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Log canonical pairs over varieties with maximal
Albanese dimension

Zhengyu Hu

Abstract: Let (X,B) be a log canonical pair over a normal variety
Z with maximal Albanese dimension. If KX +B is relatively abun-
dant over Z (for example, KX + B is relatively big over Z), then
we prove that KX +B is abundant. In particular, the subadditivity
of Kodaira dimensions κ(KX + B) ≥ κ(KF + BF ) + κ(Z) holds,
where F is a general fiber, KF + BF = (KX + B)|F , and κ(Z)
means the Kodaira dimension of a smooth model of Z. We discuss
several variants of this result in Section 4. We also give a remark
on the log Iitaka conjecture for log canonical pairs in Section 5.

1. Introduction

Let f : X → Z be a surjective morphism from a smooth variety to a nor-
mal variety Z. An important conjecture in birational geometry is the Iitaka
Conjecture which asserts that

κ(X) ≥ κ(F ) + κ(Z)

where κ(X) is the Kodaira dimension of X, F is a general fiber of f and
κ(Z) means the Kodaira dimension of a smooth model of Z. This has been
established in many cases [35], [13], [6], [15], [18], [19], Kollár, Viehweg, etc.

It is natural to raise a similar conjecture of the log version. Consider a
surjective morphism f : (X,B) → Z from a log canonical (lc for short) pair
to a normal variety Z. One conjectures that

κ(KX + B) ≥ κ(KF + BF ) + κ(Z)

where KF + BF = (KX + B)|F . This has also been established in many
cases. Recently Cao and Pǎun [12], Hacon, Popa and Schnell [30] proved this
when (X,B) is Kawamata log terminal (klt for short) and Z = A is an abelian
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variety over C and Cao [11] proved this when (X,B) is klt and Z is a complex
surface. If (X,B) is klt with an extra assumption of positivity on KX + B
and Z has maximal Albanese dimension, then Birkar and Chen [5] obtained
a stronger result which further asserts that (X,B) has a good log minimal
model.

There are some other related conjectures for logarithmic Kodaira dimen-
sions for algebraic fibrations. See Kawamata [34], Fujino [20], Iitaka [33], etc.

In this paper, we will mainly discuss the case when (X,B) is log canonical
and Z has maximal Albanese dimension. We work over C throughout this
paper. All varieties are quasi-projective and a divisor means a Q-divisor unless
stated otherwise.

Abundance and good minimal models. The first main result of this
paper is the following theorem.

Theorem 1.1 (=Theorem 3.6). Let f : (X,B) → Z be a surjective mor-
phism from a projective log canonical (lc for short) pair (X,B) to a normal
variety Z. Assume that Z has maximal Albanese dimension and that KX +B
is relatively abundant over Z. Then, KX +B is abundant. Moreover, the sub-
additivity of Kodaira dimensions κ(KX + B) ≥ κ(KF + BF ) + κ(Z) holds,
where F is a general fiber, KF + BF = (KX + B)|F , and κ(Z) means the
Kodaira dimension of a smooth model of Z.

As an immediate corollary of Theorem 1.1 we obtain the following.

Corollary 1.2. Let f : (X,B) → A be a morphism from a projective lc
pair (X,B) to an abelian variety A. Assume that (X,B) relatively has a good
minimal model over A. Then, (X,B) has a good minimal model. In particular,
if KX + B is semi-ample/A, then it is semi-ample.

This is a generalization of [5, Theorem 1.1]. Here we sketch the main
strategy to prove Theorem 1.1. Since Birkar and Chen [5] already proved
case when (X,B) is klt such that KX +B is big/Z, we simply need to reduce
to this easier case. To this end, we apply a canonical bundle formula to get a
generalized lc generalized pair (Y,BY + MY ) (see Section 2 Preliminaries for
definitions, [9] for more details) such that KY +BY +MY is big/Z. Thanks to
the assumption KX +B being relatively abundant/Z, we deduce that MY is
nef and abundant by a perturbation of the coefficients of B. Again, we modify
the coefficients of BY to get a desired klt pair (Y,BY + MY ).

We also give a generalization of [39, Theorem 4.2 and Corollary 4.3] as
below.

Corollary 1.3. Let f : (X,B) → A be the Albanese map from a projective klt
pair (X,B) to its Albanese variety A = Alb(X). Suppose that (F,BF ) has a
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good minimal model where F is the general fiber and KF +BF = (KX +B)|F .
Then, (X,B) has a good minimal model.

Corollary 1.4. Let f : (X,B) → Z be a surjective morphism from a pro-
jective klt pair (X,B) to a normal variety Z. Suppose that Z has maximal
Albanese dimension, and that (F,BF ) has a good minimal model where F
is the general fiber and KF + BF = (KX + B)|F . Then, (X,B) has a good
minimal model.

In fact, one can prove a stronger version on lc pairs instead of klt pairs
as follows.

Proposition 1.5 (=Proposition 3.11). Let f : (X,B) → Z be a surjective
morphism from a projective lc pair (X,B) to a normal variety Z. Suppose
that Z has maximal Albanese dimension, and that (F,BF ) has a good minimal
model where F is the general fiber and KF +BF = (KX+B)|F . Then, KX+B
is abundant. Moreover, if the canonical ring R(KX +B) is finitely generated,
for example, (X,B) is klt, or κ(KX +B) = 0, then (X,B) has a good minimal
model.

Generalized polarized pairs and weak nonvanishing. It is known
that minimal model theory works for generalized lc generalized pairs, although
the abundance and the nonvanishing are not expected in general. However,
there are interesting cases that abundance holds.

Proposition 1.6 (=Proposition 4.8). Let (X,B + M) be a generalized lc
generalized pair with data X ′ → X and M ′, and f : (X,B + M) → Z be a
surjective morphism to a normal variety Z. Assume that

• Z has maximal Albanese dimension,
• KX + B + M is abundant/Z,
• M ′ is abundant, and
• every lc center of (X,B + M) is vertical/Z.
Then, KX + B + M is abundant. Moreover, the subadditivity of Kodaira

dimensions κ(KX + B + M) ≥ κ(KF + BF + MF ) + κ(Z) holds, where F
is a general fiber, KF + BF + MF = (KX + B + M)|F , and κ(Z) means the
Kodaira dimension of a smooth model of Z.

It is not known if the weak nonvanishing holds for generalized pairs. Most
probably the answer is negative. But there are some cases in which the answer
is positive.

Theorem 1.7 (=Theorem 4.11). Let (X,B+M) be a generalized lc general-
ized pair with data X ′ → X and M ′, and f : (X,B +M) → Z be a surjective
morphism to a normal variety Z. Assume that
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• Z has maximal Albanese dimension,
• KX + B + M is abundant/Z,
• R(X/Z,KX + B + M) is a finitely generated OZ-algebra, and
• M ′ is semi-ample/Z.
Then, there exists an effective divisor D ≥ 0 such that D ≡ KX +B+M .

Since the relative abundance assumption is automatically satisfied when
a fibration is relatively of Fano type, we immediately obtain the corollary
below.

Corollary 1.8 (=Corollary 4.14). Let (X,B+M) be a generalized lc general-
ized pair with data X ′ → X and M ′, and f : (X,B +M) → Z be a surjective
morphism to a normal variety Z. Assume that

• Z has maximal Albanese dimension,
• κ(KF + BF + MF ) ≥ 0 where F is a general fiber of f , and
• X is of log Fano type over Z, that is, there is a boundary Δ such that

(X,Δ) is lc and −(KX + Δ) is ample/Z.
Then, there exists an effective divisor D ≥ 0 such that D ≡ KX +B+M .

Irregular varieties with Albanese fiber of general type. From an
easy observation one finds that the same argument still works if we slightly
weaken the assumption that the base variety Z has maximal Albanese dimen-
sion.

We say that Z is irregular with Albanese fiber of general type if a general
fiber of a : Z → A = Alb(Z) is of general type.

