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Abstract: We show that minimal models of nondegenerated hy-
persufaces defined by Laurent polynomials with a d-dimensional
Newton polytope Δ are Calabi-Yau varieties X if and only if the
Fine interior of the polytope Δ consists of a single lattice point.
We give a combinatorial formula for computing the stringy Euler
number of such Calabi-Yau variety X via the lattice polytope Δ.
This formula allows us to test mirror symmetry in cases when Δ
is not a reflexive polytope. In particular, we apply this formula
to pairs of lattice polytopes (Δ,Δ∨) that appear in the Mavlyu-
tov’s generalization of the polar duality for reflexive polytopes.
Some examples of Mavlyutov’s dual pairs (Δ,Δ∨) show that the
stringy Euler numbers of the corresponding Calabi-Yau varieties
X and X∨ may not satisfy the expected topological mirror sym-
metry test: est(X) = (−1)d−1est(X∨). This shows the necessity of
an additional condition on Mavlyutov’s pairs (Δ,Δ∨).

1. Introduction

Many examples of pairs of mirror symmetric Calabi-Yau manifolds X and
X∗ can be obtained using Calabi-Yau hypersurfaces in Gorenstein toric Fano
varieties corresponding to pairs (Δ,Δ∗) of d-dimensional reflexive lattice poly-
topes Δ and Δ∗ that are polar dual to each other [Bat94].

A d-dimensional convex polytope Δ ⊂ Rd is called a lattice polytope if
Δ = Conv(Δ ∩ Zd), i. e., all vertices of Δ belong to the lattice Zd ⊂ Rd. If a
d-dimensional polytope Δ contains the zero 0 ∈ Zd in its interior, one defines
the polar polytope Δ∗ ⊂ Rd as

Δ∗ := {y ∈ Rd : 〈x, y〉 ≥ −1 ∀x ∈ Δ},
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where 〈∗, ∗〉 : Rd × Rd → R is the standard scalar product on Rd. A d-
dimensional lattice polytope Δ ⊂ Rd containing 0 in its interior is called
reflexive if the polar polytope Δ∗ is also a lattice polytope. If Δ is reflexive
then Δ∗ is also reflexive and one has (Δ∗)∗ = Δ.

For a d-dimensional reflexive polytope Δ one considers the familiy of
Laurent polynomials

f(x) =
∑

m∈Zd∩Δ
amx

m ∈ C[x±1
1 , . . . , x±1

d ]

with sufficiently general coefficients am ∈ C. Using the theory of toric varieties
(see e.g. [Ful93, CLS11]), one can prove that the affine hypersurface Z ⊂
Td := (C∗)d defined by f = 0 is birational to a (d − 1)-dimensional Calabi-
Yau variety X. In the same way one obtains another (d − 1)-dimensional
Calabi-Yau variety X∗ corresponding to the polar reflexive polytope Δ∗.

The polar duality Δ ↔ Δ∗ between the reflexive polytopes Δ and Δ∗

defines a duality between their proper faces Θ ↔ Θ∗ (Θ ≺ Δ, Θ∗ ≺ Δ∗)
satisfying the condition dim Θ+dim Θ∗ = d−1, where the dual face Θ∗ ≺ Δ∗

is defined as
Θ∗ := {y ∈ Δ∗ : 〈x, y〉 = −1 ∀x ∈ Θ}.

There is a simple combinatorial formula for computing the stringy Euler num-
ber of the Calabi-Yau manifold X [BD96, Corollary 7.10]:

estr(X) =
d−2∑
k=1

(−1)k−1 ∑
Θ�Δ

dim Θ=k

v(Θ) · v (Θ∗) ,(1.1)

where v(P ) := (dimP )!V ol(P ) ∈ Z denotes the integral volume of a lattice
polytope P . An alternative proof of the formula (1.1) together with its gener-
alizations for Calabi-Yau complete intersections is contained in [BS17]. The
formula (1.1) and the duality Θ ↔ Θ∗ between faces of reflexive polytopes Δ
and Δ∗ immediately imply the equality

estr(X) = (−1)d−1estr(X∗)

which is a consequence of a stronger topological mirror symmetry test for the
stringy Hodge numbers [BB96]:

hp,q
str(X) = hd−1−p,q

str (X∗), 0 ≤ p, q ≤ d− 1.

It is important to mention another combinatorial mirror construction sug-
gested by Berglung and Hübsch [BHü93] and generalized by Krawitz [Kra09].
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This mirror construction considers (d − 1)-dimensional Calabi-Yau varieties
X which are birational to affine hypersurfaces Z ⊂ Td defined by Laurent
polynomials

f(x) =
∑

m∈Zd∩Δ
amx

m ∈ C[x±1
1 , . . . , x±1

d ],

whose Newton polytope Δ ⊂ Rd is a lattice simplex, but it is important to
stress that this simplex may be not a reflexive simplex. The mirror duality
for the stringy (or orbifold) Hodge numbers of Calabi-Yau varieties obtained
by Berglung-Hübsch-Krawitz mirror construction was proved by Chiodo and
Ruan [CR11] and Borisov [Bor13].

The Batyrev mirror construction [Bat94] and the Berglund-Hübsch-
Krawitz mirror construction [BHü93, Kra09] can be applied to different classes
of hypersurfaces in toric varieties, but they coincide for Calabi-Yau hypersur-
faces of Fermat-type. So it is natural to expect that there must be a gen-
eralization of two mirror constructions that includes both as special cases
(see [AP15, Bor13, ACG16, Pum11, BHü16]). Moreover, it is natural to ex-
pect the existence of a generalization of combinatorial formula (1.1) for the
stringy Euler number estr(X) of Calabi-Yau varieties X which holds true for
projective varieties coming from a wider class of nondegenerate affine hyper-
surfaces Z ⊂ Td defined by Laurent polynomials.

Recall that the stringy Euler number estr(X) can be defined for an arbi-
trary n-dimensional normal projective Q-Gorenstein variety X with at worst
log-terminal singularities using a desingularization ρ : Y → X whose excep-
tional locus is a union of smooth irreducible divisors D1, . . . , Ds with only
normal crossings [Bat98]. For this purpose, one sets I := {1, . . . , s}, D∅ := Y
and for any nonempty subset J ⊆ I one defines DJ :=

⋂
j∈J . Using the

rational coefficients a1, . . . , as from the formula

KY = ρ∗KX +
s∑

i=1
aiDi,

one defines the stringy Euler number

estr(X) :=
∑

∅⊆J⊆I

e(DJ)
∏
j∈J

(
−aj
aj + 1

)
.

Using methods of a nonarchimedean integration (see e.g. [Bat98, Bat99]), one
can show that estr(X) is independent of the choice of the desingularization ρ :
Y → X and one has estr(X) = estr(X ′) if two projective Calabi-Yau varieties
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X and X ′ with at worst canonical singularities are birational. More generally,
the stringy Euler number estr(X) of any minimal projective algebraic variety
X does not depend on the choice of this model and coincides with the stringy
Euler number of its canonical model, because all these birational models are
K-equivalent to each other. There exist some versions of the stringy Euler
number that are conjectured to have minimum exactly on minimal models in
a given birational class [BG18].

We remark that in general the stringy Euler number may not be an inte-
ger, and so far no example of mirror symmetry is known if the stringy Euler
number estr(X) of a Calabi-Yau variety X is not an integer.

In Section 2, we give a review of results of Ishii [Ish99] on minimal mod-
els of nondegenerate hypersurfaces and give a combinatorial criterion that
describes all d-dimensional lattice polytopes Δ such that minimal models of
Δ-nondegenerate hypersurfaces Z ⊂ Td are Calabi-Yau varieties. We show
that a Δ-nondegenerate hypersurface Z ⊂ Td is birational to a Calabi-Yau
variety X with at worst Q-factorial terminal singularities if and only if the
Fine interior ΔFI of its Newton polytope Δ consists of a single lattice point
(Theorem 2.26). We remark that there exist many d-dimensional lattice poly-
topes Δ such that ΔFI = 0 ∈ Zd which are not reflexive if d ≥ 3.

In Section 3, we discuss the generalized combinatorial duality suggested
by Mavlyutov in [Mav11]. Lattice polytopes Δ that appear in the Mavlyutov
duality satisfy not only the condition ΔFI = 0, but also the additional condi-
tion [[Δ∗]∗] = Δ, where P ∗ denotes the polar polytope of P and [P ] denotes
the convex hull of all lattice points in P .

The lattice polytopes Δ with ΔFI = 0 satisfying the condition [[Δ∗]∗] = Δ
we call pseudoreflexive. A lattice polytope Δ with ΔFI = 0 may not be a
pseudoreflexive, but its Mavlyutov dual polytope Δ∨ := [Δ∗] and the lattice
polytope [[Δ∗]∗] are always pseudoreflexive. Moreover, if ΔFI = 0 then [[Δ∗]∗]
is the smallest pseudoreflexive polytope containing Δ. For this reason we call
d-dimensional lattice polytopes Δ with the only condition ΔFI = 0 almost
pseudoreflexive.

If the lattice polytope Δ is pseudoreflexive, then one has ((Δ∨)∨) = Δ.
Any reflexive polytope Δ is pseudoreflexive, because in this case one has Δ∨ =
[Δ∗] = Δ∗. Therefore, the Mavlyutov duality Δ ↔ Δ∨ is a generalization of
the polar duality Δ ↔ Δ∗ for reflexive polytopes.

Unfortunately, Mavlyutov dual pseudoreflexive polytopes Δ and Δ∨ are
not necessarily combinatorially dual to each other. For this reason, we can
not expect a natural duality between k-dimensional faces of pseudoreflexive
polytope Δ and (d − 1 − k)-dimensional faces of its dual pseudoreflexive
polytope Δ∨. Mavlyutov observed that a natural duality can be obtained
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if ones restricts attention to some part of faces of Δ [Mav13]. A proper k-
dimensional face Θ ≺ Δ of a pseudoreflexive polytope Δ will be called regular
if dim[Θ∗] = d − k − 1, where Θ∗ is the dual face of the polar polytope Δ∗.
If Θ ≺ Δ is a regular face of a pseudoreflexive polytope Δ then Θ∨ := [Θ∗]
is a regular face of the Mavlyutov dual pseudoreflexive polytope Δ∨ and one
has (Θ∨)∨ = Θ, so that one obtains a natural duality between k-dimensional
regular faces of Δ and (d−k−1)-dimensional regular faces of Δ∨. Mavlyutov
hoped that this duality could help to find a mirror symmetric generalization
of the formula (1.1) for arbitrary pairs (Δ,Δ∨) of pseudoreflexive polytopes
[Mav13].

In Section 4, we are interested in a combinatorial formula for the stringy
E-function Estr(X;u, v) of a canonical Calabi-Yau model X of a Δ-nondegener-
ated hypersurface for an arbitrary d-dimensional almost pseudoreflexive poly-
tope Δ. Using the results of Danilov and Khovanskii [DKh86], we obtain such
a combinatorial formula for the stringy function Estr(X;u, 1) (Theorem 4.10)
and for the stringy Euler number estr(X) := Estr(X; 1, 1) (Theorem 4.11):

est(X) =
d−1∑
k=0

∑
Θ⊆Δ

dim Θ=d−k

(−1)d−1−kv(Θ) · v(σΘ ∩ Δ∗).(1.2)

In this formula, the polar polytope Δ∗ is in general a rational polytope, the
integer v(Θ) denotes the integral volume of a (d−k)-dimensional face Θ � Δ
and the rational number v(σΘ ∩ Δ∗) denotes the integral volume of the k-
dimensional rational polytope σΘ∩Δ∗ contained in the k-dimensional normal
cone σΘ corresponding to the face Θ � Δ in the normal fan of the polytope
Δ. One can easily see that the formula (1.1) can be considered as a particular
case of the formula (1.2) if Δ is a reflexive polytope.

In Section 5, we consider examples of Mavlyutov pairs (Δ,Δ∨) of pseu-
doreflexive polytopes obtained from Newton polytopes of polynomials defin-
ing Calabi-Yau hypersurfaces X of degree a+d in the d-dimensional weighted
projective spaces P(a, 1, . . . , 1) of dimension d ≥ 5 such that the weight a
does not divide the degree a + d and a < d/2. These pseudoreflexive poly-
topes Δ and Δ∨ are not reflexive. If d = ab + 1 for an integer b ≥ 2 then
X is quasi-smooth and one can apply the Berglund-Hübsch-Krawitz mirror
construction. We compute the stringy Euler numbers of Calabi-Yau hyper-
surfaces X and their mirrors X∨. In particular, we show that the equality
estr(X) = (−1)d−1estr(X∨) holds if d = ab + 1 and in this case one obtains
quasi-smooth Calabi-Yau hypersurfaces. However, if d = ab+l (2 ≤ l ≤ a−1),
then the Calabi-Yau hypersurfaces X ⊂ P(a, 1, . . . , 1) are not quasi-smooth.
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Using our formulas for the stringy Euler numbers estr(X) and estr(X∨) we
show that the equality estr(X) = (−1)d−1estr(X∨) can not be satisfied if e.g.
d = ab + 2, where a, b are two distinct odd prime numbers (Theorem 5.5).

