 2kχ + 2 + hχ− h2 = w2

k + 2 + hχ− h2.
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Lemma 4.8. Every irreducible component of Mh
k has dimension at least

d(k, h).

Proof. This could be proved similarly to the case of line bundles on curves, see
e.g. [ACGH85, Section IV.3]; however, to treat the cases k ≥ R (in which case
Mσ+(wk) parameterizes stable sheaves) and k < R (in which case it instead
parameterizes derived duals of stable sheaves) simultaneously, we present here
a derived category version of the classical argument.

Consider any family E ∈ Db(S ×X) of σ+-semistable objects of class wk

over a scheme S of finite type over C; this means that the derived restriction
Es := E|{s}×X ∈ Db(X) is an σ+-stable object of class wk for every closed
point s. We will prove that the locus

Sh :=
{
s ∈ S : h0(Es) = h

}
⊂ S

has codimension at most −hχ + h2.
Let πS : S×X → S denote the projection, and consider the derived push-

forward F := (πS)∗E . By derived base change (see e.g. [Sta16, Tag 08IB]),
we have H i(F ⊗L Os) = H i(Es) = 0 for i �= 0, 1 (note that H2(Es) =
Hom(Es,OX)∨ = 0 since Es is σ+-stable). By [BM02, Proposition 5.4], it
follows that F is quasi-isomorphic to a 2-term complex of vector bundles
F0 → F1, and of rank χ = rkF0− rkF1. Then Sh is the locus where the rank
of the differential is given by rkF1−h; this has codimension at most h(h−χ)
as claimed.

Remark 4.9. The proof evidently applies in much bigger generality: X could
be an arbitrary scheme of finite type of the base field; we only need to assume
that E ∈ Db(S ×X) has the property that for all s ∈ S, the restriction Es is
in Db(X), has compact support, and cohomology in at most two degrees. The
classical proof instead constructs the two-term complex F0 → F1 explicitly.

Let D be the remainder of division of h by −χ, with 0 ≤ D < −χ.

Proposition 4.10. The moduli space Mh
k,kred

is non-empty when k ≥ kred ≥ 0
and h is the maximum integer such that

(12) k − kred

−χ
≥ ΔKLM

(
h

−χ

)
.

When equality holds, Mh
k,kred

is a bundle over M0
kred

of Grassmannians of
D-dimensional subspaces in a (−χ)-dimensional vector space, and of total
dimension d(k, h).
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Proof. When k = kred, since w2
kred

≥ 0, the moduli space Mσ+(wkred) is non-
empty by Theorem 2.3. Since any E ∈ Mσ+(wkred) has only finitely many
Jordan-Hölder factors with respect to σ0, we can use the action of Pic0(X) to
find an object that does not have OX as a factor, and in particular satisfies
Hom(OX , E) = 0. Therefore, M0

kred,kred
is non-empty. Moreover, it is an open

dense subset of M s
σ+(wkred), and thus of expected dimension d(k, 0).

Now consider the case 0 < k − kred < −χ. Then h = k − kred satisfies
equality in (12). Let E be an object in M0

kred,kred
. By Lemma 4.1, Ext1(E,OX)

has dimension −χ, and thus we can choose a subspace V of dimension h. We
consider the short exact sequence

OX ⊗ V ∨ ↪→ Ẽ � E

as in Lemma 4.2. By the Lemma, Ẽ is σ+-stable. Clearly
(
Ẽ
)

red
= E and

H0(Ẽ) = V ∨. Therefore, Ẽ ∈ Mh
k,kred

, proving the non-emptiness as claimed.
Our construction depended on a choice of a point in the Grassmannian

bundle over M0
kred,kred

whose fiber over E is given by the set of h-dimensional
(or, equivalently, D-dimensional) subspaces in Ext1(E,OX) ∼= C

−χ. On the
other hand, applying Lemma 4.2, part 1, we see that any object F ∈ Mh

k,kred
fits into a short exact sequence

OX ⊗H0(F ) ↪→ F � Fred

with Fred ∈ M0
kred,kred

, and thus this Grassmannian bundle describes the entire
stratum Mh

k,kred
. Its dimension is

dimM0
kred

+ dimGr(k − kred,−χ)
= w2

0 + 2 − 2kredχ + (k − kred)(−χ− k + kred)
= w2

0 + 2 − 2kχ + (k − kred)(χ− k + kred)
= w2

0 + 2 − 2kχ− (h− χ)h
= d(k, h).