Proposition 1.9. Let f : (X,B) → Z be a surjective morphism from a
projective lc pair (X,B) to a normal variety Z. Assume that Z is irregular
with Albanese fibre of general type and that KX + B is relatively abundant
over Z. Then, KX + B is abundant. Moreover, the subadditivity of Kodaira
dimensions κ(KX + B) ≥ κ(KF + BF ) + κ(Z) holds, where F is a general
fiber, KF + BF = (KX + B)|F , and κ(Z) means the Kodaira dimension of a
smooth model of Z.

In the same way Proposition 1.5 can be generalized as below.

Proposition 1.10. Let f : (X,B) → Z be a surjective morphism from a
projective lc pair (X,B) to a normal variety Z. Assume that Z is irregular
with Albanese fibre of general type, and that (F,BF ) has a good minimal model
where F is the general fiber and KF + BF = (KX + B)|F . Then, KX + B is
abundant. Moreover, if the canonical ring R(KX +B) is finitely generated, for
example, if (X,B) is klt, or κ(KX +B) = 0, then (X,B) has a good minimal
model.
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A remark on log Iitaka conjecture. As we mentioned before Cao
and Pǎun [12], Hacon, Popa and Schnell [30] proved log Iitaka conjecture
when (X,B) is klt and Z = A is an abelian variety. By the subadditivity
of logarithmic Kodaira dimensions for algebraic fibrations over varieties of
general type one can easily deduce log Iitaka conjecture when (X,B) is klt and
Z has maximal Albanese dimension (see Remark 5.1). We therefore consider
the following conjecture for lc pairs.

Conjecture 1.11. Let f : (X,B) → Z be a surjective morphism from a
projective lc pair (X,B) to a normal variety Z. Assume that Z has maximal
Albanese dimension. Then, the subadditivity of Kodaira dimensions κ(KX +
B) ≥ κ(KF + BF ) + κ(Z) holds, where F is a general fiber, KF + BF =
(KX +B)|F , and κ(Z) means the Kodaira dimension of a smooth model of Z.

Extending results from klt pairs to lc pairs is usually much harder than it
sounds. One may ask if we can deduce Conjecture 1.11 from [12] [30], when we
put an extra positivity assumption on the boundary B. The proposition below
indicates that adding this extra assumption will not decrease the difficulty of
Conjecture 1.11.

Proposition 1.12 (See Proposition 5.3). Conjecture 1.11 holds for lc pairs
(X,B) in dimension ≤ n if and only if Conjecture 1.11 holds for Q-factorial
dlt pairs (Y,BY ) in dimension ≤ n + 1 where BY is big/Z.

2. Preliminaries

We work over the complex numbers C. All varieties are quasi-projective and
a divisor means a Q-divisor unless stated otherwise.

Pairs. A pair (X/Z,B) consists of normal quasi-projective varieties X, Z,
an Q-divisor B on X with coefficients in [0, 1] such that KX +B is Q-Cartier
and a projective morphism X → Z. If Z is a point or Z is unambiguous in
the context, then we simply denote a pair by (X,B). For a prime divisor D
on some birational model of X with a nonempty centre on X, a(D,X,B)
denotes the log discrepancy. For definitions and standard results on singular-
ities of pairs we refer to [38].

Log minimal models and Mori fibre spaces. A pair (Y/Z,BY ) is
a log birational model of a pair (X/Z,B) if we are given a birational map
φ : X ��� Y and BY = B∼ + E where B∼ is the birational transform of B
and E is the reduced exceptional divisor of φ−1, that is, E =

∑
Ej where Ej
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are the exceptional/X prime divisors on Y . A log birational model (Y,BY ) is
a weak lc model of (X,B) if

• KY + BY is nef/Z, and
• for any prime divisor D on X which is exceptional/Y , we have

a(D,X,B) ≤ a(D, Y,BY ),

A weak lc model (Y/Z,BY ) is a log minimal model of (X/Z,B) if
• (Y/Z,BY ) is Q-factorial dlt,
• the above inequality on log discrepancies is strict.
A log minimal model (Y/Z,BY ) is good if KY + BY is semi-ample/Z.

On the other hand, a log birational model (Y/Z,BY ) is called a Mori fibre
space of (X/Z,B) if

• (Y/Z,BY ) is Q-factorial dlt,
• there is a KY +BY -negative extremal contraction Y → T with dim Y >

dimT , and
• for any prime divisor D (on birational models of X) we have

a(D,X,B) ≤ a(D, Y,BY )

and strict inequality holds if D is on X and contracted/Y .

Note that our definitions of log minimal models and Mori fibre spaces
are slightly different from the traditional definitions in that we allow φ−1 to
contract certain divisors.

Lc places and lc centers. A prime divisor T over X is said to be an
lc place of a log pair (X,B) if the log discrepancy a(T,X,B) = 0. A closed
subset Y of X is said to be an lc center of (X,B) if there is an lc place T
such that the center of T is Y .

Log smooth models. A pair (Y/Z,BY ) is a log smooth model of a pair
(X/Z,B) if there exists a birational morphism π : Y → X such that

• (Y/Z,BY ) is log smooth,
• π∗BY = B,
• a(E, Y,BY ) = 0 for every exceptional/X prime divisor on Y .
It is obvious that if (X,B) is lc, then (Y,BY ) is dlt. In this case, it is easy

to calculate that a(D,X,B) ≥ a(D, Y,BY ) for any prime divisor D over X.
Moreover, a log minimal model of (Y/Z,BY ) is also a log minimal model of
(X/Z,B).
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Ample models and log canonical models. Let D be a divisor on a
normal variety X over Z. A normal variety T is the ample model/Z of D if
we are given a rational map φ : X ��� T such that there exists a resolution
X

p←− X ′ q−→ T with
• q being a contraction,
• p∗D ∼R q∗DT + E where DZ is an ample/Z divisor on T , and
• for every divisor B ∈ |p∗D/Z|R, then B ≥ E.
Note that the ample model is unique if it exists. The existence of the am-

ple model is equivalent to that the divisorial ring R(D) is a finitely generated
OZ-algebra when D is Q-Cartier.

A normal variety T is the log canonical model/Z (lc model for short) T
of a pair (X/Z,B) if it is the ample model/Z of KX + B. The existence of
the lc model of a klt pair is ensured by [4], and the existence of the lc model
of an lc pair is still an open question. It is known that proving the existence
of the lc models of lc pairs (X,B) with KX + B being big is equivalent to
proving the abundance conjecture for klt pairs.

Nakayama-Zariski decompositions. Nakayama [42] defined a decom-
position D = Pσ(D) + Nσ(D) for any pseudo-effective R-divisor D on a
smooth projective variety. We refer to this as the Nakayama-Zariski decom-
position. We call Pσ the positive part and Nσ the negative part. We can
extend it to the singular case as follows. Let X be a normal projective variety
and D a pseudo-effective R-Cartier divisor on X. We define Pσ(D) by taking
a resolution f : W → X and letting Pσ(D) := f∗Pσ(f∗D). A divisor D is
pseudo-movable if D = Pσ(D), i.e. D ∈ Mov(X).

Generalized polarized pairs. The notion of polarized pairs was intro-
duced in Birkar-Hu [7], and then generalized in Birkar-Zhang [9]. A general-
ized (polarized) pair (X/Z,B + M) with data X ′ → X and M ′ consists of a
normal variety X, a projective morphism X → Z, a boundary divisor B and
a Weil divisor M together with a birational morphism π : (X ′, B′ +M ′) → X
such that

• KX′ + B′ + M ′ = π∗(KX + B + M),
• (X ′, B′) is sub-dlt and B = π∗B

′ ≥ 0,
• M ′ is nef/Z and M = π∗M

′.

