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A global pinching theorem for complete translating
solitons of mean curvature flow∗

Huijuan Wang, Hongwei Xu and Entao Zhao

Abstract: In the present paper, we prove that for a smooth com-
plete translating soliton Mn(n ≥ 3) with the mean curvature vec-
tor H satisfying H = V N for a unit constant vector V in the
Euclidean space R

n+p, if the trace-free second fundamental form
Å satisfies (

∫
M

|Å|ndμ)1/n < K(n),
∫
M

|Å|ne〈V,X〉dμ < ∞, where
K(n) is an explicit positive constant depending only on n, then M
is a linear subspace.
Keywords: Rigidity theorem, translating soliton, integral curva-
ture pinching.

1. Introduction

Let X0 : M → R
n+p be an n-dimensional smooth submanifold isometri-

cally immersed in an (n + p)-dimensional Euclidean space R
n+p. The mean

curvature flow with initial value X0 is a smooth family of immersions X :
M × [0, T ) → R

n+p satisfying

(1)

⎧⎪⎨
⎪⎩

d

dt
X(x, t) = H(x, t),

X(x, 0) = X0(x),

for x ∈ M and t ∈ [0, T ). Here H(x, t) is the mean curvature vector of
Mt = Xt(M) at X(x, t) in R

n+p where Xt(·) = X(·, t).
In the theory of the mean curvature flow, one of the most important fields

is the singularity analysis. According to the blow-up rate of the second funda-
mental form A, singularities of the mean curvature flow are divided into two
types called Type-I singularity and Type-II singularity. It is well-known that
self-shrinkers describe the Type-I singularity models of the mean curvature
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flow, see [8, 19]. For the study of self-shrinkers and their generalizations, see
[3, 4, 5, 6, 12, 16, 17, 22].

A very important example of Type-II singularities is the translating soli-
ton. A submanifold X : Mn → R

n+p is said to be a translating soliton
(translator for short) if there exists a constant vector V with unit length in
R

n+p such that

(2) H = V N ,

where ( )N denotes the normal part of a vector field on R
n+p. Let V T be the

tangent component of vector V , then we have

(3) H + V T = V.

Translating solitons often occur as Type-II singularities of a mean cur-
vature flow after a rescaling. For instance, Huisken and Sinestrari [7] proved
that if the initial hypersurface is mean convex, then the limit hypersurface at
Type-II singularity is a convex translating soliton. On the other hand, every
translating soliton gives a translating solution Mt defined by Mt = M + tV
for t ∈ R to the mean curvature flow. That is, it does not change the shape
during the evolution, it’s just moving by translation in the direction of V .
Similar to self-shrinkers, translating solitons can be regarded as a minimal
submanifolds in (Rn+p, ḡ), where ḡ is a conformally flat Riemannian metric
due to [9].

There are few examples of translating solitons even in the hypersurface
case. The well-known grim reaper Γ is a one-dimensional translating soliton
in R

2 defined by
y = − log cosx, x ∈

(
− π

2 ,
π

2
)
.

A trivial generalization is the euclidean product Γ × R
n−1 in R

n+1, which is
called the grim reaper cylinder.

Since the geometry of the solution near the Type-II singularity can-
not be controlled well, the study of Type-II singularities is more compli-
cated than Type-I. There are some results about the translating solitons,
see [1, 10, 14, 15, 18]. For instance, Wang [18] studied the classification of
Type-II singularities and proved that for n = 2 any entire convex translator
must be rotationally symmetric in an appropriate coordinate system. Martin,
Savas-Halilaj and Smoczyk [14] obtained classification results and topological
obstructions for the existence of translating solitons. Xin [20] showed that a
smooth complete translating soliton in R

n+p satisfying
(∫

M |A|ne〈V,X〉
)
< ∞
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and (
∫
M |A|ndμ)1/n < C for certain positive constant C is a linear space. Here

A denotes the second fundamental form of a submanifold.
Define the trace-free second fundamental form Å of a submanifold by

Å = A − 1
ng ⊗ H. In the present paper, we will prove a rigidity theorem

for translating solitons under integral curvature pinching conditions of the
trace-free second fundamental form.

