Pure and Applied Mathematics Quarterly
Volume 12, Number 4, 603-619, 2016

A global pinching theorem for complete translating
solitons of mean curvature flow”

HunsuaNn WANG, HONGWEI XU AND ENTAO ZHAO

Abstract: In the present paper, we prove that for a smooth com-
plete translating soliton M™(n > 3) with the mean curvature vec-
tor H satisfying H = V¥ for a unit constant vector V in the
Euclidean space R™"?, if the trace-free second fundamental form
A satisfies (Jus |A|"dp)Y/™ < K(n), S |Aj"eV-X)dp < oo, where
K (n) is an explicit positive constant depending only on n, then M
is a linear subspace.

Keywords: Rigidity theorem, translating soliton, integral curva-
ture pinching.

1. Introduction

Let Xo : M — R"™P be an n-dimensional smooth submanifold isometri-
cally immersed in an (n + p)-dimensional Euclidean space R""P. The mean
curvature flow with initial value Xy is a smooth family of immersions X :
M x [0,T) — R™P satisfying

d
(1) dt
X(l‘, 0) = XO(SU),

X(x,t) = H(z,t),

for + € M and t € [0,7). Here H(x,t) is the mean curvature vector of
My = Xy (M) at X(z,t) in R™™ where X;(-) = X(-,1).

In the theory of the mean curvature flow, one of the most important fields
is the singularity analysis. According to the blow-up rate of the second funda-
mental form A, singularities of the mean curvature flow are divided into two
types called Type-I singularity and Type-II singularity. It is well-known that
self-shrinkers describe the Type-I singularity models of the mean curvature
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flow, see [8, 19]. For the study of self-shrinkers and their generalizations, see
3,4, 5,6, 12, 16, 17, 22].

A very important example of Type-II singularities is the translating soli-
ton. A submanifold X : M™ — R"P is said to be a translating soliton
(translator for short) if there exists a constant vector V' with unit length in
R™"P such that

(2) H=VV,

where () denotes the normal part of a vector field on R"*?. Let VT be the
tangent component of vector V', then we have

(3) H+VT=V.

Translating solitons often occur as Type-II singularities of a mean cur-
vature flow after a rescaling. For instance, Huisken and Sinestrari [7] proved
that if the initial hypersurface is mean convex, then the limit hypersurface at
Type-II singularity is a convex translating soliton. On the other hand, every
translating soliton gives a translating solution M, defined by My = M + tV
for t € R to the mean curvature flow. That is, it does not change the shape
during the evolution, it’s just moving by translation in the direction of V.
Similar to self-shrinkers, translating solitons can be regarded as a minimal
submanifolds in (R"*? ), where g is a conformally flat Riemannian metric
due to [9].

There are few examples of translating solitons even in the hypersurface
case. The well-known grim reaper I' is a one-dimensional translating soliton
in R? defined by

T
y=—logcosz, =xé€ (— > 5)
A trivial generalization is the euclidean product I' x R*~! in R™*!  which is
called the grim reaper cylinder.

Since the geometry of the solution near the Type-II singularity can-
not be controlled well, the study of Type-II singularities is more compli-
cated than Type-I. There are some results about the translating solitons,
see [1, 10, 14, 15, 18]. For instance, Wang [18] studied the classification of
Type-II singularities and proved that for n = 2 any entire convex translator
must be rotationally symmetric in an appropriate coordinate system. Martin,
Savas-Halilaj and Smoczyk [14] obtained classification results and topological
obstructions for the existence of translating solitons. Xin [20] showed that a

smooth complete translating soliton in R" P satisfying ( Jar [A VX >) < 00
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and ([, |A|”d,u)1/n < C for certain positive constant C'is a linear space. Here
A denotes the second fundamental form of a submanifold.

Define the trace-free second fundamental form A of a submanifold by
A=A- %g ® H. In the present paper, we will prove a rigidity theorem
for translating solitons under integral curvature pinching conditions of the
trace-free second fundamental form.