A generalized pair (X/Z,B+M) is said to have the abundant moduli part
if M ′ is nef and abundant. Note that if π can be chosen to be the identity
morphism, then we call (X/Z,B + M) a polarized pair.
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Generalized singularities. We refer to [9] for the details of generalized
singularities. Let (X,B + M) be a generalized pair and we use the notation
(X ′, B′ + M ′) as above. Given a prime divisor D over X, the generalized
log discrepancy a(D,X,B + M) is defined to be the “usual” log discrep-
ancy a(D,X ′, B′). Note that B′ may contain components with negative co-
efficients. We say that (X,B + M) is generalized klt (resp. generalized lc) if
a(D,X,B + M) > 0 (resp. a(D,X,B + M) ≥ 0) for every prime divisor D
over X. This is also equivalent to saying that (X ′, B′) is sub-klt (resp. sub-
lc). Moreover, one can naturally define a generalized dlt generalized pair. Note
that the existence of Q-factorial dlt blow-up of a generalized lc generalized
pair is ensured by [3, Theorem 3.5].

Minimal models of generalized pairs. A generalized pair (Y,BY +
MY ) together with a birational map φ : X ��� Y is a log minimal model of
(X,B + M) (where BY = B∼ + E as before) if

• (Y,BY + MY ) is Q-factorial dlt,
• KY + BY + MY is nef,
• for any prime divisor D (on birational models of X) we have

a(D,X,B + M) ≤ a(D, Y,BY + MY )

and strict inequality holds if D is on X and contracted/Y .
On the other hand we call (Y,BY +MY ) a Mori fiber space of (X,B+M)

if it satisfies the conditions above with the condition KY + BY + MY being
nef replaced by

• there is a (KY +BY +MY )-negative extremal contraction Y → T with
dim Y > dimT .

3. Proof of the main theorem

We will use a canonical bundle formula for lc pairs. Recall the following result
from [31, Theorem 2.1], which is a generalization for lc pairs of the main result
of Fujino and Mori [24].
Theorem 3.1 ([31, Theorem 2.1]). Let f : (X,B) → Z be a projective
morphism from an lc pair to a normal variety Z, B be a Q-boundary divisor.
Then, there exists a commutative diagram of projective morphisms

X ′ π

f ′

X

f

Y
μ

Z
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with the following properties.
(1). π is a birational morphism;
(2). there exists a Q-divisor B′ on X ′ with the coefficients ≤ 1 such that
(X ′, B′) is Q-factorial dlt and

π∗OX′(m(KX′ + B′)) ∼= OX(m(KX + B)),∀m ∈ N;

(3). there exists a boundary Q-divisor BY and a Q-divisor MY on Y such
that (Y,BY + MY ) is a dlt polarized pair and that KY + BY + MY is big/Z;
(4). there exists an effective Q-divisor R on X ′ such that f ′

∗OX′(
iR�) ∼= OY

for all i ∈ N and

KX′ + B′ ∼Q f ′∗(KY + BY + MY ) + R;

(5). each component of 
BY � is dominated by a vertical component of 
B′�.

Remark 3.2 (Reduction to klt case) Let (X/Z,B), (X ′/Z,B′), (Y/Z,BY +
MY ), f and f ′ be as in the previous theorem. It is obvious that

κ(KX + B/Z) = κ(KX′ + B′/Z) = κ(KY + BY + MY /Z) = dimY − dimZ.

Let P ′ be the vertical/Y part of 
B′�. Since κ(KX′ +B′− εP ′/Y ) = κ(KX′ +
B′/Y ) = 0 for every sufficiently small number ε, we can apply the canonical
bundle formula Theorem 3.1 (cf. [24, Section 4]) again to obtain a generalized
klt generalized pair (Y,Bε

Y + M ε
Y ) such that

KX′ + B′ − εP ′ ∼Q f ′∗(KY + Bε
Y + M ε

Y ) + Rε

where Rε is an effective Q-divisor with f ′
∗OX′(
iRε�) ∼= OY for all i ∈ N. By

the construction of [24, 4.4] we see that (Y,Bε
Y +M ε

Y ) is a klt polarized pair,
that is, (Y,Bε

Y ) is klt and M ε
Y is nef. Moreover, since KY +BY +MY is big/Z,

KY + Bε
Y + M ε

Y is also big/Z. So, we have

κ(KX+B/Z) = κ(KX′+B′−εP ′/Z) = κ(KY +Bε
Y +M ε

Y /Z) = dimY −dimZ.

We also need the following canonical bundle formula for lc-trivial fibra-
tions from [1] or [22] as well.

Theorem 3.3 ([22, Theorem 1.1], [1, Theorem 3.3]). Let f : (X,B) → Y be
a projective morphism from an lc pair to a normal variety Y with connected
fibers, B be a Q-boundary divisor. Assume that KX +B ∼Q 0/Y . Then there
exists a boundary Q-divisor BY and a Q-divisor MY on Y satisfying the
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following properties.
(1). (Y,BY + MY ) is a generalized lc generalized pair with data Y ′ → Y and
MY ′;
(2). M ′

Y is nef and abundant;
(3). KX + B ∼Q f∗(KY + BY + MY ).

The following lemma is obvious.

Lemma 3.4. Let D be a pseudo-effective divisor and P ≥ 0 be an effective
divisor on a projective normal variety X. If κ(D − εP ) ≥ 0 for some small
rational number ε > 0, then κ(D − ε′P ) = κ(D) for every small rational
number ε′ < ε. If κσ(D− εP ) ≥ 0 for some small rational number ε > 0, then
κσ(D − ε′P ) = κσ(D) for every small rational number ε′ < ε.

Lemma 3.5 (Nonvanishing). Let f : (X,B) → Z be a surjective morphism
from a projective lc pair (X,B) to a normal variety Z. Assume that Z has
maximal Albanese dimension. If κ(KX + B/Z) ≥ 0, then κ(KX + B) ≥ 0.

Proof. Replacing (X,B) with a dlt blow-up we can assume that (X,B) is
Q-factorial dlt. Let g : X ��� Y be a relative Iitaka fibration of KX +B over
Z. We now apply Theorem 3.1 to obtain a commutative diagram

X

g

X ′

g′

π

Y Y ′
μ

a Q-factorial dlt pair (X ′, B′) and a Q-factorial dlt polarized pair (Y ′, BY ′ +
MY ′) such that KX′ +B′ ∼Q g′∗(KY ′ +BY ′ +MY ′)+R and KY ′ +BY ′ +MY ′ is
big/Z. Let P ′ be the vertical/Y ′ part of 
B′�. As we discussed in Remark 3.2,
if we apply Theorem 3.1 to (X ′, B′ − εP ′), then we obtain a klt polarized
pair (Y ′, Bε

Y ′ + M ε
Y ′) such that KY ′ + Bε

Y ′ + M ε
Y ′ is big/Z when ε > 0 is

sufficiently small. By [5, Theorem 4.1] and [10] we have κ(KY ′ +BY ′ +MY ′) ≥
κ(KY ′ + Bε

Y ′ + M ε
Y ′) ≥ 0 which in turn implies that κ(KX + B) ≥ 0.

Theorem 3.6. Let f : (X,B) → Z be a surjective morphism from a projective
lc pair (X,B) to a normal variety Z. Assume that Z has maximal Albanese
dimension and that KX +B is relatively abundant over Z. Then, KX +B is
abundant. Moreover, the subadditivity of Kodaira dimensions κ(KX + B) ≥
κ(KF +BF )+κ(Z) holds, where F is a general fiber, KF +BF = (KX +B)|F ,
and κ(Z) means the Kodaira dimension of a smooth model of Z.
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Proof. Replacing (X,B) with a dlt blow-up we can assume that (X,B) is
Q-factorial dlt. Let g : X ��� Y be a relative Iitaka fibration of KX +B over
Z. By replacing (X,B) with a suitable dlt blow-up again we can assume that
g is a morphism. Since KX + B is relatively abundant over Z, we have that
κσ(KX + B/Y ) = κ(KX + B/Y ) = 0 by [40, Theorem 6.1] (note that the
theorem we referred to also applies to singular varieties as we can lift divisors
to smooth models) and hence κσ(KG + BG) = κ(KG + BG) = 0 where G is
the generic fiber of g. In particular, KG + BG ≡ Nσ(KG + BG). Now run an
LMMP/Y on KX +B with scaling of some ample divisor. Thanks to [7], [25]
and [37] this process will reach a model (X ′, B′) such that KG′ + B′

G′ ∼Q 0
after finite steps where G′ is the generic fiber of g′ : X ′ → Y . By replacing
X, B and G with X ′, B′ and G′, we can assume that there exists a nonempty
open subset U of Y such that KX + B ∼Q,U 0.