Theorem 1. Let Mn(n ≥ 3) be a smooth complete translating soliton in
the Euclidean space R

n+p. If the trace-free second fundamental form Å of M
satisfies ( ∫

M
|Å|ndμ

)1/n
< K(n) and

∫
M

|Å|ne〈V,X〉 < ∞,

where K(n) is an explicit positive constant depending only on n, then M is a
linear subspace.

It is obvious that the curvature condition in Theorem 1 is weaker than
that in the rigidity theorem of Xin [20].

2. Preliminaries

Let X : Mn → R
n+p be an n-dimensional immersed submanifold. Denote by

g the induced metric on M . We shall make use of the following convention
on the range of indices:

1 ≤ A,B,C, . . . ≤ n + p, 1 ≤ i, j, k, . . . ≤ n, n + 1 ≤ α, β, γ, . . . ≤ n + p.

Choose a local field of orthonormal frame field {eA} in R
n+p such that, re-

stricted to M , the ei’s are tangent to Mn. Let {ωA} and {ωAB} be the dual
frame field and the connection 1-forms of Rn+p, respectively. Restricting these
forms to M , we have

ωαi =
∑
j

hα
ijωj , hα

ij = hα
ji,

A =
∑
α,i,j

hα
ijωi ⊗ ωj ⊗ eα =

∑
ij

hijωi ⊗ ωj ,

H =
∑
α,i

hα
iieα =

∑
α

Hαeα,

Rijkl =
∑
α

(hα
ikh

α
jl − hα

ilh
α
jk),

Rαβkl =
∑
i

(hα
ikh

β
il − hα

ilh
β
ik),
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where A,H,Rijkl, Rαβkl are the second fundamental form, the mean curvature
vector, the Riemannian curvature tensor, the normal curvature tensor of M ,
respectively. The trace-free second fundamental form is defined by Å = A −
1
ng ⊗ H. We have the relations |Å|2 = |A|2 − 1

n |H|2 and |∇Å|2 = |∇A|2 −
1
n∇|H|2.

Denoting the first and second covariant derivatives of hα
ij by hα

ijk and hα
ijkl

respectively, we have∑
k

hα
ijkωk = dhα

ij −
∑
k

hα
ikωkj −

∑
k

hα
kjωki −

∑
β

hβ
ijωβα,

∑
l

hα
ijklωl = dhα

ijk −
∑
l

hα
ijlωlk −

∑
l

hα
ilkωlj −

∑
l

hα
ljkωli −

∑
β

hβ
ijkωβα.

Then we have

hα
ijk = hα

ikj ,

hα
ijkl − hα

ijlk =
∑
m

hα
imRmjkl +

∑
m

hα
mjRmikl −

∑
β

hβ
ijRαβkl.

Hence

Δhα
ij =

∑
k

hα
ijkk

=
∑
k

hα
kkij +

∑
k

(∑
m

hα
kmRmijk +

∑
m

hα
miRmkjk −

∑
β

hβ
kiRαβjk

)
.

(4)

As in [20], we need a linear operator LII on M

LII = Δ + 〈V,∇(·)〉 = e−〈V,X〉div(e〈V,X〉∇(·)),

where Δ, div and ∇ denote the Laplacian, divergence and the gradient opera-
tor on M , respectively. It can be shown that LII is self-adjoint respect to the
measure e〈V,X〉dμ, where dμ is the volume form of M . We denote � = e〈V,X〉

and dμ might be omitted in the integrations for notational simplicity.
In order to prove our theorem, we need the following Simons type iden-

tities. The first equality has been proved by Xin [20]. For the convention of
readers, we also include this part of the proof here.
Lemma 1. On a translating soliton Mn in R

n+p, we have

LII |A|2 = 2|∇A|2 − 2
∑
α,β

(∑
i,j

hα
ijh

β
ij

)2
− 2

∑
i,j,α,β

(∑
p

(hα
iph

β
pj − hα

jph
β
pi)

)2
,

(5)
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(6) LII |H|2 = 2|∇H|2 − 2
∑
i,j

(∑
α

Hαhα
ij

)2
,

where Hα =
∑

i h
α
ii.

