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The Fekete and Szegod problem on bounded starlike
circular domain in C™*

QINGHUA XU, TAISHUN LIiUu AND WENJUN ZHANG

Abstract: In this paper, we establish the Fekete and Szegé in-
equality for a class of holomorphic mappings on the bounded star-
like circular domain in C", which is natural extension to higher
dimensions of some classical Fekete and Szeg6 inequalities for var-
ious subclasses of the normalized univalent functions in the unit
disk.
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1. Introduction

Let S be the class of normalized univalent functions on the unit disk U = {z €
C:|z| < 1}. Let §*, S and SS7 denote the subclasses of S consisting respec-
tively of the starlike functions, starlike functions of order « (see Definition 1)
and strongly starlike functions of order /3 (see Definition 2) on U.

In [1], Fekete and Szego obtained the following classical result.

If f(2) = 2+ ag2® +azz®+--- € S, then

_2
max |az — Aa3| = 1+ 2 1-x
fes

for A € [0, 1].

The above relation is known as the Fekete and Szegd inequality. After
that, there were many papers to consider the corresponding problems for
various subclasses of the class S, and many interesting results were obtained.
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For more details we refer the reader to survey papers [2], [3], [4] and [5]. The
following results are well known.

Theorem A (See [6]). Suppose that f(z) = z+agz? +azz3+--- € S*. Then
laz — Aa3| < max{1,[3 —4\|}, A€ C.

The above estimation z's(sharp for the function f(z) = ﬁ if |2 —2) > 1,

and for f(z) = %= zf|% —2)| < %

Theorem B (See [7]). Suppose that f(z) = z + agz* + azz® +--- € S, a €
[0,1). Then

las — Aa3| < (1 — @) max{1, |3 —2a —4A(1 —a)|}, A€ C.
The above estimation is sharp for the function f(z) = (1_Z)22(1,a> if |2%1_,23) —

20| > sitay, and for f(2) = o z‘f\;gl-fg) —2)| < ik

Theorem C (See [8]). Suppose that f(z) = z+az2® +agz’+--- € 88, B €
(0,1]. Then

laz — \a3| < Bmax{1, |3 —4\B}, A€ C.

B
The above estimation is sharp for the function f(z) = zexp [ [(%) —1} lat

if |2 —2)| > %, and for f(z) = zexpﬁf[(ijz)ﬁ - 1}%dt if |3 —2)| < %

In fact, the Fekete and Szegd inequality is closely related to the Bieberbach
conjecture [9], which was settled by de Branges [10], who proved that if a

o0
function f(2) = z+ 3. ar2" belongs to the class S, then the estimates |ax| <
k=2

k, for k= 2,3, ... hold.

However, Cartan [11] stated that the Bieberbach conjecture does not hold
in several complex variables. Therefore, it is necessary to require some ad-
ditional properties of mappings of a family in order to obtain some positive
results, for instance, the convexity, the starlikeness and so on.

Some best-possible results concerning the coefficient estimates for sub-
classes of holomorphic mappings in several variables were obtained in the
works of Bracci [12], Bracci et al. [13], Graham, Hamada and Kohr [14], Gra-
ham et al. [15], Graham et al. [16], Graham et al. [17, 18], Hamada et al. [19],
Hamada and Honda [20], Kohr [21], Liu and Liu [22], and Xu and Liu [23].
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In contrast, although the Fekete and Szeg6 inequalities for various sub-
classes of the class S were established, only a few results are known for the
inequalities of homogeneous expansions for subclasses of biholomorphic map-
pings in several complex variables.

Recently, in [24], Xu and Liu extended Theorem A to the case of a subclass
of starlike mappings defined on the unit ball in a complex Banach space or on
the unit polydisk in C™. In [25] and [26], using some restrictive assumptions,
Theorems B and C were also extended to higher dimensions.

In this paper, we will first establish the Fekete and Szegd inequality for
a class of holomorphic mappings on the bounded starlike circular domain in
C", which is natural extension to higher dimensions of some classical Fekete
and Szegd inequalities for various subclasses of the class S.