Let P be the vertical/Y part of 
B�, and let ε > 0 be a sufficiently small
number. We claim that κ(KX + B) = κ(KX + B − εP ) and κσ(KX + B) =
κσ(KX + B − εP ). Thanks to Theorem 3.1 there exists a birational model
π : X ′′ → X and a birational model μ : Y ′ → Y together with a morphism
g′′ : X ′′ → Y ′

X ′′ π

g′′

X

g

Y ′ μ
Y

such that

π∗(KX + B) + E ∼Q g′′∗(KY ′ + BY ′ + MY ′) + R

where E is exceptional/X and KY ′ + BY ′ + MY ′ is big/Z. Because P is
vertical/Y , π∗P is vertical/Y ′. Pick a Q-divisor DY ′ on Y ′ such that g′′∗DY ′ ≥
π∗P . Note that KY ′ +BY ′ − εDY ′ +MY ′ is big/Z since ε is sufficiently small,
and hence κ(KX + B − εP/Z) = κ(KX + B/Z) ≥ 0. By Lemma 3.5 one
deduces that κ(KX +B− εP ) ≥ 0, and by Lemma 3.4 one deduces the claim.

Now we run an LMMP/Y on KX + B − εP which terminates at a good
minimal model

X ′ h

g′

T

μ

Y

by [3, Theorem 1.4]. Because KX +B ∼Q,U 0, it is clear that κ(KX′ +B′) =
κ(KX′ +B′ − εP ′) and κσ(KX′ +B′) = κσ(KX′ +B′ − εP ′) where B′ and P ′
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are the birational transforms of B and P respectively. Moreover, μ : T → Y
is birational. It suffices to show that KX′ + B′ − εP ′ is abundant, namely
κ(KX′ + B′ − εP ′) = κσ(KX′ + B′ − εP ′). To this end, we apply Theorem
3.3 on (X ′, B′− εP ′) and get a generalized klt generalized pair (T,ΔT +MT )
with the abundant moduli part such that

KX′ + B′ − εP ′ ∼Q h∗(KT + BT + MT ).

Because KT + ΔT + MT is big/Z and there exists a boundary BT such that
(T,BT ) is klt and KT +BT ∼Q KT +ΔT +MT , we can apply [5, Theorem 1.1]
to achieve the conclusion. In particular, we obtain

κ(KX + B) = κ(KX′ + B′ − εP ′)
= κ(KT + BT )
≥ dimT − dimZ + κ(Z)
= κ(KF + BF ) + κ(Z).

Remark 3.7 We point out that a crucial step in the argument in [5] relies on
the extension theorem from [16] which was obtained via an analytic method.
So, both Theorem 1.1 and [5] do not have a pure algebraic proof at this point.
One wonders if these theorems can be argued in a parallel way as in [13].

Next, we prove some corollaries.

Corollary 3.8. Let f : (X,B) → A be a morphism from a projective lc
pair (X,B) to an abelian variety A. Assume that (X,B) relatively has a good
minimal model over A. Then, (X,B) has a good minimal model. In particular,
if KX + B is semi-ample/A, then it is semi-ample.

Proof. Replacing (X,B) with a good minimal model/A one can assume that
KX+B is semi-ample/A and globally nef (see [5, §3]). Let X → Z → A be the
Stein factorization. It is easy to see that Z has maximal Albanese dimension
and KX + B is semi-ample/Z. Therefore KX + B is globally abundant by
Theorem 1.1. We can apply a similar argument for every lc center of (X,B)
and then obtain that KX + B is nef and log abundant. Finally, we establish
the result by [22, Theorem 1.5] and [32].

We also give a generalization of [39, Theorem 4.2 and Corollary 4.3] as
Corollary 1.3 and Corollary 1.4. We present them below for the reader’s con-
venience.
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Corollary 3.9. Let a : (X,B) → A be the Albanese map from a projective klt
pair (X,B) to its Albanese variety A = Alb(X). Suppose that (F,BF ) has a
good minimal model where F is the general fiber and KF +BF = (KX +B)|F .
Then, (X,B) has a good minimal model.

Corollary 3.10. Let f : (X,B) → Z be a surjective morphism from a pro-
jective klt pair (X,B) to a normal variety Z. Suppose that Z has maximal
Albanese dimension, and that (F,BF ) has a good minimal model where F

is the general fiber and KF + BF = (KX + B)|F . Then, (X,B) has a good
minimal model.

In fact, one can prove a stronger version for lc pairs instead of klt pairs.

Proposition 3.11. Let f : (X,B) → Z be a surjective morphism from a
projective lc pair (X,B) to a normal variety Z. Suppose that Z has maximal
Albanese dimension, and that (F,BF ) has a good minimal model where F is
the general fiber and KF + BF = (KX + B)|F . Then, KX + B is abundant.
Moreover, if the canonical ring R(KX +B) is finitely generated, for example,
if (X,B) is klt, or κ(KX + B) = 0, then (X,B) has a good minimal model.

Proof. Because (F,BF ) has a good minimal model, we have that KF + BF

is abundant. By the semi-continuity theorem, we deduce that KG + BG is
abundant where G is the generic fibre of f . We therefore conclude that KX+B

is abundant thanks to Theorem 1.1.
In particular, if the canonical ring R(KX +B) is finitely generated, then

KX +B birationally has a Nakayama-Zariski decomposition with semi-ample
positive part by [40, Proposition 6.4] (note that the proposition we referred
to also applies to singular varieties as we can lift line bundles to smooth
models). Therefore by [7, Theorem 1.1] we deduce (X,B) has a good minimal
model.

4. Variants

4.1. Variant: generalized pairs

It is known [7], [9] that minimal model theory works for generalized lc gen-
eralized pairs. In [7], we discussed that the abundance and the nonvanishing
are not expected in general. However, there are some interesting cases that
abundance is expected (for example, (X,B + M) has the abundant moduli
part).
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Lemma 4.2 (Weak Nonvanishing). Let f : (X,B + M) → Z be a surjective
morphism from a projective generalized lc generalized pair (X,B + M) to a
normal variety Z, B be a Q-boundary divisor. Assume that Z has maximal
Albanese dimension and that KX + B + M is big/Z. Then, there exists an
effective divisor D ≥ 0 such that D ≡ KX + B + M .

Proof. Replacing (X,B + M) with some log resolution we can assume that
(X,B + M) is a dlt polarized pair. Let P := 
B�. Pick a sufficiently small
number ε and consider the polarized pair (X +B− εP +M). By [5, Theorem
4.1] there exists an effective divisor D′ ≥ 0 such that KX +B−εP +M ≡ D′.
We simply take D = D′ + εP to conclude this lemma.

One may ask if the subadditivity of Kodaira dimensions Conjecture 1.11
holds for a generalized polarized pair (X,B + M). The answer is positive if
we suppose a strong positivity assumption on both KX + B + M and M .

Proposition 4.3. Let (X,B + M) be a generalized lc generalized pair with
data X ′ → X and M ′, and f : (X,B + M) → Z be a surjective morphism to
a normal variety Z. Assume that

• Z has maximal Albanese dimension,
• KX + B + M is big/Z, and
• M ′ is abundant.
Then, KX + B + M is abundant. Moreover, the subadditivity of Kodaira

dimensions κ(KX + B + M) ≥ κ(KF + BF + MF ) + κ(Z) holds, where F
is a general fiber, KF + BF + MF = (KX + B + M)|F , and κ(Z) means the
Kodaira dimension of a smooth model of Z.

Proof. Replacing (X,B + M) with a birational model we can assume that
(X,B+M) is a log smooth dlt polarized pair. Moreover, we can assume that
M is nef and abundant. Let P := 
B�, ε > 0 be a sufficiently small rational
number and let Δε be a Q-boundary divisor such that (X,Δε) is klt and

KX + Δε ∼Q KX + B − εP + M.

