A global pinching theorem for complete translating solitons of mean curvature flow*

HUIJUAN WANG, HONGWEI XU AND ENTAO ZHAO

Abstract: In the present paper, we prove that for a smooth complete translating soliton $M^n (n \geq 3)$ with the mean curvature vector H satisfying $H = V^N$ for a unit constant vector V in the Euclidean space \mathbb{R}^{n+p} , if the trace-free second fundamental form \mathring{A} satisfies $(\int_M |\mathring{A}|^n \mathrm{d}\mu)^{1/n} < K(n)$, $\int_M |\mathring{A}|^n e^{\langle V,X\rangle} \mathrm{d}\mu < \infty$, where K(n) is an explicit positive constant depending only on n, then M is a linear subspace.

Keywords: Rigidity theorem, translating soliton, integral curvature pinching.

1. Introduction

Let $X_0: M \to \mathbb{R}^{n+p}$ be an n-dimensional smooth submanifold isometrically immersed in an (n+p)-dimensional Euclidean space \mathbb{R}^{n+p} . The mean curvature flow with initial value X_0 is a smooth family of immersions $X: M \times [0,T) \to \mathbb{R}^{n+p}$ satisfying

(1)
$$\begin{cases} \frac{d}{dt}X(x,t) = H(x,t), \\ X(x,0) = X_0(x), \end{cases}$$

for $x \in M$ and $t \in [0,T)$. Here H(x,t) is the mean curvature vector of $M_t = X_t(M)$ at X(x,t) in \mathbb{R}^{n+p} where $X_t(\cdot) = X(\cdot,t)$.

In the theory of the mean curvature flow, one of the most important fields is the singularity analysis. According to the blow-up rate of the second fundamental form A, singularities of the mean curvature flow are divided into two types called Type-I singularity and Type-II singularity. It is well-known that self-shrinkers describe the Type-I singularity models of the mean curvature

Received 30 January 2018.

²⁰¹⁰ Mathematics Subject Classification: 53C44, 53C42.

^{*}Research supported by the National Natural Science Foundation of China, Grant Nos. 11531012, 11371315, 11771394.

flow, see [8, 19]. For the study of self-shrinkers and their generalizations, see [3, 4, 5, 6, 12, 16, 17, 22].

A very important example of Type-II singularities is the translating soliton. A submanifold $X: M^n \to \mathbb{R}^{n+p}$ is said to be a translating soliton (translator for short) if there exists a constant vector V with unit length in \mathbb{R}^{n+p} such that

$$(2) H = V^N,$$

where ()^N denotes the normal part of a vector field on \mathbb{R}^{n+p} . Let V^T be the tangent component of vector V, then we have

$$(3) H + V^T = V.$$

Translating solitons often occur as Type-II singularities of a mean curvature flow after a rescaling. For instance, Huisken and Sinestrari [7] proved that if the initial hypersurface is mean convex, then the limit hypersurface at Type-II singularity is a convex translating soliton. On the other hand, every translating soliton gives a translating solution M_t defined by $M_t = M + tV$ for $t \in \mathbb{R}$ to the mean curvature flow. That is, it does not change the shape during the evolution, it's just moving by translation in the direction of V. Similar to self-shrinkers, translating solitons can be regarded as a minimal submanifolds in $(\mathbb{R}^{n+p}, \bar{g})$, where \bar{g} is a conformally flat Riemannian metric due to [9].

There are few examples of translating solitons even in the hypersurface case. The well-known grim reaper Γ is a one-dimensional translating soliton in \mathbb{R}^2 defined by

$$y = -\log \cos x, \quad x \in \left(-\frac{\pi}{2}, \frac{\pi}{2}\right).$$

A trivial generalization is the euclidean product $\Gamma \times \mathbb{R}^{n-1}$ in \mathbb{R}^{n+1} , which is called the grim reaper cylinder.

Since the geometry of the solution near the Type-II singularity cannot be controlled well, the study of Type-II singularities is more complicated than Type-I. There are some results about the translating solitons, see [1, 10, 14, 15, 18]. For instance, Wang [18] studied the classification of Type-II singularities and proved that for n=2 any entire convex translator must be rotationally symmetric in an appropriate coordinate system. Martin, Savas-Halilaj and Smoczyk [14] obtained classification results and topological obstructions for the existence of translating solitons. Xin [20] showed that a smooth complete translating soliton in \mathbb{R}^{n+p} satisfying $\left(\int_M |A|^n e^{\langle V,X\rangle}\right) < \infty$

and $(\int_M |A|^n d\mu)^{1/n} < C$ for certain positive constant C is a linear space. Here A denotes the second fundamental form of a submanifold.

Define the trace-free second fundamental form \mathring{A} of a submanifold by $\mathring{A} = A - \frac{1}{n}g \otimes H$. In the present paper, we will prove a rigidity theorem for translating solitons under integral curvature pinching conditions of the trace-free second fundamental form.

Theorem 1. Let $M^n(n \geq 3)$ be a smooth complete translating soliton in the Euclidean space \mathbb{R}^{n+p} . If the trace-free second fundamental form \mathring{A} of M satisfies

$$\left(\int_{M} |\mathring{A}|^{n} \mathrm{d}\mu\right)^{1/n} < K(n) \ \text{ and } \ \int_{M} |\mathring{A}|^{n} e^{\langle V, X \rangle} < \infty,$$

where K(n) is an explicit positive constant depending only on n, then M is a linear subspace.

It is obvious that the curvature condition in Theorem 1 is weaker than that in the rigidity theorem of Xin [20].