Theorem 1. Let M"(n > 3) be a smooth complete translating soliton in
the Euclidean space R"P. If the trace-free second fundamental form A of M
satisfies

o 1/n o
(/ |A|”d,u) < K(n) and / |A|"eVX) < oo,
M M
where K(n) is an explicit positive constant depending only on n, then M is a
linear subspace.

It is obvious that the curvature condition in Theorem 1 is weaker than
that in the rigidity theorem of Xin [20].

2. Preliminaries

Let X : M™ — R™ be an n-dimensional immersed submanifold. Denote by
g the induced metric on M. We shall make use of the following convention
on the range of indices:

1<ABC,..<n+p, 1<ijk...<n, n+1<apb,7,...<n+p.

Choose a local field of orthonormal frame field {e4} in R™*? such that, re-
stricted to M, the e;’s are tangent to M™. Let {wa} and {wap} be the dual
frame field and the connection 1-forms of R™*?, respectively. Restricting these
forms to M, we have

— E o a
J

a7Z7]

1]
— o — «
H=> hiea=> H%,,

ol e}

Riji = Y _(h§h$ — h§hS,),

«

Rapra = Y _(hShly — hghiy),

i
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where A, H, Rjr1, Rogr are the second fundamental form, the mean curvature
vector, the Riemannian curvature tensor, the normal curvature tensor of M,
respectively. The trace-free second fundamental form is defined by A=A-
19 ® H. We have the relations |A|? = |A]? — L|H|? and |[VA]? = |[VAP? —
~V|H|.

Denoting the first and second covariant derivatives of hf; by hf}, and by,
respectively, we have

D Wijpen = dhiy = 3 Wi = D hijeoni = 3 hiwsa,
k k k B

D e = dhfy = hwn — Y higwy — Y Mg — ) hfjkwﬂa'
] 1 1 l B
Then we have

a _ pa
igk — "Yikjo

ik — Nijie = > R R+ > iy Rkt — > hija,BkL
m m B

Hence
Ahgy = Wi,
k

(4)
= Z Py + Z (Z e Bomigr + Z i Bomkjie — Z hfiRaﬁjk)
k k m m B

As in [20], we need a linear operator £;; on M
Lir=A+(V,V() = e Vdiv(eV0v(-),

where A, div and V denote the Laplacian, divergence and the gradient opera-
tor on M, respectively. It can be shown that L5 is self-adjoint respect to the
measure eV"X)dy, where dy is the volume form of M. We denote o = e{V"¥)
and dp might be omitted in the integrations for notational simplicity.

In order to prove our theorem, we need the following Simons type iden-
tities. The first equality has been proved by Xin [20]. For the convention of
readers, we also include this part of the proof here.

Lemma 1. On a translating soliton M™ in R™""P we have

(5)
2 2
Lol AP =2VAP =237 (Sohghg) —2 32 (S (k= b))

a)/B l7] /L‘7j7a7ﬁ p
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2
(6) LolHP? = 2|VH? =23 (3 Hh)
ij o«
where H* =3, h§:.

Proof. From the translating soliton equation H = V'V, we derive

viHa = - Z<‘/a €k>hio;ca

k
and
(7) ViVill® = —(H, hy)hi, — Y (V. ex)hiy,.
k

Combining (4) and (7), we obtain that

> hGARS = hEV;VH®

9,7, 4,7,

+ >0 B (Y bt Rmige + > Mo Bk = 3 B Ragji)
1,5k, m B

== LWetish -3 (Zh%hi)
= > (X hghy; - h?phfi)) :
i,5,00,8 V4
Therefore
£H|A|2 :A\A|2 +(V, V|A|2>
_QZhO‘AhO‘ +2|VA]2+2Z (V. ex)hishijy,

7]5

—2|V A2 _22 (Zhghg) -2y (Z (heohl, —hj‘phﬁz)) .

i,5,0,8 P
On the other hand, from (7) one has

AlH? =2|VHP? —2> (> H*h)? =2 HH} V. e;),

a,i

where H* =", h:.
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Then it follows that

Li|HP? = AH? +(V,VIH]?) =2|VH]> - 2> (> H*h)>.
L

O

The following Sobolev inequality for submanifolds in the Euclidean space
is very useful in the proof of our theorem.