Since ε can be chosen arbitrary small, KX + Δε is big/Z. Due to Lemma 3.5
and Lemma 3.4 we get that κ(KX+Δε) = κ(KX+B+M) and κσ(KX+Δε) =
κσ(KX +B+M). It suffices to show that KX +Δε is abundant which follows
from [5, Theorem 1.1].

Remark 4.4 It is natural to ask if we can remove one of these assumptions
above. The example below shows that Proposition 4.3 fails if we drop the
condition M being abundant.
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Example 4.5 Let E be an elliptic curve and E be a nontrivial unipotent
vector bundle over E of rank two with E normalized and deg∧(E) = 0. Let
π : S := PE(E) → E be a ruled surface over the base curve E, and E′ be the
divisor corresponding to the nontrivial global section of E . Then, we have the
following properties of E′:

(1). E′2 = 0, so E′ is nef;
(2). KS + 2E′ ∼Q 0;
(3). κ(E′) = 0.
Note that KS + 3E′ is π-big and nef. However, κ(KS + 3E′) = 0 < 1 =

κ(KF + 3E′|F ) where F is a general fiber.

Remark 4.6 By modifying Example 4.5 as below we note that Proposi-
tion 4.3 also fails when KX + B + M is not big/Z.

Example 4.7 Let π : S → E be the P1-fibration over an elliptic curve E
as in Example 4.5. Consider a P1-bundle over S

q : Y = P(OS ⊕OS(−1)) → S.

Let p : Y → C = C(S) be the birational contraction of the negative section
S′ on Y and H a general sufficiently ample Q-divisor on C such that 
H� = 0
and KY + S′ + 3E′

Y + H ′ is big where E′
Y is the birational transform of the

cone of E′ on C and H ′ = p∗H. Now set

λ = inf{t| KY + S′ + 3E′
Y + tH ′ is pseudo-effective/S}

and ΔY = S′ and MY = 3E′
Y + λH ′. We have that MY is nef and big, and

KY + ΔY + MY = π∗(KS + 3E′). Therefore κ(KY + ΔY + MY ) = 0 < 1 =
κ(KF + ΔF + MF ) + κ(E) where F is a general fiber.

In the example above, we note that KY +BY +MY is relatively abundant
over E and MY is big. If (Y,BY ) is klt, then there is a boundary ΔY such that
(Y,ΔY ) is klt and KY + ΔY ∼Q KY + BY + MY . Hence the subadditivity of
Kodaira dimensions in turn follows from Theorem 1.1. From this discussion,
we see that the existence of an lc center (more precisely, a horizontal lc center)
fails the subadditivity of Kodaira dimensions.

Proposition 4.8. Let (X,B + M) be a generalized lc generalized pair with
data X ′ → X and M ′, and f : (X,B + M) → Z be a surjective morphism to
a normal variety Z. Assume that

• Z has maximal Albanese dimension,
• KX + B + M is abundant/Z,
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• M ′ is abundant, and
• every lc center of (X,B + M) is vertical/Z.
Then, KX + B + M is abundant. Moreover, the subadditivity of Kodaira

dimensions κ(KX + B + M) ≥ κ(KF + BF + MF ) + κ(Z) holds, where F
is a general fiber, KF + BF + MF = (KX + B + M)|F , and κ(Z) means the
Kodaira dimension of a smooth model of Z.

Proof. The argument almost follows the lines of the proof of Theorem 1.1.
Replacing (X,B + M), we can assume that it is a Q-factorial dlt polarized
pair. Moreover, there is a morphism g : X → Y over Z and a nonempty open
subset U of Y such that KX +B ∼Q,U 0. Let P = 
B�, and pick a sufficiently
small number ε > 0. There is a boundary Δ such that (X,Δ) is klt and
KX +Δ ∼Q KX +B−εP +M . It is easy to see κ(KX +Δ) = κ(KX +B+M)
and κσ(KX + Δ) = κσ(KX + B + M). Now run an LMMP/Y on KX + Δ
which terminates at a good minimal model h : X ′ → T . It follows that
KX′ + Δ′ ∼Q h∗(KT + ΔT ) for some klt pair (T,ΔT ). We see that KT + ΔT

is big/Z which in turn implies the abundance of KX′ + Δ′ and hence the
abundance of KX + B + M .

We point out that the abundance of the moduli part portrays a central
role in the proof of Proposition 4.3 and 4.8. Especially Example 4.5 shows that
the subadditivity of Kodaira dimensions fails if we drop this assumption. On
the other hand, Lemma 4.2 indicates that the weak nonvanishing still holds
if we suppose a certain positivity assumption on KX+B+M relatively over Z.

GV-sheaves and Fourier-Mukai transforms. We briefly describe
some basic concepts from the theory of abelian varieties. For any smooth
projective variety X, we will denote by a : X → A the Albanese morphism
of X and Â = Pic0(X) the dual of the Albanese variety. We will denote by
D(X) the bounded derived category of coherent sheaves on X. For an abelian
variety A and its dual Â, we denote by PA the normalized Poincaré line bun-
dle on A× Â. For α ∈ Â we denote by Pα the line bundle that represents α.
By [41], the following functors give equivalence between D(A) and D(Â):

RΦPA
: D(A) → D(Â),RΦPA

(·) = Rp
Â,∗(p

∗
A(·) ⊗ PA).

RΨPA
: D(A) → D(Â),RΨPA

(·) = RpA,∗(p∗Â(·) ⊗ PA).
For any coherent sheaf F on X and any morphism f : X → A to an

abelian variety, we define the i-th cohomological locus

V i(F , f) := {α ∈ Â|H i(X,F ⊗ Pα) �= 0}.
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If f = a is the Albanese morphism, we will simply denote by V i(F ) the i-th
cohomological locus. For more definitions and results, we refer to [43] and [14].

For any ample line bundle L on Â, the isogeny φL : Â → A is defined by
φL(â) = t∗âL

∨ ⊗ L. Let L be the vector bundle on A defined by

L̂∨ := p
Â,∗(p

∗
AL⊗ PA).

One has that
φ∗
L(L̂∨) ∼=

⊕
h0(L)

L.

Let F be a coherent sheaf on an abelian variety A. Then, F is a GV-
sheaf if codim

Â
SuppRiΦPA

(F ) ≥ i for all i ≥ 0. The main result of [27,
Theorem 1.2] (cf. [43, Theorem A]) asserts that, if for any sufficiently ample
line bundle L on Â,

H i(A,F ⊗ L̂∨) = 0, i > 0,

then F is a GV-sheaf. In particular, one has inclusions

V 0(F ) ⊃ V 1(F ) ⊃ . . . ⊃ V n(F ).

A theorem on weak nonvanishing. As we mentioned previously, some
weak positivity assumption on both KX + B + M and M relatively over Z

implies the weak nonvanishing. We first prove an easy lemma.

Lemma 4.9 (cf. [7, Theorem 1.1]). Let (X,B + M) be a generalized lc gen-
eralized pair. Suppose that KX +B+M birationally has a Nakayama-Zariski
decomposition with nef positive part. Then (X,B + M) has a log minimal
model.

Proof. Replacing (X,B + M) we can assume that P = Pσ(KX + B + M) is
nef. Now run an LMMP on KX + B + M + αP with scaling of some ample
divisor for some α � 0. This LMMP is P -trivial due to [7, Theorem 3.2, Proof
of Theorem 1.1]. By an easy computation, we deduce that it terminates with
a log minimal model.

Lemma 4.10. Let (X/Z,B+M) be a generalized lc generalized pair. Assume
that the divisorial ring R(X/Z,KX + B + M) is a finitely generated OZ-
algebra, and that KX + B + M is abundant/Z. Then, (X/Z,B + M) has a
log minimal model (X ′/Z,B′ + M ′) on which KX′ + B′ + M ′ is semi-ample
over Z.