2. Preliminaries

Let $X: M^n \to \mathbb{R}^{n+p}$ be an *n*-dimensional immersed submanifold. Denote by g the induced metric on M. We shall make use of the following convention on the range of indices:

$$1 \leq A, B, C, \ldots \leq n+p, \quad 1 \leq i, j, k, \ldots \leq n, \quad n+1 \leq \alpha, \beta, \gamma, \ldots \leq n+p.$$

Choose a local field of orthonormal frame field $\{e_A\}$ in \mathbb{R}^{n+p} such that, restricted to M, the e_i 's are tangent to M^n . Let $\{\omega_A\}$ and $\{\omega_{AB}\}$ be the dual frame field and the connection 1-forms of \mathbb{R}^{n+p} , respectively. Restricting these forms to M, we have

$$\omega_{\alpha i} = \sum_{j} h_{ij}^{\alpha} \omega_{j}, \quad h_{ij}^{\alpha} = h_{ji}^{\alpha},$$

$$A = \sum_{\alpha,i,j} h_{ij}^{\alpha} \omega_{i} \otimes \omega_{j} \otimes e_{\alpha} = \sum_{ij} h_{ij} \omega_{i} \otimes \omega_{j},$$

$$H = \sum_{\alpha,i} h_{ii}^{\alpha} e_{\alpha} = \sum_{\alpha} H^{\alpha} e_{\alpha},$$

$$R_{ijkl} = \sum_{\alpha} (h_{ik}^{\alpha} h_{jl}^{\alpha} - h_{il}^{\alpha} h_{jk}^{\alpha}),$$

$$R_{\alpha\beta kl} = \sum_{i} (h_{ik}^{\alpha} h_{il}^{\beta} - h_{il}^{\alpha} h_{ik}^{\beta}),$$

where $A, H, R_{ijkl}, R_{\alpha\beta kl}$ are the second fundamental form, the mean curvature vector, the Riemannian curvature tensor, the normal curvature tensor of M, respectively. The trace-free second fundamental form is defined by $\mathring{A} = A - \frac{1}{n}g \otimes H$. We have the relations $|\mathring{A}|^2 = |A|^2 - \frac{1}{n}|H|^2$ and $|\nabla \mathring{A}|^2 = |\nabla A|^2 - \frac{1}{n}\nabla |H|^2$.

Denoting the first and second covariant derivatives of h_{ij}^{α} by h_{ijk}^{α} and h_{ijkl}^{α} respectively, we have

$$\sum_{k} h_{ijk}^{\alpha} \omega_{k} = dh_{ij}^{\alpha} - \sum_{k} h_{ik}^{\alpha} \omega_{kj} - \sum_{k} h_{kj}^{\alpha} \omega_{ki} - \sum_{\beta} h_{ij}^{\beta} \omega_{\beta\alpha},$$

$$\sum_{l} h_{ijkl}^{\alpha} \omega_{l} = dh_{ijk}^{\alpha} - \sum_{l} h_{ijl}^{\alpha} \omega_{lk} - \sum_{l} h_{ilk}^{\alpha} \omega_{lj} - \sum_{l} h_{ljk}^{\alpha} \omega_{li} - \sum_{\beta} h_{ijk}^{\beta} \omega_{\beta\alpha}.$$

Then we have

$$h_{ijk}^{\alpha} = h_{ikj}^{\alpha},$$

$$h_{ijkl}^{\alpha} - h_{ijlk}^{\alpha} = \sum_{m} h_{im}^{\alpha} R_{mjkl} + \sum_{m} h_{mj}^{\alpha} R_{mikl} - \sum_{\beta} h_{ij}^{\beta} R_{\alpha\beta kl}.$$

Hence

$$\Delta h_{ij}^{\alpha} = \sum_{k} h_{ijkk}^{\alpha}$$

$$= \sum_{k} h_{kkij}^{\alpha} + \sum_{k} \left(\sum_{m} h_{km}^{\alpha} R_{mijk} + \sum_{m} h_{mi}^{\alpha} R_{mkjk} - \sum_{\beta} h_{ki}^{\beta} R_{\alpha\beta jk} \right).$$
(4)

As in [20], we need a linear operator \mathcal{L}_{II} on M

$$\mathcal{L}_{II} = \Delta + \langle V, \nabla(\cdot) \rangle = e^{-\langle V, X \rangle} \operatorname{div}(e^{\langle V, X \rangle} \nabla(\cdot)),$$

where Δ , div and ∇ denote the Laplacian, divergence and the gradient operator on M, respectively. It can be shown that \mathcal{L}_{II} is self-adjoint respect to the measure $e^{\langle V,X\rangle}\mathrm{d}\mu$, where $\mathrm{d}\mu$ is the volume form of M. We denote $\varrho=e^{\langle V,X\rangle}$ and $\mathrm{d}\mu$ might be omitted in the integrations for notational simplicity.

In order to prove our theorem, we need the following Simons type identities. The first equality has been proved by Xin [20]. For the convention of readers, we also include this part of the proof here.

Lemma 1. On a translating soliton M^n in \mathbb{R}^{n+p} , we have

(5)
$$\mathcal{L}_{II}|A|^2 = 2|\nabla A|^2 - 2\sum_{\alpha\beta} \left(\sum_{i,j} h_{ij}^{\alpha} h_{ij}^{\beta}\right)^2 - 2\sum_{i,j,\alpha\beta} \left(\sum_{p} (h_{ip}^{\alpha} h_{pj}^{\beta} - h_{jp}^{\alpha} h_{pi}^{\beta})\right)^2,$$

(6)
$$\mathcal{L}_{II}|H|^2 = 2|\nabla H|^2 - 2\sum_{i,j} \left(\sum_{\alpha} H^{\alpha} h_{ij}^{\alpha}\right)^2,$$

where $H^{\alpha} = \sum_{i} h_{ii}^{\alpha}$.

Proof. From the translating soliton equation $H = V^N$, we derive

$$\nabla_i H^{\alpha} = -\sum_k \langle V, e_k \rangle h_{ik}^{\alpha},$$

and

(7)
$$\nabla_{j}\nabla_{i}H^{\alpha} = -\langle H, h_{jk}\rangle h_{ik}^{\alpha} - \sum_{k} \langle V, e_{k}\rangle h_{ikj}^{\alpha}.$$

Combining (4) and (7), we obtain that

$$\begin{split} \sum_{i,j,\alpha} h_{ij}^{\alpha} \Delta h_{ij}^{\alpha} &= \sum_{i,j,\alpha} h_{ij}^{\alpha} \nabla_{j} \nabla_{i} H^{\alpha} \\ &+ \sum_{i,j,k,\alpha} h_{ij}^{\alpha} \Big(\sum_{m} h_{km}^{\alpha} R_{mijk} + \sum_{m} h_{mi}^{\alpha} R_{mkjk} - \sum_{\beta} h_{ki}^{\beta} R_{\alpha\beta jk} \Big) \\ &= - \sum_{k} \langle V, e_{k} \rangle h_{ikj}^{\alpha} h_{ij}^{\alpha} - \sum_{\alpha,\beta} \Big(\sum_{i,j} h_{ij}^{\alpha} h_{ij}^{\beta} \Big)^{2} \\ &- \sum_{i,j,\alpha,\beta} \Big(\sum_{p} (h_{ip}^{\alpha} h_{pj}^{\beta} - h_{jp}^{\alpha} h_{pi}^{\beta}) \Big)^{2}. \end{split}$$