Lemma 2 ([21]). Let M"™(n > 3) be a complete submanifold in the Euclidean
space R"P. Let f be a nonnegative C* function with compact support. Then
for all s € R, we have

~12(1L+ )
(n—2)

4 1\ 1
1£2 < D*(n)] n IV 13+ (14 5) 5 I1H1F15],

n+1 1

where D(n) = 2"(1 +n) » (n—1)"to, ", and o, denotes the volume of the
unit ball in R™.

3. Proof of Theorem 1

In this section, we will give several lemmas first to prove Theorem 1.

Lemma 3. On a translating soliton M™ in R""P we have

o o o 2 o
(8) Li|A]? 22|V[A|P — | A[* - ;\HI2\A|27
where
27 Zf D= 1y
L =
4, if p=2.

Proof. Combining (5) and (6), we have

. 1
Lir|A? =L AP - E[,H|H]2

) :2\v212+%%:(Zajﬂahgj)g—zzj(%:h%h@)g

a’B

2
=2 3 (Yo (hghy; — hg,h))

i7j7a7ﬁ p
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When the codimension is one, it can be easily obtained that
712 i2 T4 222
Lo A" 2 2[VIA|" = 2|A]" = —[HF|A],
where we have used the inequality |VA|? > |V|A|[2, which is an easy conse-
quence of the Schwartz inequality.

In the codimension p > 2 case, we need the following estimates. At the
point where the mean curvature vector is zero, we have

2y (o meng) —22(2%)
1,) o a,f
—2 Y (gl — hghl)

(10) i,7,0,3 p
=—2) N(A®AP — AP A>) — 2 "[tr(A”A°)]?
a,f a3
> — 3|A|4a

where A% = (hg;)nxn and we have used Theorem 1 in [13] to get the inequality.
At the point where the mean curvature vector is nonzero, we choose
entl = 1 HI The second fundamental form can be written as A = > h%aq,
where h*,n 4+ 1 < a < n + p, are symmetric 2-tensors.
By the choice of e,,, 1, we see that trh" ™! = |H| and trh® = 0 for a > n+2.
The trace-free second fundamental form may be rewritten as A= Y a h"‘ea,
where i7t1 = prtt — Hliq and b = b for @ > n + 2. We set

AH = hn+1€n+1, A[ = Z ho‘ea,

a>n+2

AH = hn+16n+1, A[ = Z h"‘ea.

a>n+2

Then we have

AP =) |hePP = AP~ [Aul,
a>n+2

(A = 30 10 = AP — |An,
a>n+2

Note that [Ag|? = |Ax|?> — % and |A;|2 = |A7[2. Since e,y is chosen

globally, |Ax|2, |Ag|? and |Af]? are defined globally and independent of the
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choice of e;. Then we have

o 2 o 1
S (S ngh) =lAult + 2IHPIARP + gl

1y 7
+ 2 ( hn+1ha) ( ahﬁ)
aFtn+1  1,J afEntl iy

2 (Z(h%hi - h?phl/i ) =2 ( hnﬂhu h”“ha))

(12) e P a;énﬂ irj
DYDY (Z (i — b))
o,B#n+1 i,j
and
2 i 1
13) S (XS Hhg) = [HPI AP + |H|"
1, «

From (11), (12) and (13), we obtain the following

(14)
X (Srn) <2 X (S ) -2 ()
a ] 1,7,Q, 1,J a

. 2 o
=2 Au[* + ~|H[|An]?

4 (b))

a#n+1l  4,j a#n+1 4,j 4
2 Y (Shghl) w2 Y (gl i)
a,B#n+1  i,j a,B#n+1 1,5 p

Choose {e;} such that h"Jrl = Xid;;. Then loz%“ = S\idij, where \; =

Ai — U;” We have the followmg estimates.