560 Zhengyu Hu

Proof. We first treat the case when Z is a point. Since R(KX + B + M) is
finitely generated, there is a log resolution f : Y → X such that f∗(KX +B+
M) = P +N where P is semi-ample and N is the asymptotic fixed part. Note
that the abundance of KX+B+M implies that N = Nσ(f∗(KX+B+M)) by
[40, Proposition 6.4]. Therefore, KX + B + M birationally has a Nakayama-
Zariski decomposition with nef positive part. We immediately obtain that
(X,B+M) has a log minimal model (X ′, B′ +M ′) according to the previous
lemma. We can assume that the birational map g : Y ��� X ′ is a morphism,
and it is obvious that KX′ +B′ +M ′ is semi-ample as g∗(KX′ +B′ +M ′) =
Pσ(f∗(KX + B + M)) = P is semi-ample.

Next, we prove the general case. Run an LMMP/Z on KX +B +M with
scaling of an ample/Z divisor. From the argument above, we reach a model
g : (X ′, B′ + M ′) ��� T after finitely many steps where T is the lc model of
(X/Z,B + M) and (KX′ + B′ + M ′)|Fη ∼Q 0 on the generic fiber Fη of g.
Replacing (X ′/Z,B′ + M ′) with some birational model, we can assume that
g is a morphism and write KX′ + B′ + M ′ ∼Q g∗AT + N where AT is an
ample/Z divisor and N ≥ 0 is vertical/T . By Lemma [3, Lemma 3.2], N is
very exceptional/T , and hence by the proof of Lemma [3, Theorem 3.4] any
LMMP/T on KX′ + B′ + M ′ with scaling of an ample/Z divisor contracts
N and terminates with a minimal model g′′ : (X ′′, B′′ + M ′′) → T on which
KX′′ + B′′ + M ′′ ∼Q g′′∗AT .

Next, we prove a weak nonvanishing theorem via a similar argument from
[5, Theorem 4.1].

Theorem 4.11 (Weak nonvanishing). Let (X,B + M) be a generalized lc
generalized pair with data X ′ → X and M ′, and f : (X,B + M) → Z be a
surjective morphism to a normal variety Z. Assume that

• Z has maximal Albanese dimension,
• KX + B + M is abundant/Z,
• R(X/Z,KX + B + M) is a finitely generated OZ-algebra, and
• M ′ is semi-ample/Z.
Then, there exists an effective divisor D ≥ 0 such that D ≡ KX +B+M .

Proof. Replacing (X,B + M) we can assume it is Q-factorial generalized
dlt polarized pair and there is a morphism q : X ′ → T over Z such that
M ′ ∼Q q∗MT for some relatively ample/Z divisor MT . Let A = Alb(Z). Pick
an ample divisor H on A and a sufficiently small number δ > 0. Since MT

is globally nef and big/A, it follows that M ′ + δp′∗H is nef and abundant
where p′ : X ′ → A is a morphism. Moreover, it is relatively semi-ample over
a nonempty open subset U ⊂ A.
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Now run an LMMP/Z on KX +B+M which terminates at a log minimal
model r : (X ′′, B′′ + M ′′) → Y on which KX′′ + B′′ + M ′′ ∼Q r∗DY for some
ample/Z divisor DY by Lemma 4.10. Replacing (X,B + M) with (X ′′, B′′ +
M ′′) and letting P be the vertical/Y part of 
B� and ε > 0 be a sufficiently
small rational number, we can assume KX +B +M is semi-ample/Z. As we
argued in the proof of Theorem 3.6, run an LMMP/Y on KX +B − εP +M
which terminates at a good minimal model X ′′ → Y ′/Y . Again, replacing X,
B and Y with X ′′, B′′ − εP ′′ and Y ′, we can assume that P = 0.

Let S be a minimal lc center of (X,B + M). Because every lc center
of (X,B + M) is horizontal/Y , S is horizontal/A. We claim that there is
an effective divisor L such that (X,B + L) is dlt, (S,BS + LS) is klt and
KX + B + L ∼Q KX + B + M + δp∗H where p : X → A is a morphism. To
this end, we pick sufficiently small rational numbers ε′ and δ′′ � δ so that
(1− ε′)MT +δ′t∗H = N +E where t : T → A is a morphism, N is semi-ample
and E is effective with sufficiently small coefficients. If any sub-lc center of
(X ′, B′) is contained in the support of q∗E, then it must be mapped to some
horizontal/A part of E. Therefore, there is a divisor E′ ∼Q E+ε′MT such that
the horizontal/A part of E′ is effective and no sub-lc centers is contained in the
support of q∗E. Note that E′ is not necessarily effective but we can suitably
choose H so that E′ + (δ − δ′)t∗H is effective which concludes the claim.

Applying a canonical bundle formula 3.3 we get DY + δg∗H ∼Q KY +ΔY

where g : Y → A is a morphism and (Y,ΔY ) is klt. Now it suffices to prove
the weak nonvanishing for DY .

Replacing (Y,Δ) we can assume it is Q-factorial. Since KY +ΔY is big/A,
we can run an LMMP/A on KY + ΔY which terminates at a good minimal
model (Y ′,ΔY ′). In particular, KY ′ + ΔY ′ is globally nef since A does not
contain any rational curve. Replacing (Y,ΔY ), we can assume that DY is nef.
Replacing (X,B + M), we can assume D = KX + B + M ∼Q r∗DY .

Let I be a positive integer so that both ID and IDY are Cartier, and put
Fs := g∗OY (sIDY ). For any ample divisor H on A and any P ∈ Pic0(A), by
the Kawamata-Viehweg vanishing theorem,

Rig∗OY (sIDY + g∗H + g∗P ) = 0

for all i > 0 and s ≥ 2 and

H i(Y, sIDY + g∗H + g∗P ) = 0

for all i > 0 and s ≥ 2, hence

H i(A,Fs ⊗OA(H + P ))

for all i > 0 and s ≥ 2.
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We claim that Fs is a GV-sheaf. To this end, let φL : Â → A be
the isogeny defined by a sufficiently positive ample line bundle L, one has
φ∗
L(L̂∨) ∼=

⊕
h0(L)

L. Let ĝ : Ŷ = Y ×A Â → Â, ϕ : Ŷ → Y be the induced mor-

phism, and F̂s = ĝ∗OŶ
(ϕ∗sIDY ). By Kawamata-Viehweg vanishing theorem,

we have
H i(Â, F̂s ⊗O

Â
(L)) = 0

for i > 0, which in turn implies that

H i(A,Fs ⊗ L∨) = 0

for i > 0.
Since Fs is a sheaf of rank h0(G, sIDY |G) where G is a general fiber of

g, it is a non-zero sheaf for s sufficiently divisible. Therefore, V 0(Fs) �= ∅
otherwise V i(Fs) = ∅ for all i which implies that the Fourier-Mukai trans-
form of Fs is zero. Pick a line bundle P ∈ V 0(Fs) and we conclude that
κ(sI(KX + B + M) + f∗P ) ≥ 0.

Remark 4.12 Note that the assumption R(X/A,KX+B+M) being finitely
generated automatically holds when (X,B+M) is generalized klt since abun-
dance implies finite generation. We immediately obtain a corollary for gener-
alized klt pairs.

Corollary 4.13. Let (X,B + M) be a generalized klt generalized pair with
data X ′ → X and M ′, and f : (X,B + M) → Z be a surjective morphism to
a normal variety Z. Assume that

• Z has maximal Albanese dimension,
• KX + B + M is abundant/Z, and
• M ′ is abundant/Z.
Then, there exists an effective divisor D ≥ 0 such that D ≡ KX +B+M .
Since the relative abundance assumption is automatically satisfied when

a fibration is relatively of Fano type, we immediately obtain the corollary
below. Note that this includes Example 4.5 and 4.7.
Corollary 4.14. Let (X,B + M) be a generalized lc generalized pair with
data X ′ → X and M ′, and f : (X,B + M) → Z be a surjective morphism to
a normal variety Z. Assume that

• Z has maximal Albanese dimension,
• κ(KF + BF + MF ) ≥ 0 where F is a general fiber of f , and
• X is relatively of log Fano type over Z, that is, there is a boundary Δ

such that (X,Δ) is lc and −(KX + Δ) is ample/Z.
Then, there exists an effective divisor D ≥ 0 such that D ≡ KX +B+M .
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Remark 4.15 One may ask whether the weak nonvanishing holds if we
weaken the assumption of relative semi-ampleness of M ′ in Theorem 3.5. The
answer is probably no. It should be interesting to know any counter example.