Therefore

$$\mathcal{L}_{II}|A|^{2} = \Delta|A|^{2} + \langle V, \nabla|A|^{2}\rangle$$

$$= 2\sum_{i,j,\alpha} h_{ij}^{\alpha} \Delta h_{ij}^{\alpha} + 2|\nabla A|^{2} + 2\sum_{k} \langle V, e_{k} \rangle h_{ij}^{\alpha} h_{ijk}^{\alpha}$$

$$= 2|\nabla A|^{2} - 2\sum_{\alpha,\beta} \left(\sum_{i,j} h_{ij}^{\alpha} h_{ij}^{\beta}\right)^{2} - 2\sum_{i,j,\alpha,\beta} \left(\sum_{p} (h_{ip}^{\alpha} h_{pj}^{\beta} - h_{jp}^{\alpha} h_{pi}^{\beta})\right)^{2}.$$

On the other hand, from (7) one has

$$\Delta |H|^2 = 2|\nabla H|^2 - 2\sum_{i,j} (\sum_{\alpha} H^{\alpha} h_{ij}^{\alpha})^2 - 2\sum_{\alpha,i} H^{\alpha} H_i^{\alpha} \langle V, e_i \rangle,$$

where $H^{\alpha} = \sum_{i} h_{ii}^{\alpha}$.

Then it follows that

$$\mathcal{L}_{II}|H|^2 = \Delta|H|^2 + \langle V, \nabla |H|^2 \rangle = 2|\nabla H|^2 - 2\sum_{i,j} (\sum_{\alpha} H^{\alpha} h_{ij}^{\alpha})^2.$$

The following Sobolev inequality for submanifolds in the Euclidean space is very useful in the proof of our theorem.

Lemma 2 ([21]). Let $M^n (n \ge 3)$ be a complete submanifold in the Euclidean space \mathbb{R}^{n+p} . Let f be a nonnegative C^1 function with compact support. Then for all $s \in \mathbb{R}^+$, we have

$$||f||_{\frac{2n}{n-2}}^2 \le D^2(n) \left[\frac{4(n-1)^2(1+s)}{(n-2)^2} ||\nabla f||_2^2 + \left(1 + \frac{1}{s}\right) \frac{1}{n^2} |||H|f||_2^2 \right],$$

where $D(n) = 2^n (1+n)^{\frac{n+1}{n}} (n-1)^{-1} \sigma_n^{-\frac{1}{n}}$, and σ_n denotes the volume of the unit ball in \mathbb{R}^n .

3. Proof of Theorem 1

In this section, we will give several lemmas first to prove Theorem 1.

Lemma 3. On a translating soliton M^n in \mathbb{R}^{n+p} , we have

(8)
$$\mathcal{L}_{II}|\mathring{A}|^{2} \ge 2|\nabla|\mathring{A}||^{2} - \iota|\mathring{A}|^{4} - \frac{2}{n}|H|^{2}|\mathring{A}|^{2},$$

where

$$\iota = \begin{cases} 2, & \text{if} \quad p = 1, \\ 4, & \text{if} \quad p \ge 2. \end{cases}$$

Proof. Combining (5) and (6), we have

(9)
$$\mathcal{L}_{II}|\mathring{A}|^{2} = \mathcal{L}_{II}|A|^{2} - \frac{1}{n}\mathcal{L}_{II}|H|^{2}$$

$$= 2|\nabla\mathring{A}|^{2} + \frac{2}{n}\sum_{i,j}\left(\sum_{\alpha}H^{\alpha}h_{ij}^{\alpha}\right)^{2} - 2\sum_{\alpha,\beta}\left(\sum_{i,j}h_{ij}^{\alpha}h_{ij}^{\beta}\right)^{2}$$

$$-2\sum_{i,j,\alpha,\beta}\left(\sum_{p}(h_{ip}^{\alpha}h_{pj}^{\beta} - h_{jp}^{\alpha}h_{pi}^{\beta})\right)^{2}.$$

When the codimension is one, it can be easily obtained that

$$\mathcal{L}_{II}|\mathring{A}|^2 \ge 2|\nabla|\mathring{A}||^2 - 2|\mathring{A}|^4 - \frac{2}{n}|H|^2|\mathring{A}|^2,$$

where we have used the inequality $|\nabla \mathring{A}|^2 \ge |\nabla |\mathring{A}||^2$, which is an easy consequence of the Schwartz inequality.

In the codimension $p \geq 2$ case, we need the following estimates. At the point where the mean curvature vector is zero, we have

(10)
$$\frac{2}{n} \sum_{i,j} \left(\sum_{\alpha} H^{\alpha} h_{ij}^{\alpha} \right)^{2} - 2 \sum_{\alpha,\beta} \left(\sum_{i,j} h_{ij}^{\alpha} h_{ij}^{\beta} \right)^{2} \\
- 2 \sum_{i,j,\alpha,\beta} \left(\sum_{p} (h_{ip}^{\alpha} h_{pj}^{\beta} - h_{jp}^{\alpha} h_{pi}^{\beta}) \right)^{2} \\
= -2 \sum_{\alpha,\beta} N(A^{\alpha} A^{\beta} - A^{\beta} A^{\alpha}) - 2 \sum_{\alpha,\beta} [\operatorname{tr}(A^{\alpha} A^{\beta})]^{2} \\
\geq -3 |A|^{4},$$

where $A^{\alpha} = (h_{ij}^{\alpha})_{n \times n}$ and we have used Theorem 1 in [13] to get the inequality.

At the point where the mean curvature vector is nonzero, we choose $e_{n+1} = \frac{H}{|H|}$. The second fundamental form can be written as $A = \sum_{\alpha} h^{\alpha} e_{\alpha}$, where h^{α} , $n+1 \leq \alpha \leq n+p$, are symmetric 2-tensors.

