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Globally asymptotical stability and existence of limit
cycle for a generalized predator-prey model with prey
refuge

ZHIHUI MA, SHUFAN WANG, TINGTING WANG AND LONGHENG QIAN

Abstract: The stability property of the positive equilibrium and
the existence of limit cycles for the Lotka-Volterra predator-prey
system incorporating prey refuge with a generalized functional re-
sponse are investigated. On the one hand, by constructing a suit-
able Lyapunov function and an auxiliary system, a new set of suffi-
cient conditions which guarantee the global asymptotical stability
of the positive equilibrium are obtained. On the other hand, a set of
sufficient conditions which guarantee the existence of limit cycles
are produced by modifying the theorem of Hesaaraki and Moghadas.
Our results complement and supplement some known ones, and
some published conclusions become the special cases of ours.
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1. Introduction

The prey refuges which are employed by prey populations exist generally
in nature, such as Ephestia spp, Balanus glandula [1], and so on. Based on
theoretical and/or empirical aspects, the general conclusions of prey refuge
on predation systems were the stabilizing effect and the prevention of prey
extinction [2-19]. The seminal work on this subject was based on qualitative
analysis and ecological meanings [2]. Gonzalez-Olivares and Ramos-Jiliberto
[2] considered the stability properties of a certain predation system with prey
refuge and the dynamical consequences of applying mathematical analysis
method. They proposed the following predator-prey system with Holling 11
functional response and the effect of prey refuge:

dx _ 7n<1_%)%_q(ac—ﬂ:r)y

dt T—x,+a’
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They studied the dynamic consequences of system (1) and obtained that
the community equilibrium was stabilized by the addition of refuge for a prey
population; therefore, prey extinction was prevented. Furthermore, Ma et al.
[3] proposed a predator-prey system with a generalized functional response
which is more interesting and comprehensive than those studied by many
researchers [8-12]. They presented the following system:

dz _ (195) — pp(a — @)
Q- r Kx PP\t — Zr)Y,

2) ’

4y

i (qo(z — x) — d)y.

with the following assumption:
(3) p(0) =0, ¢'(x)>0 (z>0)

Assuming that z, = Sz and using the following change of variables:

(1- 5)y>,

T
1-8

system (2) with assumption (3) becomes the following form:

B (RP - (RYP day) = (

CC% = T(l - (1_335)[(>m — pp(x)y,

— = (gp(z) — d)y.

(4)

with the following assumption:
(5) p(0)=0, ¢'(x)>0 (z>0), ¢"(z) <0 (z>0).

By simple computation, one can obtain the positive equilibrium point of

system (4) which is denoted as (z*,y*), where z* = ¢~ 1(d/q), y* = q;—ﬁ*(l -

=ar):

( B’%hey considered only the local stability of system (4) and mainly focused
on the dynamical consequences induced by the effect of prey refuge. In fact,
the global stability is more robust in ecological systems than the local property
for some types of predation systems, and hence is an interesting issue [20—
25]. The limit cycle means the interacting populations periodically oscillate
and is important to the harvest rule for the economic populations [20, 21].
Recently, Chen et al. [4] constructed a suitable Lyapunov function and found
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a set of sufficient conditions which ensure the global asymptotical stability of
the positive equilibrium. Unfortunately, they investigated only the predation
system with Holling I functional response. However, the global stability of
the system with a generalized functional response and prey refuge is more
interesting and important than that with Holling type one. Therefore, the
global stability and the existence of limit cycle of system (4) with the initial
conditions (5) are still an open issue. Motivated by these, we focus on the
global stability of the positive equilibrium point and existence of limit cycle of
system (4) with the initial conditions (5) in this paper. Our work complements
and supplements some known ones, such as Gonzalez-Olivares and Ramos-
Jiliberto [2], Ma et al. [3], Chen et al. [4] and so all.