4.16. Variant: fibrations over irregular varieties

From an easy observation, one finds that the same argument still works if we
slightly weaken the assumption that the base variety Z has maximal Albanese
dimension.

We say that Z is irregular with Albanese fiber of general type if a general
fiber of a : Z → A = Alb(Z) is of general type.

The following lemma is well-known.

Lemma 4.17 (cf. [28, Corollary 2.11]). Let f : X → Z be an algebraic fiber
space, and let (X,B) be an lc pair. Assume that Z is of general type and
KX + B is big over Z. Then, KX + B is big.

Proof. Replacing (X,B) and Z we can assume that (X,B) is log smooth and
Z is smooth. Thanks to [42, V. 4.1 Theorem] we deduce that κσ(KX +B) ≥
κσ(KF + B|F ) + κσ(KZ) = dimX which in turn implies that κ(KX + B) =
dimX by [42, V. 2.7 Proposition].

Proposition 4.18. Let f : (X,B) → Z be a surjective morphism from a
projective lc pair (X,B) to a normal variety Z. Assume that Z is irregular
with Albanese fiber of general type and that KX + B is relatively abundant
over Z. Then, KX + B is abundant. Moreover, the subadditivity of Kodaira
dimensions κ(KX + B) ≥ κ(KF + BF ) + κ(Z) holds, where F is a general
fiber, KF + BF = (KX + B)|F , and κ(Z) means the Kodaira dimension of a
smooth model of Z.

Proof. Let Z → Z ′ → A be the Stein factorization. By assumption KZ is big
over Z ′. Let g : X ��� Y be a relative Iitaka fibration of KX + B over Z.
Using a similar argument in the proof of Theorem 1.1 we get a generalized
pair (Y,BY +MY ) such that KY +BY +MY is big/Z, κ(KY +BY +MY ) =
κ(KX+B) and κσ(KY +BY +MY ) = κσ(KX+B). If we modify the coefficients
as in Remark 3.2 so that (Y,ΔY ) is klt and KY +ΔY ∼Q KY +Bε

Y +M ε
Y , then

we have that KY + ΔY is big over Z ′ by the previous lemma. It follows that
κ(KY +ΔY ) = κ(KX +B) and κσ(KY +ΔY ) = κσ(KX +B). The abundance
of KX + B in turn holds as the abundance of KY + ΔY holds. By an easy
calculation we also deduce the subadditivity of Kodaira dimensions.

In the same way, Proposition 3.11 can be generalized as below.
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Proposition 4.19. Let f : (X,B) → Z be a surjective morphism from a
projective lc pair (X,B) to a normal variety Z. Assume that Z is irregular
with Albanese fiber of general type, and that (F,BF ) has a good minimal model
where F is the general fiber and KF + BF = (KX + B)|F . Then, KX + B is
abundant. Moreover, if the canonical ring R(KX+B) is finitely generated, for
example, if (X,B) is klt, or κ(KX +B) = 0, then (X,B) has a good minimal
model.

5. A remark on Conjecture 1.11

Finally, we briefly discuss Conjecture 1.11 without the assumption of relative
abundance. Let f : (X,B) → Z be a surjective morphism from a projective
lc pair (X,B) of dimension d to a normal variety Z. Assume that Z has
maximal Albanese dimension. Replacing (X,B) with a dlt blow-up, we can
assume that (X,B) is Q-factorial dlt.

An inductive argument. Now we assume that Conjecture 1.11 holds
in dimension ≤ d − 1. Let Z → Z ′ → A be the Stein factorization of its
Albanese map. Following [35, Theorem 13] there exists an abelian variety B,
étale covers Z̃ ′ and B̃ of Z ′ and B respectively, and a normal variety C̃ such
that
(1). C̃ is finite over C := A/B;
(2). Z̃ ′ is isomorphic to B̃ × C̃;
(3). κ(C̃) = dim C̃ = κ(Z).
Let X̃ ′ = X ′ ×Z′ Z̃ ′ and Z̃ = Z ×Z′ Z̃ ′. X̃ ′ and Z̃ are étale covers of X ′ and
Z respectively. Replacing X ′, Z and Z ′ with X̃ ′, Z̃ and Z̃ ′, we can assume
that Z ′ = B̃ × C̃ (see [5, Remark 5.1 and the proof of Theorem 1.1, Step 6]
and [35] for details).

If κ(KX +B) ≥ 1, then we are able to show the subadditivity of Kodaira
dimensions

κ(KX + B) ≥ κ(KF + BF ) + κ(Z)
with an inductive argument as follows. Take a relative Iitaka fibration g :
X ��� Y over Z, and an Iitaka fibration h′ : Y ��� T of KX + B. We can
assume g and h are morphisms and we have the commutative diagram.

X

f

g
h

Y
h′

f ′
T

Z Z ′ = B̃ × C̃
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Let G be a general fiber of h and let G′ be the image of G in Y . Because
κ(KG +BG) = 0, by an inductive assumption we deduce κ(KG +BG/Z) = 0
and κ(V ) = 0 where V is the normalization of the image of G in Z. In
particular, G′ is generically finite over Z, and G is mapped to a point of C̃
which in turn implies that dimG′ ≤ dimZ ′ − dim C̃ = dimZ − dim C̃. We
therefore have

κ(KX + B) = dimX − dimG

= dim Y − dimG′

≥ dim Y − dimZ + dim C̃

= κ(KF + BF ) + dim κ(Z)

If we assume κ(KX +B) ≤ 0 and κ(KF +BF ) ≥ 0, then we deduce that
κ(KX + B) = 0 by Lemma 3.5. We can therefore reduce Conjecture 1.11 to
the case when κ(KX+B) = 0. Let f : X → Z̃ → Z be the Stein factorization.
By [35, Corollary 9] κ(Z̃) ≥ κ(Z), hence it suffices to show that when f is
a surjective morphism with connected fibers if we replace Z with Z̃. As we
argued before, we can assume that Z ′ = B̃ × C̃ where C̃ is finite over an
abelian variety and κ(C̃) = dim C̃ = κ(Z). So, if κ(KX + B) = 0, then the
image of X in C̃ is a point by [28, Corollary 2.11(2)] which in turn implies
that κ(Z) = 0. Because the main theorem of [35] asserts that the Albanese
map α : Z → A is an algebraic fiber space, we are allowed to replace Z with
Albanese variety A. So, we can assume that Z = A is an abelian variety.

Remark 5.1 From the discussion above, we see that Conjecture 1.11 holds
if it holds for any surjective morphism f : (X,B) → Z with connected fibers
where (X,B) is Q-factorial dlt with κ(KX +B) = 0 and Z = A is an abelian
variety. In particular, Conjecture 1.11 holds for klt pairs by [12] [30].

Conjecture 1.11 with positivity on the boundary. As we mentioned,
extending results from klt pairs to lc pairs is usually much more difficult
than it sounds. Hence we consider adding an appropriate extra assumption.
Note that if we suppose that KX + B is big/Z, then Conjecture 1.11 follows
directly from Theorem 1.1. So, we would like to see the feasibility of proving
the conjecture if we put an extra bigness assumption on B. Unfortunately,
the next proposition indicates that adding the bigness assumption will not
decrease the difficulty of Conjecture 1.11.

To begin with, let us recall the global ACC Theorem [29, Theorem D].