For k − kred ≥ −χ, we proceed by induction on k. Let h be the integer
as in the statement of the Proposition. Let h′ be the maximum integer, such
that

ΔKLM

(
h′

−χ

)
≤ k − h− kred

−χ
.

By the functional equation of ΔKLM , h′ ≥ h+χ ≥ 0. By induction on k, there
is an object E in Mh′

k−h,kred
. By Lemma 4.1 the dimension of Ext1(E,OX) is
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h′ − χ ≥ h, and thus we can choose a subspace V of dimension h. We again
consider the extension

OX ⊗ V ∨ ↪→ Ẽ � E;

applying Lemma 4.2 as before shows that Ẽ is σ+-stable with
(
Ẽ
)

red
∼= Ered.

In particular, Ẽ ∈ Mh′′
k,kred

for some h′′ ≥ h. Now since h is the maximum
number satisfying (12), Proposition 4.6 says that Mh′′

k,kred
is empty for h′′ > h.

Hence h′′ = h, and so Mh
k,kred

is non-empty as claimed.
When equality holds, it remains to show the statement about the dimen-

sion. In that case, we have h′ = h+χ in each induction step, and in particular
the remainder D remains preserved at each step. We have a bijective mor-
phism

Mh
k,kred

→ Mh+χ
k−h,kred

E �→ E′ = E/ (OX ⊗ Hom(O, E)) ;

indeed, its inverse is given by associating to E the extension Ẽ given by

OX ⊗ Hom(E,OX [1])∨ ↪→ Ẽ � E.

It follows by induction that Mh
k,kred

is a Grassmannian-bundle over M0
kred

of
dimension

d(k − h, h + χ) = w2
0 − 2(k − h)χ + 2 + (h + χ)χ− (h + χ)2

= w2
0 − 2kχ + 2 + hχ− h2 = d(k, h).

Lemma 4.11. Let h, k, kred ∈ Z≥0. Whenever Mh
k,kred

is non-empty, it satis-
fies

dimMh
k,kred

≤ d(k, h).

Moreover, if equality holds, then h, k, kred satisfy equality in equation (12).

Proof. We prove the statement by induction on k, the case k = 0 being
obvious. Similarly, for h = 0, we have M0

k,k = M0
k , which is an open subset of

Mσ+(wk) by Proposition 4.10.
We thus assume k > 0 and h > 0. Given E ∈ Mh

k,kred
, again consider the

quotient E′ (in P0) defined by

OX ⊗H0(E) ↪→ E � E′,
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which is σ+-stable with h0(E′) ≥ h+ χ by Lemma 4.2. We consider the map

π : Mh
k,kred

→
⋃

l≥max(0,h+χ)
M l

k−h,kred
, E �→ E′,

where the right-hand-side is considered as a locally closed subset of
Mσ+(wk−h).

It is sufficient to prove the dimension bound for each of the pre-images
of the finitely many strata on the right-hand-side. By the induction on k, the
dimension of M l

k−h,kred
does not exceed d(k−h, l). For each E′ ∈ M l

k−h,kred
, we

have dim Ext1(E′,OX) = l−χ by Lemma 4.1. Therefore, π−1(E′) is a locally
closed subset of the Grassmannian of h-dimensional subspaces in Cl (defined
by the associated extension having h-dimensional space of global sections); in
particular its dimension is at most h(l − χ− h).