Proof. From the translating soliton equation H = V N , we derive

∇iH
α = −

∑
k

〈V, ek〉hα
ik,

and

(7) ∇j∇iH
α = −〈H, hjk〉hα

ik −
∑
k

〈V, ek〉hα
ikj .

Combining (4) and (7), we obtain that
∑
i,j,α

hα
ijΔhα

ij =
∑
i,j,α

hα
ij∇j∇iH

α

+
∑

i,j,k,α

hα
ij

(∑
m

hα
kmRmijk +

∑
m

hα
miRmkjk −

∑
β

hβ
kiRαβjk

)

= −
∑
k

〈V, ek〉hα
ikjh

α
ij −

∑
α,β

(∑
i,j

hα
ijh

β
ij

)2

−
∑

i,j,α,β

(∑
p

(hα
iph

β
pj − hα

jph
β
pi)

)2
.

Therefore

LII |A|2 =Δ|A|2 + 〈V,∇|A|2〉
=2

∑
i,j,α

hα
ijΔhα

ij + 2|∇A|2 + 2
∑
k

〈V, ek〉hα
ijh

α
ijk

=2|∇A|2 − 2
∑
α,β

(∑
i,j

hα
ijh

β
ij

)2
− 2

∑
i,j,α,β

(∑
p

(hα
iph

β
pj − hα

jph
β
pi)

)2
.

On the other hand, from (7) one has

Δ|H|2 = 2|∇H|2 − 2
∑
i,j

(
∑
α

Hαhα
ij)2 − 2

∑
α,i

HαHα
i 〈V, ei〉,

where Hα =
∑

i h
α
ii.
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Then it follows that

LII |H|2 = Δ|H|2 + 〈V,∇|H|2〉 = 2|∇H|2 − 2
∑
i,j

(
∑
α

Hαhα
ij)2.

The following Sobolev inequality for submanifolds in the Euclidean space
is very useful in the proof of our theorem.

Lemma 2 ([21]). Let Mn(n ≥ 3) be a complete submanifold in the Euclidean
space R

n+p. Let f be a nonnegative C1 function with compact support. Then
for all s ∈ R

+, we have

‖f‖2
2n
n−2

≤ D2(n)
[4(n− 1)2(1 + s)

(n− 2)2 ‖∇f‖2
2 +

(
1 + 1

s

) 1
n2 ‖|H|f‖2

2

]
,

where D(n) = 2n(1 + n)n+1
n (n − 1)−1σ

− 1
n

n , and σn denotes the volume of the
unit ball in R

n.

3. Proof of Theorem 1

In this section, we will give several lemmas first to prove Theorem 1.

Lemma 3. On a translating soliton Mn in R
n+p, we have

(8) LII |Å|2 ≥2|∇|Å||2 − ι|Å|4 − 2
n
|H|2|Å|2,

where

ι =
{

2, if p = 1,
4, if p ≥ 2.

Proof. Combining (5) and (6), we have

(9)

LII |Å|2 =LII |A|2 −
1
n
LII |H|2

=2|∇Å|2 + 2
n

∑
i,j

(∑
α

Hαhα
ij

)2
− 2

∑
α,β

(∑
i,j

hα
ijh

β
ij

)2

− 2
∑

i,j,α,β

(∑
p

(hα
iph

β
pj − hα

jph
β
pi)

)2
.
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When the codimension is one, it can be easily obtained that

LII |Å|2 ≥ 2|∇|Å||2 − 2|Å|4 − 2
n
|H|2|Å|2,

where we have used the inequality |∇Å|2 ≥ |∇|Å||2, which is an easy conse-
quence of the Schwartz inequality.

In the codimension p ≥ 2 case, we need the following estimates. At the
point where the mean curvature vector is zero, we have

(10)

2
n

∑
i,j

(∑
α

Hαhα
ij

)2
− 2

∑
α,β

(∑
i,j

hα
ijh

β
ij

)2

− 2
∑

i,j,α,β

(∑
p

(hα
iph

β
pj − hα

jph
β
pi)

)2

= − 2
∑
α,β

N(AαAβ − AβAα) − 2
∑
α,β

[tr(AαAβ)]2

≥− 3|A|4,

where Aα = (hα
ij)n×n and we have used Theorem 1 in [13] to get the inequality.