In Section 6, we investigate the Mavlyutov duality Δ ↔ Δ∨ together with
an additional condition on singular facets of the pseudoreflexive polytopes Δ
and Δ∨. This condition can be considered as a version of a quasi-smoothness
condition on Mavlyutov’s pairs (Δ,Δ∨) suggested in some form by Borisov
[Bor13]. For Calabi-Yau varieties X and X∨ corresponding to Mavlyutov’s
pairs (Δ,Δ∨) satisfying this additional condition we prove another general-
ization of the formula (1.1) such that the equality estr(X) = (−1)d−1estr(X∨)
holds (Theorem 6.3).

2. Minimal models of nondegenerate hypersurfaces

Let M ∼= Zd be a free abelian group of rank d and MR = M⊗R. Denote by NR

the dual space Hom(M,R) with the natural pairing 〈∗, ∗〉 : MR ×NR → R.

Definition 2.1. Let P = Conv(x1, . . . , xk) ⊂ MR be a convex polytope
obtained as the convex hull of a finite subset {x1, . . . , xk} ⊂ MR. Define the
piecewise linear function

ordP : NR → R

as

ordP (y) := min
x∈P

〈x, y〉 =
k

min
i=1

〈xi, y〉.

We associate with P its normal fan ΣP which is finite collection of normal
cones σQ in the dual space NR parametrized by faces Q � P . Then the cone
σQ is defined as

σQ := {y ∈ NR : ordP (y) = 〈x, y〉, ∀x ∈ Q}.

The zero 0 ∈ NR is considered as the normal cone to P . One has

NR =
⋃

Q	P

σQ.

If P ⊂ MR is a d-dimensional polytope containing 0 ∈ M in its interior, then
we call

P ∗ := {y ∈ NR : ordP (y) ≥ −1}
the polar polytope of P . The polar polytope P ∗ is the union over all proper
faces Q ≺ P of the subsets
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P ∗ ∩ σQ = {y ∈ σQ : 〈x, y〉 ≥ −1, ∀x ∈ Q},

i.e.,
P ∗ =

⋃
Q≺P

(
P ∗ ∩ σQ

)
.

Definition 2.2. Let n ∈ N be a primitive lattice vector and let l ∈ Z. We
consider an affine hyperplane Hn(l) ⊂ MR defined by the equation 〈x, n〉 = l.
If m ∈ M then the nonnegative integer

|〈m,n〉 − l|

is called the integral distance between m and the hyperplane Hn(l).

Definition 2.3. Let Δ ⊂ MR be a lattice polytope, i.e., all vertices of Δ
belong to M . Then ordΔ has integral values on N .

For any nonzero lattice point n ∈ N one defines the following two half-
spaces in MR:

ΓΔ
0 (n) := {x ∈ MR : 〈x, n〉 ≥ ordΔ(n)},

ΓΔ
1 (n) := {x ∈ MR : 〈x, n〉 ≥ ordΔ(n) + 1}.

For all n ∈ N we have obvious the inclusion ΓΔ
1 (n) ⊂ ΓΔ

0 (n) and the
lattice polytope Δ can be written as intersection

Δ =
⋂

0�=n∈N
ΓΔ

0 (n).

Definition 2.4. Let Δ be a d-dimensional lattice polytope. The Fine interior
of Δ is defined as

ΔFI :=
⋂

0�=n∈N
ΓΔ

1 (n).

Remark 2.5. It is clear that ΔFI is a convex subset in the interior of Δ. We
remark that the interior of a d-dimensional polytope Δ is always nonempty,
but the Fine interior of Δ may be sometimes empty. I was told that the subset
ΔFI ⊂ Δ first has appeared in the PhD thesis of Jonathan Fine [Fine83].

Remark 2.6. Since ΔFI is defined as an intersection of countably many
half-spaces ΓΔ

1 (n) it is not immediately clear that the polyhedral set ΔFI has
only finitely many faces. The latter follows from the fact that for any proper
face Θ ≺ Δ the semigroup SΘ := N ∩σΘ of all lattice points in the cone σΘ is
finitely generated (Gordan’s lemma). One can show that ΔFI can be obtained
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as a finite intersection of those half-spaces ΓΔ
1 (n) such that the lattice vector

n appears as a minimal generator of the semigroup SΘ for some face Θ ≺ Δ.
Indeed, if n′, n′′ ∈ σΘ, i.e., if two lattice vectors n′, n′′ are in the same cone
σΘ, and if x ∈ Δ is a point in ΓΔ

1 (n′) ∩ ΓΔ
1 (n′′), then we have

〈x, n′+n′′〉 = 〈x, n′〉+〈x, n′′〉 ≥ ordΔ(n′)+1+ordΔ(n′′)+1 > ordΔ(n′+n′′)+1,

i.e., ΓΔ
1 (n′) ∩ ΓΔ

1 (n′′) is contained in ΓΔ
1 (n′ + n′′)

Remark 2.7. Let Δ ⊂ MR be a d-dimensional lattice polytope. If m ∈ Δ is
an interior lattice point, then m ∈ ΔFI . Indeed, if m ∈ Δ is an interior lattice
point, then for any lattice point n ∈ N one has 〈m,n〉 > ordΔ(n). Since both
numbers 〈m,n〉 and ordΔ(n) are integers, we obtain

〈m,n〉 ≥ ordΔ(n) + 1, ∀n ∈ N,

i.e., m belongs to ΔFI . This implies the inclusion

Conv(Int(Δ) ∩M) ⊆ ΔFI ,

i.e., the Fine interior of Δ contains the convex hull of the set interior lattice
points in Δ.

We see below that for 2-dimensional lattice polytopes this inclusion is
equality. In order to find the Fine interior of an arbitrary 2-dimensional lattice
polytope, we will use the following well-known fact:

Proposition 2.8. Let Δ ⊂ R2 be a lattice triangle such that Δ∩Z2 consists
of vertices of Δ. Then Δ is isomorphic to the standard triangle with vertices
(0, 0), (1, 0), (0, 1). In particular, the integral distance between a vertex of Δ
and its opposite side of Δ is always 1.

Proposition 2.9. If Δ is a 2-dimensional lattice polytope, then ΔFI is exactly
the convex hull of interior lattice points in Δ.

Proof. Let Δ be a 2-dimensional lattice polytope. If Δ has no interior lattice
points, then Δ is isomorphic to either a lattice polytope in R2 contained in
the strip 0 ≤ x1 ≤ 1, or to the lattice triangle with vertices (0, 0), (2, 0), (0, 2)
(see e. g. [Kho97]). In both cases, one can easily check that ΔFI = ∅.

If Δ has exactly one interior lattice point then Δ is isomorphic to one
of 16 reflexive polygons and one can check that this interior lattice point is
exactly the Fine interior of Δ, because, by 2.8, this interior lattice point has
integral distance 1 to its sides.



The stringy Euler number and the Mavlyutov duality 9

If Δ is a 2-dimensional lattice polytope with at least two interior lattice
points then we denote Δ′ := Conv(Int(Δ) ∩M). One has dim Δ′ ∈ {1, 2}.

If dim Δ′ = 1 then by 2.8 the integral distance from the affine line L
containing Δ′ and any lattice vertex of Δ outside of this line must be 1. This
implies that the Fine interior ΔFI is contained in L. By 2.7, if A und B are
two vertices of the segment Δ′ then A,B ∈ ΔFI . By 2.8, there exist a side
of Δ with the integral distance 1 from A having nonempty intersection with
the line L. Therefore, A is vertex of ΔFI . Analogously, B is also a vertex of
ΔFI .

Assume now that dim Δ′ = 2, i.e., Δ′ is k-gon. Then Δ′ is an intersection
of k half-planes Γ1, . . . ,Γk whose boundaries are k lines L1, . . . , Lk through
the k sides of Δ′. By 2.8, for any 1 ≤ i ≤ k all vertices of Δ outside the half-
plane Γi must have integral distance 1 from Li. Therefore Γi contains the
Fine interior ΔFI and ΔFI ⊆ ⋂k

i=1 Γi = Δ′. The opposite inclusion Δ′ ⊆ ΔFI

follows from 2.7.

Remark 2.10. The convex hull of all interior lattice points in a lattice poly-
tope Δ of dimension d ≥ 3 must not coincide with the Fine interior ΔFI

in general. For example, there exist 3-dimensional lattice polytopes Δ with-
out interior lattice points such that ΔFI is not empty [Tr08]. The simplest
well-known example of such a situation is the 3-dimensional lattice simplex
corresponding to Newton polytope of the Godeaux surface obtained as a free
cyclic group of order 5 quotient of the Fermat surface w5 + x5 + y5 + z5 = 0
by the mapping (w : x : y : z) → (w : ρx : ρ2y : ρ3z), where ρ is a fifth root
of 1.
Definition 2.11. Assume that the lattice polytope Δ has a nonempty Fine
interior ΔFI . We define the support of ΔFI as

Supp(ΔFI) := {n ∈ N : 〈x, n〉 = ordΔ(n) + 1 for some x ∈ ΔFI} ⊂ N.

The convex rational polytope

Δcan :=
⋂

n∈Supp(ΔFI)
ΓΔ

0 (n)

containing Δ we call the canonical hull of Δ.
Remark 2.12. The support of ΔFI is a finite subset in the lattice N , because
it is contained in the union over all faces Θ ≺ Δ of all minimal generating
subsets for the semigroups N ∩ σΘ. In particular, Supp(ΔFI) always consists
of finitely many primitive nonzero lattice vectors v1, . . . , vl ∈ N such that∑l

i=1 R≥0vi = NR.
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Let us now identify the lattice M ∼= Zd with the set of monomials
xm = xm1

1 · · · xmd

d in the Laurent polynomial ring C[x±1
1 , . . . , x±1

d ] ∼= C[M ]. For
simplicity, we will consider only algebraic varieties X over the algebraically
closed field C.

Definition 2.13. The Newton polytope Δ(f) of a Laurent polynomial f(x) =∑
m amx

m ∈ C[x±1
1 , . . . , x±1

d ] is the convex hull of all lattice points m ∈ M
such that am �= 0. For any face Θ ⊆ Δ(f) one defines the Θ-part of the
Laurent polynomial f as

fΘ(x) :=
∑

m∈M∩Θ
amx

m.

A Laurent polynomial f ∈ C[M ] with a Newton polytope Δ is called Δ-
nondegenerate or simply nondegenerate if for every face Θ ⊆ Δ the zero locus
ZΘ := {x ∈ Td : fΘ(x) = 0} of the Θ-part of f is empty or a smooth affine
hypersurface in the d-dimensional algebraic torus Td.

The theory of toric varieties allows to construct a smooth projective al-
gebraic variety ẐΔ that contains the affine Δ-nondegenerate hypersurface
ZΔ ⊂ T as a Zariski open subset. For this purpose, one first considers the
closure ZΔ of ZΔ in the projective toric variety PΔ associated with the nor-
mal fan ΣΔ. Then one chooses a regular simplicial subdivision Σ̂ of the fan
ΣΔ and obtains a projective morphism ρ : PΣ̂ → PΔ from a smooth toric
variety PΣ̂ to PΔ such that, by Bertini theorem, its restriction to the Zariski
closure ẐΔ of ZΔ in PΣ̂ is a smooth and projective desingularization of ZΔ.

Now one can apply the Minimal Model Program of Mori to the smooth
projective hypersurface ẐΔ (see e.g. [Mat02]). One can show that for Δ-
nondegenerate hypersurfaces a minimal model of ẐΔ can be obtained via the
toric Mori theory due to Miles Reid [Reid83, Wi02, Fu03, FS04] applied to
pairs (V,D) consisting of a projective toric variety V and the Zariski closure D
of the nondegenerate hypersurface ZΔ in V [Ish99]. Therefore, minimal mod-
els of nondegenerate hypersurfaces ZΔ can be constructed by combinatorial
methods.

Recall the following standard definitions from the Minimal Model Pro-
gram [Ko13].

Definition 2.14. Let X be a normal projective algebraic variety over C, and
let KX be its canonical class. A birational morphism ρ : Y → X is called a log-
desingularization of X if Y is smooth and the exceptional locus of ρ consists of
smooth irreducible divisors D1, . . . , Dk with simple normal crossings. Assume
that X is Q-Gorenstein, i.e., some integral multiple of KX is a Cartier divisor
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on X. We set I := {1, . . . , k}, D∅ := Y , and for any nonempty subset J ⊆ I

we denote by DJ the intersection of divisors
⋂

j∈J Dj , which is either empty
or a smooth projective subvariety in Y of codimension |J |. Then the canonical
classes of X and Y are related by the formula

KY = ρ∗KX +
k∑

i=1
aiDi,

where a1, . . . , ak are rational numbers which are called discrepancies. The
singularities of X are said to be

log-terminal if ai > −1 ∀i ∈ I;
canonical if ai ≥ 0 ∀i ∈ I;
terminal if ai > 0 ∀i ∈ I.