Z (Zhn-i-lha)

a#tn+1 1,5

o o N2

=1 3 (Do Nhg)
a#n+1 7

g4(;i$)( > Y he)?)

a#tn+1 1
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=4lAul> > D (03
a#n+1 1
where we have used the Cauchy-Schwarz inequality. We also have

o o 2
43 S (S (hptthgy — ht i)

a#n+1 i,j p

=4 > (= M)P(hg)?

a#En+1 i#£j

=4 > > (= N)*(h)?
a#n+1 i#j

<8 > DA+ AN
a#En+1 i#£j

<8lAul> Y Y(he)?

aF#n+1 i#j
=8| Au(JA2 = Y Do(Re)?).
a#n+1 1

By using Theorem 1 in [13], we obtain that

o o 2 o o o o 2 5
2 (Zhgjhfj) +2 Y Z(Z(h%hgj—h?phi)) < 3|4,]".

a,B#En+1 i a,f#En+1 i) p

Hence, we have the following estimate
=y (> Hony) - 22/; (Zhijhfj)
iJ «a a, i,]
2
(15) =2 30 (X — h5yh))
i,7,,0 p
>~ 4|Al - 2| HPIAP
n
Combining (10) and (15), we have
Sy () - 225 (X ngn)
1] e} «, (2]
2
(16) =2 30 (X ihy = n5i)
1,7, p

o 2 o
> —AJA[* = Z[HP|AP.
n
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Substituting (16) into (9), we obtain that
Lul AP > 20911 - 441 - Z|HPLAP
Thus, we complete the proof. O

Lemma 4. For any smooth function n with compact support on M and any
0<e<n—1, we have

. . 1
A2An—22 < / An+22
[ 191AIRA oS (5 [ 1Ar+p,

(17) o
o [ ArHPRe+ 2 [ 1APITaPe)
€JMm

Proof. Multiplying |A|"~252 on both sides of the (8) and integrating by parts
with respect to the measure odp on M yield

c e - 2 .
022 [ VAP 2~ [ AP te = 2 [ AP
M M n.Jm

(18) o o
— [ APt LalARe
M

Since 1 has compact support on M, by the Stokes theorem, we obtain that

— [ JArrealAr,

M
~ [ Artpdivie - VAP
(19) v
=2 [ ol AIVIA|- V(A 2?)

=o(n—2) [ |VIAIPLAPro+4 [ (VA1 Vo)Al o
M M
Combining (18) and (19), we get

02200 —1) [ [VIAIPAP 2o~ [ AP ERe =2 [ JApiaEy

+4 [ (VA It
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By the Cauchy inequality, for any 0 < ¢ < n — 1, we obtain that

n A 2 A
AR 2 [ PP+ 2 [ LAITnPe

>2n—1-2) [ [VIAIPIAP e

Lemma 5. Setting f = |/i|”/291/27], we have

@) [ VP = [ v Re - [ 1ApiRe g [ 1AV R
M M

where 1 is a smooth function with compact support on M and VT is the
tangent component of vector V.

Proof. Integrating by parts, one obtain
[ ViR = [ wArtgRe+ 5 [ S0P+ [ ARV
= [ VUAPERe 5 [ ArRae+ [ ARV eE
By direct computations, we have
Vo= VetV X) = oV,

and
1 1 1

= _—p 2Vp=-p2VT,
20 2Vp 292

By the translating soliton equation H = V', we get

=

Vo

Ap = Z Vio(V, ;) + Z oV, Viey) = Q(’VT|2 + ’VN|2) = 0.

Hence, it follows that

[ vsP = [ 1vArERe- 3 [ 1Apipe+ [ APV

Now we will give the proof of Theorem 1.