At the point where the mean curvature vector is nonzero, we choose
en+1 = H

|H| . The second fundamental form can be written as A =
∑

α h
αeα,

where hα, n + 1 ≤ α ≤ n + p, are symmetric 2-tensors.
By the choice of en+1, we see that trhn+1 = |H| and trhα = 0 for α ≥ n+2.

The trace-free second fundamental form may be rewritten as Å =
∑

α h̊
αeα,

where h̊n+1 = hn+1 − |H|
n Id and h̊α = hα for α ≥ n + 2. We set

AH = hn+1en+1, AI =
∑

α≥n+2
hαeα,

ÅH = h̊n+1en+1, ÅI =
∑

α≥n+2
h̊αeα.

Then we have

|AI |2 =
∑

α≥n+2
|hα|2 = |A|2 − |AH |2,

|ÅI |2 =
∑

α≥n+2
|̊hα|2 = |Å|2 − |ÅH |2.

Note that |ÅH |2 = |AH |2 − |H|2
n and |ÅI |2 = |AI |2. Since en+1 is chosen

globally, |AH |2, |ÅH |2 and |AI |2 are defined globally and independent of the
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choice of ei. Then we have

∑
α,β

(∑
i,j

hα
ijh

β
ij

)2
=|ÅH |4 + 2

n
|H|2|ÅH |2 + 1

n2 |H|4

+ 2
∑

α �=n+1

(∑
i,j

h̊n+1
ij h̊α

ij

)2
+

∑
α,β �=n+1

(∑
i,j

h̊α
ij h̊

β
ij

)2
,

(11)

∑
i,j,α,β

(∑
p

(hα
iph

β
pj − hα

jph
β
pi)

)2
=2

∑
α �=n+1

∑
i,j

(∑
p

(hn+1
ip h̊α

pj − hn+1
jp h̊α

pi)
)2

+
∑

α,β �=n+1

∑
i,j

(∑
p

(̊hα
ip̊h

β
pj − h̊α

jp̊h
β
pi)

)2
,

(12)

and

(13)
∑
i,j

(∑
α

Hαhα
ij

)2
= |H|2|ÅH |2 + 1

n
|H|4.

From (11), (12) and (13), we obtain the following

2
∑
α,β

(∑
i,j

hα
ijh

β
ij

)2
+ 2

∑
i,j,α,β

(∑
p

(hα
iph

β
pj − hα

jph
β
pi)

)2
− 2

n

∑
i,j

(∑
α

Hαhα
ij

)2

=2|ÅH |4 + 2
n
|H|2|ÅH |2

+ 4
∑

α �=n+1

(∑
i,j

h̊n+1
ij h̊α

ij

)2
+ 4

∑
α �=n+1

∑
i,j

(∑
p

(hn+1
ip h̊α

pj − hn+1
jp h̊α

pi)
)2

+ 2
∑

α,β �=n+1

(∑
i,j

h̊α
ij h̊

β
ij

)2
+ 2

∑
α,β �=n+1

∑
i,j

(∑
p

(̊hα
ip̊h

β
pj − h̊α

jp̊h
β
pi)

)2
.

(14)

Choose {ei} such that hn+1
ij = λiδij . Then h̊n+1

ij = λ̊iδij , where λ̊i =
λi − |H|

n . We have the following estimates.

4
∑

α �=n+1

(∑
i,j

h̊n+1
ij h̊α

ij

)2

=4
∑

α �=n+1

(∑
i

λ̊i̊h
α
ii

)2

≤4
(∑

i

λ̊2
i

)( ∑
α �=n+1

∑
i

(̊hα
ii)2

)
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=4|ÅH |2
∑

α �=n+1

∑
i

(̊hα
ii)2,

where we have used the Cauchy-Schwarz inequality. We also have

4
∑

α �=n+1

∑
i,j

(∑
p

(hn+1
ip h̊α

pj − hn+1
jp h̊α

pi)
)2

=4
∑

α �=n+1

∑
i�=j

(λi − λj)2(̊hα
ij)2

=4
∑

α �=n+1

∑
i�=j

(̊λi − λ̊j)2(̊hα
ij)2

≤8
∑

α �=n+1

∑
i�=j

(̊λ2
i + λ̊2

j )(̊hα
ij)2

≤8|ÅH |2
∑

α �=n+1

∑
i�=j

(̊hα
ij)2

=8|ÅH |2
(
|ÅI |2 −

∑
α �=n+1

∑
i

(̊hα
ii)2

)
.