It is known that Q-Gorenstein toric varieties always have at worst log-
terminal singularities [Reid83].

Definition 2.15. A projective normal Q-Gorenstein algebraic variety Y is
called canonical model of X if Y is birationally equivalent to X, Y has at
worst canonical singularities and the linear system |mKY | is base point free
for sufficiently large integer m ∈ N.

Definition 2.16. A projective algebraic variety Y is called minimal model
of X if Y is birationally equivalent to X, Y has at worst terminal Q-factorial
singularities, the canonical class KY is numerically effective, and the linear
system |mKY | is base point free for sufficiently large integer m ∈ N.

The main result of the Minimal Model Program for nondegenerate hyper-
surfaces in toric varieties in [Ish99] can be reformulated using combinatorial
interpretations of Zariski decompositions of effective divisors on toric varieties
[OP91] (see also [HKP06, Appendix A]) and their applications to log minimal
models of polarized pairs [BiH14]

Definition 2.17. Let PΣ be a d-dimensional projective toric variety defined
by a fan Σ whose 1-dimensional cones σi = R≥0vi ∈ Σ(1) are generated
by primitive lattice vectors v1, . . . , vs ∈ N . Denote by Vi (1 ≤ i ≤ s) torus
invariant divisors on P corresponding to vi. Let D =

∑s
i=1 aiVi be an arbitrary

torus invariant Q-divisor on P such that the rational polytope

ΔD := {x ∈ MR : 〈x, vi〉 ≥ −ai, 1 ≤ i ≤ s}
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is not empty. Then the rational numbers

ordΔD
(vi) := min

x∈ΔD

〈x, vi〉, 1 ≤ i ≤ r,

satisfy the inequalities

ordΔD
(vi) + ai ≥ 0, 1 ≤ i ≤ r.

Without loss of generality we can assume that the equality ordΔD
(vi)+ai = 0

holds if and only if 1 ≤ i ≤ r (r ≤ s). We define the support of the polytope
ΔD as

Supp(ΔD) := {v1, . . . , vr}
and we write the divisor D =

∑l
i=1 aiVi as the sum

D = P + N, P =
s∑

i=1
(−ordΔD

(vi))Vi, N :=
s∑

i=r+1
(ordΔD

(vi) + ai)Vi,

where ordΔD
(vi) + ai > 0 for all r + 1 ≤ i ≤ s. Then there exists a d-

dimensional Q-factorial projective toric variety P′ defined by a simplicial
fan Σ′ whose 1-dimensional cones are generated by the lattice vectors vi ∈
Supp(ΔD) together with a birational toric morphism ϕ : P → P′ that con-
tracts the divisors Vr+1, . . . , Vs such the nef divisor P on P is the pull back
of the nef divisor

P ′ :=
∑

vi∈Supp(ΔD)
(−ordΔD

(vi))V ′
i

on P′. The decomposition D = P +N together with the nef divisor P ′ on the
Q-factorial projective toric variety P′ we call toric Zariski decomposition of
D.

Theorem 2.18. A Δ-nondegenerate hypersuface ZΔ ⊂ Td has a minimal
model if and only if the Fine interior ΔFI is not empty. In the latter case,
a canonical model of the nondegenerate hypersurface ZΔ is its closure X in
the toric variety PΔcan associated to the canonical hull Δcan of the lattice
polytope Δ. The birational isomorphism between ZΔ and X is induced by the
birational isomorphism of toric varieties α : PΔ ��� PΔcan , it can be included
in a diagram

PΣ̂
ρ1 ρ2

PΔ
α

PΔcan
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where Σ̂ denotes the common regular simplicial subdivision of the normal
fans ΣΔ and ΣΔcan . In particular, one obtains two birational morphisms ρ1 :
ẐΔ → ZΔ, ρ2 : ẐΔ → X in the diagram

ẐΔ
ρ1 ρ2

ZΔ
α

X

where ẐΔ denotes the Zariski closure of ZΔ in PΣ̂.

Proof. Let L be the ample Cartier divisor on the d-dimensional toric variety
PΔ corresponding to a d-dimensional lattice polytope Δ. We apply the toric
Zariski decomposition to the adjoint divisor D := ρ∗L + KP

Σ̂
for some toric

desingularization ρ : PΣ̂ → PΔ defined by a fan Σ̂ which is a regular simplicial
subdivision of the normal fan ΣΔ. Let {v1, . . . , vs} be the set of primitive
lattice vectors in N generating 1-dimensional cones in Σ̂.

Since one has KP
Σ̂

= −∑s
i=1 Vi and ρ∗L =

∑s
i=1(−ordΔ(vi))Vi, we obtain

that the rational polytope ΔD corresponding to the adjoint divisor on PΣ̂

D = ρ∗L + KP
Σ̂

=
s∑

i=1
(−ordΔ(vi) − 1)Vi

is exactly the Fine interior ΔFI of Δ.
We can assume that Supp(ΔFI) = {v1, . . . , vr} (r ≤ s) and the first l

lattice vectors v1, . . . , vl (l ≤ r) form the set of generators of 1-dimensional
cones Rvi (1 ≤ i ≤ l) in the normal fan ΣΔcan so that one has

Δcan =
r⋂

i=1
ΓΔ

0 (vi) =
l⋂

i=1
ΓΔ

0 (vi)

and
ordΔ(vi) + 1 = ordΔFI (vi), ∀i = 1, . . . , r.

The toric Zariski decomposition of D = ρ∗L + KP
Σ̂

=
∑s

i=1(−ordΔ(vi) −
1)Vi is the sum P + N where

P =
s∑

i=1
(−ordΔFI (vi))Vi,

N =
s∑

i=r+1
(ordΔFI (vi) − ordΔ(vi) − 1)Vi
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where (ordΔFI (vi) − ordΔ(vi) − 1) > 0 for all i > r. Moreover, there exists a
projective Q-factorial toric variety P′ such that v1, . . . , vr is the set of primitive
lattice generators of 1-dimensional cones in the fan Σ′ defining the toric variety
P′ and

r∑
i=1

(−ordΔFI (vi))V ′
i

is a nef Q-Cartier divisor on P′.
Therefore, the canonical divisor KPΔcan equals −∑l

i=1 Vi where V1, . . . , Vl

the set of torus invariant divisors on PΔcan . Let X be the Zariski closure of
the affine Δ-nondegenerated hypersurface ZΔ in PΔcan . Then X is linearly
equivalent to a linear combination

∑l
i=1 biVi, where bi = −ordΔ(vi) (1 ≤ i ≤

l). So we obtain

KPΔcan + X ∼
l∑

i=1
(−ordΔ(vi) − 1)Vi =

l∑
i=1

(−ordΔFI (vi))Vi.

On the other hand, we have

ΔFI =
⋂

n∈Supp(ΔFI)
ΓΔ

1 (n) =
l⋂

i=1
ΓΔ

1 (vi).

So KPΔcan +X is a semiample Q-Cartier divisor on the projective toric variety
PΔcan corresponding to the rational convex polytope ΔFI .

For nondegenerate hypersufaces one can apply the adjunction and obtain
that the canonical class KX is the restriction to X of the semiample Q-
Cartier divisor KPΔcan +X. The log-discrepancies of the toric pair (PΔcan , X)
are equal to the discrepancies of X, because of inversion of the anjunction for
non-degenerate hypersurfaces [Amb03].

Corollary 2.19. For the above birational morphism ρ2 : PΣ̂ → PΔcan one
has

K
P̂Σ

+ ẐΔ = ρ∗2 (KPΔcan + X) +
s∑

i=l+1
aiVi

and

K
ẐΔ

= ρ∗2KX +
s∑

i=l+1
aiDi, Di := Vi ∩ ẐΔ,

where Vi denotes the torus invariant divisor on PΣ̂ corresponding to the lattice
point vi ∈ N and

ai = −ordΔ(vi) + ordΔFI (vi) − 1 ≥ 0.
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By 2.7, one immediately obtains

Corollary 2.20. It a d-dimensional lattice polytope Δ contains an interior
lattice point, then a Δ-nondegenerated affine hypersurface ZΔ ⊂ Td has a
minimal model.

Example 2.21. As we have already mentioned in 2.10 there exist 3-dimen-
sional lattice polytopes Δ without interior lattice points such that ΔFI is not
empty. One of such examples is the 3-dimensional lattice simplex Δ such that
Δ-nondegenerated hypersurface is birational to the Godeaux surface obtained
as a quotient of the Fermat quintic z5

0 + z5
1 + z5

2 + z5
3 = 0 in P3 by the action

of a cyclic group of order 5

(z0 : z1 : z2 : z3) �→ (z0 : ρz1 : ρ2z2 : ρ3z3)

where ρ is a 5-th root of unity.

We apply the above general results to Δ-nondegenerate hypersurfaces
whose minimal models are Calabi-Yau varieties. It is known that the num-
ber of interior lattice points in Δ equals the geometric genus of the Δ-
nondegenerate hypersurface [Kho78]. Therefore, if a nondegenerate hyper-
surface ZΔ is birational to a Calabi-Yau variety, then Δ must contain exactly
one interior lattice point. However, this condition for Δ is not sufficient.

Example 2.22. In [CG11] Corti and Golyshev gave 9 examples of 3-dimen-
sional lattice simplices Δ with a single interior lattice point 0 such that the
corresponding nondegenerate hypersurfaces ZΔ are not birational to a K3-
surface. For example, they consider hypersurfaces of degree 20 in the weighted
projective space P(1, 5, 6, 8). The corresponding 3-dimensional lattice simplex
Δ is the convex hull of the lattice points (1, 0, 0), (0, 1, 0), (0, 0, 1), (−5,−6,−8).
The Fine interior ΔFI of Δ is a 1-dimensional polytope on the ray generated
by the lattice vector (−1,−1,−2).

Theorem 2.23. A canonical model of Δ-nondegenerate affine hypersuface
ZΔ ⊂ Td is birational to a Calabi-Yau variety X with at worst Gorenstein
canonical singularities if and only if the Fine interior ΔFI of the lattice poly-
tope Δ consists of a single lattice point. If ΔFI = 0 then X can be obtained
as a Zariski closure of ZΔ in the toric Q-Fano variety PΔcan so that X is an
anticanonical divisor on PΔcan . There exists an embedded desingularization
ρ2 : ẐΔ → X and

K
ẐΔ

= ρ∗2KX +
s∑

i=l+1
aiDi,
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where the discrepancy ai of the exceptional divisor Di := Vi ∩ ẐΔ on ẐΔ can
be computed by the formula

ai = −ordΔ(vi) − 1 ≥ 0.

Proof. First of all we remark that this statement has been partially proved
in [ACG16, Prop. 2.2.], but the application of Mori theory for nondegener-
ate hypersurfaces (see 2.18 and 2.19) imply stronger statements. The above
formula for the discrepancies ai is not new and it has appeared already in
[CG11] for resolutions of canonical singularities of Calabi-Yau hypersurfaces
X in weighted projective spaces. In general case, one can make a direct com-
putation of ai using the global nowhere vanishing differential (d− 1)-form ω
obtained as the Poincaré residue ω = ResΩ of the rational differential form
[Bat93]:

Ω := 1
f

dx1

x1
∧ · · · ∧ dxd

xd
.

Since Δ is the Newton polytope of the Laurent polynomial f , the order of
zero of ω along the exceptional divisor Ei corresponding to the lattice point
vi ∈ N equals −ordΔ(vi) − 1.

Remark 2.24. We note that a d-dimensional lattice polytope Δ with ΔFI =
0 is reflexive if and only if Δ = Δcan.

If Δ is reflexive then the canonical singularities of the projective Calabi-
Yau hypersurface ZΔ ⊂ PΔ have a MPCP (maximal projective crepant
partial) resolution obtained from a simplicial fan Σ̂ whose generators of 1-
dimensional cones are lattice points on the boundary of the polar reflex-
ive polytope Δ∗ [Bat94]. This fact can be generalized to an arbitrary d-
dimensional lattice polytope Δ ⊂ MR such that ΔFI = 0. For this we need
the following statement:
Proposition 2.25. Let Δ be a d-dimensional polytope with ΔFI = 0. Then
one has

Supp(ΔFI) = {Δ∗ ∩N} \ {0},
where Δ∗ is the polar polytope.
Proof. By Definition 2.11, a lattice point n ∈ N belongs to the support of
the Fine interior ΔFI = 0 if and only if ordΔ(n) = −1. The polar polytope
Δ∗ ⊂ NR is defined by the condition ordΔ(x) ≥ −1. Therefore, we obtain
Supp(ΔFI) ⊂ Δ∗. Since 0 is an interior lattice point of Δ one has 0 >
ordΔ(n) ∈ Z for any nonzero lattice vector n ∈ N . In particular, one has
ordΔ(n) = −1 for any nonzero lattice point n ∈ Δ∗, i.e., {Δ∗ ∩ N} \ {0} ⊂
Supp(ΔFI).
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Theorem 2.26. A minimal model of a Δ-nondegenerate affine hypersuface
ZΔ ⊂ Td is birational to a Calabi-Yau variety X ′ with at worst Q-factorial
Gorenstein terminal singularities if and only if the Fine interior of Δ is 0.