Throughout this paper, let C™ be the space of n complex variables z =

n
(21,22, ,2,) with the Euclidean inner product (z,w) = 3 z;w; and the
j=1

norm ||z|| = (z,2)%,z € C". Let B™ be the Euclidean unit ball in C*, Q C
C™ be a bounded starlike circular domain with 0 € Q, and its Minkowski
functional p(z) € C* in C" \ {0}. Let 9 be the boundary of €, let H ()
be the set of all holomorphic mappings from 2 into C", and let H(, ) be
the set of all holomorphic mappings from 2 into . As is known to us, if
f e H(Q), then

Fluw) = 3 LD () (0 = 2,
k=0 """

for all w in some neighborhood of z € Q, where D*f(2) is the kth-Fréchet
derivative of f at z, and for k > 1,

DFF(2)((w — 2)F) = DV f(2) (w— 2, ,w—2).
k

Let J¢(2) be the Jacobian matrix of f at z € Q, detJ¢(z) be the Jacobian
determinant of f at z € 2. A holomorphic mapping f :  — C" is said to
be biholomorphic if the inverse f~! exists and is holomorphic on the open set
f(Q). A mapping f € H(Q) is said to be locally biholomorphic if det.J;(z) # 0
for each z € Q. If f: Q@ — C" is a holomorphic mapping, we say that f is
normalized if f(0) = 0 and J¢(0) = I, where I represents the identity matrix.
Let §*(§2) denote the class of starlike mappings on Q. When n =1, Q = U,
the class §*(U) is denoted by S*.

Suppose that @ C C" is a bounded circular domain. The m(m > 2)-th
Fréchet derivative of a mapping f € H(2) at a point z € 2 is written by
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D™ f(2)(a™ !, .). The matrix representation is

- - 0™ fp(2)
m m—1 _ p .
D f(Z)(CL ? ) 7 ( Z azkazll “ee azlm71 all al'rnl) )
1<p,k<n

ll>l27"' ylm—lzl

where f(2) = (f1(2), f2(2), -+, fu(2)),a = (ay,a9,--- ,a,) € C".

The following definition is due to Liu and Lu [27] (see also [28]).

Definition 1. Suppose that 0 < a < 1. Let 2 C C" be a bounded starlike
circular domain with 0 € €, and its Minkowski functional p(z) € C! in
C™\ {0}. A normalized locally biholomorphic mapping f : @ — C™ is called
a starlike mapping of order « if

iap(z) “1() (4 ot
’p(z) 0z T @)fE) 2a‘<2o¢’

vz e )\ {0}.

Equivalently, we may express this as

p(z)
Re { e Jf_l(z)f(z) } >a, VzeQ\{0}.

0z

When 2 = B", obviously, the above inequality is equivalent to the following
relation.

=11

(1) Re {_
(J7H(2)f(2),2)
When n =1, Q = U, the relation (1) is equivalent to

2f'(2)
f(2)

Let S%(Q2) denote the class of starlike mappings of order o on Q. When n =
1, Q =T, the class S} (U) is denoted by S?.

Definition 2 (See [29]). Suppose 0 < 5 < 1. Let © C C" be a bounded
starlike circular domain with 0 € ©Q, and its Minkowski functional p(z) € C*
in C"\ {0}. A normalized locally biholomorphic mapping f : @ — C" is
called a strongly starlike mapping of order 3 if

2 Op(2) 4 m
arg@ P i (2)f(2) <§6, vz e Q\ {0}.

}>a, Vz e B"\ {0}.

Re

>a, VzeU.




The Fekete and Szegd problem 625

When 2 = B", obviously, the above inequality is equivalent to the fol-
lowing relation.

2) larg (71 (2)f(2), 2)| < gﬁ, Vze B\ {0}.
When n =1, Q = U, the relation (2) is equivalent to

2f'(2)
f(z)

Let SS3(€2) denote the class of strongly starlike mappings of order 3 on Q.
When n =1, Q =T, the class SS§5(U) is denoted by SS7.

Definition 2 was first introduced on B™ by Kohr [30] (see also [31]).

We next recall a class of mappings M which plays an important role in
the study of the Loewner chains and the Loewner differential equation in
several complex variables (see [29], [32] and [33]).

Ip(z)

arg

‘<gﬁ, vz e U.

M={he HQ):h(0)=0,J,00) =1, %ewh(z) >0, z€ Q\{0}},
where 62(;) = (85?2(,?),"‘ 7852(? .

Now, we introduce the following class M, on € C C", which has been
introduced by Kohr [21] on B™ and studied by Graham, Hamada and Kohr
[14] (also see [16]).

Definition 3. Let g € H(U) be a biholomorphic function such that g(0) = 1,
Re g(§) > 0 on £ € U. We define M, as the class of mappings given by

(2)
M, = {h € H(Q) : h(0) = 0, J,(0) = 1, m € g(U), z € Q\{O}} .