By using Theorem 1 in [13], we obtain that

2
∑

α,β �=n+1

(∑
i,j

h̊α
ij h̊

β
ij

)2
+ 2

∑
α,β �=n+1

∑
i,j

(∑
p

(̊hα
ip̊h

β
pj − h̊α

jp̊h
β
pi)

)2
≤ 3|ÅI |4.

Hence, we have the following estimate

(15)

2
n

∑
ij

(∑
α

Hαhα
ij

)2
− 2

∑
α,β

(∑
i,j

hα
ijh

β
ij

)2

− 2
∑

i,j,α,β

(∑
p

(hα
iph

β
pj − hα

jph
β
pi)

)2

≥− 4|Å|4 − 2
n
|H|2|Å|2.

Combining (10) and (15), we have

(16)

2
n

∑
ij

(∑
α

Hαhα
ij

)2
− 2

∑
α,β

(∑
i,j

hα
ijh

β
ij

)2

− 2
∑

i,j,α,β

(∑
p

(hα
iph

β
pj − hα

jph
β
pi)

)2

≥− 4|Å|4 − 2
n
|H|2|Å|2.



612 Huijuan Wang et al.

Substituting (16) into (9), we obtain that

LII |Å|2 ≥ 2|∇|Å||2 − 4|Å|4 − 2
n
|H|2|Å|2.

Thus, we complete the proof.

Lemma 4. For any smooth function η with compact support on M and any
0 < ε < n− 1, we have

(17)

∫
M

|∇|Å||2|Å|n−2η2� ≤ 1
n− 1 − ε

( ι
2

∫
M

|Å|n+2η2�

+ 1
n

∫
M

|Å|n|H|2η2� + 1
ε

∫
M

|Å|n|∇η|2�
)
.

Proof. Multiplying |Å|n−2η2 on both sides of the (8) and integrating by parts
with respect to the measure �dμ on M yield

(18)
0 ≥2

∫
M

|∇|Å||2|Å|n−2η2�− ι

∫
M

|Å|n+2η2�− 2
n

∫
M

|Å|n|H|2η2�

−
∫
M

|Å|n−2η2LII |Å|2�.

Since η has compact support on M , by the Stokes theorem, we obtain that

(19)

−
∫
M

|Å|n−2η2LII |Å|2�

= −
∫
M

|Å|n−2η2div(� · ∇|Å|2)

=2
∫
M

�|Å|∇|Å| · ∇(|Å|n−2η2)

=2(n− 2)
∫
M

|∇|Å||2|Å|n−2η2� + 4
∫
M

(∇|Å| · ∇η)|Å|n−1η�.

Combining (18) and (19), we get

0 ≥2(n− 1)
∫
M

|∇|Å||2|Å|n−2η2�− ι

∫
M

|Å|n+2η2�− 2
n

∫
M

|Å|n|H|2η2�

+ 4
∫
M

(∇|Å| · ∇η)|Å|n−1η�.
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By the Cauchy inequality, for any 0 < ε < n− 1, we obtain that

ι

∫
M

|Å|n+2η2� + 2
n

∫
M

|Å|n|H|2η2� + 2
ε

∫
M

|Å|n|∇η|2�

≥ 2(n− 1 − ε)
∫
M

|∇|Å||2|Å|n−2η2�.

Lemma 5. Setting f = |Å|n/2�1/2η, we have

(20)
∫
M

|∇f |2 =
∫
M

|∇(|Å|n/2η)|2�− 1
2

∫
M

|Å|nη2� + 1
4

∫
M

|Å|n|V T |2η2�.

where η is a smooth function with compact support on M and V T is the
tangent component of vector V .

Proof. Integrating by parts, one obtain
∫
M

|∇f |2 =
∫
M

|∇(|Å|n/2η)|2� + 1
2

∫
M

∇(|Å|nη2)∇� +
∫
M

|Å|nη2|∇�
1
2 |2

=
∫
M

|∇(|Å|n/2η)|2�− 1
2

∫
M

|Å|nη2Δ� +
∫
M

|Å|nη2|∇�
1
2 |2.