Proof. By Theorem 2.23, it remains to explain how to construct a maximal
projective crepant partial resolution ρ′ : X ′ → X. We consider the finite
set Supp(ΔFI) = {v1, . . . , vr} ⊂ N consisting of all nonzero lattice points in
Δ∗ ⊂ NR. (see 2.25). Denote by Σ the fan of cones over all faces of the lattice
polytope [Δ∗] obtained as convex hull of all lattice points in Supp(ΔFI). The
fan Σ admits a maximal simplicial projective subdivision Σ′ which consists
of simplicial cones whose generators are nonzero lattice vectors in Δ∗. Thus
we obtain a projective crepant toric morphism ρ′ : PΣ′ → PΣ. Since Σ is
the normal fan to the polytope Δcan = [Δ∗]∗, the morphism ρ′ induces a
projective crepant morphism of Calabi-Yau varieties ρ′ : X ′ → X, where
X ′ is the Zariski closure of ZΔ in PΣ′ . Since the toric singularities of PΣ′ are
Q-factorial and terminal, the same is true for the singularities of X ′.

3. The Mavlyutov duality

In [Mav11] Mavlyutov has proposed a generalization the Batyrev-Borisov
duality [BB97]. In particular, his generalization includes the polar duality
for reflexive polytopes [Bat94]. We reformulate the ideas of Mavlyutov about
Calabi-Yau hypersurfaces in toric varieties in some equivalent more convenient
form.

For simplicity we denote by [P ] the convex hull Conv(P ∩ Zd) for any
subset P ⊂ Rd. As above, we denote by P ∗ the polar set of P if 0 is an
interior lattice point of P .

Let Δ ⊂ MR be d-dimensional lattice polytope such that the Fine interior
of Δ is zero, i.e., ΔFI = 0 ∈ M . By 2.25, the support of the Fine interior
Supp(ΔFI) is equal to the set of nonzero lattice points in the polar polytope
Δ∗ ⊂ NR and the zero lattice point 0 ∈ N is the single interior lattice point
of [Δ∗]. Therefore, the inclusion [Δ∗] ⊆ Δ∗ implies the inclusions

Δ = (Δ∗)∗ ⊆ [Δ∗]∗ = Δcan

and

Δ ⊆ [[Δ∗]∗] = [Δcan],

because Δ is a lattice polytope.
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Definition 3.1. We call a d-dimensional lattice polytope Δ ⊂ MR with
ΔFI = 0 pseudoreflexive if one has the equality

Δ = [[Δ∗]∗].

Remark 3.2. The above defintion of pseudoreflexive polytopes has been
discovered by Mavlyutov in 2004 (see [Mav05, Remark 4.7]). In the paper
[Mav11] Mavlyutov called these polytopes Z-reflexive (or integrally reflex-
ive). Independently, this definition has been discovered by Kreuzer [Kr08,
Definition 3.11] who called such polytopes IPC-closed.

Remark 3.3. Every reflexive polytope Δ is pseudoreflexive, because for re-
flexive polytopes Δ we have Δ = [Δ] and Δ∗ = [Δ∗]. The converse is not true
if dim Δ ≥ 5. For instance the convex hull Conv(e0, e1, . . . , e5) of the standard
basis e1, . . . , e5 in Z5 and the lattice vector e0 = −e1 − e2 − e3 − e4 − 2e5 is
a 5-dimensional pseudoreflexive simplex which is not reflexive.

There exist a close connection between lattice polytopes Δ with ΔFI = 0
and pseudoreflexive polytopes:

Proposition 3.4. Let Δ ⊂ MR a d-dimensional lattice polytope. Then the
following conditions are equivalent:

(i) ΔFI = 0;
(ii) the polytopes Δ and [Δ∗] contain 0 in their interior;
(iii) Δ contains 0 in its interior and Δ is contained in a pseudoreflexive

polytope.

Proof. (i) ⇒ (ii). Assume that ΔFI = 0. Then 0 is an interior lattice point
of Δ and the support of the Fine interior Supp(ΔFI) is exactly the set of
nonzero lattice points in the polar polytope Δ∗. Moreover, one has

0 = {x ∈ MR : 〈x, v〉 ≥ 0 ∀v ∈ Supp(ΔFI)}.

Hence, [Δ∗] also contains 0 in its interior.
(ii) ⇒ (i). If Δ contains 0 in its interior, then 0 ∈ ΔFI . For any nonzero

lattice point v ∈ Δ∗ the minimum of 〈∗, v〉 on Δ equals −1. If [Δ∗] contains
0 in its interior, then there exists lattice points v1, . . . , vl ∈ [Δ∗] generating
MR such that for some positive numbers λi (1 ≤ i ≤ l) one has

λ1v1 + · · · + λlvl = 0.

On the other hand, ΔFI is contained in the intersection of the half-spaces
〈x, vi〉 ≥ 0 1 ≤ i ≤ l. Therefore, one has ΔFI = 0.
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(iii) ⇒ (ii). Assume that Δ is contained in a pseudoreflexive lattice poly-
tope Δ̃. Then we obtain the inclusions Δ̃∗ ⊆ Δ∗ and [Δ̃∗] ⊆ [Δ∗]. Since Δ̃ is
pseudoreflexive, its Fine interior is zero and it follows from (i) ⇒ (ii) that [Δ̃∗]
contains 0 in its interior. Therefore, the lattice polytope [Δ∗] also contains 0
in its interior.

(i ⇒ (iii). Assume that ΔFI = 0. Then we obtain the inclusion Δ ⊆
[[Δ∗]∗]. It is sufficient to show that [[Δ∗]∗] is pseudoreflexive. The latter follows
from the equality [[[Δ∗]∗]∗] = [Δ∗]. Indeed, the inclusion Δ ⊆ [[Δ∗]∗] implies
the inclusions [[Δ∗]∗]∗ ⊆ Δ∗ and [[[Δ∗]∗]∗] ⊆ [Δ∗]. On the other hand, the
Fine interior of [Δ∗] is also zero, because Δ contains 0 in its interior. This
implies the opposite inclusion [Δ∗] ⊆ [[[Δ∗]∗]∗].

Corollary 3.5. Let Δ ⊂ MR be a d-dimensional lattice polytope with ΔFI =
0. Then the following statements hold.

(i) The lattice polytopes [Δ∗] and [[Δ∗]∗] are pseudoreflexive;
(ii) [[Δ∗]∗] is the smallest pseudoreflexive polytope containing Δ.

Proof. The statement (i) follows from the equality [[[Δ∗]∗]∗] = [Δ∗] in the
proof of 3.4. If Δ̃ is a pseudoreflexive polytope containing Δ, then the inclusion
Δ ⊆ Δ̃ implies the sequence of inclusions Δ̃∗ ⊆ Δ∗, [Δ̃∗] ⊆ [Δ∗], [Δ∗]∗ ⊆
[Δ̃∗]∗, [[Δ∗]∗] ⊆ [[Δ̃∗]∗] = Δ̃. This implies (ii).

The statements in 3.4 and 3.5 motivate another names for lattice poly-
topes Δ with ΔFI = 0:
Definition 3.6. A d-dimensional lattice polytope is called almost pseudore-
flexive if ΔFI = 0. If Δ is almost pseudoreflexive then we call the lattice poly-
tope [[Δ∗]∗] the pseudoreflexive closure of Δ and the lattice polytope [Δ∗] the
pseudoreflexive dual of Δ. The polytope Δ is called almost reflexive if its pseu-
doreflexive closure [[Δ∗]∗] (or, equivalently, its pseudoreflexive dual [Δ∗]) is
reflexive. In this case, we will call the lattice polytope [[Δ∗]∗] = [Δ∗]∗ = Δcan

also the canonical reflexive closure of Δ.
Example 3.7. The 3-dimensional lattice polytope Δ obtained as the con-
vex hull of (1, 0, 0), (0, 1, 0), (0, 0, 1), (−1,−1,−2) ∈ Z3 is a 3-dimensional al-
most reflexive simplex which is not reflexive. The canonical reflexive closure
[[Δ∗]∗] = [Δ∗]∗ of Δ is a reflexive lattice polytope obtained from Δ by adding
one more vertex (0, 0,−1).
Remark 3.8. If Δ is pseudoreflexive, then Δ∨ := [Δ∗] is also pseudoreflexive.
In particular, one obtains a natural duality Δ ↔ Δ∨ for pseudoreflexive poly-
topes that generalizes the polar duality for reflexive polytopes. This duality
was suggested by Mavlyutov in [Mav11] for unifying different combinatorial
mirror constructions.
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Remark 3.9. Unfortunately, almost pseudoreflexive polytopes Δ do not have
a natural duality, although they appear in the Berglung-Hübsch-Krawitz mir-
ror construction. Nevertheless, the pseudoreflexive duals [Δ∗] of almost pseu-
doreflexive polytopes Δ allow to connect the Mavlyutov duality with the
Berglung-Hübsch-Krawitz mirror construction. For instance, it may happen
that two different almost pseudoreflexive polytopes Δ1 �= Δ2 have the same
pseudoreflexive duals, i.e., [Δ∗

1] = [Δ∗
2]. This equality is the key observation

for the birationality of BHK-mirrors investigated in [Ke13, Cla14, Sh14].

Definition 3.10. Let Θ be a k-dimensional face of a d-dimensional pseu-
doreflexive polytope Δ ⊂ MR. We call Θ ordinary if the following equality
holds: ⎛⎝ ⋂

l∈Z≥0

lΘ

⎞⎠ ∩M = R≥0Θ ∩M,

in other words, if all lattice points in the (k+1)-dimensional cone σΘ = R≥0Θ
over the face Θ ≺ Δ are contained in the multiples lΘ (l ∈ Z≥0).

Proposition 3.11. Let Θ ≺ Δ be a k-dimensional face of a lattice polytope
Δ with ΔFI = 0. Assume that [Θ∗] is nonempty. Then Θ is ordinary and [Θ∗]
is a face of dimension ≤ d− 1 − k of the pseudoreflexive polytope [Δ∗].

Proof. Let x ∈ Θ be a point in the relative interior of Θ. The minimum of
the linear function 〈x, ∗〉 on Δ∗ equals −1 and it is attained exactly on the
polar face Θ∗ ≺ Δ∗ of the rational polar polytope Δ∗.

The minimum μx of 〈x, ∗〉 on the lattice polytope [Δ∗] is attained on some
lattice face F ≺ [Δ∗] of the lattice polytope [Δ∗] such that F := {y ∈ [Δ∗] :
〈x, y〉 = μx}. The minimum μx must be at least −1, because the polytope
[Δ∗] is contained in Δ∗. If [Θ∗] is not empty then the linear function 〈x, ∗〉
has the constant value −1 on [Θ∗]. This implies that the minimum μx must
be −1. Therefore F must be contained in Θ∗ and F = [F ] ⊆ [Θ∗]. Since
[Θ∗] ⊆ {y ∈ [Δ∗] : 〈x, y〉 = μx = −1} = F , we conclude F = [Θ∗].

The next statement is a slight generalization of the results of Skarke in
[Sk96].

Theorem 3.12. [Mav13] Let Θ is a face of dimension k ≤ 3 of a d-dimen-
sional pseudoreflexive polytope Δ. Then Θ is ordinary. In particular, any
pseudoreflexive lattice polytope Δ of dimension ≤ 4 is reflexive.

Proof. Consider the (k + 1)-dimensional subspace L := RΘ generated by Θ.
Then Θ is contained in the k-dimensional affine hyperplane HΘ in L. It is
enough to show that the integral distance between HΘ and 0 equals 1. Assume
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that this distance is larger than 1. Consider the pyramid ΠΘ := Conv(Θ, 0).
By lemma of Skarke [Sk96, Lemma 1], there exists an interior lattice point
u0 ∈ M in 2ΠΘ which is not contained in ΠΘ. Therefore, the lattice point u0 is
an interior lattice point in the polytope 2Δ ⊆ 2[Δ∗]∗. If {v1, . . . , vl} ⊂ N is the
set of vertices of [Δ∗] then the polytope [Δ∗]∗ is determined by the inequalities
〈x, vi〉 ≥ −1 (1 ≤ i ≤ l). The interior lattice point u0 ∈ 2[Δ∗]∗ must safisfy
the inequalities 〈u0, vi〉 > −2 (1 ≤ i ≤ l). Since 〈u0, vi〉 >∈ Z (1 ≤ i ≤ l), we
obtain 〈u0, vi〉 ≥ −1 (1 ≤ i ≤ l), i.e., u0 is a nonzero lattice point in [Δ∗]∗.
Since Δ = [[Δ∗]∗], u0 is a nonzero lattice point contained in Δ and in the
k-dimensional cone R≥0Θ over Θ. On the other hand, Δ ∩R≥0Θ = Θ ⊂ ΠΘ.
Contradiction.