By the choice of e_{n+1} , we see that $\operatorname{tr} h^{n+1} = |H|$ and $\operatorname{tr} h^{\alpha} = 0$ for $\alpha \geq n+2$. The trace-free second fundamental form may be rewritten as $\mathring{A} = \sum_{\alpha} \mathring{h}^{\alpha} e_{\alpha}$, where $\mathring{h}^{n+1} = h^{n+1} - \frac{|H|}{n} \operatorname{Id}$ and $\mathring{h}^{\alpha} = h^{\alpha}$ for $\alpha \geq n+2$. We set

$$A_{H} = h^{n+1}e_{n+1}, \quad A_{I} = \sum_{\alpha \ge n+2} h^{\alpha}e_{\alpha},$$

 $\mathring{A}_{H} = \mathring{h}^{n+1}e_{n+1}, \quad \mathring{A}_{I} = \sum_{\alpha \ge n+2} \mathring{h}^{\alpha}e_{\alpha}.$

Then we have

$$|A_I|^2 = \sum_{\alpha \ge n+2} |h^{\alpha}|^2 = |A|^2 - |A_H|^2,$$

$$|\mathring{A}_I|^2 = \sum_{\alpha \ge n+2} |\mathring{h}^{\alpha}|^2 = |\mathring{A}|^2 - |\mathring{A}_H|^2.$$

Note that $|\mathring{A}_H|^2 = |A_H|^2 - \frac{|H|^2}{n}$ and $|\mathring{A}_I|^2 = |A_I|^2$. Since e_{n+1} is chosen globally, $|A_H|^2$, $|\mathring{A}_H|^2$ and $|A_I|^2$ are defined globally and independent of the

choice of e_i . Then we have

$$(11) \sum_{\alpha,\beta} \left(\sum_{i,j} h_{ij}^{\alpha} h_{ij}^{\beta} \right)^{2} = |\mathring{A}_{H}|^{4} + \frac{2}{n} |H|^{2} |\mathring{A}_{H}|^{2} + \frac{1}{n^{2}} |H|^{4}$$

$$+ 2 \sum_{\alpha \neq n+1} \left(\sum_{i,j} \mathring{h}_{ij}^{n+1} \mathring{h}_{ij}^{\alpha} \right)^{2} + \sum_{\alpha,\beta \neq n+1} \left(\sum_{i,j} \mathring{h}_{ij}^{\alpha} \mathring{h}_{ij}^{\beta} \right)^{2},$$

$$\sum_{i,j,\alpha,\beta} \left(\sum_{p} (h_{ip}^{\alpha} h_{pj}^{\beta} - h_{jp}^{\alpha} h_{pi}^{\beta}) \right)^{2} = 2 \sum_{\alpha \neq n+1} \sum_{i,j} \left(\sum_{p} (h_{ip}^{n+1} \mathring{h}_{pj}^{\alpha} - h_{jp}^{n+1} \mathring{h}_{pi}^{\alpha}) \right)^{2}$$

$$+ \sum_{\alpha,\beta \neq n+1} \sum_{i,j} \left(\sum_{p} (\mathring{h}_{ip}^{\alpha} \mathring{h}_{pj}^{\beta} - \mathring{h}_{jp}^{\alpha} \mathring{h}_{pi}^{\beta}) \right)^{2},$$

and

(13)
$$\sum_{i,j} \left(\sum_{\alpha} H^{\alpha} h_{ij}^{\alpha} \right)^2 = |H|^2 |\mathring{A}_H|^2 + \frac{1}{n} |H|^4.$$

From (11), (12) and (13), we obtain the following

$$(14) 2 \sum_{\alpha,\beta} \left(\sum_{i,j} h_{ij}^{\alpha} h_{ij}^{\beta} \right)^{2} + 2 \sum_{i,j,\alpha,\beta} \left(\sum_{p} (h_{ip}^{\alpha} h_{pj}^{\beta} - h_{jp}^{\alpha} h_{pi}^{\beta}) \right)^{2} - \frac{2}{n} \sum_{i,j} \left(\sum_{\alpha} H^{\alpha} h_{ij}^{\alpha} \right)^{2}$$

$$= 2|\mathring{A}_{H}|^{4} + \frac{2}{n} |H|^{2} |\mathring{A}_{H}|^{2}$$

$$+ 4 \sum_{\alpha \neq n+1} \left(\sum_{i,j} \mathring{h}_{ij}^{n+1} \mathring{h}_{ij}^{\alpha} \right)^{2} + 4 \sum_{\alpha \neq n+1} \sum_{i,j} \left(\sum_{p} (h_{ip}^{n+1} \mathring{h}_{pj}^{\alpha} - h_{jp}^{n+1} \mathring{h}_{pi}^{\alpha}) \right)^{2}$$

$$+ 2 \sum_{\alpha,\beta \neq n+1} \left(\sum_{i,j} \mathring{h}_{ij}^{\alpha} \mathring{h}_{ij}^{\beta} \right)^{2} + 2 \sum_{\alpha,\beta \neq n+1} \sum_{i,j} \left(\sum_{p} (\mathring{h}_{ip}^{\alpha} \mathring{h}_{pj}^{\beta} - \mathring{h}_{jp}^{\alpha} \mathring{h}_{pi}^{\beta}) \right)^{2}.$$

Choose $\{e_i\}$ such that $h_{ij}^{n+1} = \lambda_i \delta_{ij}$. Then $\mathring{h}_{ij}^{n+1} = \mathring{\lambda}_i \delta_{ij}$, where $\mathring{\lambda}_i = \lambda_i - \frac{|H|}{n}$. We have the following estimates.

$$4 \sum_{\alpha \neq n+1} \left(\sum_{i,j} \mathring{h}_{ij}^{n+1} \mathring{h}_{ij}^{\alpha} \right)^{2}$$

$$=4 \sum_{\alpha \neq n+1} \left(\sum_{i} \mathring{\lambda}_{i} \mathring{h}_{ii}^{\alpha} \right)^{2}$$

$$\leq 4 \left(\sum_{i} \mathring{\lambda}_{i}^{2} \right) \left(\sum_{\alpha \neq n+1} \sum_{i} (\mathring{h}_{ii}^{\alpha})^{2} \right)$$

$$=4|\mathring{A}_{H}|^{2}\sum_{\alpha\neq n+1}\sum_{i}(\mathring{h}_{ii}^{\alpha})^{2},$$

where we have used the Cauchy-Schwarz inequality. We also have

$$\begin{split} &4\sum_{\alpha\neq n+1}\sum_{i,j}\left(\sum_{p}(h_{ip}^{n+1}\mathring{h}_{pj}^{\alpha}-h_{jp}^{n+1}\mathring{h}_{pi}^{\alpha})\right)^{2}\\ &=4\sum_{\alpha\neq n+1}\sum_{i\neq j}(\lambda_{i}-\lambda_{j})^{2}(\mathring{h}_{ij}^{\alpha})^{2}\\ &=4\sum_{\alpha\neq n+1}\sum_{i\neq j}(\mathring{\lambda}_{i}-\mathring{\lambda}_{j})^{2}(\mathring{h}_{ij}^{\alpha})^{2}\\ &\leq 8\sum_{\alpha\neq n+1}\sum_{i\neq j}(\mathring{\lambda}_{i}^{2}+\mathring{\lambda}_{j}^{2})(\mathring{h}_{ij}^{\alpha})^{2}\\ &\leq 8|\mathring{A}_{H}|^{2}\sum_{\alpha\neq n+1}\sum_{i\neq j}(\mathring{h}_{ij}^{\alpha})^{2}\\ &=8|\mathring{A}_{H}|^{2}\left(|\mathring{A}_{I}|^{2}-\sum_{\alpha\neq n+1}\sum_{i}(\mathring{h}_{ii}^{\alpha})^{2}\right). \end{split}$$