By direct computations, we have

∇� = ∇e〈V,X〉 = �V T ,

and

∇�
1
2 = 1

2�
− 1

2∇� = 1
2�

1
2V T .

By the translating soliton equation H = V N , we get

Δ� =
∑
i

∇i�〈V, ei〉 +
∑
i

�〈V,∇iei〉 = �(|V T |2 + |V N |2) = �.

Hence, it follows that
∫
M

|∇f |2 =
∫
M

|∇(|Å|n/2η)|2�− 1
2

∫
M

|Å|nη2� + 1
4

∫
M

|Å|n|V T |2η2�.

Now we will give the proof of Theorem 1.
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Proof. Combining the Sobolev inequality in Lemma 2 and (20) in Lemma 5,
we have

( ∫
M

|f |
2n
n−2

)n−2
n

≤D2(n) ·
{4(n− 1)2(1 + s)

(n− 2)2
∫
M

|∇f |2 +
(
1 + 1

s

)
· 1
n2

∫
M

|H|2f2
}

=D2(n) ·
{4(n− 1)2(1 + s)

(n− 2)2
( ∫

M
|∇(|Å|n/2η)|2�− 1

2

∫
M

|Å|nη2�

+ 1
4

∫
M

|Å|n|V T |2η2�
)

+
(
1 + 1

s

)
· 1
n2

∫
M

|Å|n|H|2η2�
}
.

Note that
|V T |2 + |V N |2 = |V T |2 + |H|2 = 1.

We deduce that
( ∫

M
|f |

2n
n−2

)n−2
n

≤D2(n) ·
{4(n− 1)2(1 + s)

(n− 2)2
( ∫

M
|∇(|Å|n/2η)|2�− 1

4

∫
M

|Å|n|V T |2η2�

− 1
2

∫
M

|Å|n|H|2η2�
)

+
(
1 + 1

s

)
· 1
n2

∫
M

|Å|n|H|2η2�
}

=D2(n) ·
{4(n− 1)2(1 + s)

(n− 2)2
( ∫

M

n2

4 |∇|Å||2|Å|n−2η2�

+
∫
M

n|Å|n−1η∇|Å| · ∇η� +
∫
M

|Å|n|∇η|2�− 1
4

∫
M

|Å|n|V T |2η2�

− 1
2

∫
M

|Å|n|H|2η2�
)

+
(
1 + 1

s

)
· 1
n2

∫
M

|Å|n|H|2η2�
}
.

By the Cauchy inequality, we have for any δ > 0
(21) ( ∫

M
|f |

2n
n−2

)n−2
n

≤4D2(n)(n− 1)2(1 + s)
(n− 2)2

{
(1 + δ)n

2

4

∫
M

|∇|Å||2|Å|n−2η2�

+
(
1 + 1

δ

) ∫
M

|Å|n|∇η|2�− 1
4

∫
M

|Å|n|V T |2η2�− 1
2

∫
M

|Å|n|H|2η2�
}

+ D2(n)
(
1 + 1

s

)
· 1
n2

∫
M

|Å|n|H|2η2�.
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Substituting (17) into (21), we get
( ∫

M
|f |

2n
n−2

)n−2
n

≤4D2(n)(n− 1)2(1 + s)
(n− 2)2

{ n2(1 + δ)
4(n− 1 − ε)

( ι
2

∫
M

|Å|n+2η2�

+ 1
n

∫
M

|Å|n|H|2η2� + 1
ε

∫
M

|Å|n|∇η|2�
)

+
(
1 + 1

δ

) ∫
M

|Å|n|∇η|2�− 1
2

∫
M

|Å|n|H|2η2�
}

+ D2(n)
(
1 + 1

s

)
· 1
n2

∫
M

|Å|n|H|2η2�.