Proposition 3.13. [Mav13] Let Θ ≺ Δ be an ordinary k-dimensional face
of a pseudoreflexive polytope Δ such dim[Θ∗] = dim Θ∗ = d−1−k ≥ 0. Then
one has [[Θ∗]∗] = Θ.

Proof. If dim Θ∗ = dim[Θ∗] = d − k − 1 then there exists a point y ∈ Δ∗

which is contained in the relative interior of [Θ∗] and in the relative interior
of Θ∗. In particular, y ∈ Θ∗ is contained in the relative interior of the (d−k)-
dimensional normal cone σΘ and therefore the minimum of the linear function
〈∗, y〉 on Δ equals −1 and it is attained on Θ = {x ∈ Δ : 〈x, y〉 = −1}. By
definition of the polar polytope [Δ∗]∗, the minimum of 〈∗, y〉 on [Δ∗]∗ also
equals −1, and it is attained on the k-dimensional dual face [Θ∗]∗ ≺ [Δ∗]∗.
Hence, [Θ∗]∗ contains the lattice face Θ and [[Θ∗]∗] also contains Θ. By 3.11,
the lattice polytope [[Θ∗]∗] is face of [[Δ∗]∗] = Δ of dimension ≤ k. Since
[[Θ∗]∗] contains the k-dimensional face Θ ≺ Δ, the face [[Θ∗]∗] ≺ Δ must be
Θ.

Definition 3.14. We call a k-dimensional face Θ of a pseudoreflexive poly-
tope Δ ⊂ MR regular, if

dim[Θ∗] = d− k − 1.

A k-dimensional face Θ is called singular if it is not regular.

By 3.13, we immediately obtain:

Corollary 3.15. Let Δ ⊂ MR be a d-dimensional pseudoreflexive polytope.
Then there exists a natural bijection Θ ↔ Θ∨ := [Θ∗] between the set of k-
dimensional regular faces of Δ and (d − k − 1)-dimensional regular faces of
Δ∗.
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Remark 3.16. Pseudoreflexive lattice polytopes Δ satisfy a combinatorial
duality Δ ↔ Δ∨ that extends the polar duality for reflexive lattice polytopes.
However, in contrast to polar duality for reflexive polytopes there is no natural
bijection between arbitrary k-dimensional faces of a pseudoreflexive polytope
Δ and (d− k − 1)-dimensional faces of its dual Δ∨. Such a natural bijection
exists only for regular k-dimensional faces Θ ⊂ Δ.

Remark 3.17. By 3.11, every regular face Θ ≺ Δ is ordinary. It is easy to
see that for a (d − 1)-dimensional face Θ ≺ Δ the following conditions are
equivalent:

(i) Θ is regular;
(ii) Θ is ordinary;
(iii) the integral distance from 0 ∈ M to Θ is 1.

Remark 3.18. Reflexive polytopes of dimension 3 and 4 have been classified
by Kreuzer and Skarke [KS98, KS00]. It is natural task to extend these clas-
sifications to lattice polytopes with Fine interior 0. By 3.4, a lattice polytope
Δ of dimension 3 or 4 has Fine interior 0 if and only if Δ contains 0 in its
interior and Δ is contained in some reflexive polytope Δ′.

All 3-dimensional lattice polytopes with the single interior lattice point
0 have been classified by Kasprzyk [Kas10]. There exists exactly 674,688
3-dimensional lattice polytopes Δ with only a single interior lattice point.
However, not all these polytopes Δ have Fine interior 0. I was informed by
Kasprzyk that among these 674,688 lattice polytopes there exist exactly 9,089
lattice polytopes whose Fine interior has dimension ≥ 1. These polytopes
correspond to elliptic surfaces, Todorov surfaces and some other interesting
algebraic surfaces.

According to Kreuzer und Skarke [KS98, KS00], there exist exactly 4,319
3-dimensional reflexive polytopes. We remark that canonical models of K3-
surfaces coming from 3-dimensional reflexive polytopes have at worst toroidal
quotient singularities of type An. However, the canonical models of K3-
surfaces coming from 3-dimensional lattice polytopes Δ with the weaker con-
dition ΔFI = 0 may have more general Gorenstein canonical singularities of
types Dn and En.

Analogously, we remark that canonical singularities of 3-dimensional
Calabi-Yau varieties obtained as hypersurfaces in 4-dimensional Gorenstein
toric Fano varieties defined by 4-dimensional reflexive polytopes are toroidal.
They admit smooth crepant resolutions, because any 3-dimensional Q-factorial
terminal Gorenstein toric variety is smooth. Singularities of 3-dimensional
Calabi-Yau varieties X obtained as minimal models of Δ-nondegenerate hy-
persurfaces with ΔFI = 0 generally can not be resolved crepantly, because
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Q-factorial Gorenstein terminal singularities in dimension 3 are cDV -points
that may cause that the stringy Euler number of X will be a rational number
[DR01]. So the classification of 4-dimensional lattice polytopes Δ with Fine in-
terior 0 would give many new examples of 3-dimensional Calabi-Yau varieties
with isolated terminal cDV -points that need additionally to be smoothed by
a deformation [Na94] in order to get a smooth Calabi-Yau 3-fold.

It would be very interesting to know what rational numbers can appear as
stringy Euler numbers of minimal 3-dimensional Calabi-Yau varieties coming
from 4-dimensional lattice polytopes Δ with ΔFI = 0.

4. The stringy Euler number

Definition 4.1. If V is a smooth projective algebraic variety over C, then
its E-polynomial (or Hodge polynomial) is defined as

E(V ;u, v) :=
∑

0≤p,q≤dimV

(−1)p+qhp,q(V )upvq,

where hp,q(V ) are Hodge numbers of V .
For any quasi-projective variety W one can use the mixed Hodge struc-

ture in k-th cohomology group Hk
c (W ) with compact supports and define

E(W ;u, v) by the formula

E(W ;u, v) :=
∑
p,q

ep,q(W )upvq,

where the coefficients

ep,q(W ) =
∑
k

(−1)khp,q(Hk
c (W ))

are called Hodge-Deligne numbers of W [DKh86].

Definition 4.2. Let X be a normal projective variety over C with at worst
Q-Gorenstein log-terminal singularities. Denote by r the minimal positive
integer such that rKX is a Cartier divisor. Let ρ := Y → X be a log-
desingularization together with smooth irreducible divisors D1, . . . , Dk with
simple normal crossings whose support covers the exceptional locus of ρ. We
can uniquely write

KY = ρ∗KX +
k∑

i=1
aiDi.
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for some rational numbers ai ∈ 1
rZ satisfying the additional condition ai = 0

if Di is not in the exceptional locus of ρ. We set I := {1, . . . , k} and, for any
∅ ⊆ J ⊆ I, we define

DJ :=
{
Y if J = ∅,⋂

j∈J Dj if J �= ∅,
D◦

J := DJ \
⋃

j∈I\J
Dj .

Estr(X;u, v) :=
∑

∅⊆J⊆I

⎛⎝∏
j∈J

uv − 1
(uv)aj+1 − 1

⎞⎠ · E(D◦
J ;u, v)

=
∑

∅⊆J⊆I

⎛⎝∏
j∈J

uv − 1
(uv)aj+1 − 1 − 1

⎞⎠ · E(DJ ;u, v),

where E(DJ ;u, v) =
∑

p,q(−1)p+qhp,q(DJ)upvq is the E-polynomial of the
smooth projective variety DJ . The rational function Estr(X;u, v) is called
stringy E-function of the algebraic variety X.

Let x ∈ X be a point on X. We define the local stringy E-function of X
at x ∈ X by the formula

Estr(X, x;u, v) :=
∑

∅⊆J⊆I

⎛⎝∏
j∈J

uv − 1
(uv)aj+1 − 1 − 1

⎞⎠ · E(ρ−1(x) ∩DJ ;u, v).

In particular, we define the local stringy Euler number of X at point x ∈ X
as

estr(X, x) :=
∑

∅⊆J⊆I

⎛⎝∏
j∈J

−aj
aj + 1 − 1

⎞⎠ · e(ρ−1(x) ∩DJ).

Our goal is to derive a combinatorial formula for the stringy E-function
Estr(X;u, v) of a minimal Calabi-Yau model X of an affine Δ-nondegenerate
hypersurface Z ⊂ Td corresponding to a d-dimensional lattice polytope Δ ⊂
MR such that ΔFI = 0. For this purpose, we need a rational function R(C,m, t)
associated with an arbitrary d-dimensional rational polyhedral cone C ⊂ NR

and a primitive lattice point m ∈ M in the interior of the dual cone C∗ ⊂ MR.
Definition 4.3. Let C ⊂ NR be an arbitrary d-dimensional rational polyhe-
dral cone with vertex 0 = C ∩ (−C) and let m ∈ M be a primitive lattice
point such that C(1) := {y ∈ C : 〈m, y〉 ≤ 1} is a d-dimensional compact
polytope with rational vertices. Let C◦ be the interior of the cone C. We
define two power series

R(C,m, t) :=
∑

n∈C∩N
t〈m,n〉
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and
R(C◦,m, t) :=

∑
n∈C◦∩N

t〈m,n〉.

Example 4.4. If M = N = Zd, C = Rd
≥0 ⊂ Rd and m = (1, . . . , 1). Then

C(1) is a d-dimensional simplex in Rd defined by the conditions xi ≥ 0 (1 ≤
i ≤ d),

∑d
i=1 xi ≤ 1. We have

R(C,m, t) =
( ∞∑

k=0
tk
)d

= 1
(1 − t)d

and

R(C◦,m, t) =
( ∞∑

k=1
tk
)d

= td

(1 − t)d

Proposition 4.5. The power series R(C,m, t) and R(C◦,m, t) are rational
functions satisfying the equation

R(C,m, t) = (−1)dR(C◦,−m, t).

Moreover, two limits

lim
t→1

(1 − t)dR(C,m, t), lim
t→1

(t− 1)dR(C◦,−m, t)

equal the integral volume v(C(1)) = d!V ol(C(1)), where V ol(C(1)) denotes
the usual volume of the d-dimensional compact set C(1).

Proof. First we remark that R(C,m, t) is a rational function, because
R(C,m, t) can be considered as the Poincaré series of the graded finitely
graded commutative semigroup algebra C[C ∩N ] such that the degree of an
element n ∈ C ∩ N equals 〈m,n〉. The function R(C◦,m, t) is also rational,
because it is the Poincaré series of a graded homogeneous ideal in C[C ∩N ].

In order to explicitly compute the rational functions R(C,m, t) and R(C◦,m, t)
we use a regular simplicial subdivision of the cone C defined by a finite fan
Σ = {σ} consisting of cones σ generated by parts of Z-bases of N . Denote by
σ◦ the relative interior of a cone σ ∈ Σ. Then we obtain

R(C,m, t) =
∑
σ∈Σ

R(σ◦,m, t)(4.1)

and

R(C◦,m, t) =
∑
σ∈Σ

σ◦⊆C◦

R(σ◦,m, t).(4.2)
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If σ ∈ Σ is a k-dimensional cone, the semigroup σ ∩ N is freely generated
by some elements v1, . . . , vk ∈ N such that 〈m, vi〉 = ci ∈ Z>0 (1 ≤ i ≤ k).
Therefore, we obtain

R(σ,m, t) =
k∏

i=1

1
1 − tci

and

R(σ◦,−m, t) =
k∏

i=1

t−ci

1 − t−ci
=

k∏
i=1

1
tci − 1

= (−1)k
k∏

i=1

1
1 − tci

= (−1)kR(σ,m, t).

In order to prove the equation R(C,m, t) = (−1)dR(C◦,−m, t) for the whole
d-dimensional cone C we note that for any σ ∈ Σ one has

R(σ◦,m, t) =
∑
τ	σ

(−1)dimσ−dim τR(τ,m, t) =
∑
τ	σ

(−1)dimσR(τ ◦,−m, t).