By using Theorem 1 in [13], we obtain that

$$2\sum_{\alpha,\beta\neq n+1} \left(\sum_{i,j} \mathring{h}_{ij}^{\alpha} \mathring{h}_{ij}^{\beta} \right)^{2} + 2\sum_{\alpha,\beta\neq n+1} \sum_{i,j} \left(\sum_{p} (\mathring{h}_{ip}^{\alpha} \mathring{h}_{pj}^{\beta} - \mathring{h}_{jp}^{\alpha} \mathring{h}_{pi}^{\beta}) \right)^{2} \le 3|\mathring{A}_{I}|^{4}.$$

Hence, we have the following estimate

(15)
$$\frac{2}{n} \sum_{ij} \left(\sum_{\alpha} H^{\alpha} h_{ij}^{\alpha} \right)^{2} - 2 \sum_{\alpha,\beta} \left(\sum_{i,j} h_{ij}^{\alpha} h_{ij}^{\beta} \right)^{2}$$
$$- 2 \sum_{i,j,\alpha,\beta} \left(\sum_{p} (h_{ip}^{\alpha} h_{pj}^{\beta} - h_{jp}^{\alpha} h_{pi}^{\beta}) \right)^{2}$$
$$\geq -4|\mathring{A}|^{4} - \frac{2}{n} |H|^{2} |\mathring{A}|^{2}.$$

Combining (10) and (15), we have

(16)
$$\frac{2}{n} \sum_{ij} \left(\sum_{\alpha} H^{\alpha} h_{ij}^{\alpha} \right)^{2} - 2 \sum_{\alpha,\beta} \left(\sum_{i,j} h_{ij}^{\alpha} h_{ij}^{\beta} \right)^{2}$$
$$- 2 \sum_{i,j,\alpha,\beta} \left(\sum_{p} (h_{ip}^{\alpha} h_{pj}^{\beta} - h_{jp}^{\alpha} h_{pi}^{\beta}) \right)^{2}$$
$$\geq -4 |\mathring{A}|^{4} - \frac{2}{n} |H|^{2} |\mathring{A}|^{2}.$$

Substituting (16) into (9), we obtain that

$$\mathcal{L}_{II}|\mathring{A}|^2 \ge 2|\nabla|\mathring{A}||^2 - 4|\mathring{A}|^4 - \frac{2}{n}|H|^2|\mathring{A}|^2.$$

Thus, we complete the proof.

Lemma 4. For any smooth function η with compact support on M and any $0 < \varepsilon < n - 1$, we have

(17)
$$\int_{M} |\nabla |\mathring{A}||^{2} |\mathring{A}|^{n-2} \eta^{2} \varrho \leq \frac{1}{n-1-\varepsilon} \left(\frac{\iota}{2} \int_{M} |\mathring{A}|^{n+2} \eta^{2} \varrho + \frac{1}{n} \int_{M} |\mathring{A}|^{n} |H|^{2} \eta^{2} \varrho + \frac{1}{\varepsilon} \int_{M} |\mathring{A}|^{n} |\nabla \eta|^{2} \varrho \right).$$

Proof. Multiplying $|\mathring{A}|^{n-2}\eta^2$ on both sides of the (8) and integrating by parts with respect to the measure $\varrho d\mu$ on M yield

(18)
$$0 \ge 2 \int_{M} |\nabla |\mathring{A}||^{2} |\mathring{A}|^{n-2} \eta^{2} \varrho - \iota \int_{M} |\mathring{A}|^{n+2} \eta^{2} \varrho - \frac{2}{n} \int_{M} |\mathring{A}|^{n} |H|^{2} \eta^{2} \varrho - \int_{M} |\mathring{A}|^{n-2} \eta^{2} \mathcal{L}_{II} |\mathring{A}|^{2} \varrho.$$

Since η has compact support on M, by the Stokes theorem, we obtain that

$$-\int_{M} |\mathring{A}|^{n-2} \eta^{2} \mathcal{L}_{II} |\mathring{A}|^{2} \varrho$$

$$= -\int_{M} |\mathring{A}|^{n-2} \eta^{2} \operatorname{div}(\varrho \cdot \nabla |\mathring{A}|^{2})$$

$$= 2\int_{M} \varrho |\mathring{A}| \nabla |\mathring{A}| \cdot \nabla (|\mathring{A}|^{n-2} \eta^{2})$$

$$= 2(n-2) \int_{M} |\nabla |\mathring{A}||^{2} |\mathring{A}|^{n-2} \eta^{2} \varrho + 4 \int_{M} (\nabla |\mathring{A}| \cdot \nabla \eta) |\mathring{A}|^{n-1} \eta \varrho.$$

Combining (18) and (19), we get

$$0 \ge 2(n-1) \int_{M} |\nabla |\mathring{A}||^{2} |\mathring{A}|^{n-2} \eta^{2} \varrho - \iota \int_{M} |\mathring{A}|^{n+2} \eta^{2} \varrho - \frac{2}{n} \int_{M} |\mathring{A}|^{n} |H|^{2} \eta^{2} \varrho + 4 \int_{M} (\nabla |\mathring{A}| \cdot \nabla \eta) |\mathring{A}|^{n-1} \eta \varrho.$$

By the Cauchy inequality, for any $0 < \varepsilon < n-1$, we obtain that

$$\begin{split} &\iota \int_{M} |\mathring{A}|^{n+2} \eta^{2} \varrho + \frac{2}{n} \int_{M} |\mathring{A}|^{n} |H|^{2} \eta^{2} \varrho + \frac{2}{\varepsilon} \int_{M} |\mathring{A}|^{n} |\nabla \eta|^{2} \varrho \\ &\geq 2(n-1-\varepsilon) \int_{M} |\nabla |\mathring{A}||^{2} |\mathring{A}|^{n-2} \eta^{2} \varrho. \end{split}$$

Lemma 5. Setting $f = |\mathring{A}|^{n/2} \varrho^{1/2} \eta$, we have

$$(20) \quad \int_{M} |\nabla f|^{2} = \int_{M} |\nabla (|\mathring{A}|^{n/2} \eta)|^{2} \varrho - \frac{1}{2} \int_{M} |\mathring{A}|^{n} \eta^{2} \varrho + \frac{1}{4} \int_{M} |\mathring{A}|^{n} |V^{T}|^{2} \eta^{2} \varrho.$$

where η is a smooth function with compact support on M and V^T is the tangent component of vector V.