2. Global stability property
2.1. Main results

Theorem 2.1.1. Assuming that 2¢'(xp) + xpy”(xg) > 0, then we have

o [f

_dza+gp(za)z”

Tt aptegi WMo

max{l

+ \/K2 + (zp + %)% 4+ 228K + 20K — 455395*]}

~1
v~ (d/q)
12 A
<pB< T
then the positive equilibrium point of system (4) is globally asymptoti-
cally stable.
in which x* = ¢~ (d/q), va = (¢') " (Griar) ond 25 = ¢~ (Ga—aie=)-
Theorem 2.1.2. Assuming that 2¢'(zp) + xpy”(xp) < 0, then we have
o [f
_dza+ gp(za)a”
d+qp(za) K

<p< (l/K){K—xB — "

+ \/K2 + (zp + %)% 4+ 228K + 225K — 455395*}7

then the positive equilibrium point of system (4) is globally asymptoti-
cally stable.

in which z* = =Y(d/q), T4 = (gp’)_l(ﬁ) and xp = ap_l(m).
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2.2. Proof of the main results

In this section, we will prove Theorem 2.1.1 and Theorem 2.1.2. This is com-
pleted according to the following three steps:
Step 1. Considering the following auxiliary system

(fl—f = @2((;:)) - y)w(m),

% (gp(z) — d)y.

(6)

and proving the global stability of the positive equilibrium point (z*,y*) of
X

system (6) in which g(z) = r(1 — m)
Now, choosing a Lyapunov function defined as follows

* u * (%

W (x(t), y(t)) :/:u_m*du+a/yyv_y*dv.

By simple computation, we obtain that

dW  x—az*dx y—y*dy
= a

dt oz dt y dt
— (=) (S5 <)ol + aly - ) apla) — 0
= —(z—2")(y —y")p(x) /2 + agy' (") (z — =) (y — y")
+ M(w — ") (y—y").

For the function ¢(x)/z, the unique extremum point Z exists when ¢'(0) =

% by Roll Mean Theorem.

Defining M = max{¢'(0), %@} and a = %, then
—(z =)y =y )e(r)/z + ag (") (z — ") (y — y")
age” (") ( age” (") (

+ z— ") (y —y") <
It is clear that 4 < 0in ¥y = {(z,y) | y > y*} if ¢"(x) < 0 or
Y ={(z,y) |y >y }if ¢"(2) > 0.
Hence, the positive equilibrium point (z*,y*) of system (6) is globally
stable if ¢”(x) # 0. In fact, the condition ¢”(x) # 0 is satisfied by most
response functions, such as Holling type functional response.
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Step 2. We will prove that the flow of system (4) is always directed
inwards with respect to the flow of system (6).

According to (M —y*)(z — 2*) <0, then we have

po(x)

« S 2y (0<z<a), JEH <y (@ <a<(1-HK).
Defining

§>7 (<x*g(a:*) B *> (), (qo(z) — d) O)

! pp(ar) )T v

= zg(z)

- (G-t -om)

A o(n) Y p(z), (gp(x) — d)y
Then, we get

St % 55 = (0,0, p(0)y(ap() — d) (Zz((j**)) - ;ig;))'

Hence, we have
e qp(x) —d<0 (0<z<a*), qpz)—d>0 (z*<z<(1-pP)K),

since x* is the uniquely positive solution and the function gp(z) — d increases
monotonously.
Combining the above case with the previous assumption

w2y O<a<a) <y (@ <a<(1-PK).

We have

o(@)y(qp(x) — d) (ZZ&:; - ;ai g;) > 0.

Hence, the flow of system (4) is always directed inwards with respect to
the flow of system (6).

Therefore, the positive equilibrium point (z*, y*) of system (4) is globally
stabile since system (4) and system (6) have the same positive equilibrium
point and the flow of system (4) is always directed inwards with respect to
the flow of system (6) which is globally asymptotically stabile.