Clearly, if g(§) = }—fg, ¢ € U, then M, coincides with the class M. Especially,
if Q@ = B™, then

M, = {h € H(B") : h(0) = 0, J,(0) = I, ——1— € g(U), z € B”\{O}} .

Remark 1. Let f € H(2) be a normalized locally biholomorphic mapping. If

Jr '(2)f(z) € My, then there are many choices of the function g which would

1+¢

provide interesting subclasses of S(2). For example, if we let g(§) = -t
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_ B
g(&) = % and g(&) = (%) (the branch of the power function is

B
chosen such that (%) | f=0 = 1) in Definition 3, then we easily obtain
fes8*(Q), feS&i(Q) and f € SS5(Q), respectively.

2. Some lemmas

In order to prove the desired results, we give some lemmas.

Lemma 1 ([29]). Let s(6) = 1+ 3 bue* € H(U), and Re s(¢) > 0, € € U.
k=1
Then

1 1
b — 581 < 2= S[buf.

Lemma 2. Suppose that s € H(U), h is a biholomorphic function on U, and
s(0) = h(0), s(&) € h(U), V¢ € U. Then

®) T o] < oy -

Proof. The condition of Lemma 2 yields that s < h. So, there exists ¢ €
H(U,U) such that

©(0) = 0 and (&) = h(#(¢)), €€ U.

A simple computation shows that

s'(6) = W (9(€)#'(€), s"(&) = M (p(€)(#'(€))* + W (p(£)¢"(€).

Thus, from the above relation, we find that

W PO = g (o) = SO
Also consider the function k& defined by
_1+9()
k(&) = = ole) £el.

Then it is easy to deduce that
k(&) =1+20(&) +2¢%*&) + -+ ,and Re k(&) >0, £eU.
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Consequently, we have

kll(o)

(5) K(0) =2¢/(0), —= = ¢"(0) +2(¢'(0))"

By Lemma 1, (4) and (5), we obtain (3), as claimed. This completes the
proof. O

Lemma 3 ([34]). Q@ C C" is a bounded starlike circular domain if and only
if there exists a unique real continuous function p : C" — R, called the
Minkowski functional of 2, such that

(i) p() 20,2 € C plz) = 0 & 2 = 0;
(ii) p(tz) = |t|p(z),t € C,z € C";

(i) Q@ ={z€ C":p(z) < 1}.

Furthermore, if p(z) € C* in C*\ {0}, then the function p(z) has the following

properties.

Ip(2)
2 = "
(6) PO pe), zecn
2ap(§0)20 =1, 2z €09,
o002) _ 0pl2)
aZ - aZ ) )\ G (07 00)7
Op(%)  _a0p(2)
=e ! feR
0z ¢ 0z’ €%
op(z dp(z Ip(z
where ‘(;(Z) = ( ggl),... 7 gz(n)).

3. Main results

In this section, we state and prove the main results of our present investiga-
tion.

Theorem 1. Let g : U — C satisfy the conditions of Definition 3, f €
H(Q,C), f(0) =1, F(2) = 2f(2) and suppose that J'(2)F(z) € M,. Then

,0p(2) DPFO)) | (28;)(2) D2F<o><z2>>2
0z 3lp3(z) 0z 2p?(z)

14"(0)
2 ¢'(0)

+(1—2)\)g’(0)‘}, NEC, ze 0\ {0},

The above estimation is sharp.
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Proof. Fix z € Q\{0}, and denote zy = (- Note that Jrt(2) exists, we have
f(z)#0, z€ Q. Let p: U — C be given by

3
p(€) = 27T G0 (g0 <#0
1 £=0

)

Using Lemma 3 ( dp(zo)zo =1, z € 89), we obtain p € H(U), and since
Jpt(2)F(2) € Mg, we deduce that

3
dp(zO)JF (fzo) (520)
p(&20)
2%%_1(520)}7(520)

By Lemma 2, we obtain

YO 140
> a2

p(§) =

€g(U), §eU\{0}.

p'(0)1?
lg'(O)]

Using an argument similar to that in [35] (also see [29, Theorem 7.1.14)),

we have
(e
-1 z
= I - )
‘]F (Z) f(Z) 1+ Ji(2)z

f(2)

(8) 2 <1g'(0)] -

Therefore, we obtain

_1Z 2) = 2 1 _ Zf(Z) >
O e ﬁ+@g> EEZCEERRANE

which implies that

(10) e J"F(Z() e 1+ J;EZZ 2 e Q\ {0}
In view of (10), we have
p(€) = p(&20) _ 1 Jrl€z0)8z

220(&20) J1(e20)F(E29) f(&20)
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From this we can conclude that

p(&)f(§20) = f(&20) + J5(§20)€20-

Using Taylor series expansions of p in £, we obtain

pﬂéo)§2 +) <1 + Jf(O)(ZO)f"'

= (1 + Jf(o)(zo)£ + wéﬁ + .- >

+ (Jp(0)(20)€ + D2 f(0)(25)E> + - -).