Proof. Integrating by parts, one obtain

$$\begin{split} \int_{M} |\nabla f|^{2} &= \int_{M} |\nabla (|\mathring{A}|^{n/2} \eta)|^{2} \varrho + \frac{1}{2} \int_{M} \nabla (|\mathring{A}|^{n} \eta^{2}) \nabla \varrho + \int_{M} |\mathring{A}|^{n} \eta^{2} |\nabla \varrho^{\frac{1}{2}}|^{2} \\ &= \int_{M} |\nabla (|\mathring{A}|^{n/2} \eta)|^{2} \varrho - \frac{1}{2} \int_{M} |\mathring{A}|^{n} \eta^{2} \Delta \varrho + \int_{M} |\mathring{A}|^{n} \eta^{2} |\nabla \varrho^{\frac{1}{2}}|^{2}. \end{split}$$

By direct computations, we have

$$\nabla \varrho = \nabla e^{\langle V, X \rangle} = \varrho V^T,$$

and

$$\nabla \varrho^{\frac{1}{2}} = \frac{1}{2} \varrho^{-\frac{1}{2}} \nabla \varrho = \frac{1}{2} \varrho^{\frac{1}{2}} V^T.$$

By the translating soliton equation $H = V^N$, we get

$$\Delta \varrho = \sum_{i} \nabla_{i} \varrho \langle V, e_{i} \rangle + \sum_{i} \varrho \langle V, \nabla_{i} e_{i} \rangle = \varrho (|V^{T}|^{2} + |V^{N}|^{2}) = \varrho.$$

Hence, it follows that

$$\int_{M} |\nabla f|^{2} = \int_{M} |\nabla (|\mathring{A}|^{n/2} \eta)|^{2} \varrho - \frac{1}{2} \int_{M} |\mathring{A}|^{n} \eta^{2} \varrho + \frac{1}{4} \int_{M} |\mathring{A}|^{n} |V^{T}|^{2} \eta^{2} \varrho.$$

Now we will give the proof of Theorem 1.

Proof. Combining the Sobolev inequality in Lemma 2 and (20) in Lemma 5, we have

$$\begin{split} & \Big(\int_{M} |f|^{\frac{2n}{n-2}} \Big)^{\frac{n-2}{n}} \\ \leq & D^{2}(n) \cdot \Big\{ \frac{4(n-1)^{2}(1+s)}{(n-2)^{2}} \int_{M} |\nabla f|^{2} + \Big(1+\frac{1}{s}\Big) \cdot \frac{1}{n^{2}} \int_{M} |H|^{2} f^{2} \Big\} \\ = & D^{2}(n) \cdot \Big\{ \frac{4(n-1)^{2}(1+s)}{(n-2)^{2}} \Big(\int_{M} |\nabla (|\mathring{A}|^{n/2} \eta)|^{2} \varrho - \frac{1}{2} \int_{M} |\mathring{A}|^{n} \eta^{2} \varrho \\ & + \frac{1}{4} \int_{M} |\mathring{A}|^{n} |V^{T}|^{2} \eta^{2} \varrho \Big) + \Big(1+\frac{1}{s}\Big) \cdot \frac{1}{n^{2}} \int_{M} |\mathring{A}|^{n} |H|^{2} \eta^{2} \varrho \Big\}. \end{split}$$

Note that

$$|V^T|^2 + |V^N|^2 = |V^T|^2 + |H|^2 = 1.$$

We deduce that

$$\begin{split} & \Big(\int_{M} |f|^{\frac{2n}{n-2}} \Big)^{\frac{n-2}{n}} \\ \leq & D^{2}(n) \cdot \Big\{ \frac{4(n-1)^{2}(1+s)}{(n-2)^{2}} \Big(\int_{M} |\nabla(|\mathring{A}|^{n/2}\eta)|^{2}\varrho - \frac{1}{4} \int_{M} |\mathring{A}|^{n} |V^{T}|^{2} \eta^{2} \varrho \\ & - \frac{1}{2} \int_{M} |\mathring{A}|^{n} |H|^{2} \eta^{2} \varrho \Big) + \Big(1 + \frac{1}{s} \Big) \cdot \frac{1}{n^{2}} \int_{M} |\mathring{A}|^{n} |H|^{2} \eta^{2} \varrho \Big\} \\ = & D^{2}(n) \cdot \Big\{ \frac{4(n-1)^{2}(1+s)}{(n-2)^{2}} \Big(\int_{M} \frac{n^{2}}{4} |\nabla|\mathring{A}||^{2} |\mathring{A}|^{n-2} \eta^{2} \varrho \\ & + \int_{M} n |\mathring{A}|^{n-1} \eta \nabla |\mathring{A}| \cdot \nabla \eta \varrho + \int_{M} |\mathring{A}|^{n} |\nabla \eta|^{2} \varrho - \frac{1}{4} \int_{M} |\mathring{A}|^{n} |V^{T}|^{2} \eta^{2} \varrho \\ & - \frac{1}{2} \int_{M} |\mathring{A}|^{n} |H|^{2} \eta^{2} \varrho \Big) + \Big(1 + \frac{1}{s} \Big) \cdot \frac{1}{n^{2}} \int_{M} |\mathring{A}|^{n} |H|^{2} \eta^{2} \varrho \Big\}. \end{split}$$

By the Cauchy inequality, we have for any $\delta > 0$ (21)

$$\begin{split} & \left(\int_{M} |f|^{\frac{2n}{n-2}} \right)^{\frac{n-2}{n}} \\ & \leq \frac{4D^{2}(n)(n-1)^{2}(1+s)}{(n-2)^{2}} \Big\{ (1+\delta)\frac{n^{2}}{4} \int_{M} |\nabla|\mathring{A}||^{2} |\mathring{A}|^{n-2} \eta^{2} \varrho \\ & + \Big(1 + \frac{1}{\delta} \Big) \int_{M} |\mathring{A}|^{n} |\nabla \eta|^{2} \varrho - \frac{1}{4} \int_{M} |\mathring{A}|^{n} |V^{T}|^{2} \eta^{2} \varrho - \frac{1}{2} \int_{M} |\mathring{A}|^{n} |H|^{2} \eta^{2} \varrho \Big\} \\ & + D^{2}(n) \Big(1 + \frac{1}{s} \Big) \cdot \frac{1}{n^{2}} \int_{M} |\mathring{A}|^{n} |H|^{2} \eta^{2} \varrho. \end{split}$$