Put

δ = δ(s, ε) = [2sn2(n− 1)2 − (n− 2)2](n− 1 − ε)
sn3(n− 1)2 − 1 > 0,

for some positive constant s satisfies

s >
(n− 2)2(n− 1 − ε)

n2(n− 1)2(n− 2 − 2ε) ∈ R
+

and some ε ∈ (0, n−2
2 ) to be defined later. Then we conclude that

(22)

κ−1
( ∫

M
|f |

2n
n−2

)n−2
n

≤n2(1 + s)(1 + δ)
4(n− 1 − ε)

( ι
2

∫
M

|Å|n+2η2� + 1
ε

∫
M

|Å|n|∇η|2�
)

+ (1 + s)
(
1 + 1

δ

) ∫
M

|Å|n|∇η|2�

=(1 + s)ι[2sn2(n− 1)2 − (n− 2)2]
8sn(n− 1)2

∫
M

|Å|n+2η2�

+ C(s, ε, n)
∫
M

|Å|n|∇η|2�,

where C(s, ε, n) is an explicit positive constant depending on s, ε and n, and

κ = 4D2(n)(n− 1)2

(n− 2)2 .

By the Hölder inequality, we have∫
M

|Å|n+2η2� ≤
( ∫

M
|Å|2·n2

) 2
n ·

( ∫
M

(|Å|nη2�)
n

n−2
)n−2

n
.
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Hence

(23)

κ−1
( ∫

M
|f |

2n
n−2

)n−2
n

≤(1 + s)ι[2sn2(n− 1)2 − (n− 2)2]
8sn(n− 1)2

( ∫
M

|Å|n
) 2

n ·
( ∫

M
|f |

2n
n−2

)n−2
n

+ C(s, ε, n)
∫
M

|Å|n|∇η|2�.

Put

K(n, s) =
√

8sn(n− 1)2
(1 + s)ι[2sn2(n− 1)2 − (n− 2)2]κ.

For simplicity, we choose

s = s(ε) = (n− 2)2

n2(n− 1)(n− 2 − 2ε)

such that

K(n, ε) = K(n, s(ε)) =
√

2n(n− 2)2
ιD2(n)(n + 2ε)[(n− 2)2/(n− 2 − 2ε) + n2(n− 1)] .

Set

K(n) = sup
ε∈(0,n−2

2 )
K(n, ε) =

√
2(n− 2)2

ιD2(n)[n− 2 + n2(n− 1)] ,

where

ι =
{

2, if p = 1,
4, if p ≥ 2.

Since we have the assumption
( ∫

M
|Å|ndμ

)1/n
< K(n),

there exists a positive constant Ǩ such that

(24)
( ∫

M
|Å|ndμ

)1/n
< Ǩ < K(n).

Thus, there exists ε = ε0 > 0 such that

Ǩ < K(n, ε0) < K(n).
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That is to say

(25) (1 + s)ι[2sn2(n− 1)2 − (n− 2)2]
8sn(n− 1)2 = κ−1 ·K(n, ε0)−2,

where

s = s(ε0) = (n− 2)2

n2(n− 1)(n− 2 − 2ε0)
.

Combining (23), (24) and (25), it implies that there exists 0 < ε < 1 such
that

κ−1
( ∫

M
|f |

2n
n−2

)n−2
n

≤κ−1 ·K(n, ε0)−2 · Ǩ2
( ∫

M
|f |

2n
n−2

)n−2
n + C̃(n, ε0)

∫
M

|Å|n|∇η|2�

≤1 − ε

κ

( ∫
M

|f |
2n
n−2

)n−2
n + C̃(n, ε0)

∫
M

|Å|n|∇η|2�,

namely,

(26) ε

κ

( ∫
M

|f |
2n
n−2

)n−2
n ≤ C̃(n, ε0)

∫
M

|Å|n|∇η|2�.

Let η(X) = ηr(X) = φ( |X|
r ) for any r > 0, where φ is a nonnegative function

on [0,+∞) satisfying

φ(x) =

⎧⎨
⎩

1, if x ∈ [0, 1),

0, if x ∈ [2,+∞),
(27)

and |φ′| ≤ C for some absolute constant.
Since

∫
M |Å|n� and the constant C̃(n, ε0) are bounded, the right hand

side of (26) approaches to zero as r → +∞, which implies |Å| ≡ 0. Therefore,
M is a linear subspace. This completes the proof of Theorem 1.
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