Thus, if the pre-image of M l
k−h,kred

is non-empty, its dimension is bound
by

dim π−1
(
M l

k−h,kred

)
≤ dimM l

k−h,kred
+ h(l − χ− h)

≤d(k − h, l) + h(l − χ− h)
=d(k, h) + 2hχ− l(l − χ) + h(h− χ) + h(l − χ− h)
=d(k, h) − l(l − χ− h)
≤d(k, h).(13)

The last inequality achieves equality only if l = 0 ≥ h + χ or l = h + χ > 0.
In the former case, M0

k−h,kred
is non-empty only if kred = k − h. Since

h + χ ≤ 0, we have ΔKLM

(
h
−χ

)
= h

−χ = k−kred
−χ , and thus equality in (12).

In the second case l = h+χ, by the induction on k, the second inequality
above can only be an equality if h+χ, k−h, kred satisfy equality in (12). By
the functional equation of ΔKLM , we conclude

ΔKLM

(
h

−χ

)
= ΔKLM

(
h + χ

−χ

)
+ h

−χ
= k − h− kred

−χ
+ h

−χ
= k − kred

−χ

as claimed.

Theorem 4.12. The moduli space Mh
k is nonempty if and only if

k

−χ
≥ ΔKLM

(
h

−χ

)
.

Whenever non-empty, Mh
k is irreducible with expected dimension d(k, h).
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Proof. Observe either by induction, or by the explicit formula (9), that χ ·
Δ

(
h
−χ

)
is an integer. Therefore, given h and k satisfying the assumptions of

the Theorem, there is a unique integer k0 with 0 ≤ k0 ≤ k such that equality
holds in equation 12. By Proposition 4.10, for this choice of kred, the stratum
Mh

k,kred
is non-empty, irreducible and of expected dimension d(k, h).

On the other hand, for all other choices of kred, Lemma 4.11 shows that
the stratum Mh

k,kred
has dimension strictly smaller than d(k, h). By Lemma

4.8, it is thus contained in the closure of a stratum of bigger dimensions.
Conversely, if k

−χ < ΔKLM

(
h
−χ

)
, then Proposition 4.6 shows that Mh

k is
empty.

Note that all constructions in this sections have been invariant under the
action of X by translation. We note the following consequence of this fact
when combined with the proof of Theorem 4.12:

Proposition 4.13. Assume that Mh
k is non-empty, and let k0 with 0 ≤ k0 ≤ k

be such that
k − k0

−χ
= ΔKLM

(
h

−χ

)
.

Let 0 ≤ D < −χ be the remainder of division of h by −χ. Then Mh
k has a

dense open subset Mh
k,k0

, invariant under the action of X by translation, that
is isomorphic to a bundle over M0

k0
of Grassmannians of type Gr(D,−χ). Its

fiber over a point F ∈ M0
k0

parameterises iterated extensions of F by OX .

5. Conclusion

We will now prove our main result, which we first recall:

Theorem 1.1. Assume χ �= 0. The Brill-Noether locus V r
d (|H|) is non-empty

if and only if

(14) ρ + g − 2 ≥ D |χ| −D2,

where D denotes the remainder of division of r + 1 by |χ|. Moreover, when it
is non-empty, it is generically smooth and of expected dimension ρ + g − 2.

When the above inequality is strict, then V r
d (|H|) is irreducible. Otherwise,

it is a disjoint union of Grassmannians.

Proof. Using the derived dual on X, or, equivalently, Serre duality on the
individual curves, we first reduce to the case χ < 0.
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Thus we are in the situation of the previous section. By Lemma 3.1, we
have MH(0, H, χ) = M s

σ+(0, H, χ) = Mσ+(wR). (Note that by Definition 3.2,
the value R is non-negative by χ < 0.)