According to the above analysis, the following conclusion is obtained:

o If (% —y*)(z — 2z*) <0, then the positive equilibrium point (z*, y*)

of system (4) is globally asymptotically stable.
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Step 3. We will propose the sufficient conditions which can guarantee

the inequality (Zf;(é) —y*)(x —x*) <0.

Now, we compute the term (ii% —y*)(z — a*).

(2 )or

_ rx(lp—(pW) B q;z* (1 B . j;>K)]($ — )

= |- ) e (- ) e
= |dx — x)T 1 2 — x)rr*) | (x — 2*

= |dr — ge@)s” — (e — ge(as) | (e ="
(d+qs0( ) (x — &*)? + (da* — gp(a)z)(z — =)

g W) + Ve - Vi - )

:(d+qs0( ))(@ = 2%)? + (dz* — gp(z)z)(x — 2¥)

+ m+\/ﬁx [(\/qp x—\/gx (x — 2~
—(\a ()+f)(fv—x)}

= [d+ qo(x) — \/dgp(z)(z + 2*)|(x — 2*)?

- | Vaews® + Van(aew) + V) e - o)°

* 1 ) )
+ |:dl’ - q@(m)x + W(QQD(.I) — d)x gj:| (.’E —z )
! * *\2
= G- pr U0 = AK —2) +ap()((1 = HK —an)](@ —a7)
—[(1 = B)K 4+ 1)\/dgp(z)(z + 2*)](x — z*)?

+[d(1 = P — x)x* + qp(x)) (1 = B)K — 27)](x — 27).

Defining the following labels:

Alr) =d((1 = P)K — ) + gp(x)((1 = f)K — 27),
B(z) = d(1 = B)K — z)a™ + qp(x))((1 — B)K — z7).
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Therefore, it can be obtained that

(e 7)<
if

Alz) <0 (0<z < K),
and

B>0 0<z<2");B<0 (¢"<z<K).
On the one hand, supposing that

dA(x)
dx

then, it is obtained that

o= ()

Again, assuming that ¢”(z) < 0, then we have

d*A(x)
dz?

— 41— B)K'(x) <0 .

Thus, x4 is the maximum value of A(z) in the interval (0, K).
Based on the above analyses, we have the following conclusion:

o if max A(z) <0, then A(z) < 01in (0, K).

Now, we will compute the inequality max A(z) < 0

max A(z) <0 & d((1—B)K — z4) + go(za) (1 — BIK — %)
& (1=-0)(d+qp(ra)K) < dza+ qp(za)r”
_dza +gp(xa)z”

s B>1 .
g d+ qp(ra) K

Again, supposing that

dB(x)
dx

=q((1 = YK — z")(p(x) + ¢/ (x)) — da” =0,
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then, it is obtained that

or

= (q((l = Z;EK - 1‘*))'

By simple computation

d’B(z)
dx?

=q((1 = B)K — 27)(2¢'(z) + 2" (2)).

Therefore, we can obtain the following conclusions:

e if min B(x) > 0, then B(z) >0 (0 < z < xx).
Assuming that 2¢'(xg) + xp¢”(xp) > 0, by simple computation, we
have

min B(z) = d(1 — 5)K — xp)x™ + qp(zp))((1 — B)K — z*).
Hence, it is obtained that

min B(zx) >0 & 22"zp—(1—-pF)Kep—(1—-35)K(FK +2%) >0
& KB+ K(rp+a2* — K)B+22*7p
— Kzp— Kz* > 0.
< B> 1/K)K —zp—2a"
+ \/K2 + (xp + %) + 228K + 22 K — 4xpa*].

e if max B(x) <0, then B(z) <0 (zx <z < K).
Assuming that 2¢'(zp) + zp¢”(xp) < 0, by simple computation, we
get
max B(z) <0 & [B<(1/K)K—-a2p—2x"
+ /K2 + (op + 2%)? + 208K + 20pK — dupa?].

Hence the theorem is proved. O
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3. Existence of limit cycle

3.1. Main results

Theorem 3.1.1. Assuming that ¢'(z*) < q;l*, then system (4) with initial
conditions (5) has at least one limit cycle if and only if

[2d — qx*np’(x*)) ] .