Using the equalities (4.1) and (4.2), we get

R(C◦,m, t) =
∑
σ∈Σ

σ◦⊆C◦

R(σ◦,m, t) =
∑
σ∈Σ

σ◦⊆C◦

∑
τ	σ

(−1)dimσR(τ ◦,−m, t) =

=
∑
τ∈Σ

R(τ ◦,−m, t)
∑

τ	σ∈Σ
(−1)dimσ =

=(−1)d
∑
τ⊆C

R(τ ◦,−m, t) = (−1)dR(C,−m, t),

because for any cone τ ∈ Σ one has
∑

τ	σ(−1)dimσ = (−1)d.
We note that the limit

lim
t→1

(1 − t)dR(σ◦,m, t) = lim
t→1

(1 − t)d
k∏

i=1

tci

1 − tci

is zero if k = dim σ < d. If σ ∈ Σ(d) is a d-dimensional cone, then

lim
t→1

(1 − t)dR(σ◦,m, t) = lim
t→1

(1 − t)d
d∏

i=1

tci

1 − tci
=

d∏
i=1

1
ci

= d!V ol(σ(1)),
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because σ(1) is a d-dimensional simplex which is the convex hull of vectors
1
ci
vi, where v1, . . . , vd is a Z-basis of M . Using (4.1), we get

lim
t→1

(1− t)dR(C,m, t) =
∑
σ∈Σ

lim
t→1

(1− t)dR(σ◦,m, t) =
∑

σ∈Σ(d)
v(σ(1)) = v(C(1)),

because
V ol(C(1)) =

∑
σ∈Σ(d)

V ol(σ(1)).

It follows now from the equation R(C,m, t) = (−1)dR(C◦,−m, t) that

lim
t→1

(t− 1)dR(C◦,−m, t) = v(C(1)).

The following results of Danilov and Khovanskii allow us to compute
the polynomial E(Z;u, v) for any (d−1)-dimensional Δ-nondegenerate affine
hypersurface ZΔ ⊂ T [DKh86, Remark 4.6].

Theorem 4.6. Let Δ ⊂ MR be a d-dimensional lattice polytope. The power
series

P (Δ, t) :=
∞∑
k=0

|kΔ ∩M |tk

is a rational function of the form

P (Δ, t) = ψ0(Δ) + ψ1(Δ)t + · · · + ψd(Δ)td

(1 − t)d+1 ,

where ψi(Δ) (0 ≤ i ≤ d) are nonnegative integers satisfying the conditions
ψ0(Δ) = 1,

∑d
i=1 ψi(Δ) = v(Δ).

Let E(ZΔ;u, 1) be the E-polynomial of a (d− 1)-dimensional Δ-nondege-
nerate hypersurface ZΔ ⊂ Td. Then one has

E(ZΔ;u, 1) = (u− 1)d − (−1)d

u
+ (−1)d−1

d∑
i=1

ψi(Δ)ui−1.

In particular, the Euler number e(ZΔ) = E(ZΔ; 1, 1) equals (−1)d−1v(Δ).

In particular, one obtains

Corollary 4.7. [Kho78] The Euler number e(ZΔ) = E(ZΔ; 1, 1) of a (d−1)-
dimensional affine Δ-nondegenerate hypersuface ZΔ equals (−1)d−1v(Δ).
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Definition 4.8. Let Δ ⊂ MR is an arbitrary d-dimensional almost pseudore-
flexive polytope. For any k-dimensional face Θ ≺ Δ we define the polynomial

E(Θ, u) :=(u− 1)dimΘ

u
+ (u− 1)dimΘ+1

u

∑
l∈Z≥0

|lΘ ∩M |ul

=(u− 1)k − (−1)k

u
+ (−1)k−1

k∑
i=1

ψi(Θ)ui−1.

Definition 4.9. Let Δ ⊂ MR be an arbitrary d-dimensional almost pseudore-
flexive polytope and let σΘ be the (d−k)-dimensional cone in the normal fan
ΣΔ that correspond to the k-dimensional face Θ ≺ Δ. We choose an arbitrary
lattice point m ∈ Θ ∩M and set

R(σΘ, u) := R(σΘ,−m,u)

where the rational function R(σΘ,−m,u) defined in 4.3. It is easy to see
that the rational function R(σΘ,−m,u) does not depend on the choice of the
lattice point m ∈ Θ ∩M .

We prove the following theorem:

Theorem 4.10. Let Δ be an arbitrary d-dimensional almost pseudoreflexive
polytope. Denote by X a canonical (d−1)-dimensional Calabi-Yau model of a
Δ-nondegenerate hypersurface ZΔ ⊂ T in the d-dimensional algebraic torus
T . Then the stringy function Est(X;u, 1) can be computed as follows:

Est(X;u, 1) =
∑
Θ�Δ

dim Θ≥1

E(Θ, u) ·R(σΘ, u) · (1 − u)d−dim Θ.

Proof. Let Σ̂ be a common regular simplicial subdivision of the normal fans
ΣΔ and ΣΔcan . As in Theorem 2.18, we obtain birational morphisms ρ1 :
ẐΔ → ZΔ, ρ2 : ẐΔ → X in the diagram

ẐΔ
ρ1 ρ2

ZΔ
α

X

where ẐΔ is a smooth variety obtained as Zariski closure of ZΔ in the smooth
projective toric variety P̂ defined by the fan Σ̂. For computing the stringy
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E-function Estr(X, u, 1) we use the formula (4.2)

Estr(X;u, 1) =
∑

∅⊆J⊆I

⎛⎝∏
j∈J

u− 1
uaj+1 − 1

⎞⎠ · E(D◦
J ;u, 1)

where the strata D◦
J are intersections of the hypersurface ẐΔ ⊂ P̂ with torus

orbits corresponding to cones σ ∈ Σ̂.
Let σ ∈ Σ̂(k) be a k-dimensional simplicial cone generated by primitive

lattice vectors vi1 , . . . , vik . Then the relative interior σ◦ of σ is contained in the
relative interior σΘ

◦ of some cone σΘ of the normal fan ΣΔ corresponding to a
face Θ ≺ Δ, dim Θ ≤ d−k. We set J := {i1, . . . , ik}. By 2.23, the discrepancy
coefficients aj of smooth divisors Dj (j ∈ J) on ẐΔ can be computed by the
formula aj = −〈m, vj〉 − 1 (j ∈ J) where m ∈ M is any lattice point in
the face Θ. Since the fiber ρ−1

1 (p) of the birational toric morphism ρ1 over
every point p ∈ PΔ consists of torus orbits, the codimension k stratum D◦

J

is isomorphic to the product of a torus (C∗)d−k−dimΘ and a Θ-nondegenerate
hypersurface ZΘ ⊂ (C∗)dimΘ. By 4.6 and 4.8 we have

E(D◦
J ;u, 1) = E(Θ, u) · (u− 1)d−k−dim Θ

and ⎛⎝∏
j∈J

u− 1
uaj+1 − 1

⎞⎠ · E(D◦
J ;u, 1)

=

⎛⎝∏
j∈J

u− 1
u〈−m,vj〉 − 1

⎞⎠ · E(Θ, u) · (u− 1)d−k−dimΘ

= (−1)dimσR(σ,−m,u) · E(Θ, u) · (u− 1)d−dimΘ.

Using 4.5, we obtain (−1)dimσR(σ,−m,u) = R(σ◦,m, u) and∑
σ∈Σ̂

σ◦⊆σΘ
◦

R(σ◦,m, u) = R(σΘ
◦ ,m, u) = (−1)dimσΘ

R(σΘ,−m,u).

Since dim σΘ = d− dim Θ, we conclude

Estr(X;u, 1) =
∑
Θ	Δ

E(Θ, u) · (u− 1)d−dimΘ ·
∑
σ∈Σ̂

σ◦⊆σΘ
◦

R(σ◦,m, u)

=
∑
Θ	Δ

E(Θ, u) · (1 − u)d−dim ΘR(σΘ,−m,u).
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Theorem 4.11. Let Δ ⊂ MR be an arbitrary d-dimensional almost pseu-
doreflexive polytope. Denote by X a canonical Calabi-Yau model of a Δ-
nondegenerate affine hypersurface ZΔ ⊂ Td in the d-dimensional algebraic
torus Td. Then

est(X) =
∑
Θ�Δ

dim Θ≥1

(−1)dimΘ−1v(Θ) · v(σΘ ∩ Δ∗),

where σΘ is the cone in the normal fan of the polytope Δ and Δ∗ ⊂ NR is the
polar polytope of Δ.
Proof. One has

est(X) = lim
u→1

Est(X;u, 1) =
∑
Θ�Δ

dim Θ≥1

E(Θ, 1) lim
u→1

R(σΘ, u) · (1 − u)d−dimΘ.

It remains to apply Corollary 4.7

E(Θ, 1) = (−1)dimΘ−1v(Θ)

and Proposition 4.5

lim
u→1

R(σΘ, u) · (1 − u)d−dimΘ = v(σΘ ∩ Δ∗).

Remark 4.12. It is easy to see that the formula for the stringy Euler number
in Theorem 4.11 is a generalization of the formula (1.1) in the case when Δ
is a reflexive polytope. If Θ ≺ Δ is a (d − k)-dimensional face of reflexive
polytope Δ then the k-dimensional polytope σΘ ∩ Δ∗ is a lattice pyramid
with height 1 over the (k− 1)-dimensional dual face Θ∗ of the polar reflexive
polytope Δ∗. Therefore, v(σΘ ∩ Δ∗) = v(Θ∗). On the other hand, the d-
dimensional reflexive polytope Δ is the union of d-dimensional pyramids over
all (d− 1)-dimensional faces Θ ≺ Δ. So we have

v(Δ) =
∑
Θ�Δ

dim Θ=d−1

v(Θ).

Thus, we obtain

∑
Θ�Δ

dim Θ≥1

(−1)dimΘ−1v(Θ) · v(σΘ ∩ Δ∗) =
d−2∑
k=1

(−1)k−1 ∑
Θ�Δ

dim Θ=k

v(Θ) · v (Θ∗) .

We consider below several examples illustrating applications of our for-
mula to non-reflexive polytopes Δ.
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Example 4.13. The Newton polytope Δ of a general 3-dimensional quintic
X in P4 containing the point (1 : 0 : 0 : 0 : 0) ∈ P4 is the almost reflexive
polytope

Δ = {(x1, x2, x3, x4) ∈ R4
≥0 : 1 ≤ x1 + x2 + x3 + x4 ≤ 5.},

which is a set-theoretic difference of two 4-dimensional simplices. The Fine
interior of Δ consists of the single lattice point p = (1, 1, 1, 1). The integral
distance between p and the 3-dimensional face Θ defined by the equation
x1 + x2 + x3 + x4 = 1 equals 3. Therefore, Δ is not a reflexive polytope. One
has v(Δ) = 54 − 14 = 624. The polytope Δ has 6 faces Θ of codimension 1
(4 faces Θ with v(Θ) = 53 − 13 = 124, one face Θ with v(Θ) = 53 and one
face Θ with v(Θ) = 13). There are also 14 faces of dimension 2 and 16 faces
of dimension 1 in Δ. Our formula for the stringy Euler number gives:

estr(X) = −(54 − 14) + 4(53 − 13) + 53 + 13 · 1
3

− 4 · 52 − 6 · (52 − 12) − 4 · 12 · 1
3 + 6 · 5

+ 4 · (5 − 1) + 6 · 1 · 1
3 = −200.

This is a well-known fact, since X is a smooth quintic 3-fold.

Example 4.14. The Newton polytope Δ of a general 3-dimensional quintic
in P4 having an isolated quadratic (conifold) singularity at point x = (1 : 0 :
0 : 0 : 0) ∈ P4 is the almost pseudoreflexive polytope

Δ = {(x1, x2, x3, x4) ∈ R4
≥0 : 2 ≤ x1 + x2 + x3 + x4 ≤ 5, }

which is again a set-theoretic difference of two 4-dimensional simplices. The
Fine interior of Δ consists of the single lattice point p = (1, 1, 1, 1). The
integral distance between p and the 3-dimensional face Θ defined by the
equation x1 + x2 + x3 + x4 = 2 equals 2. Therefore, Δ is not a reflexive
polytope. One has v(Δ) = 54 − 24 = 609. The polytope Δ has 6 faces Θ
of codimension 1 (4 faces Θ with v(Θ) = 53 − 23 = 117, one face Θ with
v(Θ) = 53 and one face Θ with v(Θ) = 23). There are also 14 faces of
dimension 2 and 16 faces of dimension 1 in Δ. Our formula for the stringy
Euler number gives:

estr(X) = −(54 − 24) + 4(53 − 23) + 53 + 23 · 1
2

− 4 · 52 − 6 · (52 − 22) − 4 · 22 · 1
2 + 6 · 5

+ 4 · (5 − 2) + 6 · 2 · 1
2 = −198.
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Unfortunately, this singular Calabi-Yau 3-fold X does not have a projective
small resolution of its singularity. So X has no a smooth projective birational
Calabi-Yau model.

Remark 4.15. If a log-desingularization ρ : Y → X of a projective variety X
contains only one smooth exceptional divisor D such that KY = ρ∗KX + aD,
then

est(X) = e(Y ) + e(D)
( −a

a + 1

)
.

In particular, est(X) is not an integer, if (a + 1) does not divide e(D).

Example 4.16. One can generalize Example 4.14 and compute the stringy
Euler number of a general d-dimensional Calabi-Yau hypersurface X ′ ⊂ Pd+1

of degree d+2 with a single quadratic singularity at point x = (1 : 0 : · · · : 0).
The blow up of this singular point is a desingularization ρ : X̂ ′ → X ′ such
that the exceptional divisor D ⊂ X̂ ′ is isomorphic to a (d − 1)-dimensional
quadric. One has

K
X̂′ = KX′ + (d− 2)D.