Hence V r
d (|H|) is the intersection of the Brill-Noether variety M r+1

R stud-
ied in the previous section with the set of sheaves supported on a curve in
the linear system |H| (rather than a translate of such a curve). If we consider
the action of X on MH(0, H, χ) = Mσ+(wR) by translation, then each orbit
contains finitely many sheaves supported on a curve in the linear system |H|.
Moreover, the action leaves the Brill-Noether variety M r+1

R invariant.
It follows that V r

d (|H|) is non-empty if and only if M r+1
R is non-empty,

with

dimV r
d (|H|) = dimM r+1

R − 2 = d(R, r + 1) − 2
= (0, H, χ)2 + 2 + (r + 1)χ− (r + 1)2 − 2
= 2g − 2 − (r + 1)(r + 1 − χ) = ρ + g − 2.

Let r + 1 = s(−χ) +D, where s ∈ Z≥0, 0 ≤ D < χ. By Theorem 4.12, M r+1
R

is non-empty if and only if

R

−χ
≥

(
r + 1
−χ

− 1
2

⌊
r + 1
−χ

⌋)(⌊
r + 1
−χ

⌋
+ 1

)
⇐⇒ R ≥ 1

2(r + 1 + D)(s + 1).

The bound on the right is an integer: indeed, when s is even, r+1 and D have
the same parity. Thus, we may replace R by H2

−2χ , omitting the round-down
(see Definition 3.2). Therefore, M r+1

R and V r
d (|H|) are non-empty if and only

if

2g − 2 − (r + 1 + D)(r + 1 −D − χ) ≥ 0
⇐⇒ 2g − 2 − (r + 1)(r + 1 − χ) + D2 + Dχ ≥ 0

⇐⇒ ρ + g − 2 ≥ D(−χ) −D2.

Now assume that the inequality (14) is strict; we need to show that V r
d (|H|)

is irreducible. Note that we can define V r
d (|H|) equivalently as the preimage

of 0 ∈ X̂ under the map

(15) D : M r+1
R → X̂, E �→ det(E) ⊗O(−H).

Now let k0 be as in Proposition 4.13, and consider the open subset M r+1
R,k0

⊂
M r+1

R . Since this inclusion is translation-invariant, it suffices to show that the
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restriction factors as

M r+1
R,k0

→ M0
k0

det×d̂et−−−−−→ X̂ ×X → X̂;

here the first map is the projection to the base of the Grassmannian bundle
given in the Proposition 4.13, the second map is the restriction of the Albanese
map appearing in Proposition 2.6, and the third one is, up to shift, given by
projection to the first factor.

We claim that under our assumptions, each of these maps has connected
fibers. Indeed, this is obvious for the first and the third map. For the second
map, note that by Proposition 4.13, the dimension of Mk0 must be equal to

dimMk0 = dimM r+1
R − dim Gr(D,−χ) = ρ + g −D(−χ−D).

Thus, if the inequality (14) is strict, then Mk0 has dimension at least 4, and
we can apply Proposition 2.6 to deduce connectedness of fibers for det× d̂et.

The composition is thus a map between smooth irreducible varieties with
connected fibers; since the generic fiber is smooth and connected, it is irre-
ducible. Since translation acts transitively on the set of fibers, it follows that
M r+1

R,k0
is smooth and irreducible.

Otherwise, if equality holds in (14), then Mk0 is two-dimensional, i.e. w2
k0

=
0. Hence we have −k0 = rk(wk0) = H2

2χ = g−1
χ . By Proposition 2.6, the moduli

space Mk0 contains k2
0 many elements with determinant O(H) (rather than

one of its translates). The variety V r
d (|H|) consists of one Grassmannian for

each of these objects.

Remark 5.1. Since 0 ≤ D < −χ, the right-hand-side of (14) is always
positive, as we should expect. On the other hand, from r + 1 ≥ D one can
verify that if ρ violates (14), then in fact ρ < 0.