614 Huijuan Wang et al.

Proof. Combining the Sobolev inequality in Lemma 2 and (20) in Lemma 5,

we have
([ )
§D2(n)-{4( (n HS / IVFI*+ 1+ /IHI f2
=Dz<n>'{4<”<n11§ = / (AR —*/ Ao
b g [IARVTRRR) + (145) - [ APy
Note that

VTP + VAP = VTP + |H? = 1.
We deduce that

([ 1n17)

<o) ([ w0drnpe - g [ 1AMV P

_% A" H ) + (1+ é) : %/M AP |H*r}

:D2(n) ' {4(71 (—nl_) §;2+ S) (/M %|V‘A’|2|A|n—2n2g

. . . 1 .
- / nlA VAL Vg + / APVl - / APV

— 5 [ 1ArHEy s [ JAR Ry

By the Cauchy inequality, we have for any 6 > 0
(21)

A= DU (1) [ VARAP e

1 L[
+(1+3) [IArSaPe - 7 [ VAPVIERe— 5 [ 1ARHERe)

D? 1—-—/A”H
+ D*(n) + - ngM!H *n*o
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Substituting (17) into (21), we get

([ )™

AD*(n)(n —1)*(1+s)y n*(1+0) (¢ [ i o
ST o2y {qn_1_@(2/|A’+"Q

1 o
= [ AP HP e+ /|A| Vinfe)
nJm

1
+(1+f / ArnPe -5 [ \AI"IHI2772@}

+ D) (14 0) oy [ AP

Put

[2sn2(n —1)2 — (n —2)%](n — 1 —¢)
sn3(n — 1)2

§=0(s,¢) = —1>0,

for some positive constant s satisfies

(n—2)2%(n—1-c¢)
R 122 C

and some € € (0, %52) to be defined later. Then we conclude that

on n—2
([ 1)
M

n?(1+ s)(1+9) n
LENCID ([ o s [ A1nwnl)

dn—1—¢)
e [ / IA\"!W|2@
(1 + s)e[2sn? (n—l w22,
B 8sn(n — 1)2 / A

+Cls.eom) [ APV,
M

where C'(s,e,n) is an explicit positive constant depending on s, e and n, and

4D%*(n)(n — 1)?
(n -2

K =

By the Holder inequality, we have

2 n—2

Jodree< ([ 1A% ( [ (Are) ”
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Hence

([ )

9 Lkl P2 f gy )
M M

8sn(n — 1)?
+Cls.eon) [ APVl
M

Put

B 8sn(n —1)?
K(n,s) = \/(1 S )Rsn(n— 12 — (n— 2r

For simplicity, we choose

_ (n —2)?
8—3(5) n2(n—1)(n—2_25)

such that

_ _ 2n(n — 2)?
K(n,e) = K(n,s(e)) = \/LDQ(n)(n F20)[(n—2)%/(n—2—2¢) + n2(n— 1)’
Set

n) = su n _ 2(’/1 — 2)2
K se(o,%) Kime) \/LD2(n)[n —24n2(n—1)

where

2, if p=1,
L=
4, if p>2

Since we have the assumption
o 1/n
([ 1dran) " < xm)
M
there exists a positive constant K such that
o 1/n .
(24) (/ Ardu) " < K < K(n).
M

Thus, there exists € = g9 > 0 such that

K < K(n,ey) < K(n).
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That is to say

(1+ s)e[2sn2(n — 1)? — (n — 2)?]

—rk VK -2
8sn(n —1)2 " (n,20)™",

(25)

where
(n—2)*
n?(n —1)(n — 2 —2e)’
Combining (23), (24) and (25), it implies that there exists 0 < e < 1 such

that
()

<kt Kneo) 2 K2 [ 1

s =s(eg) =

n—2
2n n
n—2

n—2

1 — € 2n n ~ e
([ 10#=) " +Cmeo) [ APIVaPe
M M

K

+Clnzo) [ APV
M

namely,

-2

(26) ([ )T < Clnzo) [ 1AV

Let n(X) = n.(X) = ¢( p:—') for any r > 0, where ¢ is a nonnegative function
on [0, +00) satisfying

1, if zel0,1),
(27) o(z) = {

0, if x€[2,+00),

and |¢'| < C' for some absolute constant.

Since [y, |A|"0 and the constant C(n, o) are bounded, the right hand
side of (26) approaches to zero as r — +00, which implies |A\ = (. Therefore,
M is a linear subspace. This completes the proof of Theorem 1. O
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