Substituting (17) into (21), we get

$$\begin{split} & \left(\int_{M} |f|^{\frac{2n}{n-2}} \right)^{\frac{n-2}{n}} \\ \leq & \frac{4D^{2}(n)(n-1)^{2}(1+s)}{(n-2)^{2}} \Big\{ \frac{n^{2}(1+\delta)}{4(n-1-\varepsilon)} \Big(\frac{\iota}{2} \int_{M} |\mathring{A}|^{n+2} \eta^{2} \varrho \\ & + \frac{1}{n} \int_{M} |\mathring{A}|^{n} |H|^{2} \eta^{2} \varrho + \frac{1}{\varepsilon} \int_{M} |\mathring{A}|^{n} |\nabla \eta|^{2} \varrho \Big) \\ & + \Big(1 + \frac{1}{\delta} \Big) \int_{M} |\mathring{A}|^{n} |\nabla \eta|^{2} \varrho - \frac{1}{2} \int_{M} |\mathring{A}|^{n} |H|^{2} \eta^{2} \varrho \Big\} \\ & + D^{2}(n) \Big(1 + \frac{1}{s} \Big) \cdot \frac{1}{n^{2}} \int_{M} |\mathring{A}|^{n} |H|^{2} \eta^{2} \varrho. \end{split}$$

Put

$$\delta = \delta(s, \varepsilon) = \frac{[2sn^2(n-1)^2 - (n-2)^2](n-1-\varepsilon)}{sn^3(n-1)^2} - 1 > 0,$$

for some positive constant s satisfies

$$s > \frac{(n-2)^2(n-1-\varepsilon)}{n^2(n-1)^2(n-2-2\varepsilon)} \in \mathbb{R}^+$$

and some $\varepsilon \in (0, \frac{n-2}{2})$ to be defined later. Then we conclude that

$$\kappa^{-1} \left(\int_{M} |f|^{\frac{2n}{n-2}} \right)^{\frac{n-2}{n}}$$

$$\leq \frac{n^{2}(1+s)(1+\delta)}{4(n-1-\varepsilon)} \left(\frac{\iota}{2} \int_{M} |\mathring{A}|^{n+2} \eta^{2} \varrho + \frac{1}{\varepsilon} \int_{M} |\mathring{A}|^{n} |\nabla \eta|^{2} \varrho \right)$$

$$+ (1+s) \left(1 + \frac{1}{\delta} \right) \int_{M} |\mathring{A}|^{n} |\nabla \eta|^{2} \varrho$$

$$= \frac{(1+s)\iota [2sn^{2}(n-1)^{2} - (n-2)^{2}]}{8sn(n-1)^{2}} \int_{M} |\mathring{A}|^{n+2} \eta^{2} \varrho$$

$$+ C(s,\varepsilon,n) \int_{M} |\mathring{A}|^{n} |\nabla \eta|^{2} \varrho,$$

where $C(s,\varepsilon,n)$ is an explicit positive constant depending on s,ε and n, and

$$\kappa = \frac{4D^2(n)(n-1)^2}{(n-2)^2}.$$

By the Hölder inequality, we have

$$\int_{M} |\mathring{A}|^{n+2} \eta^{2} \varrho \leq \left(\int_{M} |\mathring{A}|^{2 \cdot \frac{n}{2}} \right)^{\frac{2}{n}} \cdot \left(\int_{M} (|\mathring{A}|^{n} \eta^{2} \varrho)^{\frac{n}{n-2}} \right)^{\frac{n-2}{n}}.$$

Hence

$$\kappa^{-1} \left(\int_{M} |f|^{\frac{2n}{n-2}} \right)^{\frac{n-2}{n}}$$

$$\leq \frac{(1+s)\iota[2sn^{2}(n-1)^{2} - (n-2)^{2}]}{8sn(n-1)^{2}} \left(\int_{M} |\mathring{A}|^{n} \right)^{\frac{2}{n}} \cdot \left(\int_{M} |f|^{\frac{2n}{n-2}} \right)^{\frac{n-2}{n}}$$

$$+ C(s,\varepsilon,n) \int_{M} |\mathring{A}|^{n} |\nabla \eta|^{2} \varrho.$$

Put

$$K(n,s) = \sqrt{\frac{8sn(n-1)^2}{(1+s)\iota[2sn^2(n-1)^2 - (n-2)^2]\kappa}}.$$

For simplicity, we choose

$$s = s(\varepsilon) = \frac{(n-2)^2}{n^2(n-1)(n-2-2\varepsilon)}$$

such that

$$K(n,\varepsilon) = K(n,s(\varepsilon)) = \sqrt{\frac{2n(n-2)^2}{\iota D^2(n)(n+2\varepsilon)[(n-2)^2/(n-2-2\varepsilon) + n^2(n-1)]}}.$$

Set

$$K(n) = \sup_{\varepsilon \in (0, \frac{n-2}{2})} K(n, \varepsilon) = \sqrt{\frac{2(n-2)^2}{\iota D^2(n)[n-2+n^2(n-1)]}},$$

where

$$\iota = \begin{cases} 2, & \text{if} \quad p = 1, \\ 4, & \text{if} \quad p \ge 2. \end{cases}$$

Since we have the assumption

$$\left(\int_{M} |\mathring{A}|^{n} \mathrm{d}\mu\right)^{1/n} < K(n),$$

there exists a positive constant \check{K} such that

(24)
$$\left(\int_{M} |\mathring{A}|^{n} \mathrm{d}\mu \right)^{1/n} < \check{K} < K(n).$$