<1+p’(0)§+ D2f(0)(z02)€2+”.>

2

Comparing the homogeneous expansions of two sides of the above equality,
we deduce that

PO = 100, T = D2 r0)(:2) ~ (J5(0)(z0))”
That is
1) PO0e) =506 L2 = D70 - (0

Also, since F(z) = zf(z), we have

DPF(0)(z%) _ D*f(0)(z%)  ~ D?F(0)(z%)

(12) 30 o1 z, o = J(0)(2)=.

From (12), we obtain

5 0p(z) D°F(0)(z) _ D*f(0)(z)p(2)

(13) 0z 3! 2!
and
z 2 22
(14) AT _ )@,

Thus, from (8), (11), (13) and (14), we have

L00(2) DFO)()0(z) (28p(z> DQF(O)(22)>2
0z 3! 0z 2!
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% — A2 (2) (J5(0)(2))?

p*(2)

— 10|21

=3 |5~ SO+ (G +1-2) GO
< 1) <|g'<o>| O [ L 1o |p'<o>|2>

- 3 (o1 = 2+ [F70 4 a0 2.

We consider the following two cases.

Case 1. If ‘%% +(1— 2/\)9/(0)‘ < 1, then

Op(z) DF(0)(z)p(2) Op(z) D*F(0)(3)
i 3! ”(2 0~ 2! )

/ 2 "
< 1) <|g'<o>| R 3ES (- 204 0)

Ip’(0)|2)
lg'(0)] 12 ¢'(0)

lg'(0)]
(15) <

Case 11. If ‘%% +(1- 2)\)9’(0)’ > 1, then

L00(2) DFO)()p(z) (2 9p(2) DzF<0><z2>>2

0z 3! 0z 2!
/ 2 " / 2
< 1) (|g'<o>| - 'f‘; ,(8})“ n ;‘;((8)) (- 204(0) ‘fg,(fo))',
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Since [p/(0)] < ]¢'(0)], we obtain

,0p(2) DYF(O)()p(=) _ (,00(2) D2F<o><z2>>2
0z 3! 0z 2!
< 361 + 50 (|20 + @ - 20 0] -1) L
1" / 2
< 3Ol + 50 (|5 50 + 0 - 20| -1)
1 19/(0) ,
16) = 5l (:) |55 + (1 =2050)].

From (15) and (16), we deduce (7), as desired.

To see that the estimation of Theorem 1 is sharp, it suffices to consider
the following examples.

19"(0)

5 97(0) +(1- 2)\)9’(0)‘ > 1, we consider the following example

Example. If ‘

F(z) = zexp | NUGES

where r = sup{|z1| : 2 = (21, 22, -+ , zn)" € Q}. We deduce that J*(2)F(z) €
My, and a short computation yields the relation

DF(0)(=*) _ <9”(0) (9’(0))2> (212, D*F(0)(z*)
3! 4 2 r’ 2! T

In view of the above relation, we obtain

NG ) D*F(0)(2*)p(2) _/\< ,0p(z) D F(U)(22)>2
0z 3! 0z 2!

— (g”(O) + (g’(O))2> (ﬁ)2p2(z) _ )\(g/(o))2(ﬂ)2p2(z)’

4 2 r T
C(B)2p%(2)|g(0)] |1 ¢"(0) ,
an = : ‘29, 5+ (12 <0)‘.

Setting z = Ru (0 < R < 1) in (17), where u = (uy,u2, -+ ,up) € 0Q,uy =,
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we have

dp(z) D3F(0)(=*) dp(z) D*F(0)(=*)\’
2 —Al2
0z  3lp3(z) 0z 2p?(z)
9'(0)] ‘19"(0) / ‘
= = 1—2A .
If ‘%Z/l((g)) + (1 =2\)¢ (0)‘ < 1, we consider the following example
o, dt
(18) Fz)=zexp [T () - DT, zeq,
0
where r = sup{|z1| : 2 = (21,22, -+ , zn) € Q}. It is elementary to verify that

the mapping F(z) defined in (18) satisfies J'(2)F(z) € M,, and a simple
computation shows that
DPF(0)(z*) _ g'(0)(3)*  D*F(0)(z*)

(19) 3! - 9 ol =0

From (19), we have

(20)

_ 9O P)

2 =
2

dp(z) D*F(0)(z*)p(2) \ <20p(2) DQF(O)(Z?)>2
0z 3! 0z 2!