By 4.15, we obtain

estr(X ′) = e(X̂ ′) − d− 2
d− 1e(D).

Therefore, the local stringy Euler number of the singular point x ∈ X ′ equals

estr(X ′, x) = e(D) − d− 2
d− 1e(D) = e(D)

d− 1

If the dimension d ≥ 4 is an even number then e(D) = d and estr(X ′) =
c

d−1 ∈ Q \ Z for some coprime numbers c, d− 1. In particular, estr(X ′) is not
an integer.

So far no mirror manifolds have been known for singular Calabi-Yau va-
rieties X with non-integral stringy Euler number est(X) ∈ Q \ Z.

5. Calabi-Yau hypersurfaces in P(a, 1, . . . , 1)

Let a, b ∈ N be two integers a, b ≥ 2. We put d := ab + l for some integer
1 ≤ l ≤ a − 1 and consider Calabi-Yau hypersurfaces of degree a + d in the
weighted projective space

P(a, 1d) := P(a, 1, . . . , 1︸ ︷︷ ︸
d

)
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of dimension d ≥ 5. The space of quasihomogeneous polynomials of degree
a + d in d + 1 variables z0, z1, . . . , zd (deg z0 = a, deg zi = 1, 1 ≤ i ≤
d) has the monomial basis zm0

0 zm1
1 · · · zmd

d determined by the lattice points
(m0,m1, . . . ,md) ∈ Zd+1

≥0 satisfying the condition

am0 + m1 + · · ·md = a + d.

The convex set

Sd := {(x0, x1, . . . , xd) ∈ Rd+1
≥0 : ax0 + x1 + · · · xd = a + d}.

is a d-dimensional simplex having the unique interior lattice point p :=
(1, . . . , 1) ∈ Zn+1, d integral vertices νi = (0, . . . , a + d︸ ︷︷ ︸

i

, . . . , 0) 1 ≤ i ≤ d and

one rational vertex ν0 := (a+d
a , 0, . . . , 0). The convex hull of the set Sd ∩Zd+1

is the lattice polytope Δ which is the intersection of the simplex Sd with the
half-space define by the inequality x0 ≤ b+ 1. The lattice polytope Δ has 2d
vertices, first d vertices of Δ belong to the hyperplane x0 = 0 and the remain-
ing d vertices of Δ belong to the hyperplane x0 = b+1. The lattice polytop Δ
is not reflexive, because the integral distance between its single interior lattice
point p and the (d−1)-dimensional face in the hyperplane x0 = b+1 is equal
to b ≥ 2. However, it is easy to show that Δ is a pseudoreflexive polytope. Its
dual pseudoreflexive polytope Δ∨ = [Δ∗] is a d-dimensional lattice simplex
whose vertices v0, v1, . . . , vd ∈ N satisfy the relation av0 +

∑d
i=1 vi = 0. The

polar polytope (Δ∨)∗ can be identified with the rational d-dimensional sim-
plex Sd ⊂ Rd+1

≥0 in the hyperplane ax0 +
∑

i=1 xi = a + d. The lattice vectors
v0, v1, . . . , vd ∈ N are exactly the generators of all 1-dimensional cones in
the d-dimensional fan describing the weighted projective space P(a, 1d) as a
d-dimensional toric variety.

The combinatorial structure of the pseudoreflexive polytope Δ is rather
simple, because Δ is combinatorially equivalent to the product of (d − 1)-
dimensional and 1-dimensional simplices. Its polar polytope Δ∗ is simplicial
and it has d + 2 vertices: the lattice vertices v0, v1, . . . vd and the rational
vertex vd+1 := −1

bv0 = 1
ab

∑d
i=1 vi. The vertices v0, v1, . . . , vd−1 can be chosen

as a basis of the lattice N .

Remark 5.1. If l = 1, i.e., d = ab + 1 then the weighted projective space
P(a, 1d) contains d different quasi-smooth Calabi-Yau hypersurfaces Xi ⊂
P(a, 1d) (1 ≤ i ≤ d) defined respectively by the invertible polynomials

Fi(z0, z1, . . . , zd) := za+d
1 + · · · + za+d

d + zb+1
0 zi, 1 ≤ i ≤ d,
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such that Berglund-Hübsch-Krawitz mirror construction can be applied to
every hypersurface Xi (1 ≤ i ≤ d) [BHü93, Kra09].

Proposition 5.2. Assume that l = 1. Then the stringy Euler number estr(X)
of a general quasi-smooth Calabi-Yau hypersurface X in P(a, 1d) equals

a− 1
a

+(−1)d−2
d−2∑
i=0

(−1)i
(
d

i

)
(a+ d)d−1−i +(−1)d−1

d−1∑
i=0

(−1)i
(
n

i

)
(a + d)d−i

a
.

Proof. The polytope Δ is the difference of two d-dimensional simplices. There-
fore, all proper faces Θ of Δ are either simplices or differences of two simplices.
For any 1 ≤ k ≤ d−1 there exist exactly 2

( d
k−1

)
simplicial (d−k)-dimensional

faces of Δ:
( d
k−1

)
of these (d−k)-dimensional simplicial faces are contained in

the hyperplane x0 = b+ 1 and the other
( d
k−1

)
simplicial (d− k)-dimensional

faces of Δ contained in the hyperplane x0 = 0. There exist exactly
(d
k

)
nonsim-

plicial (d−k)-dimensional faces Θ of Δ which are differencies of two simplices.
A (d− k)-dimensional face Θ ≺ Δ is singular if and only if it is contained in
the hyperplane x0 = b + 1, and in this case Θ∗ is a simplex with the ratio-
nal vertex vd+1 and for the corresponding rational polytope σΘ ∩Δ∗ one has
v(σΘ ∩Δ∗) = 1/b. For all regular (d− k)-dimensional faces Θ ≺reg Δ one has
v(σΘ ∩ Δ∗) = 1.

Now we can apply the formula (4.11) for computing the stringy Euler
number of a generic Calabi-Yau hypersurface X ⊂ P(a, 1d):

est(X) = (−1)d−1v(Δ) +
d−1∑
k=1

(−1)d−1−k
∑
Θ≺Δ

dim Θ=d−k

v(Θ) · v(σΘ ∩ Δ∗)

= (−1)d−1
(

(a + d)d

a
− 1

a

)

+ (−1)d−2
((

d

0

)
1
b

+
(
d

0

)
(a + d)d−1 +

(
d

1

)(
(a + d)d−1

a
− 1

a

))

· · · + (−1)d−1−k

((
d

k − 1

)
1
b

+
(

d

k − 1

)
(a + d)d−k

+
(
d

k

)(
(a + d)d−k

a
− 1

a

))
+ · · ·

+ (−1)0
((

d

d− 2

)
1
b

+
(

d

d− 2

)
(a + d) +

(
d

d− 1

)(
a + d

a
− 1

a

))
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= (−1)d−2 1
b

d−2∑
i=0

(−1)i
(
d

i

)
+ (−1)d 1

a

d−1∑
i=0

(−1)i
(
d

i

)
+

+ (−1)d−2
-.2∑
i=0

(−1)i
(
d

i

)
(a + d)d−1−i

+ (−1)d−1
d−1∑
i=0

(−1)i
(
d

i

)
(a + d)d−i

a

= a− 1
a

+ (−1)d−2
d−2∑
i=0

(−1)i
(
d

i

)
(a + d)d−1−i

+ (−1)d−1
d−1∑
i=0

(−1)i
(
n

i

)
(a + d)d−i

a
.

Proposition 5.3. For any l (1 ≤ l ≤ a − 1) the stringy Euler number
estr(X∨) of a canonical Calabi-Yau model X∨ of a Δ∨-nondegenerated affine
hypersurface in Td defined by the Laurent polynomial

f(x) = x−a
d

d−1∏
i=1

x−1
i +

d∑
i=1

xi

equals

(−1)d−1
(
a− 1

a

)
−

d−2∑
i=1

(−1)i
(
d

i

)
(a + d)d−i−1 +

d−1∑
i=2

(−1)i
(
d

i

)
(a + d)d−i

a
.

Proof. For the dual pseudoreflexive polytope Δ∨ one has v(Δ∨) = a + d.
All faces Θ � Δ∨ are lattice simplices. A (n − k)-dimensional face Θ ≺ Δ∨

is singular if and only if it is contained in the (d − 1)-simplex with vertices
v1, . . . , vd.

Now we apply the formula (4.11) for computing the stringy Euler number
of the canonical Calabi-Yau model X∨:

est(X∨) =(−1)d−1v(Δ∨) +
d−1∑
k=1

(−1)d−1−k
∑

Θ≺Δ∨
dim Θ=d−k

v(Θ) · v(σΘ ∩ (Δ∨)∗) =

(−1)d−1(a + d) + (−1)d−2
(
d + 1

a

)
+

+(−1)d−3
((

d

d− 2

)
(a + d) +

(
d

d− 1

)
(a + d)

a

)
+
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+(−1)d−4
((

d

d− 3

)
(a + d)2 +

(
d

d− 2

)
(a + d)2

a

)
+

+(−1)d−5
((

d

d− 4

)
(a + d)3 +

(
d

d− 3

)
(a + d)3

a

)
+ · · ·

+(−1)0
((

d

1

)
(a + d)d−2 +

(
d

2

)
(a + d)d−2

a

)
=

=(−1)d−1
(
a− 1

a

)
−

−
d−2∑
i=1

(−1)i
(
d

i

)
(a + d)d−i−1 +

d−1∑
i=2

(−1)i
(
d

i

)
(a + d)d−i

a
.

Corollary 5.4. If l = 1 then one has

est(X) = (−1)d−1est(X∨).

Proof. Comparing the formulas for est(X) and est(X∨) in 5.2 and 5.3, we see
that

(−1)d−1est(X∨) − (d + a)d−1 + (a + d)d

a
−

(
d

1

)
(d + a)d−1

a
= est(X).

Therefore, we get
(−1)d−1est(X∨) = est(X).

The weighted projective space V = P(a, 1d) is a toric variety defined by a
simplicial d-dimensional fan whose 1-dimensional cones a generated by lattice
vectors v0, v1, . . . , vd satisfying the relation av0 +

∑d
i=1 vi = 0. It is easy to

show that again the convex hull of {v0, v1, . . . , vd} is a pseudoreflexive simplex
Δ∨ which is dual to Δ. There is a toric desingularization ρ : V ′ → V having
one exceptional divisor E ∼= Pd−1 that corresponds to the lattice point −v0
so that the set of lattice vectors {−v0, v0, v1, . . . , vd} can be identified with
the set of inner normal vectors to facets of Δ. The toric desingularization
ρ : V ′ → V induces a desingularization ρ : X ′ → X of the generic Calabi-
Yau hypersurface X ⊂ V such that the fiber D := ρ−1(p) over the unique
singular point x ∈ X is isomorphic to a generic hypersurface of degree k in
Pd−1. One has

KX′ = ρ∗KX + bD,

because the linear function ϕ on the cone
∑d

i=1 Rvi with ϕ(v1) = . . . =
ϕ(vd) = 1 has value b + 1 on the lattice vector −v0 = 1/a

∑d
i=1 vi.
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Theorem 5.5. Let X be a generic Δ-nondegenerated Calabi-Yau hypersur-
face in the d-dimensional weighted projective space P(a, 1d) (d = ab+l, l ≥ 2)
and let X∨ be a canonical Calabi-Yau model of the Δ∨-nondegenerated affine
hypersurface Z ⊂ Td defined by the Laurent polynomial

f(x) = x−a
d

d−1∏
i=1

x−1
i +

d∑
i=1

xi.

Then estr(X) ∈ 1
bZ and estr(X∨) ∈ 1

aZ. Moreover, if l = 2 then estr(X) is not
an integer. In particular, the equality

estr(X) = (−1)d−1estr(X∨)

can not be satisfied if l = 2 and (a, b) is a pair of distinct odd prime numbers.

Proof. We compute the stringy Euler number of a generic Calabi-Yau hyper-
surface X ⊂ P(a, 1d) as in 5.2:

est(X) = (−1)d−1
(

(a + d)d

a
− ld

a

)
+

+(−1)d−2
((

n

0

)
ld−1 1

b
+

(
d

0

)
(a + d)d−1 +

(
d

1

)(
(d + a)d−1

a
− ld−1

a

))

+(−1)d−3
((

n

1

)
ld−2 1

b
+

(
d

1

)
(d + a)d−2 +

(
d

2

)(
(d + a)d−2

a
− ld−2

a

))
+

+(−1)d−4
((

d

2

)
ld−3 1

b
+

(
d

2

)
(d + a)d−3 +

(
d

3

)(
(d + a)d−3

a
− ld−3

a

))
+

· · ·

+(−1)0
((

d

d− 2

)
l
1
b

+
(

d

d− 2

)
(d + a) +

(
d

d− 1

)(
d + a

a
− l

a

))
.