0< <1——
b d — qrro! (z*

K

Theorem 3.1.2. Assuming that ¢'(z*) > q%‘l*, then the system (4) with initial
conditions (5) has at least one limit cycle if and only if

z* 2d—qx*cp'(x*)} x*
R e S S -2
K[d—qx*g@’(x*) <h< K

3.2. Proof of main results

In order to prove the above main results, we give the following Lemma by
taking advantage from a simple modification of Theorem 1.1 in Hesaaraki and
Moghadas [26].

Lemma 3.2.1. The system (4) with initial conditions (5) has at least one
limit cycle if and only if (12%)1( +py*o(z*) —r < 0.

The proof of Lemma 3.2.1 is similar with Theorem 2.1.1 which is con-
ducted by Hesaaraki and Moghadas [26] and is omitted.
Now, applying Lemma 3.2.1 in system (4), we have

27'1'* * I *
m‘pr 90($ )—7"<0
2rx* qra* x* '
caoar T () e
et qratygl(at)  gr(at)¢(a7)
Ca-prt T a " aa-pr 0
2da* e e al@)? (@)
@(r/d){m—l—qx ¢ (z )—W—d} <0
o [ - e - (- )] <0
& (1= B)(d — g g (") > (20— g2’ (o).
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Hence, system (4) with the initial conditions (5) has at least one limit
cycle if and only if

*

(7) (1= B)(d - g2"¢/(¢")) > T-(2d = qa* ¢ (a")).

Therefore, the above inequations can be considered as following two cases:
Case 1. If d — gz* ' (2*) > 0 & ¢'(2*) < -4, then 2d — qa*¢'(z*) > 0.

qz*’

Thus, the inequality (7) is equivalent to the following inequality:

x* [2d — qx*cp’(x*)}
1|z 4=/
0<P<l-% { d — qz*g'(z¥)

Hence, system (4) with initial conditions (5) has at least one limit cycle
if and only if

K
Hence, the Theorem 3.1.1 is proved. O
Case 2. If 2d — qz*¢'(z*) < 0 & ¢/ (z*) > (127‘{, then d — qz*¢'(z*) < 0.
Thus, combining the existence of the positive equilibrium point if system
(4), the inequality (7) is equivalent to the following inequality:

r* [2d — qx*gp’(x*)}
0 l——=|———|.
<<= e

x*[2d — qx*go’(a:*)] x*
l—-—|———— | <f<1—-—.
K [ d — qr*y (x*) b K
Hence, system (4) with initial conditions (5) has at least one limit cycle
if and only if

x*[2d — qx*np’(a:*)] x*
l——]——— <<l - —.
K [ d — qz*o!(z*) P K

Hence, the Theorem 3.1.2 is proved. O

4. Conclusion

Ma et al. [3] studied only the locally asymptotical stability of system (2) with
initial conditions (3) and Chen et al. [4] investigated the globally asymptotical
stability of system (2) with initial conditions (3) when the response function
¢©(x) = x. The most interesting things are the global stability and existence of
limit cycles for the predation system with a generalized functional response.
Motivated by these, this article obtains a set of sufficient conditions which
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guarantee the global asymptotical stability of the positive equilibrium and
the existence of limit cycles by mathematical analysis. Unfortunately, the
global stability property of the considered system (4) under the assumption
2¢'(xg) + xp¢”(zp) = 0 is still an open issue.

On the other hand, the unstable state of the positive equilibrium point
of the considered predation systems, especially the existence of limit cycles
have very important meanings from an ecological point of view, because these
show the oscillatory behaviors of the interacting populations. In this paper,
a set of necessary and sufficient conditions for the existence of limit cycles
under some certain assumptions are obtained. According to Theorem 3.1.1
and 3.1.2, the conditions for the existence of limit cycles is very similar to
those of the unstable conditions in the work of Ma et al. [3].
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