Taking z = Ru(0 < R < 1) in (20), where u = (u1,ug, -+ ,u,) € 02, u; =r,
we have

2
L00(2) DPEO)) [, 00(z) DPFO))N | 190)
0z 3p3(2) 0z 2lp%(z) 2
This completes the proof of Theorem 1. O

When Q@ = B", we immediately obtain the following result, which we
merely state here without proof.

Theorem 2. Let g : U — C satisfy the conditions of Definition 3, f €
H(B™,C), f(0) = 1, F(2) = zf(2) and suppose that J.'(2)F(z) € M,.
Then

1 D3F(0)(z3)2_)\< 1 DQF(O)(22)2>2
[ 2[4 3! 2] 2!
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19'(0)]

<
-2

14/(0) : n
S+ 0O} rec se B (o)

max{l7

The above estimation is sharp.
In view of Remark 1, if we set g(§) = }—J_rg, g(&) = % and g(&) =

B B
(%) (the branch of the power function is chosen such that G—f%) | f=0 = 1)
in Theorems 1 and 2, we can deduce Corollaries 1, 2 and 3, respectively, whose

proofs we omit.
Corollary 1. Let f: Q — C, F(z) = zf(z) € S*(Q). Then

J00() DUEO)) (23;)(2) D2F<o><z2>>2‘
0z 3lp3(z) 0z 2p*(z)

<max{l, |3—4\}, A€ C, z€ Q\ {0}

If Q= B", then
1 D3F(0)(z%) 1 D2F(0)(z?) _\
zZ—A z
(Els 3! 2] 2!
(21) <max{l, [3—4)\]}, AeC, z € B"\ {0}.

These estimates are sharp.
FEspecially, when n =1, Q =U, (21) reduces to the following

’F<3>(0) L (F”(O)>2

30 o <max{l, |3—4M}, A€ C, z€T,

which is equivalent to Theorem A.
Corollary 2. Let f: Q — C, F(z) = zf(z) € Si(Q). Then

L00(2) DYFO)) <2ap<z> D2F<o><z2>>2|
0z 3lp3(z) 0z 2lp%(z)

< (1—a)max{l, |3—2a—4X\(1—-0a)|}, A€ C, z€ Q\ {0}.

If Q= B", then

L DO A( 1 DQf(O)(ZQ)_>2

R
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(22) < (1 —a)max{l, [3—2a—4X1—-a)|}, A€ C, ze€ B"\ {0}.

These estimates are sharp.
FEspecially, when n =1, Q = U, (22) reduces to the following

‘F(?;(o) L (F;(!o)>2

<(1—a)max{l, 3—2a—4\1—-0a)|}, N€C, z€ T,

which is equivalent to Theorem B.

Corollary 3. Let f: Q — C, F(z)=zf(z) € SS55(2). Then

0z 31p3(2) 0z 21p%(2)
< Bmax{l, |3 —4X5}, A€ C, z€ Q\{0}.

,0p(2) DFO)() <Qap<z> DQF<0><22>>2

If Q= B", then
1 D3f(0)(z3) _ 1 D?f(0)(2?%) _ ’
EEEE <||z|3 2l )
(23) < fmax{l, |3—4\|8}, A€ C, = € B"\ {0}.

These estimates are sharp.
Especially, when n =1, Q =U, (23) reduces to the following

) "(0)\ 2
‘FS (0) —)\<F (0)) < Bmax{l, [3—4A|B}, A€C, z €T,

3! 2

which is equivalent to Theorem C.

According to Theorem 1, we naturally propose the following open prob-
lem.

Open Problem. Let g : U — C satisfy the conditions of Definition 3, F €

H(Q) be a normalized locally biholomorphic mapping. If Ju'(2)F(z) € M,,
then

,0p(2) DPF(O)(=%) | (28p(z> DQF(O)(22)>2
0z 3lp3(z) 0z 2lp(2)
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14"(0)
24'(0)

'(0
< Wmax{l,

L —2)\)g’(0)’}, NeC, e {o).

The above estimation is sharp.
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