Since a divides (d+ a)i − li = (ab+ a+ l)i − li for any i ∈ N, we obtain that
estr(X) ∈ 1

bZ. The terms in estr(X) having the denominator b sum up to

A := (−1)d−2 1
lb

d−2∑
i=0

(−1)i
(
d

i

)
ld−i

= (−1)d−2 1
lb

(
(l − 1)d − (−1)d − (−1)d−1dl

)
.
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In particular, for l = 2 and odd integers a, b the dimension d = ab+ 2 is odd,

A = 1 − d

b
�∈ Z

and estr(X) is not an integer.
On the other hand, we did already the computation for estr(X∨) in 5.3

and obtained

estr(X∨) = (−1)d−1
(
a− 1

a

)
−

d−2∑
i=1

(−1)i
(
d

i

)
(a + d)d−i−1

+
d−1∑
i=2

(−1)i
(
d

i

)
(a + d)d−i

a
.

This shows that estr(X∨) ∈ 1
aZ. Therefore, if a and b two distinct odd prime

numbers the equality estr(X) = (−1)d−1estr(X∨) can hold only if the stringy
Euler numbers are integers, but for l = 2 this is not the case.

6. An additional condition on singular facets

Let Δ ⊂ MR be a d-dimensional pseudoreflexive polytope and let Δ∨ :=
[Δ∗] be the Mavlyutov dual pseudoreflexive polytope. We consider also two
additional d-dimensional almost pseudoreflexive polytopes Δ1 ⊆ Δ and Δ2 ⊆
Δ∨ such that one has the inclusions

Δ1 ⊆ [Δcan
1 ] = Δ,

Δ2 ⊆ [Δcan
2 ] = Δ∨.

A generalization of Berglund-Hübsch-Krawitz mirror construction sug-
gested by Artebani, Comparin and Guilbot [ACG16] needs an additional con-
dition that guarantees that the Zariski closure of an affine Δ1-nondegenerated
hypersurface Z1 in the toric variety PΔ∗

2
associated with the rational polar

polytope Δ∗
2 will be quasi-smooth. The same condition is demanded for the

Zariski closure of a Δ2-nondegenerated affine hypersurface Z2 in the toric vari-
ety PΔ∗

1
associated with the rational polar polytope Δ∗

1. The quasi-smoothness
condition implies that the singularities of Calabi-Yau hypersurfaces are lo-
cally quotient singularities. In particular, the stringy Euler number of such
Calabi-Yau hypersurfaces is always an integer.

In [Bor13, Def. 7.1.1, Prop. 7.1.3] Borisov suggested to generalize the
quasi-smoothness condition using some versions of Jacobian rings. It is not
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quite clear how Borisov’s condition can be described by purely combinatorial
properties of convex polytopes, but it is satisfied in two cases: 1) for reflexive
polytopes and 2) for almost pseudoreflexive simplices Δ1 and Δ2 that appear
in the Berglund-Hübsch-Krawitz mirror construction.

Our purpose is to describe a new another condition on Calabi-Yau va-
rieties X and X∨ that must be added to the Mavlyutov duality for pairs
of d-dimensional pseudoreflexive polytopes Δ and Δ∨ such that the stringy
Euler numbers estr(X) and estr(X∨) will be integers satisfying the equation

estr(X) = (−1)d−1estr(X∨).

We remark that a pseudoreflexive lattice polytope Δ is not reflexive if
and only if there exists at least one singular facet Θ ≺sing Δ. Our additional
condition on a pseudoreflexive polytope Δ is exactly an additional condition
on its singular facets of Δ. By 3.17, there exist a natural bijection between
singular facets Θ of pseudoreflexive polytope Δ and non-integral vertices νΘ
of the polar polytope Δ∗.

Let Z ⊂ Td be a Δ∨-nondegenerated hypersurface and let X∨ be its
canonical Zariski closure in the toric Q-Fano variety PΔ∗ corresponding to
the polar polytope Δ∗. Then for any singular facet Θ ≺sing Δ the Calabi-Yau
hypersurface X∨ ⊂ PΔ∗ contains the torus fixed point xΘ ∈ X∨ corresponding
to the rational vertex νΘ ∈ Δ∗.

Definition 6.1. Let Θ ≺sing Δ be a singular facet of a d-dimensional pseu-
doreflexive polytope Δ. Denote by nΘ (nΘ ≥ 2) the integral distance from
0 ∈ M to the facet Θ. We call the facet Θ quasi-regular if the local stringy
Euler number estr(X∨, xΘ) is an integer that can be computed by the formula:

estr(X∨, xΘ) = nΘ · v(Θ).

We illustrate this definition with the examples of the Mavlyutov pairs
(Δ,Δ∨) from the previous section.

Example 6.2. We consider Δ∨ to be a d-dimensional pseudoreflexive simplex
which is the convex hull of a basis e1, . . . , ed of the lattice M and a point
e0 = −aed +

∑d−1
i=1 , where a does not divide d and a ≤ d/2. Let d = ab+ l for

some integers 1 ≤ l < a and b ≥ 2. Then the dual pseudoreflexive polytope
Δ = (Δ∨)∨ is the Newton polytope of a Calabi-Yau hypersurface X of degree
a + d in the d-dimensional weighted projective space P(a, 1d) that contains
a torus fixed point x := (1 : 0 : . . . : 0). A desingularization of P(a, 1d)
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at x contains a single exceptional divisor isomorphic to Pd−1. The induced
birational morphism ρ : Y → X has a single exceptional divisor D ⊂ Pd−1

which is a hypersurface of degree l and one has KY = ρ∗KX + (b− 1)D. By
4.15, we obtain estr(X, x) = e(D)/b. On the other hand, we have nΘ·v(Θ) = a,
where Θ is a singular facet with vertices v1, . . . , vd of Δ∨ corresponding to the
point x. The equality estr(X, x) = nΘ ·v(Θ) is equivalent to e(D) = ab = d−l.
This can happen for a smooth (d− 2)-dimensional hypersurface D of degree
l in Pd−1 if and only if l = 1, i.e., only if X is a quasi-smooth hypersurface in
P(a, 1d).

Theorem 6.3. Let (Δ,Δ∨) be a Mavlyutov pair of d-dimensional pseudore-
flexive polytopes Δ and Δ∨. Assume all singular facets Θ′ ≺sing Δ∨ are quasi-
regular. Then the stringy Euler number estr(X) of a canonical Calabi-Yau
model X of a Δ-nondegenerate hypersurface can be computed by the following
formula:∑

Θ′≺singΔ∨

dim Θ′=d−1

nΘ′ · v(Θ′)

+
∑

Θ≺regΔ
1≤dim Θ≤d−2

(−1)dimΘ−1v(Θ) · v(Θ∨) + (−1)d−1 ∑
Θ≺singΔ

dim θ=d−1

nΘ · v(Θ).

In particular, if all singular facets of Δ are also quasi-regular then for canon-
ical Calabi-Yau models X∨ of a Δ∨-nondegenerate hypersuface one obtains
the equality

estr(X) = (−1)d−1estr(X∨).

Proof. Let Z ⊂ Td be a Δ-nondegenerate affine hypersurface. There are two
projective closures of Z: the closure Z in the toric variety PΔ and the canonical
model X obtained as the Zariski closure of Z in the toric Q-Fano variety
corresponding to the rational polytope Δcan = (Δ∨)∗ ⊂ MR.

We choose a regular simplicial fan Σ̂ which is a common subdivision of
two rational polyhedral fans: the normal fan ΣΔ and the normal fan ΣΔcan .
So we obtain two birational toric morhisms ρ1 and ρ2:

PΣ̂
ρ1 ρ2

PΔ
f

PΔcan
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together with the induced birational morphisms

Ẑ
ρ1 ρ2

Z
f

X

The canonical Calabi-Yau hypersurface X ⊂ PΔcan is a disjoint union of
locally closed strata XF := X∩TF where TF is a torus orbit in the projective
toric variety PΔcan and F runs over all faces F � Δcan of the rational polytope
Δcan:

X =
⋃

F	Δcan

XF .

Let v1, . . . , vs be the set of primitive lattice generators of 1-dimensional
cones in the fan Σ̂. We set I := {1, . . . , s}. Then k-dimensional cone σ ∈ Σ̂
is determined by a subset J ⊂ I such that |J | = k and σ is generated by vj
(j ∈ J).

For any face F � Δcan we define the stringy Euler number

estr(X,XF ) :=
∑

∅⊆J⊆I

e(D◦
J ∩ ρ−1

2 (TF ))
∏
j∈J

1
aj + 1 ,

where D◦
J are either empty or a locally closed stratum on the smooth projec-

tive hypersurface Ẑ in the toric variety PΣ̂ corresponding to a cone σ ∈ Σ̂ of
dimension |J |. By additivity of the Euler number, we obtain

estr(X) =
∑

F	Δcan

estr(X,XF ).

So it remains to compute estr(X,XF ) for any face F � Δcan.
We consider the following 4 possibilities for a face F � Δcan:

• dim[F ] = dimF = k ≥ 1, i. e., F = Θ∗ for some regular (d − k − 1)-
dimensional face Θ � Δ∨

• dim[F ] < dimF = k ≥ 1, i. e., F = Θ∗ for some singular (d − k − 1)-
dimensional face Θ � Δ∨

• dim[F ] = dimF = 0, i. e., F = Θ∗ is a lattice vertex of Δcan corre-
sponding to some regular (d− 1)-dimensional face Θ � Δ∨

• dimF = 0 and [F ] = ∅, i. e., F = Θ∗ is a rational vertex of Δcan

corresponding to some singular (d− 1)-dimensional face Θ � Δ∨.
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If dim[F ] = dimF = k ≥ 1, then [F ] = Θ for some k-dimensional face
Θ � Δ. For a generic Δ-nondegenerate hypersurface Z the affine hypersuface
XF ⊂ TF is [F ]-nondegenerate and its Euler number equals (−1)k−1v([F ])
(see 4.7). Moreover, X has Gorenstein toroidal singularities along XF corre-
sponding to the (d − k)-dimensional cone over the dual regular (d − k − 1)-
dimensional face |Theta∨ of Δ. So one has

estr(X,XF ) = (−1)k−1v(Θ) · v(Θ∨).

If dim[F ] < dimF = k ≥ 1, then the affine hypersuface XF ⊂ TF is
isomophic to a product of (C∗)k−dim[F ] and [F ]-nondegenerated affine hyper-
surface. Therefore e(XF ) = 0 and one has estr(X,XF ) = 0.

If dim[F ] = dimF = 0, then XF is empty and one has estr(X,XF ) = 0.
If dimF = 0 and [F ] = ∅, then XF is a torus fixed point xΘ′ ∈ PΔcan

estr(X,XF ) equals to local stringy Euler number estr(X, xΘ) = n(Θ) · v(Θ)
for some singular facet Θ ≺sing Δ∨.

Thus, we obtain

estr(X) =
∑

Θsing≺Δ∨
dim Θsing=d−1

nΘ · v(Θ) +
d∑

k=1
(−1)k−1 ∑

Θord≺Δ
dim Θord=k

v(Θord) · v(Θ∗
ord).

Since the d-dimensional lattice polytope Δ is the union over all (d − 1)-
dimensional faces Θ ≺ Δ of d-dimensional pyramids ΠΘ := Conv(0,Θ) with
vertex 0, one has

v(Δ) =
∑
Θ≺Δ

dim Θ=d−1

v(ΠΘ).

On the other hand, v(ΠΘ) = v(Θ) ·nΘ, where nΘ is the integral distance from
Θ to 0 ∈ M . The equality nΘ = 1 holds if and only if Θ ≺ Δ is a regular
(d− 1)-dimensional face. This implies the equality

d∑
k=d−1

(−1)k−1 ∑
Θ≺regΔ
dimΘ=k

v(Θ) · v(Θ∨) =(−1)d−1

⎛⎜⎝v(Δ) −
∑

Θ≺regΔ
dim Θ=d−1

v(Θ)

⎞⎟⎠ =

=(−1)d−1

⎛⎜⎝ ∑
Θ≺singΔ

dim Θ=d−1

v(Θ) · nΘ

⎞⎟⎠
that proves the required formula for estr(X).
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The equality estr(X) = (−1)d−1estr(X∨) follows now from the duality
Θ ↔ Θ∨ between k-dimensional regular faces Θ ≺reg Δ and (d − k − 1)-
dimensional regular faces Θ∨ ≺reg Δ∨ and from the equality

d−2∑
k=1

(−1)k−1 ∑
Θ≺regΔ
dim Θ=k

v(Θ) · v(Θ∨)

= (−1)d−1

⎛⎜⎜⎝d−2∑
k=1

(−1)k−1 ∑
Θ∨≺regΔ∨

dimΘ∨=k

v(Θ) · v(Θ∨)

⎞⎟⎟⎠
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