Thus, there exists $\varepsilon = \varepsilon_0 > 0$ such that

$$\check{K} < K(n, \varepsilon_0) < K(n).$$

That is to say

(25)
$$\frac{(1+s)\iota[2sn^2(n-1)^2 - (n-2)^2]}{8sn(n-1)^2} = \kappa^{-1} \cdot K(n,\varepsilon_0)^{-2},$$

where

$$s = s(\varepsilon_0) = \frac{(n-2)^2}{n^2(n-1)(n-2-2\varepsilon_0)}.$$

Combining (23), (24) and (25), it implies that there exists $0 < \epsilon < 1$ such that

$$\kappa^{-1} \left(\int_{M} |f|^{\frac{2n}{n-2}} \right)^{\frac{n-2}{n}}$$

$$\leq \kappa^{-1} \cdot K(n, \varepsilon_{0})^{-2} \cdot \check{K}^{2} \left(\int_{M} |f|^{\frac{2n}{n-2}} \right)^{\frac{n-2}{n}} + \tilde{C}(n, \varepsilon_{0}) \int_{M} |\mathring{A}|^{n} |\nabla \eta|^{2} \varrho$$

$$\leq \frac{1-\epsilon}{\kappa} \left(\int_{M} |f|^{\frac{2n}{n-2}} \right)^{\frac{n-2}{n}} + \tilde{C}(n, \varepsilon_{0}) \int_{M} |\mathring{A}|^{n} |\nabla \eta|^{2} \varrho,$$

namely,

(26)
$$\frac{\epsilon}{\kappa} \left(\int_{M} |f|^{\frac{2n}{n-2}} \right)^{\frac{n-2}{n}} \leq \tilde{C}(n, \varepsilon_{0}) \int_{M} |\mathring{A}|^{n} |\nabla \eta|^{2} \varrho.$$

Let $\eta(X) = \eta_r(X) = \phi(\frac{|X|}{r})$ for any r > 0, where ϕ is a nonnegative function on $[0, +\infty)$ satisfying

(27)
$$\phi(x) = \begin{cases} 1, & \text{if } x \in [0, 1), \\ 0, & \text{if } x \in [2, +\infty), \end{cases}$$

and $|\phi'| \leq C$ for some absolute constant.

Since $\int_M |\mathring{A}|^n \varrho$ and the constant $\tilde{C}(n, \varepsilon_0)$ are bounded, the right hand side of (26) approaches to zero as $r \to +\infty$, which implies $|\mathring{A}| \equiv 0$. Therefore, M is a linear subspace. This completes the proof of Theorem 1.

References

- [1] C. BAO and Y. Shi, Gauss map of translating solitons of mean curvature flow, *Proc. Amer. Math. Soc.*, **142**(2014), 4333–4339.
- [2] S. J. Cao, H. W. Xu and E. T. Zhao, Pinching theorems for self-shrinkers of higher codimension, preprint, 2014.

- [3] Q. M. Cheng and G. Wei, A gap theorem of self-shrinkers, *Trans. Amer. Math. Soc.*, **367**(2015), 4895–4915.
- [4] Q. M. Cheng and G. Wei, Complete λ-hypersurfaces of weighted volumepreserving mean curvature flow, Calc. Var. Partial Differ. Equations, (2018) 57:32, DOI: 10.1007/s00526-018-1303-4.
- [5] T. H. COLDING and W. P. MINICOZZI II, Generic mean curvature flow I; generic singularities, *Ann. of Math.*, **175**(2012), 755–833.
- [6] Q. DING and Y. L. XIN, The rigidity theorems of self-shrinkers, *Trans. Amer. Math. Soc.*, **366**(2014), 5067–5085.
- [7] G. Huisken and C. Sinestrari, Convexity estimates for mean curvature flow and singularities of mean convex surfaces, *Acta. Math.*, **183**(1999), 45–70.
- [8] T. Ilmanen, Singularities of mean curvature flow of surfaces, preprint, 1995, available at https://people.math.ethz.ch/~ilmanen/papers/pub. html.
- [9] T. Ilmanen, Elliptic regularization and partial regularity for motion by mean curvature, *Mem. Amer. Math. Soc.*, **108**(1994).
- [10] D. IMPERA and M. RIMOLDI, Rigidity results and topology at infinity of translating solitons of the mean curvature flow, *Commun. Contemp. Math.*, 19(2017), 1750002 (21 pages).
- [11] K. Kunikawa, Bernstein-type theorem of translating solitons in arbitrary codimension with flat normal bundle, Calc. Var. Partial Differ. Equations, 54(2015), 1331–1344.
- [12] L. Lei, H. W. Xu and Z. Y. Xu, A new pinching theorem for complete self-shrinkers and its generalization, arXiv:1712.01899.
- [13] A. M. Li, J. M. Li, An intrinsic rigidity theorem for minimal submanifolds in a sphere, *Arch. Math.*, **58**(1992), 582–594.
- [14] F. Martin, A. Savas-Halilaj and K. Smoczyk, On the topology of translating solitons of the mean curvature flow, *Calc. Var. Partial Differ. Equations*, **54**(2015), 2853–2882.
- [15] X. H. NGUYEN, Complete embedded self-translating surfaces under mean curvature flow, J. Geom. Anal., 23(2013), 1379–1426.
- [16] H. J. WANG, H. W. Xu and E. T. Zhao, Gap theorems for complete λ-hypersurfaces, Pacific. J. Math., 288(2017), 453–474.

- [17] H. J. Wang, H. W. Xu and E. T. Zhao, Submanifolds with parallel Gaussian mean curvature in Euclidean spaces, preprint, 2017.
- [18] X. J. WANG, Convex solutions to mean curvature flow, Ann. of Math., 173(2011), 1185–1239.
- [19] B. White, Stratification of minimal surfaces, mean curvature flows, and harmonic maps, *J. Reine Angew. Math.*, **488**(1997), 1–35.
- [20] Y. L. Xin, Translating solitons of the mean curvature flow, Calc. Var. Partial Differ. Equations, **54**(2015), 1995–2016.
- [21] H. W. Xu and J. R. Gu, A general gap theorem for submanifolds with parallel mean curvature in \mathbb{R}^{n+p} , Comm. Anal. Geom., **15**(2007), 175–194.
- [22] H. W. Xu and Z. Y. Xu, On Chern's conjecture for minimal hypersurfaces and rigidity of self-shrinkers, J. Funct. Anal., 273(2017), 3406– 3425.

Huijuan Wang Center of Mathematical Sciences Zhejiang University Hangzhou 310027 People's Republic of China E-mail: whjuan@zju.edu.cn

Hongwei Xu Center of Mathematical Sciences Zhejiang University Hangzhou 310027 People's Republic of China E-mail: xuhw@zju.edu.cn

Entao Zhao
Center of Mathematical Sciences
Zhejiang University
Hangzhou 310027
People's Republic of China
E-mail: zhaoet@zju.edu.cn