Remark 5.2. This inequality gives exactly the same bound as that in The-
orem A.1 in [KLCM15]:

ρ + r(r + 2) ≥ −
⌊

r

−χ

⌋
χ

(
r + 1 + 1

2χ
(⌊

r

−χ

⌋
+ 1

))
.(16)

When
⌊

r
−χ

⌋
=

⌊
r+1
−χ

⌋
= s, the inequality (16) is equivalent to

ρ + r(r + 2) ≥ −sχ(r + 1 − 1
2(−χ)(s + 1))

⇐⇒ 2ρ+ 2r(r+ 2) ≥ 2(r+ 1−D)(r+ 1− 1
2(r+ 1−D) + 1

2χ)
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⇐⇒ ρ+ g+ (r+ 1)(χ+ r+ 1)− 2 ≥ (r+ 1−D)(r+ 1 +D+χ)
⇐⇒ ρ + g − 2 ≥ D(−χ) −D2.

In the remaining case r + 1 = s(−χ), the inequality (16) is equivalent to

ρ + r(r + 2) ≥ (r + 1 + χ)(r + 1 + 1
2χs)

⇐⇒ 2ρ + 2r(r + 2) ≥ (r + 1 + χ)(r + 1)
⇐⇒ ρ + g − 2 ≥ 0.

Proof of Theorem 1.2. When k < −R, we have v2 < 0. The inequality fails
since v2 − (r + 1)(r + 1−χ) < 0 ≤ D(−χ)−D2. The moduli space M r+1

H (v)
is empty due to Proposition 2.5.

When k ≥ −R, by Lemma 3.1, we have MH(k,H, χ) = M s
σ+(k,H, χ) =

Mσ+(wk+R). It follows that M r+1
H (v) = M r+1

k+R. We apply Theorem 4.12 for
the space M r+1

k+R. This space is non-empty if and only if

k + R

−χ
≥

(
r + 1
−χ

− 1
2

⌊
r + 1
−χ

⌋)(⌊
r + 1
−χ

⌋
+ 1

)
⇐⇒ R ≥ 1

2(r + 1 + D)
(
r + 1 −D

−χ
+ 1

)
− k.

Note that the bound on the right is an integer, we may substitute this bound
to the constraint on R. The space M r+1

k+R is non-empty if and only if

2g − 2 − (r + 1 + D)
(
r + 1 −D

−χ
+ 1

)
(−χ) + 2kχ ≥ 0

⇐⇒ v2 + (r + 1)χ− (r + 1)2 ≥ D(−χ) −D2.

By Theorem 4.12, when M r+1
R+k is non-empty, it is irreducible of the expected

dimension:
d(k + R, r + 1) = v2 + 2 − (r + 1)(r + 1 − χ).

6. Generalisation

Let (X,H) be a polarized abelian surface satisfying Assumption (*). In this
section, we explain how to adapt all our arguments from abelian Picard rank
one to X.
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Let ΛH
∼= Z

3 denote the image of the map

vH : K(X) → R
3, E �→ (ch0(E), H. ch1(E), ch2(E)) .

We will only consider stability conditions for which the central charge factors
via vH , and denote the space of such stability conditions by StabH(X). The
pair σα,β :=

(
Cohβ X,Zα,β

)
defines a stability condition on Db(X) and there

is a continuous map from R>0 × R → Stab(X). The only difference here is
that StabH(X) is not the whole space but a slice of the whole space. The
slope function να,β is defined in the same way.

The Mukai pairing equips ΛH ⊗ R with the quadratic form Q, and iden-
tifies the upper half plan R>0 × R with the projectivization of the negative
cone of Q, via taking the kernel of Zα,β in ΛH ⊗ R. All the propositions in
Section 2 hold for the higher Picard rank case.

In the proof of Proposition 3.1, we use the fact that ‘
Zα,0(E) is of
the form Z≥0 · H2 for all E ∈ Cohβ X’. This also holds by Assumption (*).
For Lemma 3.3, we shall modify the statement to ‘vH(Ei) is either vH(wk′)
or (r, 0, 0)’, and prove it in the same way as the Picard number one case.
Similarly, for Corollary 3.5, we change the condition to ‘for any σ0-stable
object O such that vH(O) = (r, 0, 0)’. Note that this modification does not
affect the argument for Lemma 4.2, which is the only place that uses Corollary
3.5. All the other statements do not rely on the Picard rank.
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