Theorem 5.2. Fix a positive integer n and a set I ⊂ [0, 1], which satisfies
the DCC. Then there is a finite set I0 ⊂ I with the following property:
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If (X,Δ) is an lc pair such that
(i) X is projective of dimension n,
(ii) the coefficients of Δ belong to I, and
(iii) KX + Δ is numerically trivial,
then the coefficients of Δ belong to I0.

Proposition 5.3. The following statements are equivalent.
(1). Conjecture 1.11 holds for lc pairs (X,B) in dimension ≤ n.
(2). Conjecture 1.11 holds for Q-factorial dlt pairs (Y,BY ) in dimension

≤ n + 1 where BY is big/Z.
(3). Conjecture 1.11 holds for Q-factorial dlt pairs (Y,BY ) in dimension

≤ n + 1 where BY is big.

Proof. First, we prove (1) implies (2). Assume that Conjecture 1.11 holds for
lc pairs (X,B) in dimension ≤ n − 1. Let f : (Y,BY ) → Z be a surjective
morphism from a projective dlt pair of dimension n to a normal variety Z

with maximal Albanese dimension. In addition, we suppose that BY is big/Z.
Let PY = 
BY � and A := Alb(Z). Pick a sufficiently small rational num-

ber ε > 0. Run an LMMP/A with scaling of an ample divisor on KY +BY −
εPY . If KY +BY −εPY is pseudo-effective/A, then this LMMP ends up with a
good minimal model (Y ′, BY ′ − εPY ′) by [4] which is also a good log minimal
model globally by Corollary 3.8. Moreover, by Lemma 3.4 κ(KY + BY ) =
κ(KY ′ + BY ′ − εPY ′) and κσ(KY + BY ) = κσ(KY ′ + BY ′ − εPY ′) provided ε

sufficiently small. So, KY +BY is abundant as KY ′ +BY ′ − εPY ′ is abundant.
In particular, since κ(KY +BY /Z) = κ(KY +BY /A) = κ(KY +BY −εPY /Z),
the subadditivity of Kodaira dimensions κ(KY +BY ) ≥ κ(KF +BF ) + κ(Z)
holds.

If KY +BY − εPY is not pseudo-effective/A, then the LMMP above ends
up with a Mori fiber space g : (Y ′, BY ′−εPY ′) → T . If we choose ε sufficiently
small, then by the global ACC of log canonical thresholds Theorem 5.2 we
have that (Y ′, BY ′) is lc and KY ′ + BY ′ ∼Q 0/T . It follows that some com-
ponent of PY ′ is horizontal/T . Let W be a common log resolution of (Y,BY )
and (Y ′, BY ′). Write p : W → Y and KW +BW = p∗(KY +BY ) +EW where
(W,BW ) is a log smooth model of (Y,BY ). Now we can run an LMMP/Y ′

on KW + BW which terminates at a good minimal model (W ′, BW ′) by [3,
Theorem 3.5, Theorem 1.1] because (Y ′, BY ′) is Q-factorial lc. More precisely,
KW + BW = q∗(KY ′ + BY ′) + E+ − E− where E+ and E− are effective Q-
divisors. Since an LMMP/Y ′ contracts E+ after finite steps, we have that
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KW ′ + BW ′ + E′
− = q′∗(KY ′ + BY ′).

W

p
q

W ′

q′

Y

f

Y ′ g
T

Z A

Since (W ′, BW ′ + E′
−) is lc and KW ′ + BW ′ + E′

− ∼Q 0/T , we can run an
LMMP/T on KW ′+BW ′ which terminates at a good minimal model W ′′ → T ′

by [3]. As we pointed out earlier, some component of PY ′ is horizontal/T . We
denote its birational transform on W by S and its birational transform on
W ′′ by S′′. Pick a common resolution S̃ of S and S′′. We obtain the following
commutative diagram of projective morphisms.

S̃

S S′′

W

p
q

W ′

q′

W ′′ T ′

η

Y

f

Y ′ g
T

Z A

Because KW ′′ +BW ′′ ∼Q 0/T , κ(KW ′′ +BW ′′) = κ(KS′′ +BS′′) and κ(KW ′′ +
BW ′′/A) = κ(KS′′ +BS′′/A) where KS′′ +BS′′ = (KW ′′ +BW ′′)|S′′ . Let (S̃, B

S̃
)

be a log smooth model of (S′′, BS′′). Then, κ(K
S̃

+B
S̃
) = κ(KS′′ +BS′′) and

κ(K
S̃

+ B
S̃
/Z) = κ(K

S̃
+ B

S̃
/A) = κ(KS′′ + BS′′/A). By assumption, we

conclude the subadditivity of Kodaira dimensions.
Now we turn to proving that (3) implies (1) as the implication from (2)

to (3) is obvious. Assume that Conjecture 1.11 holds for Q-factorial dlt pairs
(Y,BY ) in dimension ≤ n+1 where BY is big/Z. Given a surjective morphism
f : (X,B) → Z from a projective lc pair of dimension n to a normal variety
Z with maximal Albanese dimension. We construct a dlt pair (Y,ΔY ) where
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ΔY is big/Z as follows. Consider a P1-bundle

π : Y = P(OX ⊕OX(−1)) → X.

Let p : Y → C = C(X) be the birational contraction of the negative section
E on Y and H a general sufficiently ample Q-divisor on C such that 
H� = 0
and KY + E + BY + p∗H is big where BY is the birational transform of the
cone of B on C. Set

λ = inf{t| KY + E + BY + tp∗H is pseudo-effective/X}

and ΔY = E+BY +λp∗H. Obviously ΔY is big and KY +ΔY = π∗(KX +B)
since the induced morphism E → X is an isomorphism. This completes the
argument.
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[31] C. D. Hacon, C. Xu; Existence of log canonical closures. Invent. math.
192 (2013), No. 1, 161–195.

[32] C. D. Hacon, C. Xu; On finiteness of B-representation and semi-log
canonical abundance. To appear on Adv. Stud. in Pure Math.

[33] S. Iitaka; On logarithmic Kodaira dimension of algebraic varieties.
Complex analysis and algebraic geometry, Iwanami Shoten, Tokyo
(1977), 175–189.

[34] Y. Kawamata; Addition formula of logarithmic Kodaira dimensions for
morphisms of relative dimension one. Proc. Int. Symposium Algebraic
Geom. (1977), 207–217.

http://arxiv.org/abs/1611.08768


Log canonical pairs over varieties with maximal Albanese dimension 571

[35] Y. Kawamata; Characterization of abelian varieties. Compos. Math.
43 (1981), No. 2, 253–276.

[36] Y. Kawamata; Subadjunction of log canonical divisors. II. Amer. J.
Math. 120 (1998), no. 5, 893–899.

[37] Y. Kawamata; On the abundance theorem in the case of numerical
Kodaira dimension zero. Amer. J. Math. Vol. 135 (2013), No. 1, 115–
124.

[38] J. Kollár, S. Mori; Birational Geometry of Algebraic Varieties. Cam-
bridge University Press, (1998).

[39] C-J. Lai; Varieties fibered by good minimal models. Math. Ann. Vol.
350 (2011), Issue 3, 533–547.

[40] B. Lehmann; On Eckl’s pseudo-effective reduction map. Trans. Amer.
Math. Soc. 366 (2014), Issue 3, 1525–1549.

[41] S. Mukai; Duality between D(X) and D(X̂) with its application to Pi-
card sheaves. Nagoya Math. J. 81 (1981), 153–175.

[42] N. Nakayama; Zariski decomposition and abundance. MSJ Memoirs 14,
Tokyo (2004).

[43] G. Pareschii, M. Popa; GV-sheaves, Fourier-Mukai transform, and
generic vanishing. Amer. J. Math. 133 (2011), 235–271.

Zhengyu Hu
Center of Mathematical Sciences
Zhejiang University
Yugu Road
Hangzhou, 310000
China
E-mail: zhengyuhu16@gmail.com

mailto:zhengyuhu16@gmail.com

	Introduction
	Preliminaries
	Proof of the main theorem
	Variants
	Variant: generalized pairs
	Variant: fibrations over irregular varieties

	A remark on Conjecture 1.11
	References

